blob: 3fcbf9c82df245050eb99d399282ac025c9630cc [file] [log] [blame] [view]
<!--- TEST_NAME FormatsTest -->
# Alternative and custom formats (experimental)
This is the sixth chapter of the [Kotlin Serialization Guide](serialization-guide.md).
It goes beyond JSON, covering alternative and custom formats. Unlike JSON, which is
stable, these are currently experimental features of Kotlin Serialization.
**Table of contents**
<!--- TOC -->
* [CBOR (experimental)](#cbor-experimental)
* [Ignoring unknown keys](#ignoring-unknown-keys)
* [Byte arrays and CBOR data types](#byte-arrays-and-cbor-data-types)
* [ProtoBuf (experimental)](#protobuf-experimental)
* [Field numbers](#field-numbers)
* [Integer types](#integer-types)
* [Lists as repeated fields](#lists-as-repeated-fields)
* [Packed fields](#packed-fields)
* [ProtoBuf schema generator (experimental)](#protobuf-schema-generator-experimental)
* [Properties (experimental)](#properties-experimental)
* [Custom formats (experimental)](#custom-formats-experimental)
* [Basic encoder](#basic-encoder)
* [Basic decoder](#basic-decoder)
* [Sequential decoding](#sequential-decoding)
* [Adding collection support](#adding-collection-support)
* [Adding null support](#adding-null-support)
* [Efficient binary format](#efficient-binary-format)
* [Format-specific types](#format-specific-types)
<!--- END -->
## CBOR (experimental)
[CBOR][RFC 7049] is one of the standard compact binary
encodings for JSON, so it supports a subset of [JSON features](json.md) and
is generally very similar to JSON in use, but produces binary data.
> CBOR support is (experimentally) available in a separate
> `org.jetbrains.kotlinx:kotlinx-serialization-cbor:<version>` module.
[Cbor] class has [Cbor.encodeToByteArray] and [Cbor.decodeFromByteArray] functions.
Let us take the basic example from the [JSON encoding](basic-serialization.md#json-encoding),
but encode it using CBOR.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.cbor.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Project(val name: String, val language: String)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = Cbor.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = Cbor.decodeFromByteArray<Project>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-01.kt).
We print a filtered ASCII representation of the output, writing non-ASCII data in hex, so we see how
all the original strings are directly represented in CBOR, but the format delimiters themselves are binary.
```text
{BF}dnameukotlinx.serializationhlanguagefKotlin{FF}
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
In [CBOR hex notation](http://cbor.me/), the output is equivalent to the following:
```
BF # map(*)
64 # text(4)
6E616D65 # "name"
75 # text(21)
6B6F746C696E782E73657269616C697A6174696F6E # "kotlinx.serialization"
68 # text(8)
6C616E6775616765 # "language"
66 # text(6)
4B6F746C696E # "Kotlin"
FF # primitive(*)
```
> Note, CBOR as a format, unlike JSON, supports maps with non-trivial keys
> (see the [Allowing structured map keys](json.md#allowing-structured-map-keys) section for JSON workarounds),
> and Kotlin maps are serialized as CBOR maps, but some parsers (like `jackson-dataformat-cbor`) don't support this.
### Ignoring unknown keys
CBOR format is often used to communicate with [IoT] devices where new properties could be added as a part of a device's
API evolution. By default, unknown keys encountered during deserialization produce an error.
This behavior can be configured with the [ignoreUnknownKeys][CborBuilder.ignoreUnknownKeys] property.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.cbor.*
-->
```kotlin
val format = Cbor { ignoreUnknownKeys = true }
@Serializable
data class Project(val name: String)
fun main() {
val data = format.decodeFromHexString<Project>(
"bf646e616d65756b6f746c696e782e73657269616c697a6174696f6e686c616e6775616765664b6f746c696eff"
)
println(data)
}
```
> You can get the full code [here](../guide/example/example-formats-02.kt).
It decodes the object, despite the fact that `Project` is missing the `language` property.
```text
Project(name=kotlinx.serialization)
```
<!--- TEST -->
In [CBOR hex notation](http://cbor.me/), the input is equivalent to the following:
```
BF # map(*)
64 # text(4)
6E616D65 # "name"
75 # text(21)
6B6F746C696E782E73657269616C697A6174696F6E # "kotlinx.serialization"
68 # text(8)
6C616E6775616765 # "language"
66 # text(6)
4B6F746C696E # "Kotlin"
FF # primitive(*)
```
### Byte arrays and CBOR data types
Per the [RFC 7049 Major Types] section, CBOR supports the following data types:
- Major type 0: an unsigned integer
- Major type 1: a negative integer
- **Major type 2: a byte string**
- Major type 3: a text string
- **Major type 4: an array of data items**
- Major type 5: a map of pairs of data items
- Major type 6: optional semantic tagging of other major types
- Major type 7: floating-point numbers and simple data types that need no content, as well as the "break" stop code
By default, Kotlin `ByteArray` instances are encoded as **major type 4**.
When **major type 2** is desired, then the [`@ByteString`][ByteString] annotation can be used.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.cbor.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Data(
@ByteString
val type2: ByteArray, // CBOR Major type 2
val type4: ByteArray // CBOR Major type 4
)
fun main() {
val data = Data(byteArrayOf(1, 2, 3, 4), byteArrayOf(5, 6, 7, 8))
val bytes = Cbor.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = Cbor.decodeFromByteArray<Data>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-03.kt).
As we see, the CBOR byte that precedes the data is different for different types of encoding.
```text
{BF}etype2D{01}{02}{03}{04}etype4{9F}{05}{06}{07}{08}{FF}{FF}
Data(type2=[1, 2, 3, 4], type4=[5, 6, 7, 8])
```
<!--- TEST -->
In [CBOR hex notation](http://cbor.me/), the output is equivalent to the following:
```
BF # map(*)
65 # text(5)
7479706532 # "type2"
44 # bytes(4)
01020304 # "\x01\x02\x03\x04"
65 # text(5)
7479706534 # "type4"
9F # array(*)
05 # unsigned(5)
06 # unsigned(6)
07 # unsigned(7)
08 # unsigned(8)
FF # primitive(*)
FF # primitive(*)
```
## ProtoBuf (experimental)
[Protocol Buffers](https://developers.google.com/protocol-buffers) is a language-neutral binary format that normally
relies on a separate ".proto" file that defines the protocol schema. It is more compact than CBOR, because it
assigns integer numbers to fields instead of names.
> Protocol buffers support is (experimentally) available in a separate
> `org.jetbrains.kotlinx:kotlinx-serialization-protobuf:<version>` module.
Kotlin Serialization is using proto2 semantics, where all fields are explicitly required or optional.
For a basic example we change our example to use the
[ProtoBuf] class with [ProtoBuf.encodeToByteArray] and [ProtoBuf.decodeFromByteArray] functions.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Project(val name: String, val language: String)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = ProtoBuf.decodeFromByteArray<Project>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-04.kt).
```text
{0A}{15}kotlinx.serialization{12}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
In [ProtoBuf hex notation](https://protogen.marcgravell.com/decode), the output is equivalent to the following:
```
Field #1: 0A String Length = 21, Hex = 15, UTF8 = "kotlinx.serialization"
Field #2: 12 String Length = 6, Hex = 06, UTF8 = "Kotlin"
```
### Field numbers
By default, field numbers in the Kotlin Serialization [ProtoBuf] implementation are automatically assigned,
which does not provide the ability to define a stable data schema that evolves over time. That is normally achieved by
writing a separate ".proto" file. However, with Kotlin Serialization we can get this ability without a separate
schema file, instead using the [ProtoNumber] annotation.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Project(
@ProtoNumber(1)
val name: String,
@ProtoNumber(3)
val language: String
)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = ProtoBuf.decodeFromByteArray<Project>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-05.kt).
We see in the output that the number for the first property `name` did not change (as it is numbered from one by default),
but it did change for the `language` property.
```text
{0A}{15}kotlinx.serialization{1A}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
In [ProtoBuf hex notation](https://protogen.marcgravell.com/decode), the output is equivalent to the following:
```
Field #1: 0A String Length = 21, Hex = 15, UTF8 = "kotlinx.serialization" (total 21 chars)
Field #3: 1A String Length = 6, Hex = 06, UTF8 = "Kotlin"
```
### Integer types
Protocol buffers support various integer encodings optimized for different ranges of integers.
They are specified using the [ProtoType] annotation and the [ProtoIntegerType] enum.
The following example shows all three supported options.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
class Data(
@ProtoType(ProtoIntegerType.DEFAULT)
val a: Int,
@ProtoType(ProtoIntegerType.SIGNED)
val b: Int,
@ProtoType(ProtoIntegerType.FIXED)
val c: Int
)
fun main() {
val data = Data(1, -2, 3)
println(ProtoBuf.encodeToByteArray(data).toAsciiHexString())
}
```
> You can get the full code [here](../guide/example/example-formats-06.kt).
* The [default][ProtoIntegerType.DEFAULT] is a varint encoding (`intXX`) that is optimized for
small non-negative numbers. The value of `1` is encoded in one byte `01`.
* The [signed][ProtoIntegerType.SIGNED] is a signed ZigZag encoding (`sintXX`) that is optimized for
small signed integers. The value of `-2` is encoded in one byte `03`.
* The [fixed][ProtoIntegerType.FIXED] encoding (`fixedXX`) always uses a fixed number of bytes.
The value of `3` is encoded as four bytes `03 00 00 00`.
> `uintXX` and `sfixedXX` protocol buffer types are not supported.
```text
{08}{01}{10}{03}{1D}{03}{00}{00}{00}
```
<!--- TEST -->
In [ProtoBuf hex notation](https://protogen.marcgravell.com/decode) the output is equivalent to the following:
```
Field #1: 08 Varint Value = 1, Hex = 01
Field #2: 10 Varint Value = 3, Hex = 03
Field #3: 1D Fixed32 Value = 3, Hex = 03-00-00-00
```
### Lists as repeated fields
By default, kotlin lists and other collections are representend as repeated fields.
In the protocol buffers when the list is empty there are no elements in the
stream with the corresponding number. For Kotlin Serialization you must explicitly specify a default of `emptyList()`
for any property of a collection or map type. Otherwise you will not be able deserialize an empty
list, which is indistinguishable in protocol buffers from a missing field.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Data(
val a: List<Int> = emptyList(),
val b: List<Int> = emptyList()
)
fun main() {
val data = Data(listOf(1, 2, 3), listOf())
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
println(ProtoBuf.decodeFromByteArray<Data>(bytes))
}
```
> You can get the full code [here](../guide/example/example-formats-07.kt).
```text
{08}{01}{08}{02}{08}{03}
Data(a=[1, 2, 3], b=[])
```
<!--- TEST -->
In [ProtoBuf diagnostic mode](https://protogen.marcgravell.com/decode) the output is equivalent to the following:
```
Field #1: 08 Varint Value = 1, Hex = 01
Field #1: 08 Varint Value = 2, Hex = 02
Field #1: 08 Varint Value = 3, Hex = 03
```
### Packed fields
Collection types (not maps) can be **written** as packed fields when annotated with the `@ProtoPacked` annotation.
Per the standard packed fields can only be used on primitive numeric types. The annotation is ignored on other types.
Per the [format description](https://developers.google.com/protocol-buffers/docs/encoding#packed) the parser ignores
the annotation, but rather reads list in either packed or repeated format.
### ProtoBuf schema generator (experimental)
As mentioned above, when working with protocol buffers you usually use a ".proto" file and a code generator for your
language. This includes the code to serialize your message to an output stream and deserialize it from an input stream.
When using Kotlin Serialization this step is not necessary because your `@Serializable` Kotlin data types are used as the
source for the schema.
This is very convenient for Kotlin-to-Kotlin communication, but makes interoperability between languages complicated.
Fortunately, you can use the ProtoBuf schema generator to output the ".proto" representation of your messages. You can
keep your Kotlin classes as a source of truth and use traditional protoc compilers for other languages at the same time.
As an example, we can display the following data class's ".proto" schema as follows.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
import kotlinx.serialization.protobuf.schema.ProtoBufSchemaGenerator
-->
```kotlin
@Serializable
data class SampleData(
val amount: Long,
val description: String?,
val department: String = "QA"
)
fun main() {
val descriptors = listOf(SampleData.serializer().descriptor)
val schemas = ProtoBufSchemaGenerator.generateSchemaText(descriptors)
println(schemas)
}
```
> You can get the full code [here](../guide/example/example-formats-08.kt).
Which would output as follows.
```text
syntax = "proto2";
// serial name 'example.exampleFormats08.SampleData'
message SampleData {
required int64 amount = 1;
optional string description = 2;
// WARNING: a default value decoded when value is missing
optional string department = 3;
}
```
<!--- TEST -->
Note that since default values are not represented in ".proto" files, a warning is generated when one appears in the schema.
See the documentation for [ProtoBufSchemaGenerator] for more information.
## Properties (experimental)
Kotlin Serialization can serialize a class into a flat map with `String` keys via
the [Properties][kotlinx.serialization.properties.Properties] format implementation.
> Properties support is (experimentally) available in a separate
> `org.jetbrains.kotlinx:kotlinx-serialization-properties:<version>` module.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.properties.Properties // todo: remove when no longer needed
import kotlinx.serialization.properties.*
-->
```kotlin
@Serializable
class Project(val name: String, val owner: User)
@Serializable
class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"))
val map = Properties.encodeToMap(data)
map.forEach { (k, v) -> println("$k = $v") }
}
```
> You can get the full code [here](../guide/example/example-formats-09.kt).
The resulting map has dot-separated keys representing keys of the nested objects.
```text
name = kotlinx.serialization
owner.name = kotlin
```
<!--- TEST -->
## Custom formats (experimental)
A custom format for Kotlin Serialization must provide an implementation for the [Encoder] and [Decoder] interfaces that
we saw used in the [Serializers](serializers.md) chapter.
These are pretty large interfaces. For convenience
the [AbstractEncoder] and [AbstractDecoder] skeleton implementations are provided to simplify the task.
In [AbstractEncoder] most of the `encodeXxx` methods have a default implementation that
delegates to [`encodeValue(value: Any)`][AbstractEncoder.encodeValue] &mdash; the only method that must be
implemented to get a basic working format.
### Basic encoder
Let us start with a trivial format implementation that encodes the data into a single list of primitive
constituent objects in the order they were written in the source code. To start, we implement a simple [Encoder] by
overriding `encodeValue` in [AbstractEncoder].
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
-->
```kotlin
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
}
```
Now we write a convenience top-level function that creates an encoder that encodes an object
and returns a list.
```kotlin
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
```
For even more convenience, to avoid the need to explicitly pass a serializer, we write an `inline` overload of
the `encodeToList` function with a `reified` type parameter using the [serializer] function to retrieve
the appropriate [KSerializer] instance for the actual type.
```kotlin
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
```
Now we can test it.
```kotlin
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
println(encodeToList(data))
}
```
> You can get the full code [here](../guide/example/example-formats-10.kt).
As a result, we got all the primitive values in our object graph visited and put into a list
in _serial_ order.
```text
[kotlinx.serialization, kotlin, 9000]
```
<!--- TEST -->
> By itself, that's a useful feature if we need compute some kind of hashcode or digest for all the data
> that is contained in a serializable object tree.
### Basic decoder
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
}
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
-->
A decoder needs to implement more substance.
* [decodeValue][AbstractDecoder.decodeValue] &mdash; returns the next value from the list.
* [decodeElementIndex][CompositeDecoder.decodeElementIndex] &mdash; returns the next index of a deserialized value.
In this primitive format deserialization always happens in order, so we keep track of the index
in the `elementIndex` variable. See
the [Hand-written composite serializer](serializers.md#hand-written-composite-serializer) section
on how it ends up being used.
* [beginStructure][Decoder.beginStructure] &mdash; returns a new instance of the `ListDecoder`, so that
each structure that is being recursively decoded keeps track of its own `elementIndex` state separately.
```kotlin
class ListDecoder(val list: ArrayDeque<Any>) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == descriptor.elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list)
}
```
A couple of convenience functions for decoding.
```kotlin
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
```
That is enough to start encoding and decoding basic serializable classes.
<!--- INCLUDE
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
-->
```kotlin
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-11.kt).
Now we can convert a list of primitives back to an object tree.
```text
[kotlinx.serialization, kotlin, 9000]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=9000)
```
<!--- TEST -->
### Sequential decoding
The decoder we have implemented keeps track of the `elementIndex` in its state and implements
`decodeElementIndex`. This means that it is going to work with an arbitrary serializer, even the
simple one we wrote in
the [Hand-written composite serializer](serializers.md#hand-written-composite-serializer) section.
However, this format always stores elements in order, so this bookkeeping is not needed and
undermines decoding performance. All auto-generated serializers on the JVM support
the [Sequential decoding protocol (experimental)](serializers.md#sequential-decoding-protocol-experimental), and the decoder can indicate
its support by returning `true` from the [CompositeDecoder.decodeSequentially] function.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
}
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
-->
```kotlin
class ListDecoder(val list: ArrayDeque<Any>) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == descriptor.elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list)
override fun decodeSequentially(): Boolean = true
}
```
<!--- INCLUDE
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
-->
> You can get the full code [here](../guide/example/example-formats-12.kt).
<!--- TEST
[kotlinx.serialization, kotlin, 9000]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=9000)
-->
### Adding collection support
This basic format, so far, cannot properly represent collections. In encodes them, but it does not keep
track of how many elements there are in the collection or where it ends, so it cannot properly decode them.
First, let us add proper support for collections to the encoder by implementing the
[Encoder.beginCollection] function. The `beginCollection` function takes a collection size as a parameter,
so we encode it to add it to the result.
Our encoder implementation does not keep any state, so it just returns `this` from the `beginCollection` function.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
-->
```kotlin
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
}
```
<!--- INCLUDE
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
-->
The decoder, for our case, needs to only implement the [CompositeDecoder.decodeCollectionSize] function
in addition to the previous code.
> The formats that store collection size in advance have to return `true` from `decodeSequentially`.
```kotlin
class ListDecoder(val list: ArrayDeque<Any>, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
}
```
<!--- INCLUDE
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
-->
That is all that is needed to support collections and maps.
```kotlin
@Serializable
data class Project(val name: String, val owners: List<User>, val votes: Int)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", listOf(User("kotlin"), User("jetbrains")), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-13.kt).
We see the size of the list added to the result, letting the decoder know where to stop.
```text
[kotlinx.serialization, 2, kotlin, jetbrains, 9000]
Project(name=kotlinx.serialization, owners=[User(name=kotlin), User(name=jetbrains)], votes=9000)
```
<!--- TEST -->
### Adding null support
Our trivial format does not support `null` values so far. For nullable types we need to add some kind
of "null indicator", telling whether the upcoming value is null or not.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
-->
In the encoder implementation we override [Encoder.encodeNull] and [Encoder.encodeNotNullMark].
```kotlin
override fun encodeNull() = encodeValue("NULL")
override fun encodeNotNullMark() = encodeValue("!!")
```
<!--- INCLUDE
}
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
class ListDecoder(val list: ArrayDeque<Any>, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
-->
In the decoder implementation we override [Decoder.decodeNotNullMark].
```kotlin
override fun decodeNotNullMark(): Boolean = decodeString() != "NULL"
```
<!--- INCLUDE
}
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
-->
Let us test nullable properties both with not-null and null values.
```kotlin
@Serializable
data class Project(val name: String, val owner: User?, val votes: Int?)
@Serializable
data class User(val name: String)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin") , null)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-14.kt).
In the output we see how not-null`!!` and `NULL` marks are used.
```text
[kotlinx.serialization, !!, kotlin, NULL]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=null)
```
<!--- TEST -->
### Efficient binary format
Now we are ready for an example of an efficient binary format. We are going to write data to the
[java.io.DataOutput] implementation. Instead of `encodeValue` we must override the individual
`encodeXxx` functions for each of ten [primitives](builtin-classes.md#primitives) in the encoder.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.Serializable
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
import java.io.*
-->
```kotlin
class DataOutputEncoder(val output: DataOutput) : AbstractEncoder() {
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeBoolean(value: Boolean) = output.writeByte(if (value) 1 else 0)
override fun encodeByte(value: Byte) = output.writeByte(value.toInt())
override fun encodeShort(value: Short) = output.writeShort(value.toInt())
override fun encodeInt(value: Int) = output.writeInt(value)
override fun encodeLong(value: Long) = output.writeLong(value)
override fun encodeFloat(value: Float) = output.writeFloat(value)
override fun encodeDouble(value: Double) = output.writeDouble(value)
override fun encodeChar(value: Char) = output.writeChar(value.code)
override fun encodeString(value: String) = output.writeUTF(value)
override fun encodeEnum(enumDescriptor: SerialDescriptor, index: Int) = output.writeInt(index)
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
override fun encodeNull() = encodeBoolean(false)
override fun encodeNotNullMark() = encodeBoolean(true)
}
```
<!--- INCLUDE
fun <T> encodeTo(output: DataOutput, serializer: SerializationStrategy<T>, value: T) {
val encoder = DataOutputEncoder(output)
encoder.encodeSerializableValue(serializer, value)
}
inline fun <reified T> encodeTo(output: DataOutput, value: T) = encodeTo(output, serializer(), value)
-->
The decoder implementation mirrors encoder's implementation overriding all the primitive `decodeXxx` functions.
```kotlin
class DataInputDecoder(val input: DataInput, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeBoolean(): Boolean = input.readByte().toInt() != 0
override fun decodeByte(): Byte = input.readByte()
override fun decodeShort(): Short = input.readShort()
override fun decodeInt(): Int = input.readInt()
override fun decodeLong(): Long = input.readLong()
override fun decodeFloat(): Float = input.readFloat()
override fun decodeDouble(): Double = input.readDouble()
override fun decodeChar(): Char = input.readChar()
override fun decodeString(): String = input.readUTF()
override fun decodeEnum(enumDescriptor: SerialDescriptor): Int = input.readInt()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
DataInputDecoder(input, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
override fun decodeNotNullMark(): Boolean = decodeBoolean()
}
```
<!--- INCLUDE
fun <T> decodeFrom(input: DataInput, deserializer: DeserializationStrategy<T>): T {
val decoder = DataInputDecoder(input)
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFrom(input: DataInput): T = decodeFrom(input, serializer())
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
We can now serialize and deserialize arbitrary data. For example, the same classes as were
used in the [CBOR (experimental)](#cbor-experimental) and [ProtoBuf (experimental)](#protobuf-experimental) sections.
```kotlin
@Serializable
data class Project(val name: String, val language: String)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val output = ByteArrayOutputStream()
encodeTo(DataOutputStream(output), data)
val bytes = output.toByteArray()
println(bytes.toAsciiHexString())
val input = ByteArrayInputStream(bytes)
val obj = decodeFrom<Project>(DataInputStream(input))
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-15.kt).
As we can see, the result is a dense binary format that only contains the data that is being serialized.
It can be easily tweaked for any kind of domain-specific compact encoding.
```text
{00}{15}kotlinx.serialization{00}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
### Format-specific types
A format implementation might provide special support for data types that are not among the list of primitive
types in Kotlin Serialization, and do not have a corresponding `encodeXxx`/`decodeXxx` function.
In the encoder this is achieved by overriding the
[`encodeSerializableValue(serializer, value)`][Encoder.encodeSerializableValue] function.
In our `DataOutput` format example we might want to provide a specialized efficient data path for serializing an array
of bytes since [DataOutput][java.io.DataOutput] has a special method for this purpose.
Detection of the type is performed by looking at the `serializer.descriptor`, not by checking the type of the `value`
being serialized, so we fetch the builtin [KSerializer] instance for `ByteArray` type.
> This an important difference. This way our format implementation properly supports
> [Custom serializers](serializers.md#custom-serializers) that a user might specify for a type that just happens
> to be internally represented as a byte array, but need a different serial representation.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.Serializable
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.modules.*
import kotlinx.serialization.encoding.*
import java.io.*
-->
```kotlin
private val byteArraySerializer = serializer<ByteArray>()
```
> Specifically for byte arrays, we could have also used the builtin
> [ByteArraySerializer][kotlinx.serialization.builtins.ByteArraySerializer()] function.
We add the corresponding code to the [Encoder] implementation of our
[Efficient binary format](#efficient-binary-format). To make our `ByteArray` encoding even more efficient,
we add a trivial implementation of `encodeCompactSize` function that uses only one byte to represent
a size of up to 254 bytes.
<!--- INCLUDE
class DataOutputEncoder(val output: DataOutput) : AbstractEncoder() {
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeBoolean(value: Boolean) = output.writeByte(if (value) 1 else 0)
override fun encodeByte(value: Byte) = output.writeByte(value.toInt())
override fun encodeShort(value: Short) = output.writeShort(value.toInt())
override fun encodeInt(value: Int) = output.writeInt(value)
override fun encodeLong(value: Long) = output.writeLong(value)
override fun encodeFloat(value: Float) = output.writeFloat(value)
override fun encodeDouble(value: Double) = output.writeDouble(value)
override fun encodeChar(value: Char) = output.writeChar(value.code)
override fun encodeString(value: String) = output.writeUTF(value)
override fun encodeEnum(enumDescriptor: SerialDescriptor, index: Int) = output.writeInt(index)
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
override fun encodeNull() = encodeBoolean(false)
override fun encodeNotNullMark() = encodeBoolean(true)
-->
```kotlin
override fun <T> encodeSerializableValue(serializer: SerializationStrategy<T>, value: T) {
if (serializer.descriptor == byteArraySerializer.descriptor)
encodeByteArray(value as ByteArray)
else
super.encodeSerializableValue(serializer, value)
}
private fun encodeByteArray(bytes: ByteArray) {
encodeCompactSize(bytes.size)
output.write(bytes)
}
private fun encodeCompactSize(value: Int) {
if (value < 0xff) {
output.writeByte(value)
} else {
output.writeByte(0xff)
output.writeInt(value)
}
}
```
<!--- INCLUDE
}
fun <T> encodeTo(output: DataOutput, serializer: SerializationStrategy<T>, value: T) {
val encoder = DataOutputEncoder(output)
encoder.encodeSerializableValue(serializer, value)
}
inline fun <reified T> encodeTo(output: DataOutput, value: T) = encodeTo(output, serializer(), value)
class DataInputDecoder(val input: DataInput, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeBoolean(): Boolean = input.readByte().toInt() != 0
override fun decodeByte(): Byte = input.readByte()
override fun decodeShort(): Short = input.readShort()
override fun decodeInt(): Int = input.readInt()
override fun decodeLong(): Long = input.readLong()
override fun decodeFloat(): Float = input.readFloat()
override fun decodeDouble(): Double = input.readDouble()
override fun decodeChar(): Char = input.readChar()
override fun decodeString(): String = input.readUTF()
override fun decodeEnum(enumDescriptor: SerialDescriptor): Int = input.readInt()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
DataInputDecoder(input, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
override fun decodeNotNullMark(): Boolean = decodeBoolean()
-->
A similar code is added to the [Decoder] implementation. Here we override
the [decodeSerializableValue][Decoder.decodeSerializableValue] function.
```kotlin
@Suppress("UNCHECKED_CAST")
override fun <T> decodeSerializableValue(deserializer: DeserializationStrategy<T>, previousValue: T?): T =
if (deserializer.descriptor == byteArraySerializer.descriptor)
decodeByteArray() as T
else
super.decodeSerializableValue(deserializer, previousValue)
private fun decodeByteArray(): ByteArray {
val bytes = ByteArray(decodeCompactSize())
input.readFully(bytes)
return bytes
}
private fun decodeCompactSize(): Int {
val byte = input.readByte().toInt() and 0xff
if (byte < 0xff) return byte
return input.readInt()
}
```
<!--- INCLUDE
}
fun <T> decodeFrom(input: DataInput, deserializer: DeserializationStrategy<T>): T {
val decoder = DataInputDecoder(input)
return decoder.decodeSerializableValue(deserializer)
}
inline fun <reified T> decodeFrom(input: DataInput): T = decodeFrom(input, serializer())
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
Now everything is ready to perform serialization of some byte arrays.
```kotlin
@Serializable
data class Project(val name: String, val attachment: ByteArray)
fun main() {
val data = Project("kotlinx.serialization", byteArrayOf(0x0A, 0x0B, 0x0C, 0x0D))
val output = ByteArrayOutputStream()
encodeTo(DataOutputStream(output), data)
val bytes = output.toByteArray()
println(bytes.toAsciiHexString())
val input = ByteArrayInputStream(bytes)
val obj = decodeFrom<Project>(DataInputStream(input))
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-16.kt).
As we can see, our custom byte array format is being used, with the compact encoding of its size in one byte.
```text
{00}{15}kotlinx.serialization{04}{0A}{0B}{0C}{0D}
Project(name=kotlinx.serialization, attachment=[10, 11, 12, 13])
```
<!--- TEST -->
---
This chapter concludes [Kotlin Serialization Guide](serialization-guide.md).
<!-- references -->
[RFC 7049]: https://tools.ietf.org/html/rfc7049
[IoT]: https://en.wikipedia.org/wiki/Internet_of_things
[RFC 7049 Major Types]: https://tools.ietf.org/html/rfc7049#section-2.1
<!-- Java references -->
[java.io.DataOutput]: https://docs.oracle.com/javase/8/docs/api/java/io/DataOutput.html
<!--- MODULE /kotlinx-serialization-core -->
<!--- INDEX kotlinx-serialization-core/kotlinx.serialization -->
[serializer]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization/serializer.html
[KSerializer]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization/-k-serializer/index.html
<!--- INDEX kotlinx-serialization-core/kotlinx.serialization.builtins -->
[kotlinx.serialization.builtins.ByteArraySerializer()]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.builtins/-byte-array-serializer.html
<!--- INDEX kotlinx-serialization-core/kotlinx.serialization.encoding -->
[Encoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/index.html
[Decoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/index.html
[AbstractEncoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-encoder/index.html
[AbstractDecoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-decoder/index.html
[AbstractEncoder.encodeValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-encoder/encode-value.html
[AbstractDecoder.decodeValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-decoder/decode-value.html
[CompositeDecoder.decodeElementIndex]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-composite-decoder/decode-element-index.html
[Decoder.beginStructure]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/begin-structure.html
[CompositeDecoder.decodeSequentially]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-composite-decoder/decode-sequentially.html
[Encoder.beginCollection]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/begin-collection.html
[CompositeDecoder.decodeCollectionSize]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-composite-decoder/decode-collection-size.html
[Encoder.encodeNull]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/encode-null.html
[Encoder.encodeNotNullMark]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/encode-not-null-mark.html
[Decoder.decodeNotNullMark]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/decode-not-null-mark.html
[Encoder.encodeSerializableValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/encode-serializable-value.html
[Decoder.decodeSerializableValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/decode-serializable-value.html
<!--- MODULE /kotlinx-serialization-properties -->
<!--- INDEX kotlinx-serialization-properties/kotlinx.serialization.properties -->
[kotlinx.serialization.properties.Properties]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-properties/kotlinx.serialization.properties/-properties/index.html
<!--- MODULE /kotlinx-serialization-protobuf -->
<!--- INDEX kotlinx-serialization-protobuf/kotlinx.serialization.protobuf -->
[ProtoBuf]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-buf/index.html
[ProtoBuf.encodeToByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-buf/encode-to-byte-array.html
[ProtoBuf.decodeFromByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-buf/decode-from-byte-array.html
[ProtoNumber]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-number/index.html
[ProtoType]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-type/index.html
[ProtoIntegerType]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/index.html
[ProtoIntegerType.DEFAULT]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/-d-e-f-a-u-l-t/index.html
[ProtoIntegerType.SIGNED]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/-s-i-g-n-e-d/index.html
[ProtoIntegerType.FIXED]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/-f-i-x-e-d/index.html
<!--- INDEX kotlinx-serialization-protobuf/kotlinx.serialization.protobuf.schema -->
[ProtoBufSchemaGenerator]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf.schema/-proto-buf-schema-generator/index.html
<!--- MODULE /kotlinx-serialization-cbor -->
<!--- INDEX kotlinx-serialization-cbor/kotlinx.serialization.cbor -->
[Cbor]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor/index.html
[Cbor.encodeToByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor/encode-to-byte-array.html
[Cbor.decodeFromByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor/decode-from-byte-array.html
[CborBuilder.ignoreUnknownKeys]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor-builder/ignore-unknown-keys.html
[ByteString]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-byte-string/index.html
<!--- END -->