blob: 307601234d7a93f6d0e389e727d9c17a5d7b57f6 [file] [log] [blame] [view]
<!--- TEST_NAME FormatsTest -->
# Alternative and custom formats (experimental)
This is the sixth chapter of the [Kotlin Serialization Guide](serialization-guide.md).
It goes beyond JSON, covering alternative and custom formats. Unlike JSON, which is
stable, these are currently experimental features of Kotlin Serialization.
**Table of contents**
<!--- TOC -->
* [CBOR (experimental)](#cbor-experimental)
* [Ignoring unknown keys](#ignoring-unknown-keys)
* [Byte arrays and CBOR data types](#byte-arrays-and-cbor-data-types)
* [Definite vs. Indefinite Length Encoding](#definite-vs-indefinite-length-encoding)
* [Tags and Labels](#tags-and-labels)
* [Arrays](#arrays)
* [Custom CBOR-specific Serializers](#custom-cbor-specific-serializers)
* [ProtoBuf (experimental)](#protobuf-experimental)
* [Field numbers](#field-numbers)
* [Integer types](#integer-types)
* [Lists as repeated fields](#lists-as-repeated-fields)
* [Packed fields](#packed-fields)
* [Oneof field (experimental)](#oneof-field-experimental)
* [Usage](#usage)
* [Alternative](#alternative)
* [ProtoBuf schema generator (experimental)](#protobuf-schema-generator-experimental)
* [Properties (experimental)](#properties-experimental)
* [Custom formats (experimental)](#custom-formats-experimental)
* [Basic encoder](#basic-encoder)
* [Basic decoder](#basic-decoder)
* [Sequential decoding](#sequential-decoding)
* [Adding collection support](#adding-collection-support)
* [Adding null support](#adding-null-support)
* [Efficient binary format](#efficient-binary-format)
* [Format-specific types](#format-specific-types)
<!--- END -->
## CBOR (experimental)
[CBOR][RFC 7049] is one of the standard compact binary
encodings for JSON, so it supports a subset of [JSON features](json.md) and
is generally very similar to JSON in use, but produces binary data.
> CBOR support is (experimentally) available in a separate
> `org.jetbrains.kotlinx:kotlinx-serialization-cbor:<version>` module.
[Cbor] class has [Cbor.encodeToByteArray] and [Cbor.decodeFromByteArray] functions.
Let us take the basic example from the [JSON encoding](basic-serialization.md#json-encoding),
but encode it using CBOR.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.cbor.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Project(val name: String, val language: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = Cbor.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = Cbor.decodeFromByteArray<Project>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-01.kt).
We print a filtered ASCII representation of the output, writing non-ASCII data in hex, so we see how
all the original strings are directly represented in CBOR, but the format delimiters themselves are binary.
```text
{BF}dnameukotlinx.serializationhlanguagefKotlin{FF}
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
In [CBOR hex notation](http://cbor.me/), the output is equivalent to the following:
```
BF # map(*)
64 # text(4)
6E616D65 # "name"
75 # text(21)
6B6F746C696E782E73657269616C697A6174696F6E # "kotlinx.serialization"
68 # text(8)
6C616E6775616765 # "language"
66 # text(6)
4B6F746C696E # "Kotlin"
FF # primitive(*)
```
> Note, CBOR as a format, unlike JSON, supports maps with non-trivial keys
> (see the [Allowing structured map keys](json.md#allowing-structured-map-keys) section for JSON workarounds),
> and Kotlin maps are serialized as CBOR maps, but some parsers (like `jackson-dataformat-cbor`) don't support this.
### Ignoring unknown keys
CBOR format is often used to communicate with [IoT] devices where new properties could be added as a part of a device's
API evolution. By default, unknown keys encountered during deserialization produce an error.
This behavior can be configured with the [ignoreUnknownKeys][CborBuilder.ignoreUnknownKeys] property.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.cbor.*
-->
```kotlin
@Serializable
data class Project(val name: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val format = Cbor { ignoreUnknownKeys = true }
val data = format.decodeFromHexString<Project>(
"bf646e616d65756b6f746c696e782e73657269616c697a6174696f6e686c616e6775616765664b6f746c696eff"
)
println(data)
}
```
> You can get the full code [here](../guide/example/example-formats-02.kt).
It decodes the object, despite the fact that `Project` is missing the `language` property.
```text
Project(name=kotlinx.serialization)
```
<!--- TEST -->
In [CBOR hex notation](http://cbor.me/), the input is equivalent to the following:
```
BF # map(*)
64 # text(4)
6E616D65 # "name"
75 # text(21)
6B6F746C696E782E73657269616C697A6174696F6E # "kotlinx.serialization"
68 # text(8)
6C616E6775616765 # "language"
66 # text(6)
4B6F746C696E # "Kotlin"
FF # primitive(*)
```
### Byte arrays and CBOR data types
Per the [RFC 7049 Major Types] section, CBOR supports the following data types:
- Major type 0: an unsigned integer
- Major type 1: a negative integer
- **Major type 2: a byte string**
- Major type 3: a text string
- **Major type 4: an array of data items**
- Major type 5: a map of pairs of data items
- Major type 6: optional semantic tagging of other major types
- Major type 7: floating-point numbers and simple data types that need no content, as well as the "break" stop code
By default, Kotlin `ByteArray` instances are encoded as **major type 4**.
When **major type 2** is desired, then the [`@ByteString`][ByteString] annotation can be used.
Moreover, the `alwaysUseByteString` configuration switch allows for globally preferring **major type 2** without needing
to annotate every `ByteArray` in a class hierarchy.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.cbor.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
@OptIn(ExperimentalSerializationApi::class)
data class Data(
@ByteString
val type2: ByteArray, // CBOR Major type 2
val type4: ByteArray // CBOR Major type 4
)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Data(byteArrayOf(1, 2, 3, 4), byteArrayOf(5, 6, 7, 8))
val bytes = Cbor.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = Cbor.decodeFromByteArray<Data>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-03.kt).
As we see, the CBOR byte that precedes the data is different for different types of encoding.
```text
{BF}etype2D{01}{02}{03}{04}etype4{9F}{05}{06}{07}{08}{FF}{FF}
Data(type2=[1, 2, 3, 4], type4=[5, 6, 7, 8])
```
<!--- TEST -->
In [CBOR hex notation](http://cbor.me/), the output is equivalent to the following:
```
BF # map(*)
65 # text(5)
7479706532 # "type2"
44 # bytes(4)
01020304 # "\x01\x02\x03\x04"
65 # text(5)
7479706534 # "type4"
9F # array(*)
05 # unsigned(5)
06 # unsigned(6)
07 # unsigned(7)
08 # unsigned(8)
FF # primitive(*)
FF # primitive(*)
```
### Definite vs. Indefinite Length Encoding
CBOR supports two encodings for maps and arrays: definite and indefinite length encoding. kotlinx.serialization defaults
to the latter, which means that a map's or array's number of elements is not encoded, but instead a terminating byte is
appended after the last element.
Definite length encoding, on the other hand, omits this terminating byte, but instead prepends number of elements
to the contents of a map or array. The `useDefiniteLengthEncoding` configuration switch allows for toggling between the
two modes of encoding.
### Tags and Labels
CBOR allows for optionally defining *tags* for properties and their values. These tags are encoded into the resulting
byte string to transport additional information
(see [RFC 8949 Tagging of Items](https://datatracker.ietf.org/doc/html/rfc8949#name-tagging-of-items) for more info).
The [`@KeyTags`](Tags.kt) and [`@ValueTags`](Tags.kt) annotations can be used to define such tags while
writing and verifying such tags can be toggled using the `encodeKeyTags`, `encodeValueTags`, `verifyKeyTags`, and
`verifyValueTags` configuration switches respectively.
In addition, it is possible to directly declare classes to always be tagged.
This then applies to all instances of such a tagged class, regardless of whether they are used as values in a list
or when they are used as a property in another class.
Forcing objects to always be tagged in such a manner is accomplished by the [`@ObjectTags`](Tags.kt) annotation,
which works just as `ValueTags`, but for class definitions.
When serializing, `ObjectTags` will always be encoded directly before to the data of the tagged object, i.e. a
value-tagged property of an object-tagged type will have the value tags preceding the object tags.
Writing and verifying object tags can be toggled using the `encodeObjectTags` and `verifyObjectTags` configuration
switches. Note that verifying only value tags can result in some data with superfluous tags to still deserialize
successfully, since in this case - by definition - only a partial validation of tags happens.
Well-known tags are specified in [`CborTag`](Tags.kt).
In addition, CBOR supports keys of all types which work just as `SerialName`s.
COSE restricts this again to strings and numbers and calls these restricted map keys *labels*. String labels can be
assigned by using `@SerialName`, while number labels can be assigned using the [`@CborLabel`](CborLabel.kt) annotation.
The `preferCborLabelsOverNames` configuration switch can be used to prefer number labels over SerialNames in case both
are present for a property. This duality allows for compact representation of a type when serialized to CBOR, while
keeping expressive diagnostic names when serializing to JSON.
A predefined Cbor instance (in addition to the default [`Cbor.Default`](Cbor.kt) one) is available, adhering to COSE
encoding requirements as [`Cbor.CoseCompliant`](Cbor.kt). This instance uses definite length encoding,
encodes and verifies all tags and prefers labels to serial names.
### Arrays
Classes may be serialized as a CBOR Array (major type 4) instead of a CBOR Map (major type 5).
Example usage:
```
@Serializable
data class DataClass(
val alg: Int,
val kid: String?
)
Cbor.encodeToByteArray(DataClass(alg = -7, kid = null))
```
will normally produce a Cbor map: bytes `0xa263616c6726636b6964f6`, or in diagnostic notation:
```
A2 # map(2)
63 # text(3)
616C67 # "alg"
26 # negative(6)
63 # text(3)
6B6964 # "kid"
F6 # primitive(22)
```
When annotated with `@CborArray`, serialization of the same object will produce a Cbor array: bytes `0x8226F6`, or in diagnostic notation:
```
82 # array(2)
26 # negative(6)
F6 # primitive(22)
```
This may be used to encode COSE structures, see [RFC 9052 2. Basic COSE Structure](https://www.rfc-editor.org/rfc/rfc9052#section-2).
### Custom CBOR-specific Serializers
Cbor encoders and decoders implement the interfaces [CborEncoder](CborEncoder.kt) and [CborDecoder](CborDecoder.kt), respectively.
These interfaces contain a single property, `cbor`, exposing the current CBOR serialization configuration.
This enables custom cbor-specific serializers to reuse the current `Cbor` instance to produce embedded byte arrays or
react to configuration settings such as `preferCborLabelsOverNames` or `useDefiniteLengthEncoding`, for example.
## ProtoBuf (experimental)
[Protocol Buffers](https://developers.google.com/protocol-buffers) is a language-neutral binary format that normally
relies on a separate ".proto" file that defines the protocol schema. It is more compact than CBOR, because it
assigns integer numbers to fields instead of names.
> Protocol buffers support is (experimentally) available in a separate
> `org.jetbrains.kotlinx:kotlinx-serialization-protobuf:<version>` module.
Kotlin Serialization is using proto2 semantics, where all fields are explicitly required or optional.
For a basic example we change our example to use the
[ProtoBuf] class with [ProtoBuf.encodeToByteArray] and [ProtoBuf.decodeFromByteArray] functions.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Project(val name: String, val language: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = ProtoBuf.decodeFromByteArray<Project>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-04.kt).
```text
{0A}{15}kotlinx.serialization{12}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
In [ProtoBuf hex notation](https://protogen.marcgravell.com/decode), the output is equivalent to the following:
```
Field #1: 0A String Length = 21, Hex = 15, UTF8 = "kotlinx.serialization"
Field #2: 12 String Length = 6, Hex = 06, UTF8 = "Kotlin"
```
### Field numbers
By default, field numbers in the Kotlin Serialization [ProtoBuf] implementation are automatically assigned,
which does not provide the ability to define a stable data schema that evolves over time. That is normally achieved by
writing a separate ".proto" file. However, with Kotlin Serialization we can get this ability without a separate
schema file, instead using the [ProtoNumber] annotation.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@OptIn(ExperimentalSerializationApi::class)
@Serializable
data class Project(
@ProtoNumber(1)
val name: String,
@ProtoNumber(3)
val language: String
)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
val obj = ProtoBuf.decodeFromByteArray<Project>(bytes)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-05.kt).
We see in the output that the number for the first property `name` did not change (as it is numbered from one by default),
but it did change for the `language` property.
```text
{0A}{15}kotlinx.serialization{1A}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
In [ProtoBuf hex notation](https://protogen.marcgravell.com/decode), the output is equivalent to the following:
```
Field #1: 0A String Length = 21, Hex = 15, UTF8 = "kotlinx.serialization" (total 21 chars)
Field #3: 1A String Length = 6, Hex = 06, UTF8 = "Kotlin"
```
### Integer types
Protocol buffers support various integer encodings optimized for different ranges of integers.
They are specified using the [ProtoType] annotation and the [ProtoIntegerType] enum.
The following example shows all three supported options.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@OptIn(ExperimentalSerializationApi::class)
@Serializable
class Data(
@ProtoType(ProtoIntegerType.DEFAULT)
val a: Int,
@ProtoType(ProtoIntegerType.SIGNED)
val b: Int,
@ProtoType(ProtoIntegerType.FIXED)
val c: Int
)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Data(1, -2, 3)
println(ProtoBuf.encodeToByteArray(data).toAsciiHexString())
}
```
> You can get the full code [here](../guide/example/example-formats-06.kt).
* The [default][ProtoIntegerType.DEFAULT] is a varint encoding (`intXX`) that is optimized for
small non-negative numbers. The value of `1` is encoded in one byte `01`.
* The [signed][ProtoIntegerType.SIGNED] is a signed ZigZag encoding (`sintXX`) that is optimized for
small signed integers. The value of `-2` is encoded in one byte `03`.
* The [fixed][ProtoIntegerType.FIXED] encoding (`fixedXX`) always uses a fixed number of bytes.
The value of `3` is encoded as four bytes `03 00 00 00`.
> `uintXX` and `sfixedXX` protocol buffer types are not supported.
```text
{08}{01}{10}{03}{1D}{03}{00}{00}{00}
```
<!--- TEST -->
In [ProtoBuf hex notation](https://protogen.marcgravell.com/decode) the output is equivalent to the following:
```
Field #1: 08 Varint Value = 1, Hex = 01
Field #2: 10 Varint Value = 3, Hex = 03
Field #3: 1D Fixed32 Value = 3, Hex = 03-00-00-00
```
### Lists as repeated fields
By default, kotlin lists and other collections are representend as repeated fields.
In the protocol buffers when the list is empty there are no elements in the
stream with the corresponding number. For Kotlin Serialization you must explicitly specify a default of `emptyList()`
for any property of a collection or map type. Otherwise you will not be able deserialize an empty
list, which is indistinguishable in protocol buffers from a missing field.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
```kotlin
@Serializable
data class Data(
val a: List<Int> = emptyList(),
val b: List<Int> = emptyList()
)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Data(listOf(1, 2, 3), listOf())
val bytes = ProtoBuf.encodeToByteArray(data)
println(bytes.toAsciiHexString())
println(ProtoBuf.decodeFromByteArray<Data>(bytes))
}
```
> You can get the full code [here](../guide/example/example-formats-07.kt).
```text
{08}{01}{08}{02}{08}{03}
Data(a=[1, 2, 3], b=[])
```
<!--- TEST -->
In [ProtoBuf diagnostic mode](https://protogen.marcgravell.com/decode) the output is equivalent to the following:
```
Field #1: 08 Varint Value = 1, Hex = 01
Field #1: 08 Varint Value = 2, Hex = 02
Field #1: 08 Varint Value = 3, Hex = 03
```
### Packed fields
Collection types (not maps) can be **written** as packed fields when annotated with the `@ProtoPacked` annotation.
Per the standard packed fields can only be used on primitive numeric types. The annotation is ignored on other types.
Per the [format description](https://developers.google.com/protocol-buffers/docs/encoding#packed) the parser ignores
the annotation, but rather reads list in either packed or repeated format.
### Oneof field (experimental)
Kotlin Serialization `ProtoBuf` format supports [oneof](https://protobuf.dev/programming-guides/proto2/#oneof) fields
basing on the [Polymorphism](polymorphism.md) functionality.
#### Usage
Given a protobuf message defined like:
```proto
message Data {
required string name = 1;
oneof phone {
string home_phone = 2;
string work_phone = 3;
}
}
```
You can define a kotlin class semantically equal to this message by following these steps:
* Declare a sealed interface or abstract class, to represent of the `oneof` group, called *the oneof interface*. In our example, oneof interface is `IPhoneType`.
* Declare a Kotlin class as usual to represent the whole message (`class Data` in our example). In this class, add the property with oneof interface type, annotated with `@ProtoOneOf`. Do not use `@ProtoNumber` for that property.
* Declare subclasses for oneof interface, one per each oneof group element. Each class must have **exactly one property** with the corresponding oneof element type. In our example, these classes are `HomePhone` and `WorkPhone`.
* Annotate properties in subclasses with `@ProtoNumber`, according to original `oneof` definition. In our example, `val number: String` in `HomePhone` has `@ProtoNumber(2)` annotation, because of field `string home_phone = 2;` in `oneof phone`.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
-->
```kotlin
// The outer class
@OptIn(ExperimentalSerializationApi::class)
@Serializable
data class Data(
@ProtoNumber(1) val name: String,
@ProtoOneOf val phone: IPhoneType?,
)
// The oneof interface
@Serializable sealed interface IPhoneType
// Message holder for home_phone
@OptIn(ExperimentalSerializationApi::class)
@Serializable @JvmInline value class HomePhone(@ProtoNumber(2) val number: String): IPhoneType
// Message holder for work_phone. Can also be a value class, but we leave it as `data` to demonstrate that both variants can be used.
@OptIn(ExperimentalSerializationApi::class)
@Serializable data class WorkPhone(@ProtoNumber(3) val number: String): IPhoneType
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val dataTom = Data("Tom", HomePhone("123"))
val stringTom = ProtoBuf.encodeToHexString(dataTom)
val dataJerry = Data("Jerry", WorkPhone("789"))
val stringJerry = ProtoBuf.encodeToHexString(dataJerry)
println(stringTom)
println(stringJerry)
println(ProtoBuf.decodeFromHexString<Data>(stringTom))
println(ProtoBuf.decodeFromHexString<Data>(stringJerry))
}
```
> You can get the full code [here](../guide/example/example-formats-08.kt).
```text
0a03546f6d1203313233
0a054a657272791a03373839
Data(name=Tom, phone=HomePhone(number=123))
Data(name=Jerry, phone=WorkPhone(number=789))
```
<!--- TEST -->
In [ProtoBuf diagnostic mode](https://protogen.marcgravell.com/decode) the first 2 lines in the output are equivalent to
```
Field #1: 0A String Length = 3, Hex = 03, UTF8 = "Tom" Field #2: 12 String Length = 3, Hex = 03, UTF8 = "123"
Field #1: 0A String Length = 5, Hex = 05, UTF8 = "Jerry" Field #3: 1A String Length = 3, Hex = 03, UTF8 = "789"
```
You should note that each group of `oneof` types should be tied to exactly one data class, and it is better not to reuse it in
another data class. Otherwise, you may get id conflicts or `IllegalArgumentException` in runtime.
#### Alternative
You don't always need to apply the `@ProtoOneOf` form in your class for messages with `oneof` fields, if this class is only used for deserialization.
For example, the following class:
```
@Serializable
data class Data2(
@ProtoNumber(1) val name: String,
@ProtoNumber(2) val homeNumber: String? = null,
@ProtoNumber(3) val workNumber: String? = null,
)
```
is also compatible with the `message Data` given above, which means the same input can be deserialized into it instead of `Data` — in case you don't want to deal with sealed hierarchies.
But please note that there are no exclusivity checks. This means that if an instance of `Data2` has both (or none) `homeNumber` and `workNumber` as non-null values and is serialized to protobuf, it no longer complies with the original schema. If you send such data to another parser, one of the fields may be omitted, leading to an unknown issue.
### ProtoBuf schema generator (experimental)
As mentioned above, when working with protocol buffers you usually use a ".proto" file and a code generator for your
language. This includes the code to serialize your message to an output stream and deserialize it from an input stream.
When using Kotlin Serialization this step is not necessary because your `@Serializable` Kotlin data types are used as the
source for the schema.
This is very convenient for Kotlin-to-Kotlin communication, but makes interoperability between languages complicated.
Fortunately, you can use the ProtoBuf schema generator to output the ".proto" representation of your messages. You can
keep your Kotlin classes as a source of truth and use traditional protoc compilers for other languages at the same time.
As an example, we can display the following data class's ".proto" schema as follows.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.protobuf.*
import kotlinx.serialization.protobuf.schema.ProtoBufSchemaGenerator
-->
```kotlin
@Serializable
data class SampleData(
val amount: Long,
val description: String?,
val department: String = "QA"
)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val descriptors = listOf(SampleData.serializer().descriptor)
val schemas = ProtoBufSchemaGenerator.generateSchemaText(descriptors)
println(schemas)
}
```
> You can get the full code [here](../guide/example/example-formats-09.kt).
Which would output as follows.
```text
syntax = "proto2";
// serial name 'example.exampleFormats09.SampleData'
message SampleData {
required int64 amount = 1;
optional string description = 2;
// WARNING: a default value decoded when value is missing
optional string department = 3;
}
```
<!--- TEST -->
Note that since default values are not represented in ".proto" files, a warning is generated when one appears in the schema.
See the documentation for [ProtoBufSchemaGenerator] for more information.
## Properties (experimental)
Kotlin Serialization can serialize a class into a flat map with `String` keys via
the [Properties][kotlinx.serialization.properties.Properties] format implementation.
> Properties support is (experimentally) available in a separate
> `org.jetbrains.kotlinx:kotlinx-serialization-properties:<version>` module.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.properties.Properties // todo: remove when no longer needed
import kotlinx.serialization.properties.*
-->
```kotlin
@Serializable
class Project(val name: String, val owner: User)
@Serializable
class User(val name: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"))
val map = Properties.encodeToMap(data)
map.forEach { (k, v) -> println("$k = $v") }
}
```
> You can get the full code [here](../guide/example/example-formats-10.kt).
The resulting map has dot-separated keys representing keys of the nested objects.
```text
name = kotlinx.serialization
owner.name = kotlin
```
<!--- TEST -->
## Custom formats (experimental)
A custom format for Kotlin Serialization must provide an implementation for the [Encoder] and [Decoder] interfaces that
we saw used in the [Serializers](serializers.md) chapter.
These are pretty large interfaces. For convenience
the [AbstractEncoder] and [AbstractDecoder] skeleton implementations are provided to simplify the task.
In [AbstractEncoder] most of the `encodeXxx` methods have a default implementation that
delegates to [`encodeValue(value: Any)`][AbstractEncoder.encodeValue] &mdash; the only method that must be
implemented to get a basic working format.
### Basic encoder
Let us start with a trivial format implementation that encodes the data into a single list of primitive
constituent objects in the order they were written in the source code. To start, we implement a simple [Encoder] by
overriding `encodeValue` in [AbstractEncoder]. Since encoders are intended to be consumed by other parts of application,
it is recommended to propagate the `@ExperimentalSerializationApi` annotation instead of opting-in.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
-->
```kotlin
@ExperimentalSerializationApi
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
}
```
Now we write a convenience top-level function that creates an encoder that encodes an object
and returns a list.
```kotlin
@ExperimentalSerializationApi
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
```
For even more convenience, to avoid the need to explicitly pass a serializer, we write an `inline` overload of
the `encodeToList` function with a `reified` type parameter using the [serializer] function to retrieve
the appropriate [KSerializer] instance for the actual type.
```kotlin
@ExperimentalSerializationApi
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
```
Now we can test it.
```kotlin
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
println(encodeToList(data))
}
```
> You can get the full code [here](../guide/example/example-formats-11.kt).
As a result, we got all the primitive values in our object graph visited and put into a list
in _serial_ order.
```text
[kotlinx.serialization, kotlin, 9000]
```
<!--- TEST -->
> By itself, that's a useful feature if we need compute some kind of hashcode or digest for all the data
> that is contained in a serializable object tree.
### Basic decoder
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
@ExperimentalSerializationApi
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
}
@ExperimentalSerializationApi
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
@ExperimentalSerializationApi
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
-->
A decoder needs to implement more substance.
* [decodeValue][AbstractDecoder.decodeValue] &mdash; returns the next value from the list.
* [decodeElementIndex][CompositeDecoder.decodeElementIndex] &mdash; returns the next index of a deserialized value.
In this primitive format deserialization always happens in order, so we keep track of the index
in the `elementIndex` variable. See
the [Hand-written composite serializer](serializers.md#hand-written-composite-serializer) section
on how it ends up being used.
* [beginStructure][Decoder.beginStructure] &mdash; returns a new instance of `ListDecoder`, so that
each structure that is being recursively decoded keeps track of its own `elementIndex` state separately.
```kotlin
@ExperimentalSerializationApi
class ListDecoder(val list: ArrayDeque<Any>) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == descriptor.elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list)
}
```
A couple of convenience functions for decoding.
```kotlin
@ExperimentalSerializationApi
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
@ExperimentalSerializationApi
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
```
That is enough to start encoding and decoding basic serializable classes.
<!--- INCLUDE
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
-->
```kotlin
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-12.kt).
Now we can convert a list of primitives back to an object tree.
```text
[kotlinx.serialization, kotlin, 9000]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=9000)
```
<!--- TEST -->
### Sequential decoding
The decoder we have implemented keeps track of the `elementIndex` in its state and implements
`decodeElementIndex`. This means that it is going to work with an arbitrary serializer, even the
simple one we wrote in
the [Hand-written composite serializer](serializers.md#hand-written-composite-serializer) section.
However, this format always stores elements in order, so this bookkeeping is not needed and
undermines decoding performance. All auto-generated serializers on the JVM support
the [Sequential decoding protocol (experimental)](serializers.md#sequential-decoding-protocol-experimental), and the decoder can indicate
its support by returning `true` from the [CompositeDecoder.decodeSequentially] function.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
@ExperimentalSerializationApi
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
}
@ExperimentalSerializationApi
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
@ExperimentalSerializationApi
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
-->
```kotlin
@ExperimentalSerializationApi
class ListDecoder(val list: ArrayDeque<Any>) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == descriptor.elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list)
override fun decodeSequentially(): Boolean = true
}
```
<!--- INCLUDE
@ExperimentalSerializationApi
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
@ExperimentalSerializationApi
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
@Serializable
data class Project(val name: String, val owner: User, val votes: Int)
@Serializable
data class User(val name: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin"), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
-->
> You can get the full code [here](../guide/example/example-formats-13.kt).
<!--- TEST
[kotlinx.serialization, kotlin, 9000]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=9000)
-->
### Adding collection support
This basic format, so far, cannot properly represent collections. In encodes them, but it does not keep
track of how many elements there are in the collection or where it ends, so it cannot properly decode them.
First, let us add proper support for collections to the encoder by implementing the
[Encoder.beginCollection] function. The `beginCollection` function takes a collection size as a parameter,
so we encode it to add it to the result.
Our encoder implementation does not keep any state, so it just returns `this` from the `beginCollection` function.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
-->
```kotlin
@ExperimentalSerializationApi
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
}
```
<!--- INCLUDE
@ExperimentalSerializationApi
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
@ExperimentalSerializationApi
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
-->
The decoder, for our case, needs to only implement the [CompositeDecoder.decodeCollectionSize] function
in addition to the previous code.
> The formats that store collection size in advance have to return `true` from `decodeSequentially`.
```kotlin
@ExperimentalSerializationApi
class ListDecoder(val list: ArrayDeque<Any>, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
}
```
<!--- INCLUDE
@ExperimentalSerializationApi
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
@ExperimentalSerializationApi
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
-->
That is all that is needed to support collections and maps.
```kotlin
@Serializable
data class Project(val name: String, val owners: List<User>, val votes: Int)
@Serializable
data class User(val name: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", listOf(User("kotlin"), User("jetbrains")), 9000)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-14.kt).
We see the size of the list added to the result, letting the decoder know where to stop.
```text
[kotlinx.serialization, 2, kotlin, jetbrains, 9000]
Project(name=kotlinx.serialization, owners=[User(name=kotlin), User(name=jetbrains)], votes=9000)
```
<!--- TEST -->
### Adding null support
Our trivial format does not support `null` values so far. For nullable types we need to add some kind
of "null indicator", telling whether the upcoming value is null or not.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
@ExperimentalSerializationApi
class ListEncoder : AbstractEncoder() {
val list = mutableListOf<Any>()
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeValue(value: Any) {
list.add(value)
}
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
-->
In the encoder implementation we override [Encoder.encodeNull] and [Encoder.encodeNotNullMark].
```kotlin
override fun encodeNull() = encodeValue("NULL")
override fun encodeNotNullMark() = encodeValue("!!")
```
<!--- INCLUDE
}
@ExperimentalSerializationApi
fun <T> encodeToList(serializer: SerializationStrategy<T>, value: T): List<Any> {
val encoder = ListEncoder()
encoder.encodeSerializableValue(serializer, value)
return encoder.list
}
@ExperimentalSerializationApi
inline fun <reified T> encodeToList(value: T) = encodeToList(serializer(), value)
@ExperimentalSerializationApi
class ListDecoder(val list: ArrayDeque<Any>, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeValue(): Any = list.removeFirst()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
ListDecoder(list, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
-->
In the decoder implementation we override [Decoder.decodeNotNullMark].
```kotlin
override fun decodeNotNullMark(): Boolean = decodeString() != "NULL"
```
<!--- INCLUDE
}
@ExperimentalSerializationApi
fun <T> decodeFromList(list: List<Any>, deserializer: DeserializationStrategy<T>): T {
val decoder = ListDecoder(ArrayDeque(list))
return decoder.decodeSerializableValue(deserializer)
}
@ExperimentalSerializationApi
inline fun <reified T> decodeFromList(list: List<Any>): T = decodeFromList(list, serializer())
-->
Let us test nullable properties both with not-null and null values.
```kotlin
@Serializable
data class Project(val name: String, val owner: User?, val votes: Int?)
@Serializable
data class User(val name: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", User("kotlin") , null)
val list = encodeToList(data)
println(list)
val obj = decodeFromList<Project>(list)
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-15.kt).
In the output we see how not-null`!!` and `NULL` marks are used.
```text
[kotlinx.serialization, !!, kotlin, NULL]
Project(name=kotlinx.serialization, owner=User(name=kotlin), votes=null)
```
<!--- TEST -->
### Efficient binary format
Now we are ready for an example of an efficient binary format. We are going to write data to the
[java.io.DataOutput] implementation. Instead of `encodeValue` we must override the individual
`encodeXxx` functions for each of ten [primitives](builtin-classes.md#primitives) in the encoder.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.Serializable
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.encoding.*
import kotlinx.serialization.modules.*
import java.io.*
-->
```kotlin
@ExperimentalSerializationApi
class DataOutputEncoder(val output: DataOutput) : AbstractEncoder() {
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeBoolean(value: Boolean) = output.writeByte(if (value) 1 else 0)
override fun encodeByte(value: Byte) = output.writeByte(value.toInt())
override fun encodeShort(value: Short) = output.writeShort(value.toInt())
override fun encodeInt(value: Int) = output.writeInt(value)
override fun encodeLong(value: Long) = output.writeLong(value)
override fun encodeFloat(value: Float) = output.writeFloat(value)
override fun encodeDouble(value: Double) = output.writeDouble(value)
override fun encodeChar(value: Char) = output.writeChar(value.code)
override fun encodeString(value: String) = output.writeUTF(value)
override fun encodeEnum(enumDescriptor: SerialDescriptor, index: Int) = output.writeInt(index)
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
override fun encodeNull() = encodeBoolean(false)
override fun encodeNotNullMark() = encodeBoolean(true)
}
```
<!--- INCLUDE
@ExperimentalSerializationApi
fun <T> encodeTo(output: DataOutput, serializer: SerializationStrategy<T>, value: T) {
val encoder = DataOutputEncoder(output)
encoder.encodeSerializableValue(serializer, value)
}
@ExperimentalSerializationApi
inline fun <reified T> encodeTo(output: DataOutput, value: T) = encodeTo(output, serializer(), value)
-->
The decoder implementation mirrors encoder's implementation overriding all the primitive `decodeXxx` functions.
```kotlin
@ExperimentalSerializationApi
class DataInputDecoder(val input: DataInput, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeBoolean(): Boolean = input.readByte().toInt() != 0
override fun decodeByte(): Byte = input.readByte()
override fun decodeShort(): Short = input.readShort()
override fun decodeInt(): Int = input.readInt()
override fun decodeLong(): Long = input.readLong()
override fun decodeFloat(): Float = input.readFloat()
override fun decodeDouble(): Double = input.readDouble()
override fun decodeChar(): Char = input.readChar()
override fun decodeString(): String = input.readUTF()
override fun decodeEnum(enumDescriptor: SerialDescriptor): Int = input.readInt()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
DataInputDecoder(input, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
override fun decodeNotNullMark(): Boolean = decodeBoolean()
}
```
<!--- INCLUDE
@ExperimentalSerializationApi
fun <T> decodeFrom(input: DataInput, deserializer: DeserializationStrategy<T>): T {
val decoder = DataInputDecoder(input)
return decoder.decodeSerializableValue(deserializer)
}
@ExperimentalSerializationApi
inline fun <reified T> decodeFrom(input: DataInput): T = decodeFrom(input, serializer())
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
We can now serialize and deserialize arbitrary data. For example, the same classes as were
used in the [CBOR (experimental)](#cbor-experimental) and [ProtoBuf (experimental)](#protobuf-experimental) sections.
```kotlin
@Serializable
data class Project(val name: String, val language: String)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", "Kotlin")
val output = ByteArrayOutputStream()
encodeTo(DataOutputStream(output), data)
val bytes = output.toByteArray()
println(bytes.toAsciiHexString())
val input = ByteArrayInputStream(bytes)
val obj = decodeFrom<Project>(DataInputStream(input))
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-16.kt).
As we can see, the result is a dense binary format that only contains the data that is being serialized.
It can be easily tweaked for any kind of domain-specific compact encoding.
```text
{00}{15}kotlinx.serialization{00}{06}Kotlin
Project(name=kotlinx.serialization, language=Kotlin)
```
<!--- TEST -->
### Format-specific types
A format implementation might provide special support for data types that are not among the list of primitive
types in Kotlin Serialization, and do not have a corresponding `encodeXxx`/`decodeXxx` function.
In the encoder this is achieved by overriding the
[`encodeSerializableValue(serializer, value)`][Encoder.encodeSerializableValue] function.
In our `DataOutput` format example we might want to provide a specialized efficient data path for serializing an array
of bytes since [DataOutput][java.io.DataOutput] has a special method for this purpose.
Detection of the type is performed by looking at the `serializer.descriptor`, not by checking the type of the `value`
being serialized, so we fetch the builtin [KSerializer] instance for `ByteArray` type.
> This an important difference. This way our format implementation properly supports
> [Custom serializers](serializers.md#custom-serializers) that a user might specify for a type that just happens
> to be internally represented as a byte array, but need a different serial representation.
<!--- INCLUDE
import kotlinx.serialization.*
import kotlinx.serialization.Serializable
import kotlinx.serialization.descriptors.*
import kotlinx.serialization.modules.*
import kotlinx.serialization.encoding.*
import java.io.*
-->
```kotlin
private val byteArraySerializer = serializer<ByteArray>()
```
> Specifically for byte arrays, we could have also used the builtin
> [ByteArraySerializer][kotlinx.serialization.builtins.ByteArraySerializer()] function.
We add the corresponding code to the [Encoder] implementation of our
[Efficient binary format](#efficient-binary-format). To make our `ByteArray` encoding even more efficient,
we add a trivial implementation of `encodeCompactSize` function that uses only one byte to represent
a size of up to 254 bytes.
<!--- INCLUDE
@ExperimentalSerializationApi
class DataOutputEncoder(val output: DataOutput) : AbstractEncoder() {
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun encodeBoolean(value: Boolean) = output.writeByte(if (value) 1 else 0)
override fun encodeByte(value: Byte) = output.writeByte(value.toInt())
override fun encodeShort(value: Short) = output.writeShort(value.toInt())
override fun encodeInt(value: Int) = output.writeInt(value)
override fun encodeLong(value: Long) = output.writeLong(value)
override fun encodeFloat(value: Float) = output.writeFloat(value)
override fun encodeDouble(value: Double) = output.writeDouble(value)
override fun encodeChar(value: Char) = output.writeChar(value.code)
override fun encodeString(value: String) = output.writeUTF(value)
override fun encodeEnum(enumDescriptor: SerialDescriptor, index: Int) = output.writeInt(index)
override fun beginCollection(descriptor: SerialDescriptor, collectionSize: Int): CompositeEncoder {
encodeInt(collectionSize)
return this
}
override fun encodeNull() = encodeBoolean(false)
override fun encodeNotNullMark() = encodeBoolean(true)
-->
```kotlin
override fun <T> encodeSerializableValue(serializer: SerializationStrategy<T>, value: T) {
if (serializer.descriptor == byteArraySerializer.descriptor)
encodeByteArray(value as ByteArray)
else
super.encodeSerializableValue(serializer, value)
}
private fun encodeByteArray(bytes: ByteArray) {
encodeCompactSize(bytes.size)
output.write(bytes)
}
private fun encodeCompactSize(value: Int) {
if (value < 0xff) {
output.writeByte(value)
} else {
output.writeByte(0xff)
output.writeInt(value)
}
}
```
<!--- INCLUDE
}
@ExperimentalSerializationApi
fun <T> encodeTo(output: DataOutput, serializer: SerializationStrategy<T>, value: T) {
val encoder = DataOutputEncoder(output)
encoder.encodeSerializableValue(serializer, value)
}
@ExperimentalSerializationApi
inline fun <reified T> encodeTo(output: DataOutput, value: T) = encodeTo(output, serializer(), value)
@ExperimentalSerializationApi
class DataInputDecoder(val input: DataInput, var elementsCount: Int = 0) : AbstractDecoder() {
private var elementIndex = 0
override val serializersModule: SerializersModule = EmptySerializersModule()
override fun decodeBoolean(): Boolean = input.readByte().toInt() != 0
override fun decodeByte(): Byte = input.readByte()
override fun decodeShort(): Short = input.readShort()
override fun decodeInt(): Int = input.readInt()
override fun decodeLong(): Long = input.readLong()
override fun decodeFloat(): Float = input.readFloat()
override fun decodeDouble(): Double = input.readDouble()
override fun decodeChar(): Char = input.readChar()
override fun decodeString(): String = input.readUTF()
override fun decodeEnum(enumDescriptor: SerialDescriptor): Int = input.readInt()
override fun decodeElementIndex(descriptor: SerialDescriptor): Int {
if (elementIndex == elementsCount) return CompositeDecoder.DECODE_DONE
return elementIndex++
}
override fun beginStructure(descriptor: SerialDescriptor): CompositeDecoder =
DataInputDecoder(input, descriptor.elementsCount)
override fun decodeSequentially(): Boolean = true
override fun decodeCollectionSize(descriptor: SerialDescriptor): Int =
decodeInt().also { elementsCount = it }
override fun decodeNotNullMark(): Boolean = decodeBoolean()
-->
A similar code is added to the [Decoder] implementation. Here we override
the [decodeSerializableValue][Decoder.decodeSerializableValue] function.
```kotlin
@Suppress("UNCHECKED_CAST")
override fun <T> decodeSerializableValue(deserializer: DeserializationStrategy<T>, previousValue: T?): T =
if (deserializer.descriptor == byteArraySerializer.descriptor)
decodeByteArray() as T
else
super.decodeSerializableValue(deserializer, previousValue)
private fun decodeByteArray(): ByteArray {
val bytes = ByteArray(decodeCompactSize())
input.readFully(bytes)
return bytes
}
private fun decodeCompactSize(): Int {
val byte = input.readByte().toInt() and 0xff
if (byte < 0xff) return byte
return input.readInt()
}
```
<!--- INCLUDE
}
@ExperimentalSerializationApi
fun <T> decodeFrom(input: DataInput, deserializer: DeserializationStrategy<T>): T {
val decoder = DataInputDecoder(input)
return decoder.decodeSerializableValue(deserializer)
}
@ExperimentalSerializationApi
inline fun <reified T> decodeFrom(input: DataInput): T = decodeFrom(input, serializer())
fun ByteArray.toAsciiHexString() = joinToString("") {
if (it in 32..127) it.toInt().toChar().toString() else
"{${it.toUByte().toString(16).padStart(2, '0').uppercase()}}"
}
-->
Now everything is ready to perform serialization of some byte arrays.
```kotlin
@Serializable
data class Project(val name: String, val attachment: ByteArray)
@OptIn(ExperimentalSerializationApi::class)
fun main() {
val data = Project("kotlinx.serialization", byteArrayOf(0x0A, 0x0B, 0x0C, 0x0D))
val output = ByteArrayOutputStream()
encodeTo(DataOutputStream(output), data)
val bytes = output.toByteArray()
println(bytes.toAsciiHexString())
val input = ByteArrayInputStream(bytes)
val obj = decodeFrom<Project>(DataInputStream(input))
println(obj)
}
```
> You can get the full code [here](../guide/example/example-formats-17.kt).
As we can see, our custom byte array format is being used, with the compact encoding of its size in one byte.
```text
{00}{15}kotlinx.serialization{04}{0A}{0B}{0C}{0D}
Project(name=kotlinx.serialization, attachment=[10, 11, 12, 13])
```
<!--- TEST -->
---
This chapter concludes [Kotlin Serialization Guide](serialization-guide.md).
<!-- references -->
[RFC 7049]: https://tools.ietf.org/html/rfc7049
[IoT]: https://en.wikipedia.org/wiki/Internet_of_things
[RFC 7049 Major Types]: https://tools.ietf.org/html/rfc7049#section-2.1
<!-- Java references -->
[java.io.DataOutput]: https://docs.oracle.com/javase/8/docs/api/java/io/DataOutput.html
<!--- MODULE /kotlinx-serialization-core -->
<!--- INDEX kotlinx-serialization-core/kotlinx.serialization -->
[serializer]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization/serializer.html
[KSerializer]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization/-k-serializer/index.html
<!--- INDEX kotlinx-serialization-core/kotlinx.serialization.builtins -->
[kotlinx.serialization.builtins.ByteArraySerializer()]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.builtins/-byte-array-serializer.html
<!--- INDEX kotlinx-serialization-core/kotlinx.serialization.encoding -->
[Encoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/index.html
[Decoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/index.html
[AbstractEncoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-encoder/index.html
[AbstractDecoder]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-decoder/index.html
[AbstractEncoder.encodeValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-encoder/encode-value.html
[AbstractDecoder.decodeValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-abstract-decoder/decode-value.html
[CompositeDecoder.decodeElementIndex]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-composite-decoder/decode-element-index.html
[Decoder.beginStructure]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/begin-structure.html
[CompositeDecoder.decodeSequentially]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-composite-decoder/decode-sequentially.html
[Encoder.beginCollection]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/begin-collection.html
[CompositeDecoder.decodeCollectionSize]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-composite-decoder/decode-collection-size.html
[Encoder.encodeNull]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/encode-null.html
[Encoder.encodeNotNullMark]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/encode-not-null-mark.html
[Decoder.decodeNotNullMark]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/decode-not-null-mark.html
[Encoder.encodeSerializableValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-encoder/encode-serializable-value.html
[Decoder.decodeSerializableValue]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-core/kotlinx.serialization.encoding/-decoder/decode-serializable-value.html
<!--- MODULE /kotlinx-serialization-properties -->
<!--- INDEX kotlinx-serialization-properties/kotlinx.serialization.properties -->
[kotlinx.serialization.properties.Properties]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-properties/kotlinx.serialization.properties/-properties/index.html
<!--- MODULE /kotlinx-serialization-protobuf -->
<!--- INDEX kotlinx-serialization-protobuf/kotlinx.serialization.protobuf -->
[ProtoBuf]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-buf/index.html
[ProtoBuf.encodeToByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-buf/encode-to-byte-array.html
[ProtoBuf.decodeFromByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-buf/decode-from-byte-array.html
[ProtoNumber]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-number/index.html
[ProtoType]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-type/index.html
[ProtoIntegerType]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/index.html
[ProtoIntegerType.DEFAULT]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/-d-e-f-a-u-l-t/index.html
[ProtoIntegerType.SIGNED]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/-s-i-g-n-e-d/index.html
[ProtoIntegerType.FIXED]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf/-proto-integer-type/-f-i-x-e-d/index.html
<!--- INDEX kotlinx-serialization-protobuf/kotlinx.serialization.protobuf.schema -->
[ProtoBufSchemaGenerator]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-protobuf/kotlinx.serialization.protobuf.schema/-proto-buf-schema-generator/index.html
<!--- MODULE /kotlinx-serialization-cbor -->
<!--- INDEX kotlinx-serialization-cbor/kotlinx.serialization.cbor -->
[Cbor]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor/index.html
[Cbor.encodeToByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor/encode-to-byte-array.html
[Cbor.decodeFromByteArray]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor/decode-from-byte-array.html
[CborBuilder.ignoreUnknownKeys]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-cbor-builder/ignore-unknown-keys.html
[ByteString]: https://kotlinlang.org/api/kotlinx.serialization/kotlinx-serialization-cbor/kotlinx.serialization.cbor/-byte-string/index.html
<!--- END -->