Bug: 149215457

Clone this repo:
  1. d39c7ae Add janitors to the OWNERS file by Sadaf Ebrahimi · 5 weeks ago main master
  2. 0e6746e Remove unused -Wno-implicit-function-declaration. am: 5b3d182c34 by Elliott Hughes · 9 weeks ago
  3. 5b3d182 Remove unused -Wno-implicit-function-declaration. by Elliott Hughes · 10 weeks ago
  4. c157ba6 [automerger skipped] Empty merge of Android 24Q2 Release (ab/11526283) to aosp-main-future am: 6b59a35b79 -s ours by Xin Li · 9 months ago android15-automotiveos-dev android15-qpr1-release android15-qpr1-s3-release android15-qpr1-s4-release android15-qpr1-s5-release android15-tests-dev aml_cfg_351010000 aml_hef_350921160 aml_hef_351016140 aml_hef_351120040 aml_rkp_350910000 aml_rkp_351011000 android-15.0.0_r10 android-15.0.0_r11 android-15.0.0_r12 android-15.0.0_r13 android-15.0.0_r6 android-15.0.0_r7 android-15.0.0_r8 android-15.0.0_r9
  5. 6b59a35 Empty merge of Android 24Q2 Release (ab/11526283) to aosp-main-future by Xin Li · 9 months ago

XNNPACK

XNNPACK is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms. XNNPACK is not intended for direct use by deep learning practitioners and researchers; instead it provides low-level performance primitives for accelerating high-level machine learning frameworks, such as TensorFlow Lite, TensorFlow.js, PyTorch, and MediaPipe.

Supported Architectures

  • ARM64 on Android, Linux, macOS, and iOS (including WatchOS and tvOS)
  • ARMv7 (with NEON) on Android
  • ARMv6 (with VFPv2) on Linux
  • x86 and x86-64 (up to AVX512) on Windows, Linux, macOS, Android, and iOS simulator
  • WebAssembly MVP
  • WebAssembly SIMD
  • RISC-V (RV32GV and RV64GC)

Operator Coverage

XNNPACK implements the following neural network operators:

  • 2D Convolution (including grouped and depthwise)
  • 2D Deconvolution (AKA Transposed Convolution)
  • 2D Average Pooling
  • 2D Max Pooling
  • 2D ArgMax Pooling (Max Pooling + indices)
  • 2D Unpooling
  • 2D Bilinear Resize
  • 2D Depth-to-Space (AKA Pixel Shuffle)
  • Add (including broadcasting, two inputs only)
  • Subtract (including broadcasting)
  • Divide (including broadcasting)
  • Maximum (including broadcasting)
  • Minimum (including broadcasting)
  • Multiply (including broadcasting)
  • Squared Difference (including broadcasting)
  • Global Average Pooling
  • Channel Shuffle
  • Fully Connected
  • Abs (absolute value)
  • Bankers' Rounding (rounding to nearest, ties to even)
  • Ceiling (rounding to integer above)
  • Clamp (includes ReLU and ReLU6)
  • Convert (includes fixed-point and half-precision quantization and dequantization)
  • Copy
  • ELU
  • Floor (rounding to integer below)
  • HardSwish
  • Leaky ReLU
  • Negate
  • Sigmoid
  • Softmax
  • Square
  • Transpose
  • Truncation (rounding to integer towards zero)
  • PReLU

All operators in XNNPACK support NHWC layout, but additionally allow custom stride along the Channel dimension. Thus, operators can consume a subset of channels in the input tensor, and produce a subset of channels in the output tensor, providing a zero-cost Channel Split and Channel Concatenation operations.

Performance

Mobile phones

The table below presents single-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.

ModelPixel, msPixel 2, msPixel 3a, ms
FP32 MobileNet v1 1.0X828688
FP32 MobileNet v2 1.0X495355
FP32 MobileNet v3 Large394244
FP32 MobileNet v3 Small121414

The following table presents multi-threaded (using as many threads as there are big cores) performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.

ModelPixel, msPixel 2, msPixel 3a, ms
FP32 MobileNet v1 1.0X432746
FP32 MobileNet v2 1.0X261828
FP32 MobileNet v3 Large221624
FP32 MobileNet v3 Small768

Benchmarked on March 27, 2020 with end2end_bench --benchmark_min_time=5 on an Android/ARM64 build with Android NDK r21 (bazel build -c opt --config android_arm64 :end2end_bench) and neural network models with randomized weights and inputs.

Raspberry Pi

The table below presents multi-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Raspberry Pi boards.

ModelRPi Zero W (BCM2835), msRPi 2 (BCM2836), msRPi 3+ (BCM2837B0), msRPi 4 (BCM2711), msRPi 4 (BCM2711, ARM64), ms
FP32 MobileNet v1 1.0X39193021147277
FP32 MobileNet v2 1.0X1987191794146
FP32 MobileNet v3 Large1658161673840
FP32 MobileNet v3 Small47450221315
INT8 MobileNet v1 1.0X2589128462924
INT8 MobileNet v2 1.0X149582302017

Benchmarked on Feb 8, 2022 with end2end-bench --benchmark_min_time=5 on a Raspbian Buster build with CMake (./scripts/build-local.sh) and neural network models with randomized weights and inputs. INT8 inference was evaluated on per-channel quantization schema.

Publications

Ecosystem

Machine Learning Frameworks

Acknowledgements

XNNPACK is a based on QNNPACK library. Over time its codebase diverged a lot, and XNNPACK API is no longer compatible with QNNPACK.