blob: 1cfa96eabd23816cc8d2a0eabae5c9f9c46ee207 [file] [log] [blame]
//
// Copyright (c) 2023 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "harness/stringHelpers.h"
#include "procs.h"
#include "test_base.h"
const char *step_fn_code_pattern = "%s\n" /* optional pragma */
"__kernel void test_fn(__global %s%s *edge, "
"__global %s%s *x, __global %s%s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
" dst[tid] = step(edge[tid], x[tid]);\n"
"}\n";
const char *step_fn_code_pattern_v3 =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s *edge, __global %s *x, __global %s "
"*dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
" vstore3(step(vload3(tid,edge), vload3(tid,x)), tid, dst);\n"
"}\n";
const char *step_fn_code_pattern_v3_scalar =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s *edge, __global %s *x, __global %s "
"*dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
" vstore3(step(edge[tid], vload3(tid,x)), tid, dst);\n"
"}\n";
namespace {
template <typename T>
int verify_step(const T *const inptrA, const T *const inptrB,
const T *const outptr, const int n, const int veclen,
const bool vecParam)
{
T r;
if (vecParam)
{
for (int i = 0; i < n * veclen; i++)
{
r = (conv_to_dbl(inptrB[i]) < conv_to_dbl(inptrA[i])) ? 0.0 : 1.0;
if (r != conv_to_dbl(outptr[i])) return -1;
}
}
else
{
for (int i = 0; i < n;)
{
int ii = i / veclen;
for (int j = 0; j < veclen && i < n; ++j, ++i)
{
r = (conv_to_dbl(inptrB[i]) < conv_to_dbl(inptrA[ii])) ? 0.0f
: 1.0f;
if (r != conv_to_dbl(outptr[i]))
{
if (std::is_same<T, half>::value)
log_error(
"Failure @ {%d, element %d}: step(%a,%a) -> *%a "
"vs %a\n",
ii, j, conv_to_flt(inptrA[ii]),
conv_to_flt(inptrB[i]), r, conv_to_flt(outptr[i]));
else
log_error(
"Failure @ {%d, element %d}: step(%a,%a) -> *%a "
"vs %a\n",
ii, j, inptrA[ii], inptrB[i], r, outptr[i]);
return -1;
}
}
}
}
return 0;
}
}
template <typename T>
int test_step_fn(cl_device_id device, cl_context context,
cl_command_queue queue, int n_elems, bool vecParam)
{
clMemWrapper streams[3];
std::vector<T> input_ptr[2], output_ptr;
std::vector<clProgramWrapper> programs;
std::vector<clKernelWrapper> kernels;
int err, i;
MTdataHolder d = MTdataHolder(gRandomSeed);
assert(BaseFunctionTest::type2name.find(sizeof(T))
!= BaseFunctionTest::type2name.end());
auto tname = BaseFunctionTest::type2name[sizeof(T)];
int num_elements = n_elems * (1 << (kTotalVecCount - 1));
programs.resize(kTotalVecCount);
kernels.resize(kTotalVecCount);
for (i = 0; i < 2; i++) input_ptr[i].resize(num_elements);
output_ptr.resize(num_elements);
for (i = 0; i < 3; i++)
{
streams[i] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(T) * num_elements, NULL, &err);
test_error(err, "clCreateBuffer failed");
}
std::string pragma_str;
if (std::is_same<T, float>::value)
{
for (i = 0; i < num_elements; i++)
{
input_ptr[0][i] = get_random_float(-0x40000000, 0x40000000, d);
input_ptr[1][i] = get_random_float(-0x40000000, 0x40000000, d);
}
}
else if (std::is_same<T, double>::value)
{
pragma_str = "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n";
for (i = 0; i < num_elements; i++)
{
input_ptr[0][i] = get_random_double(-0x40000000, 0x40000000, d);
input_ptr[1][i] = get_random_double(-0x40000000, 0x40000000, d);
}
}
else if (std::is_same<T, half>::value)
{
const float fval = CL_HALF_MAX;
pragma_str = "#pragma OPENCL EXTENSION cl_khr_fp16 : enable\n";
for (i = 0; i < num_elements; i++)
{
input_ptr[0][i] = conv_to_half(get_random_float(-fval, fval, d));
input_ptr[1][i] = conv_to_half(get_random_float(-fval, fval, d));
}
}
for (i = 0; i < 2; i++)
{
err = clEnqueueWriteBuffer(queue, streams[i], CL_TRUE, 0,
sizeof(T) * num_elements,
&input_ptr[i].front(), 0, NULL, NULL);
test_error(err, "Unable to write input buffer");
}
char vecSizeNames[][3] = { "", "2", "4", "8", "16", "3" };
for (i = 0; i < kTotalVecCount; i++)
{
std::string kernelSource;
if (i >= kVectorSizeCount)
{
if (vecParam)
{
std::string str = step_fn_code_pattern_v3;
kernelSource =
str_sprintf(str, pragma_str.c_str(), tname.c_str(),
tname.c_str(), tname.c_str());
}
else
{
std::string str = step_fn_code_pattern_v3_scalar;
kernelSource =
str_sprintf(str, pragma_str.c_str(), tname.c_str(),
tname.c_str(), tname.c_str());
}
}
else
{
// regular path
std::string str = step_fn_code_pattern;
kernelSource =
str_sprintf(str, pragma_str.c_str(), tname.c_str(),
vecParam ? vecSizeNames[i] : "", tname.c_str(),
vecSizeNames[i], tname.c_str(), vecSizeNames[i]);
}
const char *programPtr = kernelSource.c_str();
err =
create_single_kernel_helper(context, &programs[i], &kernels[i], 1,
(const char **)&programPtr, "test_fn");
test_error(err, "Unable to create kernel");
for (int j = 0; j < 3; j++)
{
err =
clSetKernelArg(kernels[i], j, sizeof(streams[j]), &streams[j]);
test_error(err, "Unable to set kernel argument");
}
size_t threads = (size_t)n_elems;
err = clEnqueueNDRangeKernel(queue, kernels[i], 1, NULL, &threads, NULL,
0, NULL, NULL);
test_error(err, "Unable to execute kernel");
err = clEnqueueReadBuffer(queue, streams[2], true, 0,
sizeof(T) * num_elements, &output_ptr[0], 0,
NULL, NULL);
test_error(err, "Unable to read results");
err = verify_step(&input_ptr[0].front(), &input_ptr[1].front(),
&output_ptr.front(), n_elems, g_arrVecSizes[i],
vecParam);
if (err)
{
log_error("step %s%d%s test failed\n", tname.c_str(),
((g_arrVecSizes[i])),
vecParam ? "" : std::string(", " + tname).c_str());
err = -1;
}
else
{
log_info("step %s%d%s test passed\n", tname.c_str(),
((g_arrVecSizes[i])),
vecParam ? "" : std::string(", " + tname).c_str());
err = 0;
}
if (err)
break;
}
return err;
}
cl_int StepTest::Run()
{
cl_int error = CL_SUCCESS;
if (is_extension_available(device, "cl_khr_fp16"))
{
error = test_step_fn<half>(device, context, queue, num_elems, vecParam);
test_error(error, "StepTest::Run<cl_half> failed");
}
error = test_step_fn<float>(device, context, queue, num_elems, vecParam);
test_error(error, "StepTest::Run<float> failed");
if (is_extension_available(device, "cl_khr_fp64"))
{
error =
test_step_fn<double>(device, context, queue, num_elems, vecParam);
test_error(error, "StepTest::Run<double> failed");
}
return error;
}
int test_step(cl_device_id device, cl_context context, cl_command_queue queue,
int n_elems)
{
return MakeAndRunTest<StepTest>(device, context, queue, n_elems, "step",
true);
}
int test_stepf(cl_device_id device, cl_context context, cl_command_queue queue,
int n_elems)
{
return MakeAndRunTest<StepTest>(device, context, queue, n_elems, "step",
false);
}