blob: eb366ed44cd71c369a2b8ca1e081474d859ead52 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott ([email protected])
*
*/
#include "float64_glsl.h"
#include "glsl_parser_extras.h"
#include "glsl_to_nir.h"
#include "ir_visitor.h"
#include "ir_hierarchical_visitor.h"
#include "ir.h"
#include "ir_optimization.h"
#include "compiler/nir/nir_control_flow.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir/nir_builtin_builder.h"
#include "compiler/nir/nir_deref.h"
#include "main/errors.h"
#include "main/mtypes.h"
#include "main/shaderobj.h"
#include "util/u_math.h"
#include "util/perf/cpu_trace.h"
/*
* pass to lower GLSL IR to NIR
*
* This will lower variable dereferences to loads/stores of corresponding
* variables in NIR - the variables will be converted to registers in a later
* pass.
*/
static nir_variable_mode
get_param_mode(ir_variable *param)
{
switch ((enum ir_variable_mode)(param->data.mode)) {
case ir_var_const_in:
case ir_var_function_in:
return nir_var_function_in;
case ir_var_function_out:
return nir_var_function_out;
case ir_var_function_inout:
return nir_var_function_inout;
case ir_var_auto:
case ir_var_uniform:
case ir_var_shader_storage:
case ir_var_temporary:
default:
unreachable("Unsupported function param mode");
}
}
namespace {
class nir_visitor : public ir_visitor
{
public:
nir_visitor(nir_shader *shader, const uint8_t *src_blake3);
nir_visitor(const nir_visitor &) = delete;
~nir_visitor();
nir_visitor & operator=(const nir_visitor &) = delete;
virtual void visit(ir_variable *);
virtual void visit(ir_function *);
virtual void visit(ir_function_signature *);
virtual void visit(ir_loop *);
virtual void visit(ir_if *);
virtual void visit(ir_discard *);
virtual void visit(ir_demote *);
virtual void visit(ir_loop_jump *);
virtual void visit(ir_return *);
virtual void visit(ir_call *);
virtual void visit(ir_assignment *);
virtual void visit(ir_emit_vertex *);
virtual void visit(ir_end_primitive *);
virtual void visit(ir_expression *);
virtual void visit(ir_swizzle *);
virtual void visit(ir_texture *);
virtual void visit(ir_constant *);
virtual void visit(ir_dereference_variable *);
virtual void visit(ir_dereference_record *);
virtual void visit(ir_dereference_array *);
virtual void visit(ir_barrier *);
void create_function(ir_function_signature *ir);
private:
void add_instr(nir_instr *instr, unsigned num_components, unsigned bit_size);
void truncate_after_instruction(exec_node *ir);
nir_def *evaluate_rvalue(ir_rvalue *ir);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_def **srcs);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_def *src1);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_def *src1,
nir_def *src2);
nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_def *src1,
nir_def *src2, nir_def *src3);
nir_shader *shader;
nir_function_impl *impl;
nir_function_impl *global_impl;
nir_builder b;
nir_def *result; /* result of the expression tree last visited */
nir_deref_instr *evaluate_deref(ir_instruction *ir);
nir_constant *constant_copy(ir_constant *ir, void *mem_ctx);
/* most recent deref instruction created */
nir_deref_instr *deref;
/* whether the IR we're operating on is per-function or global */
bool is_global;
ir_function_signature *sig;
/* map of ir_variable -> nir_variable */
struct hash_table *var_table;
/* map of ir_function_signature -> nir_function_overload */
struct hash_table *overload_table;
/* set of nir_variable hold sparse result */
struct set *sparse_variable_set;
void adjust_sparse_variable(nir_deref_instr *var_deref, const glsl_type *type,
nir_def *dest);
};
/*
* This visitor runs before the main visitor, calling create_function() for
* each function so that the main visitor can resolve forward references in
* calls.
*/
class nir_function_visitor : public ir_hierarchical_visitor
{
public:
nir_function_visitor(nir_visitor *v) : visitor(v)
{
}
virtual ir_visitor_status visit_enter(ir_function *);
private:
nir_visitor *visitor;
};
} /* end of anonymous namespace */
nir_shader *
glsl_to_nir(struct gl_shader *gl_shader,
const nir_shader_compiler_options *options,
const uint8_t *src_blake3)
{
MESA_TRACE_FUNC();
nir_shader *shader =
nir_shader_create(NULL, gl_shader->Stage, options, NULL);
nir_visitor v1(shader, src_blake3);
nir_function_visitor v2(&v1);
v2.run(gl_shader->ir);
visit_exec_list(gl_shader->ir, &v1);
/* The GLSL IR won't be needed anymore. */
ralloc_free(gl_shader->ir);
gl_shader->ir = NULL;
nir_validate_shader(shader, "after glsl to nir, before function inline");
if (should_print_nir(shader)) {
printf("glsl_to_nir\n");
nir_print_shader(shader, stdout);
}
return shader;
}
nir_visitor::nir_visitor(nir_shader *shader, const uint8_t *src_blake3)
{
this->shader = shader;
this->is_global = true;
this->var_table = _mesa_pointer_hash_table_create(NULL);
this->overload_table = _mesa_pointer_hash_table_create(NULL);
this->sparse_variable_set = _mesa_pointer_set_create(NULL);
this->result = NULL;
this->impl = NULL;
this->deref = NULL;
this->sig = NULL;
this->global_impl = NULL;
memset(&this->b, 0, sizeof(this->b));
if (src_blake3) {
char blake_as_str[BLAKE3_OUT_LEN * 2 + 1];;
_mesa_blake3_format(blake_as_str, src_blake3);
/* Create unique function name of function to temporarily hold global
* instructions.
*/
char gloabl_func_name[45];
snprintf(gloabl_func_name, 45, "%s_%s", "gl_mesa_tmp", blake_as_str);
nir_function *func = nir_function_create(shader, gloabl_func_name);
func->is_tmp_globals_wrapper = true;
this->global_impl = nir_function_impl_create(func);
this->impl = this->global_impl;
b = nir_builder_at(nir_after_impl(this->impl));
}
}
nir_visitor::~nir_visitor()
{
_mesa_hash_table_destroy(this->var_table, NULL);
_mesa_hash_table_destroy(this->overload_table, NULL);
_mesa_set_destroy(this->sparse_variable_set, NULL);
}
nir_deref_instr *
nir_visitor::evaluate_deref(ir_instruction *ir)
{
ir->accept(this);
return this->deref;
}
void
nir_visitor::truncate_after_instruction(exec_node *ir)
{
if (!ir)
return;
while (!ir->get_next()->is_tail_sentinel()) {
((ir_instruction *)ir->get_next())->remove();
}
}
nir_constant *
nir_visitor::constant_copy(ir_constant *ir, void *mem_ctx)
{
if (ir == NULL)
return NULL;
nir_constant *ret = rzalloc(mem_ctx, nir_constant);
const unsigned rows = ir->type->vector_elements;
const unsigned cols = ir->type->matrix_columns;
unsigned i;
ret->num_elements = 0;
switch (ir->type->base_type) {
case GLSL_TYPE_UINT:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].u32 = ir->value.u[r];
break;
case GLSL_TYPE_UINT16:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].u16 = ir->value.u16[r];
break;
case GLSL_TYPE_INT:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].i32 = ir->value.i[r];
break;
case GLSL_TYPE_INT16:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].i16 = ir->value.i16[r];
break;
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
if (cols > 1) {
ret->elements = ralloc_array(mem_ctx, nir_constant *, cols);
ret->num_elements = cols;
for (unsigned c = 0; c < cols; c++) {
nir_constant *col_const = rzalloc(mem_ctx, nir_constant);
col_const->num_elements = 0;
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
for (unsigned r = 0; r < rows; r++)
col_const->values[r].f32 = ir->value.f[c * rows + r];
break;
case GLSL_TYPE_FLOAT16:
for (unsigned r = 0; r < rows; r++)
col_const->values[r].u16 = ir->value.f16[c * rows + r];
break;
case GLSL_TYPE_DOUBLE:
for (unsigned r = 0; r < rows; r++)
col_const->values[r].f64 = ir->value.d[c * rows + r];
break;
default:
unreachable("Cannot get here from the first level switch");
}
ret->elements[c] = col_const;
}
} else {
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
for (unsigned r = 0; r < rows; r++)
ret->values[r].f32 = ir->value.f[r];
break;
case GLSL_TYPE_FLOAT16:
for (unsigned r = 0; r < rows; r++)
ret->values[r].u16 = ir->value.f16[r];
break;
case GLSL_TYPE_DOUBLE:
for (unsigned r = 0; r < rows; r++)
ret->values[r].f64 = ir->value.d[r];
break;
default:
unreachable("Cannot get here from the first level switch");
}
}
break;
case GLSL_TYPE_UINT64:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].u64 = ir->value.u64[r];
break;
case GLSL_TYPE_INT64:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].i64 = ir->value.i64[r];
break;
case GLSL_TYPE_BOOL:
/* Only float base types can be matrices. */
assert(cols == 1);
for (unsigned r = 0; r < rows; r++)
ret->values[r].b = ir->value.b[r];
break;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_ARRAY:
ret->elements = ralloc_array(mem_ctx, nir_constant *,
ir->type->length);
ret->num_elements = ir->type->length;
for (i = 0; i < ir->type->length; i++)
ret->elements[i] = constant_copy(ir->const_elements[i], mem_ctx);
break;
default:
unreachable("not reached");
}
return ret;
}
void
nir_visitor::adjust_sparse_variable(nir_deref_instr *var_deref, const glsl_type *type,
nir_def *dest)
{
const glsl_type *texel_type = glsl_get_field_type(type, "texel");
assert(texel_type);
assert(var_deref->deref_type == nir_deref_type_var);
nir_variable *var = var_deref->var;
/* Adjust nir_variable type to align with sparse nir instructions.
* Because the nir_variable is created with struct type from ir_variable,
* but sparse nir instructions output with vector dest.
*/
var->type = glsl_simple_type(glsl_get_base_glsl_type(texel_type)->base_type,
dest->num_components, 1);
var_deref->type = var->type;
/* Record the adjusted variable. */
_mesa_set_add(this->sparse_variable_set, var);
}
static unsigned
get_nir_how_declared(unsigned how_declared)
{
if (how_declared == ir_var_hidden)
return nir_var_hidden;
if (how_declared == ir_var_declared_implicitly)
return nir_var_declared_implicitly;
return nir_var_declared_normally;
}
void
nir_visitor::visit(ir_variable *ir)
{
/* FINISHME: inout parameters */
assert(ir->data.mode != ir_var_function_inout);
if (ir->data.mode == ir_var_function_out)
return;
nir_variable *var = rzalloc(shader, nir_variable);
var->type = ir->type;
var->name = ralloc_strdup(var, ir->name);
var->data.assigned = ir->data.assigned;
var->data.read_only = ir->data.read_only;
var->data.centroid = ir->data.centroid;
var->data.sample = ir->data.sample;
var->data.patch = ir->data.patch;
var->data.how_declared = get_nir_how_declared(ir->data.how_declared);
var->data.invariant = ir->data.invariant;
var->data.explicit_invariant = ir->data.explicit_invariant;
var->data.location = ir->data.location;
var->data.must_be_shader_input = ir->data.must_be_shader_input;
var->data.stream = ir->data.stream;
if (ir->data.stream & (1u << 31))
var->data.stream |= NIR_STREAM_PACKED;
var->data.precision = ir->data.precision;
var->data.explicit_location = ir->data.explicit_location;
var->data.matrix_layout = ir->data.matrix_layout;
var->data.from_named_ifc_block = ir->data.from_named_ifc_block;
var->data.compact = false;
var->data.used = ir->data.used;
var->data.max_array_access = ir->data.max_array_access;
var->data.implicit_sized_array = ir->data.implicit_sized_array;
var->data.from_ssbo_unsized_array = ir->data.from_ssbo_unsized_array;
switch(ir->data.mode) {
case ir_var_auto:
if (is_global) {
var->data.mode = nir_var_shader_temp;
break;
}
FALLTHROUGH;
case ir_var_temporary:
var->data.mode = nir_var_function_temp;
break;
case ir_var_function_in:
case ir_var_const_in:
var->data.mode = nir_var_function_temp;
break;
case ir_var_shader_in:
if (shader->info.stage == MESA_SHADER_GEOMETRY &&
ir->data.location == VARYING_SLOT_PRIMITIVE_ID) {
/* For whatever reason, GLSL IR makes gl_PrimitiveIDIn an input */
var->data.location = SYSTEM_VALUE_PRIMITIVE_ID;
var->data.mode = nir_var_system_value;
} else {
var->data.mode = nir_var_shader_in;
}
break;
case ir_var_shader_out:
var->data.mode = nir_var_shader_out;
break;
case ir_var_uniform:
if (ir->get_interface_type())
var->data.mode = nir_var_mem_ubo;
else if (glsl_type_contains_image(ir->type) && !ir->data.bindless)
var->data.mode = nir_var_image;
else
var->data.mode = nir_var_uniform;
break;
case ir_var_shader_storage:
var->data.mode = nir_var_mem_ssbo;
break;
case ir_var_system_value:
var->data.mode = nir_var_system_value;
break;
case ir_var_shader_shared:
var->data.mode = nir_var_mem_shared;
break;
default:
unreachable("not reached");
}
unsigned mem_access = 0;
if (ir->data.memory_read_only)
mem_access |= ACCESS_NON_WRITEABLE;
if (ir->data.memory_write_only)
mem_access |= ACCESS_NON_READABLE;
if (ir->data.memory_coherent)
mem_access |= ACCESS_COHERENT;
if (ir->data.memory_volatile)
mem_access |= ACCESS_VOLATILE;
if (ir->data.memory_restrict)
mem_access |= ACCESS_RESTRICT;
var->interface_type = ir->get_interface_type();
if (var->data.mode & (nir_var_mem_ubo | nir_var_mem_ssbo)) {
if (!glsl_type_is_interface(glsl_without_array(ir->type))) {
/* This variable is one entry in the interface */
UNUSED bool found = false;
for (unsigned i = 0; i < ir->get_interface_type()->length; i++) {
const glsl_struct_field *field =
&ir->get_interface_type()->fields.structure[i];
if (strcmp(ir->name, field->name) != 0)
continue;
if (field->memory_read_only)
mem_access |= ACCESS_NON_WRITEABLE;
if (field->memory_write_only)
mem_access |= ACCESS_NON_READABLE;
if (field->memory_coherent)
mem_access |= ACCESS_COHERENT;
if (field->memory_volatile)
mem_access |= ACCESS_VOLATILE;
if (field->memory_restrict)
mem_access |= ACCESS_RESTRICT;
found = true;
break;
}
assert(found);
}
}
var->data.interpolation = ir->data.interpolation;
var->data.location_frac = ir->data.location_frac;
switch (ir->data.depth_layout) {
case ir_depth_layout_none:
var->data.depth_layout = nir_depth_layout_none;
break;
case ir_depth_layout_any:
var->data.depth_layout = nir_depth_layout_any;
break;
case ir_depth_layout_greater:
var->data.depth_layout = nir_depth_layout_greater;
break;
case ir_depth_layout_less:
var->data.depth_layout = nir_depth_layout_less;
break;
case ir_depth_layout_unchanged:
var->data.depth_layout = nir_depth_layout_unchanged;
break;
default:
unreachable("not reached");
}
var->data.index = ir->data.index;
var->data.descriptor_set = 0;
var->data.binding = ir->data.binding;
var->data.explicit_binding = ir->data.explicit_binding;
var->data.explicit_offset = ir->data.explicit_xfb_offset;
var->data.bindless = ir->data.bindless;
var->data.offset = ir->data.offset;
var->data.access = (gl_access_qualifier)mem_access;
var->data.has_initializer = ir->data.has_initializer;
var->data.is_implicit_initializer = ir->data.is_implicit_initializer;
if (glsl_type_is_image(glsl_without_array(var->type))) {
var->data.image.format = ir->data.image_format;
} else if (var->data.mode == nir_var_shader_out) {
var->data.xfb.buffer = ir->data.xfb_buffer;
var->data.xfb.stride = ir->data.xfb_stride;
}
var->data.fb_fetch_output = ir->data.fb_fetch_output;
var->data.explicit_xfb_buffer = ir->data.explicit_xfb_buffer;
var->data.explicit_xfb_stride = ir->data.explicit_xfb_stride;
if (ir->is_interface_instance()) {
int *max_ifc_array_access = ir->get_max_ifc_array_access();
if (max_ifc_array_access) {
var->max_ifc_array_access =
rzalloc_array(var, int, ir->get_interface_type()->length);
memcpy(var->max_ifc_array_access, max_ifc_array_access,
ir->get_interface_type()->length * sizeof(unsigned));
}
}
var->num_state_slots = ir->get_num_state_slots();
if (var->num_state_slots > 0) {
var->state_slots = rzalloc_array(var, nir_state_slot,
var->num_state_slots);
ir_state_slot *state_slots = ir->get_state_slots();
for (unsigned i = 0; i < var->num_state_slots; i++) {
for (unsigned j = 0; j < 4; j++)
var->state_slots[i].tokens[j] = state_slots[i].tokens[j];
}
} else {
var->state_slots = NULL;
}
/* Values declared const will have ir->constant_value instead of
* ir->constant_initializer.
*/
if (ir->constant_initializer)
var->constant_initializer = constant_copy(ir->constant_initializer, var);
else
var->constant_initializer = constant_copy(ir->constant_value, var);
if (var->data.mode == nir_var_function_temp)
nir_function_impl_add_variable(impl, var);
else
nir_shader_add_variable(shader, var);
_mesa_hash_table_insert(var_table, ir, var);
}
ir_visitor_status
nir_function_visitor::visit_enter(ir_function *ir)
{
foreach_in_list(ir_function_signature, sig, &ir->signatures) {
visitor->create_function(sig);
}
return visit_continue_with_parent;
}
void
nir_visitor::create_function(ir_function_signature *ir)
{
if (ir->is_intrinsic())
return;
nir_function *func = nir_function_create(shader, ir->function_name());
if (strcmp(ir->function_name(), "main") == 0)
func->is_entrypoint = true;
func->num_params = ir->parameters.length() +
(ir->return_type != &glsl_type_builtin_void);
func->params = rzalloc_array(shader, nir_parameter, func->num_params);
unsigned np = 0;
if (ir->return_type != &glsl_type_builtin_void) {
/* The return value is a variable deref (basically an out parameter) */
func->params[np].num_components = 1;
func->params[np].bit_size = 32;
func->params[np].type = ir->return_type;
func->params[np].is_return = true;
func->params[np].mode = nir_var_function_out;
np++;
}
foreach_in_list(ir_variable, param, &ir->parameters) {
func->params[np].num_components = 1;
func->params[np].bit_size = 32;
func->params[np].type = param->type;
func->params[np].is_return = false;
func->params[np].mode = get_param_mode(param);
func->params[np].implicit_conversion_prohibited =
!!param->data.implicit_conversion_prohibited;
np++;
}
assert(np == func->num_params);
func->is_subroutine = ir->function()->is_subroutine;
func->num_subroutine_types = ir->function()->num_subroutine_types;
func->subroutine_index = ir->function()->subroutine_index;
func->subroutine_types =
ralloc_array(func, const struct glsl_type *, func->num_subroutine_types);
for (int i = 0; i < func->num_subroutine_types; i++)
func->subroutine_types[i] = ir->function()->subroutine_types[i];
_mesa_hash_table_insert(this->overload_table, ir, func);
}
void
nir_visitor::visit(ir_function *ir)
{
foreach_in_list(ir_function_signature, sig, &ir->signatures)
sig->accept(this);
}
void
nir_visitor::visit(ir_function_signature *ir)
{
if (ir->is_intrinsic())
return;
this->sig = ir;
struct hash_entry *entry =
_mesa_hash_table_search(this->overload_table, ir);
assert(entry);
nir_function *func = (nir_function *) entry->data;
if (ir->is_defined) {
nir_function_impl *impl = nir_function_impl_create(func);
this->impl = impl;
this->is_global = false;
b = nir_builder_at(nir_after_impl(impl));
visit_exec_list(&ir->body, this);
this->impl = global_impl;
if (this->impl)
b = nir_builder_at(nir_after_impl(this->impl));
this->is_global = true;
}
}
void
nir_visitor::visit(ir_loop *ir)
{
nir_push_loop(&b);
visit_exec_list(&ir->body_instructions, this);
nir_pop_loop(&b, NULL);
}
void
nir_visitor::visit(ir_if *ir)
{
nir_push_if(&b, evaluate_rvalue(ir->condition));
visit_exec_list(&ir->then_instructions, this);
nir_push_else(&b, NULL);
visit_exec_list(&ir->else_instructions, this);
nir_pop_if(&b, NULL);
}
void
nir_visitor::visit(ir_discard *ir)
{
/*
* discards aren't treated as control flow, because before we lower them
* they can appear anywhere in the shader and the stuff after them may still
* be executed (yay, crazy GLSL rules!). However, after lowering, all the
* discards will be immediately followed by a return.
*/
if (ir->condition)
nir_discard_if(&b, evaluate_rvalue(ir->condition));
else
nir_discard(&b);
}
void
nir_visitor::visit(ir_demote *ir)
{
nir_demote(&b);
}
void
nir_visitor::visit(ir_emit_vertex *ir)
{
nir_emit_vertex(&b, (unsigned)ir->stream_id());
}
void
nir_visitor::visit(ir_end_primitive *ir)
{
nir_end_primitive(&b, (unsigned)ir->stream_id());
}
void
nir_visitor::visit(ir_loop_jump *ir)
{
nir_jump_type type;
switch (ir->mode) {
case ir_loop_jump::jump_break:
type = nir_jump_break;
break;
case ir_loop_jump::jump_continue:
type = nir_jump_continue;
break;
default:
unreachable("not reached");
}
nir_jump_instr *instr = nir_jump_instr_create(this->shader, type);
nir_builder_instr_insert(&b, &instr->instr);
/* Eliminate all instructions after the jump, since they are unreachable
* and NIR considers adding these instructions illegal.
*/
truncate_after_instruction(ir);
}
void
nir_visitor::visit(ir_return *ir)
{
if (ir->value != NULL) {
nir_deref_instr *ret_deref =
nir_build_deref_cast(&b, nir_load_param(&b, 0),
nir_var_function_temp, ir->value->type, 0);
if (glsl_type_is_vector_or_scalar(ir->value->type)) {
nir_store_deref(&b, ret_deref, evaluate_rvalue(ir->value), ~0);
} else {
nir_copy_deref(&b, ret_deref, evaluate_deref(ir->value));
}
}
nir_jump_instr *instr = nir_jump_instr_create(this->shader, nir_jump_return);
nir_builder_instr_insert(&b, &instr->instr);
/* Eliminate all instructions after the jump, since they are unreachable
* and NIR considers adding these instructions illegal.
*/
truncate_after_instruction(ir);
}
static void
intrinsic_set_std430_align(nir_intrinsic_instr *intrin, const glsl_type *type)
{
unsigned bit_size = glsl_type_is_boolean(type) ? 32 : glsl_get_bit_size(type);
unsigned pow2_components = util_next_power_of_two(type->vector_elements);
nir_intrinsic_set_align(intrin, (bit_size / 8) * pow2_components, 0);
}
/* Accumulate any qualifiers along the deref chain to get the actual
* load/store qualifier.
*/
static enum gl_access_qualifier
deref_get_qualifier(nir_deref_instr *deref)
{
nir_deref_path path;
nir_deref_path_init(&path, deref, NULL);
/* Function params can lead to a deref cast just return zero as these
* params have no qualifers anyway.
*/
if (path.path[0]->deref_type != nir_deref_type_var)
return (gl_access_qualifier) 0;
unsigned qualifiers = path.path[0]->var->data.access;
const glsl_type *parent_type = path.path[0]->type;
for (nir_deref_instr **cur_ptr = &path.path[1]; *cur_ptr; cur_ptr++) {
nir_deref_instr *cur = *cur_ptr;
if (glsl_type_is_interface(parent_type)) {
const struct glsl_struct_field *field =
&parent_type->fields.structure[cur->strct.index];
if (field->memory_read_only)
qualifiers |= ACCESS_NON_WRITEABLE;
if (field->memory_write_only)
qualifiers |= ACCESS_NON_READABLE;
if (field->memory_coherent)
qualifiers |= ACCESS_COHERENT;
if (field->memory_volatile)
qualifiers |= ACCESS_VOLATILE;
if (field->memory_restrict)
qualifiers |= ACCESS_RESTRICT;
}
parent_type = cur->type;
}
nir_deref_path_finish(&path);
return (gl_access_qualifier) qualifiers;
}
static nir_op
get_reduction_op(enum ir_intrinsic_id id, const glsl_type *type)
{
#define IR_CASE(op) \
case ir_intrinsic_reduce_##op: \
case ir_intrinsic_inclusive_##op: \
case ir_intrinsic_exclusive_##op: \
case ir_intrinsic_clustered_##op: \
return CONV_OP(op);
switch (id) {
#define CONV_OP(op) \
type->base_type == GLSL_TYPE_INT || type->base_type == GLSL_TYPE_UINT ? \
nir_op_i##op : nir_op_f##op
IR_CASE(add)
IR_CASE(mul)
#undef CONV_OP
#define CONV_OP(op) \
type->base_type == GLSL_TYPE_INT ? nir_op_i##op : \
(type->base_type == GLSL_TYPE_UINT ? nir_op_u##op : nir_op_f##op)
IR_CASE(min)
IR_CASE(max)
#undef CONV_OP
#define CONV_OP(op) nir_op_i##op
IR_CASE(and)
IR_CASE(or)
IR_CASE(xor)
#undef CONV_OP
default:
unreachable("not reached");
}
#undef IR_CASE
}
void
nir_visitor::visit(ir_call *ir)
{
if (ir->callee->is_intrinsic()) {
nir_intrinsic_op op;
/* Initialize to something because gcc complains otherwise */
nir_atomic_op atomic_op = nir_atomic_op_iadd;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_generic_atomic_add:
op = nir_intrinsic_deref_atomic;
atomic_op = glsl_type_is_integer_32_64(ir->return_deref->type)
? nir_atomic_op_iadd : nir_atomic_op_fadd;
break;
case ir_intrinsic_generic_atomic_and:
op = nir_intrinsic_deref_atomic;
atomic_op = nir_atomic_op_iand;
break;
case ir_intrinsic_generic_atomic_or:
op = nir_intrinsic_deref_atomic;
atomic_op = nir_atomic_op_ior;
break;
case ir_intrinsic_generic_atomic_xor:
op = nir_intrinsic_deref_atomic;
atomic_op = nir_atomic_op_ixor;
break;
case ir_intrinsic_generic_atomic_min:
assert(ir->return_deref);
op = nir_intrinsic_deref_atomic;
if (ir->return_deref->type == &glsl_type_builtin_int ||
ir->return_deref->type == &glsl_type_builtin_int64_t)
atomic_op = nir_atomic_op_imin;
else if (ir->return_deref->type == &glsl_type_builtin_uint ||
ir->return_deref->type == &glsl_type_builtin_uint64_t)
atomic_op = nir_atomic_op_umin;
else if (ir->return_deref->type == &glsl_type_builtin_float)
atomic_op = nir_atomic_op_fmin;
else
unreachable("Invalid type");
break;
case ir_intrinsic_generic_atomic_max:
assert(ir->return_deref);
op = nir_intrinsic_deref_atomic;
if (ir->return_deref->type == &glsl_type_builtin_int ||
ir->return_deref->type == &glsl_type_builtin_int64_t)
atomic_op = nir_atomic_op_imax;
else if (ir->return_deref->type == &glsl_type_builtin_uint ||
ir->return_deref->type == &glsl_type_builtin_uint64_t)
atomic_op = nir_atomic_op_umax;
else if (ir->return_deref->type == &glsl_type_builtin_float)
atomic_op = nir_atomic_op_fmax;
else
unreachable("Invalid type");
break;
case ir_intrinsic_generic_atomic_exchange:
op = nir_intrinsic_deref_atomic;
atomic_op = nir_atomic_op_xchg;
break;
case ir_intrinsic_generic_atomic_comp_swap:
op = nir_intrinsic_deref_atomic_swap;
atomic_op = glsl_type_is_integer_32_64(ir->return_deref->type)
? nir_atomic_op_cmpxchg
: nir_atomic_op_fcmpxchg;
break;
case ir_intrinsic_atomic_counter_read:
op = nir_intrinsic_atomic_counter_read_deref;
break;
case ir_intrinsic_atomic_counter_increment:
op = nir_intrinsic_atomic_counter_inc_deref;
break;
case ir_intrinsic_atomic_counter_predecrement:
op = nir_intrinsic_atomic_counter_pre_dec_deref;
break;
case ir_intrinsic_atomic_counter_add:
op = nir_intrinsic_atomic_counter_add_deref;
break;
case ir_intrinsic_atomic_counter_and:
op = nir_intrinsic_atomic_counter_and_deref;
break;
case ir_intrinsic_atomic_counter_or:
op = nir_intrinsic_atomic_counter_or_deref;
break;
case ir_intrinsic_atomic_counter_xor:
op = nir_intrinsic_atomic_counter_xor_deref;
break;
case ir_intrinsic_atomic_counter_min:
op = nir_intrinsic_atomic_counter_min_deref;
break;
case ir_intrinsic_atomic_counter_max:
op = nir_intrinsic_atomic_counter_max_deref;
break;
case ir_intrinsic_atomic_counter_exchange:
op = nir_intrinsic_atomic_counter_exchange_deref;
break;
case ir_intrinsic_atomic_counter_comp_swap:
op = nir_intrinsic_atomic_counter_comp_swap_deref;
break;
case ir_intrinsic_image_load:
op = nir_intrinsic_image_deref_load;
break;
case ir_intrinsic_image_store:
op = nir_intrinsic_image_deref_store;
break;
case ir_intrinsic_image_atomic_add:
op = nir_intrinsic_image_deref_atomic;
atomic_op = glsl_type_is_integer_32_64(ir->return_deref->type)
? nir_atomic_op_iadd
: nir_atomic_op_fadd;
break;
case ir_intrinsic_image_atomic_min:
op = nir_intrinsic_image_deref_atomic;
if (ir->return_deref->type == &glsl_type_builtin_int)
atomic_op = nir_atomic_op_imin;
else if (ir->return_deref->type == &glsl_type_builtin_uint)
atomic_op = nir_atomic_op_umin;
else
unreachable("Invalid type");
break;
case ir_intrinsic_image_atomic_max:
op = nir_intrinsic_image_deref_atomic;
if (ir->return_deref->type == &glsl_type_builtin_int)
atomic_op = nir_atomic_op_imax;
else if (ir->return_deref->type == &glsl_type_builtin_uint)
atomic_op = nir_atomic_op_umax;
else
unreachable("Invalid type");
break;
case ir_intrinsic_image_atomic_and:
op = nir_intrinsic_image_deref_atomic;
atomic_op = nir_atomic_op_iand;
break;
case ir_intrinsic_image_atomic_or:
op = nir_intrinsic_image_deref_atomic;
atomic_op = nir_atomic_op_ior;
break;
case ir_intrinsic_image_atomic_xor:
op = nir_intrinsic_image_deref_atomic;
atomic_op = nir_atomic_op_ixor;
break;
case ir_intrinsic_image_atomic_exchange:
op = nir_intrinsic_image_deref_atomic;
atomic_op = nir_atomic_op_xchg;
break;
case ir_intrinsic_image_atomic_comp_swap:
op = nir_intrinsic_image_deref_atomic_swap;
atomic_op = nir_atomic_op_cmpxchg;
break;
case ir_intrinsic_image_atomic_inc_wrap:
op = nir_intrinsic_image_deref_atomic;
atomic_op = nir_atomic_op_inc_wrap;
break;
case ir_intrinsic_image_atomic_dec_wrap:
op = nir_intrinsic_image_deref_atomic;
atomic_op = nir_atomic_op_dec_wrap;
break;
case ir_intrinsic_memory_barrier:
case ir_intrinsic_memory_barrier_buffer:
case ir_intrinsic_memory_barrier_image:
case ir_intrinsic_memory_barrier_shared:
case ir_intrinsic_memory_barrier_atomic_counter:
case ir_intrinsic_group_memory_barrier:
case ir_intrinsic_subgroup_barrier:
case ir_intrinsic_subgroup_memory_barrier:
case ir_intrinsic_subgroup_memory_barrier_buffer:
case ir_intrinsic_subgroup_memory_barrier_shared:
case ir_intrinsic_subgroup_memory_barrier_image:
op = nir_intrinsic_barrier;
break;
case ir_intrinsic_image_size:
op = nir_intrinsic_image_deref_size;
break;
case ir_intrinsic_image_samples:
op = nir_intrinsic_image_deref_samples;
break;
case ir_intrinsic_image_sparse_load:
op = nir_intrinsic_image_deref_sparse_load;
break;
case ir_intrinsic_shader_clock:
op = nir_intrinsic_shader_clock;
break;
case ir_intrinsic_begin_invocation_interlock:
op = nir_intrinsic_begin_invocation_interlock;
break;
case ir_intrinsic_end_invocation_interlock:
op = nir_intrinsic_end_invocation_interlock;
break;
case ir_intrinsic_vote_any:
op = nir_intrinsic_vote_any;
break;
case ir_intrinsic_vote_all:
op = nir_intrinsic_vote_all;
break;
case ir_intrinsic_vote_eq: {
ir_rvalue *rvalue = (ir_rvalue *) ir->actual_parameters.get_head();
op = glsl_type_is_integer(rvalue->type) ? nir_intrinsic_vote_ieq : nir_intrinsic_vote_feq;
break;
}
case ir_intrinsic_ballot:
op = nir_intrinsic_ballot;
break;
case ir_intrinsic_read_invocation:
op = nir_intrinsic_read_invocation;
break;
case ir_intrinsic_read_first_invocation:
op = nir_intrinsic_read_first_invocation;
break;
case ir_intrinsic_helper_invocation:
op = nir_intrinsic_is_helper_invocation;
break;
case ir_intrinsic_is_sparse_texels_resident:
op = nir_intrinsic_is_sparse_texels_resident;
break;
case ir_intrinsic_elect:
op = nir_intrinsic_elect;
break;
case ir_intrinsic_inverse_ballot:
op = nir_intrinsic_inverse_ballot;
break;
case ir_intrinsic_ballot_bit_extract:
op = nir_intrinsic_ballot_bitfield_extract;
break;
case ir_intrinsic_ballot_bit_count:
op = nir_intrinsic_ballot_bit_count_reduce;
break;
case ir_intrinsic_ballot_inclusive_bit_count:
op = nir_intrinsic_ballot_bit_count_inclusive;
break;
case ir_intrinsic_ballot_exclusive_bit_count:
op = nir_intrinsic_ballot_bit_count_exclusive;
break;
case ir_intrinsic_ballot_find_lsb:
op = nir_intrinsic_ballot_find_lsb;
break;
case ir_intrinsic_ballot_find_msb:
op = nir_intrinsic_ballot_find_msb;
break;
case ir_intrinsic_shuffle:
op = nir_intrinsic_shuffle;
break;
case ir_intrinsic_shuffle_xor:
op = nir_intrinsic_shuffle_xor;
break;
case ir_intrinsic_shuffle_up:
op = nir_intrinsic_shuffle_up;
break;
case ir_intrinsic_shuffle_down:
op = nir_intrinsic_shuffle_down;
break;
case ir_intrinsic_reduce_add:
case ir_intrinsic_reduce_mul:
case ir_intrinsic_reduce_min:
case ir_intrinsic_reduce_max:
case ir_intrinsic_reduce_and:
case ir_intrinsic_reduce_or:
case ir_intrinsic_reduce_xor:
case ir_intrinsic_clustered_add:
case ir_intrinsic_clustered_mul:
case ir_intrinsic_clustered_min:
case ir_intrinsic_clustered_max:
case ir_intrinsic_clustered_and:
case ir_intrinsic_clustered_or:
case ir_intrinsic_clustered_xor:
op = nir_intrinsic_reduce;
break;
case ir_intrinsic_inclusive_add:
case ir_intrinsic_inclusive_mul:
case ir_intrinsic_inclusive_min:
case ir_intrinsic_inclusive_max:
case ir_intrinsic_inclusive_and:
case ir_intrinsic_inclusive_or:
case ir_intrinsic_inclusive_xor:
op = nir_intrinsic_inclusive_scan;
break;
case ir_intrinsic_exclusive_add:
case ir_intrinsic_exclusive_mul:
case ir_intrinsic_exclusive_min:
case ir_intrinsic_exclusive_max:
case ir_intrinsic_exclusive_and:
case ir_intrinsic_exclusive_or:
case ir_intrinsic_exclusive_xor:
op = nir_intrinsic_exclusive_scan;
break;
case ir_intrinsic_quad_broadcast:
op = nir_intrinsic_quad_broadcast;
break;
case ir_intrinsic_quad_swap_horizontal:
op = nir_intrinsic_quad_swap_horizontal;
break;
case ir_intrinsic_quad_swap_vertical:
op = nir_intrinsic_quad_swap_vertical;
break;
case ir_intrinsic_quad_swap_diagonal:
op = nir_intrinsic_quad_swap_diagonal;
break;
default:
unreachable("not reached");
}
nir_intrinsic_instr *instr = nir_intrinsic_instr_create(shader, op);
nir_def *ret = &instr->def;
switch (op) {
case nir_intrinsic_deref_atomic:
case nir_intrinsic_deref_atomic_swap: {
int param_count = ir->actual_parameters.length();
assert(param_count == 2 || param_count == 3);
/* Deref */
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *rvalue = (ir_rvalue *) param;
ir_dereference *deref = rvalue->as_dereference();
ir_swizzle *swizzle = NULL;
if (!deref) {
/* We may have a swizzle to pick off a single vec4 component */
swizzle = rvalue->as_swizzle();
assert(swizzle && swizzle->type->vector_elements == 1);
deref = swizzle->val->as_dereference();
assert(deref);
}
nir_deref_instr *nir_deref = evaluate_deref(deref);
if (swizzle) {
nir_deref = nir_build_deref_array_imm(&b, nir_deref,
swizzle->mask.x);
}
instr->src[0] = nir_src_for_ssa(&nir_deref->def);
nir_intrinsic_set_atomic_op(instr, atomic_op);
nir_intrinsic_set_access(instr, deref_get_qualifier(nir_deref));
/* data1 parameter (this is always present) */
param = param->get_next();
ir_instruction *inst = (ir_instruction *) param;
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
/* data2 parameter (only with atomic_comp_swap) */
if (param_count == 3) {
assert(op == nir_intrinsic_deref_atomic_swap);
param = param->get_next();
inst = (ir_instruction *) param;
instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue()));
}
/* Atomic result */
assert(ir->return_deref);
if (glsl_type_is_integer_64(ir->return_deref->type)) {
nir_def_init(&instr->instr, &instr->def,
ir->return_deref->type->vector_elements, 64);
} else {
nir_def_init(&instr->instr, &instr->def,
ir->return_deref->type->vector_elements, 32);
}
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_atomic_counter_read_deref:
case nir_intrinsic_atomic_counter_inc_deref:
case nir_intrinsic_atomic_counter_pre_dec_deref:
case nir_intrinsic_atomic_counter_add_deref:
case nir_intrinsic_atomic_counter_min_deref:
case nir_intrinsic_atomic_counter_max_deref:
case nir_intrinsic_atomic_counter_and_deref:
case nir_intrinsic_atomic_counter_or_deref:
case nir_intrinsic_atomic_counter_xor_deref:
case nir_intrinsic_atomic_counter_exchange_deref:
case nir_intrinsic_atomic_counter_comp_swap_deref: {
/* Set the counter variable dereference. */
exec_node *param = ir->actual_parameters.get_head();
ir_dereference *counter = (ir_dereference *)param;
instr->src[0] = nir_src_for_ssa(&evaluate_deref(counter)->def);
param = param->get_next();
/* Set the intrinsic destination. */
if (ir->return_deref) {
nir_def_init(&instr->instr, &instr->def, 1, 32);
}
/* Set the intrinsic parameters. */
if (!param->is_tail_sentinel()) {
instr->src[1] =
nir_src_for_ssa(evaluate_rvalue((ir_rvalue *)param));
param = param->get_next();
}
if (!param->is_tail_sentinel()) {
instr->src[2] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
}
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic:
case nir_intrinsic_image_deref_atomic_swap:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_sparse_load: {
/* Set the image variable dereference. */
exec_node *param = ir->actual_parameters.get_head();
ir_dereference *image = (ir_dereference *)param;
nir_deref_instr *deref = evaluate_deref(image);
const glsl_type *type = deref->type;
nir_intrinsic_set_access(instr, deref_get_qualifier(deref));
if (op == nir_intrinsic_image_deref_atomic ||
op == nir_intrinsic_image_deref_atomic_swap) {
nir_intrinsic_set_atomic_op(instr, atomic_op);
}
instr->src[0] = nir_src_for_ssa(&deref->def);
param = param->get_next();
nir_intrinsic_set_image_dim(instr,
(glsl_sampler_dim)type->sampler_dimensionality);
nir_intrinsic_set_image_array(instr, type->sampler_array);
/* Set the intrinsic destination. */
if (ir->return_deref) {
unsigned num_components;
if (op == nir_intrinsic_image_deref_sparse_load) {
const glsl_type *dest_type =
glsl_get_field_type(ir->return_deref->type, "texel");
/* One extra component to hold residency code. */
num_components = dest_type->vector_elements + 1;
} else
num_components = ir->return_deref->type->vector_elements;
nir_def_init(&instr->instr, &instr->def, num_components, 32);
}
if (op == nir_intrinsic_image_deref_size) {
instr->num_components = instr->def.num_components;
} else if (op == nir_intrinsic_image_deref_load ||
op == nir_intrinsic_image_deref_sparse_load) {
instr->num_components = instr->def.num_components;
nir_intrinsic_set_dest_type(instr,
nir_get_nir_type_for_glsl_base_type(type->sampled_type));
} else if (op == nir_intrinsic_image_deref_store) {
instr->num_components = 4;
nir_intrinsic_set_src_type(instr,
nir_get_nir_type_for_glsl_base_type(type->sampled_type));
}
if (op == nir_intrinsic_image_deref_size ||
op == nir_intrinsic_image_deref_samples) {
/* image_deref_size takes an LOD parameter which is always 0
* coming from GLSL.
*/
if (op == nir_intrinsic_image_deref_size)
instr->src[1] = nir_src_for_ssa(nir_imm_int(&b, 0));
nir_builder_instr_insert(&b, &instr->instr);
break;
}
/* Set the address argument, extending the coordinate vector to four
* components.
*/
nir_def *src_addr =
evaluate_rvalue((ir_rvalue *)param);
nir_def *srcs[4];
for (int i = 0; i < 4; i++) {
if (i < glsl_get_sampler_coordinate_components(type))
srcs[i] = nir_channel(&b, src_addr, i);
else
srcs[i] = nir_undef(&b, 1, 32);
}
instr->src[1] = nir_src_for_ssa(nir_vec(&b, srcs, 4));
param = param->get_next();
/* Set the sample argument, which is undefined for single-sample
* images.
*/
if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
instr->src[2] =
nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param));
param = param->get_next();
} else {
instr->src[2] = nir_src_for_ssa(nir_undef(&b, 1, 32));
}
/* Set the intrinsic parameters. */
if (!param->is_tail_sentinel()) {
instr->src[3] =
nir_src_for_ssa(evaluate_rvalue((ir_rvalue *)param));
param = param->get_next();
} else if (op == nir_intrinsic_image_deref_load ||
op == nir_intrinsic_image_deref_sparse_load) {
instr->src[3] = nir_src_for_ssa(nir_imm_int(&b, 0)); /* LOD */
}
if (!param->is_tail_sentinel()) {
instr->src[4] =
nir_src_for_ssa(evaluate_rvalue((ir_rvalue *)param));
param = param->get_next();
} else if (op == nir_intrinsic_image_deref_store) {
instr->src[4] = nir_src_for_ssa(nir_imm_int(&b, 0)); /* LOD */
}
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_barrier: {
/* The nir_intrinsic_barrier follows the general
* semantics of SPIR-V memory barriers, so this and other memory
* barriers use the mapping based on GLSL->SPIR-V from
*
* https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_gl_spirv.txt
*/
if (ir->callee->intrinsic_id == ir_intrinsic_subgroup_barrier) {
nir_barrier(&b, SCOPE_SUBGROUP, SCOPE_SUBGROUP, NIR_MEMORY_ACQ_REL,
nir_var_image | nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global);
break;
}
mesa_scope scope;
unsigned modes;
switch (ir->callee->intrinsic_id) {
case ir_intrinsic_memory_barrier:
scope = SCOPE_DEVICE;
modes = nir_var_image |
nir_var_mem_ssbo |
nir_var_mem_shared |
nir_var_mem_global;
break;
case ir_intrinsic_memory_barrier_buffer:
scope = SCOPE_DEVICE;
modes = nir_var_mem_ssbo |
nir_var_mem_global;
break;
case ir_intrinsic_memory_barrier_image:
scope = SCOPE_DEVICE;
modes = nir_var_image;
break;
case ir_intrinsic_memory_barrier_shared:
/* Both ARB_gl_spirv and glslang lower this to Device scope, so
* follow their lead. Note GL_KHR_vulkan_glsl also does
* something similar.
*/
scope = SCOPE_DEVICE;
modes = nir_var_mem_shared;
break;
case ir_intrinsic_group_memory_barrier:
scope = SCOPE_WORKGROUP;
modes = nir_var_image |
nir_var_mem_ssbo |
nir_var_mem_shared |
nir_var_mem_global;
break;
case ir_intrinsic_memory_barrier_atomic_counter:
/* There's no nir_var_atomic_counter, but since atomic counters are lowered
* to SSBOs, we use nir_var_mem_ssbo instead.
*/
scope = SCOPE_DEVICE;
modes = nir_var_mem_ssbo;
break;
case ir_intrinsic_subgroup_memory_barrier:
scope = SCOPE_SUBGROUP;
modes = nir_var_image |
nir_var_mem_ssbo |
nir_var_mem_shared |
nir_var_mem_global;
break;
case ir_intrinsic_subgroup_memory_barrier_buffer:
scope = SCOPE_SUBGROUP;
modes = nir_var_mem_ssbo |
nir_var_mem_global;
break;
case ir_intrinsic_subgroup_memory_barrier_shared:
scope = SCOPE_SUBGROUP;
modes = nir_var_mem_shared;
break;
case ir_intrinsic_subgroup_memory_barrier_image:
scope = SCOPE_SUBGROUP;
modes = nir_var_image;
break;
default:
unreachable("invalid intrinsic id for memory barrier");
}
nir_scoped_memory_barrier(&b, scope, NIR_MEMORY_ACQ_REL,
(nir_variable_mode)modes);
break;
}
case nir_intrinsic_store_ssbo: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
assert(write_mask);
nir_def *nir_val = evaluate_rvalue(val);
if (glsl_type_is_boolean(val->type))
nir_val = nir_b2i32(&b, nir_val);
instr->src[0] = nir_src_for_ssa(nir_val);
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(block));
instr->src[2] = nir_src_for_ssa(evaluate_rvalue(offset));
intrinsic_set_std430_align(instr, val->type);
nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]);
instr->num_components = val->type->vector_elements;
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_load_shared: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
nir_intrinsic_set_base(instr, 0);
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(offset));
const glsl_type *type = ir->return_deref->var->type;
instr->num_components = type->vector_elements;
intrinsic_set_std430_align(instr, type);
/* Setup destination register */
unsigned bit_size = glsl_type_is_boolean(type) ? 32 : glsl_get_bit_size(type);
nir_def_init(&instr->instr, &instr->def, type->vector_elements,
bit_size);
nir_builder_instr_insert(&b, &instr->instr);
/* The value in shared memory is a 32-bit value */
if (glsl_type_is_boolean(type))
ret = nir_b2b1(&b, &instr->def);
break;
}
case nir_intrinsic_store_shared: {
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
param = param->get_next();
ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
assert(write_mask);
nir_intrinsic_set_base(instr, 0);
instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset));
nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]);
nir_def *nir_val = evaluate_rvalue(val);
/* The value in shared memory is a 32-bit value */
if (glsl_type_is_boolean(val->type))
nir_val = nir_b2b32(&b, nir_val);
instr->src[0] = nir_src_for_ssa(nir_val);
instr->num_components = val->type->vector_elements;
intrinsic_set_std430_align(instr, val->type);
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan: {
const glsl_type *type = ir->return_deref->type;
nir_def_init(&instr->instr, &instr->def, glsl_get_vector_elements(type),
glsl_get_bit_size(type));
instr->num_components = instr->def.num_components;
exec_node *param = ir->actual_parameters.get_head();
ir_rvalue *value = ((ir_instruction *)param)->as_rvalue();
instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value));
param = param->get_next();
if (!param->is_tail_sentinel()) {
ir_constant *size = ((ir_instruction *)param)->as_constant();
assert(size);
nir_intrinsic_set_cluster_size(instr, size->get_uint_component(0));
}
nir_intrinsic_set_reduction_op(instr, get_reduction_op(ir->callee->intrinsic_id, type));
nir_builder_instr_insert(&b, &instr->instr);
break;
}
case nir_intrinsic_shader_clock:
nir_intrinsic_set_memory_scope(instr, SCOPE_SUBGROUP);
FALLTHROUGH;
case nir_intrinsic_begin_invocation_interlock:
case nir_intrinsic_end_invocation_interlock:
case nir_intrinsic_vote_ieq:
case nir_intrinsic_vote_feq:
case nir_intrinsic_vote_any:
case nir_intrinsic_vote_all:
case nir_intrinsic_ballot:
case nir_intrinsic_read_invocation:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_is_helper_invocation:
case nir_intrinsic_is_sparse_texels_resident:
case nir_intrinsic_elect:
case nir_intrinsic_inverse_ballot:
case nir_intrinsic_ballot_bitfield_extract:
case nir_intrinsic_ballot_bit_count_reduce:
case nir_intrinsic_ballot_bit_count_inclusive:
case nir_intrinsic_ballot_bit_count_exclusive:
case nir_intrinsic_ballot_find_lsb:
case nir_intrinsic_ballot_find_msb:
case nir_intrinsic_shuffle:
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal: {
if (ir->return_deref) {
const glsl_type *type = ir->return_deref->type;
nir_def_init(&instr->instr, &instr->def, glsl_get_vector_elements(type),
glsl_get_bit_size(type));
if (!nir_intrinsic_dest_components(instr))
instr->num_components = instr->def.num_components;
}
unsigned index = 0;
foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
instr->src[index] = nir_src_for_ssa(evaluate_rvalue(param));
if (!nir_intrinsic_src_components(instr, index))
instr->num_components = nir_src_num_components(instr->src[index]);
index++;
}
nir_builder_instr_insert(&b, &instr->instr);
break;
}
default:
unreachable("not reached");
}
if (ir->return_deref) {
nir_deref_instr *ret_deref = evaluate_deref(ir->return_deref);
if (op == nir_intrinsic_image_deref_sparse_load)
adjust_sparse_variable(ret_deref, ir->return_deref->type, ret);
nir_store_deref(&b, ret_deref, ret, ~0);
}
return;
}
struct hash_entry *entry =
_mesa_hash_table_search(this->overload_table, ir->callee);
assert(entry);
nir_function *callee = (nir_function *) entry->data;
nir_call_instr *call = nir_call_instr_create(this->shader, callee);
unsigned i = 0;
nir_deref_instr *ret_deref = NULL;
if (ir->return_deref) {
nir_variable *ret_tmp =
nir_local_variable_create(this->impl, ir->return_deref->type,
"return_tmp");
ret_deref = nir_build_deref_var(&b, ret_tmp);
call->params[i++] = nir_src_for_ssa(&ret_deref->def);
}
foreach_two_lists(formal_node, &ir->callee->parameters,
actual_node, &ir->actual_parameters) {
ir_rvalue *param_rvalue = (ir_rvalue *) actual_node;
ir_variable *sig_param = (ir_variable *) formal_node;
nir_deref_instr *param_deref;
if (sig_param->data.mode == ir_var_function_in &&
glsl_contains_opaque(sig_param->type)) {
param_deref = evaluate_deref(param_rvalue);
} else {
nir_variable *param =
nir_local_variable_create(this->impl, sig_param->type, "param");
param->data.precision = sig_param->data.precision;
param_deref = nir_build_deref_var(&b, param);
if (sig_param->data.mode == ir_var_function_in ||
sig_param->data.mode == ir_var_function_inout) {
if (glsl_type_is_vector_or_scalar(param->type)) {
nir_store_deref(&b, param_deref,
evaluate_rvalue(param_rvalue),
~0);
} else {
nir_copy_deref(&b, param_deref, evaluate_deref(param_rvalue));
}
}
}
call->params[i] = nir_src_for_ssa(&param_deref->def);
i++;
}
nir_builder_instr_insert(&b, &call->instr);
/* Copy out params. We must do this after the function call to ensure we
* do not overwrite global variables prematurely.
*/
i = ir->return_deref ? 1 : 0;
foreach_two_lists(formal_node, &ir->callee->parameters,
actual_node, &ir->actual_parameters) {
ir_rvalue *param_rvalue = (ir_rvalue *) actual_node;
ir_variable *sig_param = (ir_variable *) formal_node;
if (sig_param->data.mode == ir_var_function_out ||
sig_param->data.mode == ir_var_function_inout) {
if (glsl_type_is_vector_or_scalar(sig_param->type)) {
nir_store_deref(&b, evaluate_deref(param_rvalue),
nir_load_deref(&b, nir_src_as_deref(call->params[i])),
~0);
} else {
nir_copy_deref(&b, evaluate_deref(param_rvalue),
nir_src_as_deref(call->params[i]));
}
}
i++;
}
if (ir->return_deref) {
if (glsl_type_is_vector_or_scalar(ir->return_deref->type)) {
nir_store_deref(&b, evaluate_deref(ir->return_deref),
nir_load_deref(&b, ret_deref), ~0);
} else {
nir_copy_deref(&b, evaluate_deref(ir->return_deref), ret_deref);
}
}
}
void
nir_visitor::visit(ir_assignment *ir)
{
unsigned num_components = ir->lhs->type->vector_elements;
unsigned write_mask = ir->write_mask;
b.exact = ir->lhs->variable_referenced()->data.invariant ||
ir->lhs->variable_referenced()->data.precise;
if ((ir->rhs->as_dereference() || ir->rhs->as_constant()) &&
(write_mask == BITFIELD_MASK(num_components) || write_mask == 0)) {
nir_deref_instr *lhs = evaluate_deref(ir->lhs);
nir_deref_instr *rhs = evaluate_deref(ir->rhs);
enum gl_access_qualifier lhs_qualifiers = deref_get_qualifier(lhs);
enum gl_access_qualifier rhs_qualifiers = deref_get_qualifier(rhs);
nir_copy_deref_with_access(&b, lhs, rhs, lhs_qualifiers,
rhs_qualifiers);
return;
}
ir_texture *tex = ir->rhs->as_texture();
bool is_sparse = tex && tex->is_sparse;
if (!is_sparse)
assert(glsl_type_is_scalar(ir->rhs->type) || glsl_type_is_vector(ir->rhs->type));
ir->lhs->accept(this);
nir_deref_instr *lhs_deref = this->deref;
nir_def *src = evaluate_rvalue(ir->rhs);
if (is_sparse) {
adjust_sparse_variable(lhs_deref, tex->type, src);
/* correct component and mask because they are 0 for struct */
num_components = src->num_components;
write_mask = BITFIELD_MASK(num_components);
}
if (write_mask != BITFIELD_MASK(num_components) && write_mask != 0) {
/* GLSL IR will give us the input to the write-masked assignment in a
* single packed vector. So, for example, if the writemask is xzw, then
* we have to swizzle x -> x, y -> z, and z -> w and get the y component
* from the load.
*/
unsigned swiz[4];
unsigned component = 0;
for (unsigned i = 0; i < 4; i++) {
swiz[i] = write_mask & (1 << i) ? component++ : 0;
}
src = nir_swizzle(&b, src, swiz, num_components);
}
enum gl_access_qualifier qualifiers = deref_get_qualifier(lhs_deref);
nir_store_deref_with_access(&b, lhs_deref, src, write_mask,
qualifiers);
}
/*
* Given an instruction, returns a pointer to its destination or NULL if there
* is no destination.
*
* Note that this only handles instructions we generate at this level.
*/
static nir_def *
get_instr_def(nir_instr *instr)
{
nir_alu_instr *alu_instr;
nir_intrinsic_instr *intrinsic_instr;
nir_tex_instr *tex_instr;
switch (instr->type) {
case nir_instr_type_alu:
alu_instr = nir_instr_as_alu(instr);
return &alu_instr->def;
case nir_instr_type_intrinsic:
intrinsic_instr = nir_instr_as_intrinsic(instr);
if (nir_intrinsic_infos[intrinsic_instr->intrinsic].has_dest)
return &intrinsic_instr->def;
else
return NULL;
case nir_instr_type_tex:
tex_instr = nir_instr_as_tex(instr);
return &tex_instr->def;
default:
unreachable("not reached");
}
return NULL;
}
void
nir_visitor::add_instr(nir_instr *instr, unsigned num_components,
unsigned bit_size)
{
nir_def *def = get_instr_def(instr);
if (def)
nir_def_init(instr, def, num_components, bit_size);
nir_builder_instr_insert(&b, instr);
if (def)
this->result = def;
}
nir_def *
nir_visitor::evaluate_rvalue(ir_rvalue* ir)
{
ir->accept(this);
if (ir->as_dereference() || ir->as_constant()) {
/*
* A dereference is being used on the right hand side, which means we
* must emit a variable load.
*/
enum gl_access_qualifier access = deref_get_qualifier(this->deref);
this->result = nir_load_deref_with_access(&b, this->deref, access);
}
return this->result;
}
static bool
type_is_float(glsl_base_type type)
{
return type == GLSL_TYPE_FLOAT || type == GLSL_TYPE_DOUBLE ||
type == GLSL_TYPE_FLOAT16;
}
static bool
type_is_signed(glsl_base_type type)
{
return type == GLSL_TYPE_INT || type == GLSL_TYPE_INT64 ||
type == GLSL_TYPE_INT16;
}
void
nir_visitor::visit(ir_expression *ir)
{
/* Some special cases */
switch (ir->operation) {
case ir_unop_interpolate_at_centroid:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample: {
ir_dereference *deref = ir->operands[0]->as_dereference();
ir_swizzle *swizzle = NULL;
ir_expression *precision_op = NULL;
if (!deref) {
precision_op = ir->operands[0]->as_expression();
if (precision_op) {
/* For some builtins precision is lowered to mediump for certain
* parameters that ignore precision. For example for Interpolation
* and Bitfield functions.
*/
assert(precision_op->operation == ir_unop_f2fmp);
deref = precision_op->operands[0]->as_dereference();
}
if (!deref) {
swizzle = ir->operands[0]->as_swizzle();
assert(swizzle);
deref = swizzle->val->as_dereference();
}
assert(deref);
}
deref->accept(this);
assert(nir_deref_mode_is(this->deref, nir_var_shader_in));
nir_intrinsic_op op;
switch (ir->operation) {
case ir_unop_interpolate_at_centroid:
op = nir_intrinsic_interp_deref_at_centroid;
break;
case ir_binop_interpolate_at_offset:
op = nir_intrinsic_interp_deref_at_offset;
break;
case ir_binop_interpolate_at_sample:
op = nir_intrinsic_interp_deref_at_sample;
break;
default:
unreachable("Invalid interpolation intrinsic");
}
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(shader, op);
intrin->num_components = deref->type->vector_elements;
intrin->src[0] = nir_src_for_ssa(&this->deref->def);
if (intrin->intrinsic == nir_intrinsic_interp_deref_at_offset ||
intrin->intrinsic == nir_intrinsic_interp_deref_at_sample)
intrin->src[1] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1]));
unsigned bit_size = glsl_get_bit_size(deref->type);
add_instr(&intrin->instr, deref->type->vector_elements, bit_size);
if (swizzle) {
unsigned swiz[4] = {
swizzle->mask.x, swizzle->mask.y, swizzle->mask.z, swizzle->mask.w
};
result = nir_swizzle(&b, result, swiz,
swizzle->type->vector_elements);
}
if (precision_op) {
result = nir_build_alu(&b, nir_op_f2fmp, result, NULL, NULL, NULL);
}
return;
}
case ir_unop_implicitly_sized_array_length:
case ir_unop_ssbo_unsized_array_length: {
nir_intrinsic_instr *intrin;
if (ir->operation == ir_unop_ssbo_unsized_array_length) {
intrin =
nir_intrinsic_instr_create(b.shader,
nir_intrinsic_deref_buffer_array_length);
} else {
intrin =
nir_intrinsic_instr_create(b.shader,
nir_intrinsic_deref_implicit_array_length);
}
ir_dereference *deref = ir->operands[0]->as_dereference();
intrin->src[0] = nir_src_for_ssa(&evaluate_deref(deref)->def);
add_instr(&intrin->instr, 1, 32);
return;
}
default:
break;
}
nir_def *srcs[4];
for (unsigned i = 0; i < ir->num_operands; i++)
srcs[i] = evaluate_rvalue(ir->operands[i]);
glsl_base_type types[4];
for (unsigned i = 0; i < ir->num_operands; i++)
types[i] = ir->operands[i]->type->base_type;
glsl_base_type out_type = ir->type->base_type;
switch (ir->operation) {
case ir_unop_bit_not: result = nir_inot(&b, srcs[0]); break;
case ir_unop_logic_not:
result = nir_inot(&b, srcs[0]);
break;
case ir_unop_neg:
result = type_is_float(types[0]) ? nir_fneg(&b, srcs[0])
: nir_ineg(&b, srcs[0]);
break;
case ir_unop_abs:
result = type_is_float(types[0]) ? nir_fabs(&b, srcs[0])
: nir_iabs(&b, srcs[0]);
break;
case ir_unop_clz:
result = nir_uclz(&b, srcs[0]);
break;
case ir_unop_saturate:
assert(type_is_float(types[0]));
result = nir_fsat(&b, srcs[0]);
break;
case ir_unop_sign:
result = type_is_float(types[0]) ? nir_fsign(&b, srcs[0])
: nir_isign(&b, srcs[0]);
break;
case ir_unop_rcp: result = nir_frcp(&b, srcs[0]); break;
case ir_unop_rsq: result = nir_frsq(&b, srcs[0]); break;
case ir_unop_sqrt: result = nir_fsqrt(&b, srcs[0]); break;
case ir_unop_exp: result = nir_fexp2(&b, nir_fmul_imm(&b, srcs[0], M_LOG2E)); break;
case ir_unop_log: result = nir_fmul_imm(&b, nir_flog2(&b, srcs[0]), 1.0 / M_LOG2E); break;
case ir_unop_exp2: result = nir_fexp2(&b, srcs[0]); break;
case ir_unop_log2: result = nir_flog2(&b, srcs[0]); break;
case ir_unop_i2f:
case ir_unop_u2f:
case ir_unop_b2f:
case ir_unop_f2i:
case ir_unop_f2u:
case ir_unop_f2b:
case ir_unop_i2b:
case ir_unop_b2i:
case ir_unop_b2i64:
case ir_unop_d2f:
case ir_unop_f2d:
case ir_unop_f162u:
case ir_unop_u2f16:
case ir_unop_f162i:
case ir_unop_i2f16:
case ir_unop_f162f:
case ir_unop_f2f16:
case ir_unop_f162b:
case ir_unop_b2f16:
case ir_unop_f162d:
case ir_unop_d2f16:
case ir_unop_f162u64:
case ir_unop_u642f16:
case ir_unop_f162i64:
case ir_unop_i642f16:
case ir_unop_i2i:
case ir_unop_u2u:
case ir_unop_d2i:
case ir_unop_d2u:
case ir_unop_d2b:
case ir_unop_i2d:
case ir_unop_u2d:
case ir_unop_i642i:
case ir_unop_i642u:
case ir_unop_i642f:
case ir_unop_i642b:
case ir_unop_i642d:
case ir_unop_u642i:
case ir_unop_u642u:
case ir_unop_u642f:
case ir_unop_u642d:
case ir_unop_i2i64:
case ir_unop_u2i64:
case ir_unop_f2i64:
case ir_unop_d2i64:
case ir_unop_i2u64:
case ir_unop_u2u64:
case ir_unop_f2u64:
case ir_unop_d2u64:
case ir_unop_i2u:
case ir_unop_u2i:
case ir_unop_i642u64:
case ir_unop_u642i64: {
nir_alu_type src_type = nir_get_nir_type_for_glsl_base_type(types[0]);
nir_alu_type dst_type = nir_get_nir_type_for_glsl_base_type(out_type);
result = nir_type_convert(&b, srcs[0], src_type, dst_type,
nir_rounding_mode_undef);
/* b2i and b2f don't have fixed bit-size versions so the builder will
* just assume 32 and we have to fix it up here.
*/
result->bit_size = nir_alu_type_get_type_size(dst_type);
break;
}
case ir_unop_f2fmp: {
result = nir_build_alu(&b, nir_op_f2fmp, srcs[0], NULL, NULL, NULL);
break;
}
case ir_unop_i2imp: {
result = nir_build_alu(&b, nir_op_i2imp, srcs[0], NULL, NULL, NULL);
break;
}
case ir_unop_u2ump: {
result = nir_build_alu(&b, nir_op_i2imp, srcs[0], NULL, NULL, NULL);
break;
}
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_f2i:
case ir_unop_bitcast_u2f:
case ir_unop_bitcast_f2u:
case ir_unop_bitcast_i642d:
case ir_unop_bitcast_d2i64:
case ir_unop_bitcast_u642d:
case ir_unop_bitcast_d2u64:
case ir_unop_subroutine_to_int:
/* no-op */
result = nir_mov(&b, srcs[0]);
break;
case ir_unop_trunc: result = nir_ftrunc(&b, srcs[0]); break;
case ir_unop_ceil: result = nir_fceil(&b, srcs[0]); break;
case ir_unop_floor: result = nir_ffloor(&b, srcs[0]); break;
case ir_unop_fract: result = nir_ffract(&b, srcs[0]); break;
case ir_unop_frexp_exp: result = nir_frexp_exp(&b, srcs[0]); break;
case ir_unop_frexp_sig: result = nir_frexp_sig(&b, srcs[0]); break;
case ir_unop_round_even: result = nir_fround_even(&b, srcs[0]); break;
case ir_unop_sin: result = nir_fsin(&b, srcs[0]); break;
case ir_unop_cos: result = nir_fcos(&b, srcs[0]); break;
case ir_unop_dFdx: result = nir_ddx(&b, srcs[0]); break;
case ir_unop_dFdy: result = nir_ddy(&b, srcs[0]); break;
case ir_unop_dFdx_fine: result = nir_ddx_fine(&b, srcs[0]); break;
case ir_unop_dFdy_fine: result = nir_ddy_fine(&b, srcs[0]); break;
case ir_unop_dFdx_coarse: result = nir_ddx_coarse(&b, srcs[0]); break;
case ir_unop_dFdy_coarse: result = nir_ddy_coarse(&b, srcs[0]); break;
case ir_unop_pack_snorm_2x16:
result = nir_pack_snorm_2x16(&b, srcs[0]);
break;
case ir_unop_pack_snorm_4x8:
result = nir_pack_snorm_4x8(&b, srcs[0]);
break;
case ir_unop_pack_unorm_2x16:
result = nir_pack_unorm_2x16(&b, srcs[0]);
break;
case ir_unop_pack_unorm_4x8:
result = nir_pack_unorm_4x8(&b, srcs[0]);
break;
case ir_unop_pack_half_2x16:
result = nir_pack_half_2x16(&b, srcs[0]);
break;
case ir_unop_unpack_snorm_2x16:
result = nir_unpack_snorm_2x16(&b, srcs[0]);
break;
case ir_unop_unpack_snorm_4x8:
result = nir_unpack_snorm_4x8(&b, srcs[0]);
break;
case ir_unop_unpack_unorm_2x16:
result = nir_unpack_unorm_2x16(&b, srcs[0]);
break;
case ir_unop_unpack_unorm_4x8:
result = nir_unpack_unorm_4x8(&b, srcs[0]);
break;
case ir_unop_unpack_half_2x16:
result = nir_unpack_half_2x16(&b, srcs[0]);
break;
case ir_unop_pack_sampler_2x32:
case ir_unop_pack_image_2x32:
case ir_unop_pack_double_2x32:
case ir_unop_pack_int_2x32:
case ir_unop_pack_uint_2x32:
result = nir_pack_64_2x32(&b, srcs[0]);
break;
case ir_unop_unpack_sampler_2x32:
case ir_unop_unpack_image_2x32:
case ir_unop_unpack_double_2x32:
case ir_unop_unpack_int_2x32:
case ir_unop_unpack_uint_2x32:
result = nir_unpack_64_2x32(&b, srcs[0]);
break;
case ir_unop_bitfield_reverse:
result = nir_bitfield_reverse(&b, srcs[0]);
break;
case ir_unop_bit_count:
result = nir_bit_count(&b, srcs[0]);
break;
case ir_unop_find_msb:
switch (types[0]) {
case GLSL_TYPE_UINT:
result = nir_ufind_msb(&b, srcs[0]);
break;
case GLSL_TYPE_INT:
result = nir_ifind_msb(&b, srcs[0]);
break;
default:
unreachable("Invalid type for findMSB()");
}
break;
case ir_unop_find_lsb:
result = nir_find_lsb(&b, srcs[0]);
break;
case ir_unop_get_buffer_size: {
nir_intrinsic_instr *load = nir_intrinsic_instr_create(
this->shader,
nir_intrinsic_get_ssbo_size);
load->num_components = ir->type->vector_elements;
load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0]));
unsigned bit_size = glsl_get_bit_size(ir->type);
add_instr(&load->instr, ir->type->vector_elements, bit_size);
return;
}
case ir_unop_atan:
result = nir_atan(&b, srcs[0]);
break;
case ir_binop_add:
result = type_is_float(out_type) ? nir_fadd(&b, srcs[0], srcs[1])
: nir_iadd(&b, srcs[0], srcs[1]);
break;
case ir_binop_add_sat:
result = type_is_signed(out_type) ? nir_iadd_sat(&b, srcs[0], srcs[1])
: nir_uadd_sat(&b, srcs[0], srcs[1]);
break;
case ir_binop_sub:
result = type_is_float(out_type) ? nir_fsub(&b, srcs[0], srcs[1])
: nir_isub(&b, srcs[0], srcs[1]);
break;
case ir_binop_sub_sat:
result = type_is_signed(out_type) ? nir_isub_sat(&b, srcs[0], srcs[1])
: nir_usub_sat(&b, srcs[0], srcs[1]);
break;
case ir_binop_abs_sub:
/* out_type is always unsigned for ir_binop_abs_sub, so we have to key
* on the type of the sources.
*/
result = type_is_signed(types[0]) ? nir_uabs_isub(&b, srcs[0], srcs[1])
: nir_uabs_usub(&b, srcs[0], srcs[1]);
break;
case ir_binop_avg:
result = type_is_signed(out_type) ? nir_ihadd(&b, srcs[0], srcs[1])
: nir_uhadd(&b, srcs[0], srcs[1]);
break;
case ir_binop_avg_round:
result = type_is_signed(out_type) ? nir_irhadd(&b, srcs[0], srcs[1])
: nir_urhadd(&b, srcs[0], srcs[1]);
break;
case ir_binop_mul_32x16:
result = type_is_signed(out_type) ? nir_imul_32x16(&b, srcs[0], srcs[1])
: nir_umul_32x16(&b, srcs[0], srcs[1]);
break;
case ir_binop_mul:
if (type_is_float(out_type))
result = nir_fmul(&b, srcs[0], srcs[1]);
else if (out_type == GLSL_TYPE_INT64 &&
(ir->operands[0]->type->base_type == GLSL_TYPE_INT ||
ir->operands[1]->type->base_type == GLSL_TYPE_INT))
result = nir_imul_2x32_64(&b, srcs[0], srcs[1]);
else if (out_type == GLSL_TYPE_UINT64 &&
(ir->operands[0]->type->base_type == GLSL_TYPE_UINT ||
ir->operands[1]->type->base_type == GLSL_TYPE_UINT))
result = nir_umul_2x32_64(&b, srcs[0], srcs[1]);
else
result = nir_imul(&b, srcs[0], srcs[1]);
break;
case ir_binop_div:
if (type_is_float(out_type))
result = nir_fdiv(&b, srcs[0], srcs[1]);
else if (type_is_signed(out_type))
result = nir_idiv(&b, srcs[0], srcs[1]);
else
result = nir_udiv(&b, srcs[0], srcs[1]);
break;
case ir_binop_mod:
result = type_is_float(out_type) ? nir_fmod(&b, srcs[0], srcs[1])
: nir_umod(&b, srcs[0], srcs[1]);
break;
case ir_binop_min:
if (type_is_float(out_type))
result = nir_fmin(&b, srcs[0], srcs[1]);
else if (type_is_signed(out_type))
result = nir_imin(&b, srcs[0], srcs[1]);
else
result = nir_umin(&b, srcs[0], srcs[1]);
break;
case ir_binop_max:
if (type_is_float(out_type))
result = nir_fmax(&b, srcs[0], srcs[1]);
else if (type_is_signed(out_type))
result = nir_imax(&b, srcs[0], srcs[1]);
else
result = nir_umax(&b, srcs[0], srcs[1]);
break;
case ir_binop_pow: result = nir_fpow(&b, srcs[0], srcs[1]); break;
case ir_binop_bit_and: result = nir_iand(&b, srcs[0], srcs[1]); break;
case ir_binop_bit_or: result = nir_ior(&b, srcs[0], srcs[1]); break;
case ir_binop_bit_xor: result = nir_ixor(&b, srcs[0], srcs[1]); break;
case ir_binop_logic_and:
result = nir_iand(&b, srcs[0], srcs[1]);
break;
case ir_binop_logic_or:
result = nir_ior(&b, srcs[0], srcs[1]);
break;
case ir_binop_logic_xor:
result = nir_ixor(&b, srcs[0], srcs[1]);
break;
case ir_binop_lshift: result = nir_ishl(&b, srcs[0], nir_u2u32(&b, srcs[1])); break;
case ir_binop_rshift:
result = (type_is_signed(out_type)) ? nir_ishr(&b, srcs[0], nir_u2u32(&b, srcs[1]))
: nir_ushr(&b, srcs[0], nir_u2u32(&b, srcs[1]));
break;
case ir_binop_imul_high:
result = (out_type == GLSL_TYPE_INT) ? nir_imul_high(&b, srcs[0], srcs[1])
: nir_umul_high(&b, srcs[0], srcs[1]);
break;
case ir_binop_carry: result = nir_uadd_carry(&b, srcs[0], srcs[1]); break;
case ir_binop_borrow: result = nir_usub_borrow(&b, srcs[0], srcs[1]); break;
case ir_binop_less:
if (type_is_float(types[0]))
result = nir_flt(&b, srcs[0], srcs[1]);
else if (type_is_signed(types[0]))
result = nir_ilt(&b, srcs[0], srcs[1]);
else
result = nir_ult(&b, srcs[0], srcs[1]);
break;
case ir_binop_gequal:
if (type_is_float(types[0]))
result = nir_fge(&b, srcs[0], srcs[1]);
else if (type_is_signed(types[0]))
result = nir_ige(&b, srcs[0], srcs[1]);
else
result = nir_uge(&b, srcs[0], srcs[1]);
break;
case ir_binop_equal:
if (type_is_float(types[0]))
result = nir_feq(&b, srcs[0], srcs[1]);
else
result = nir_ieq(&b, srcs[0], srcs[1]);
break;
case ir_binop_nequal:
if (type_is_float(types[0]))
result = nir_fneu(&b, srcs[0], srcs[1]);
else
result = nir_ine(&b, srcs[0], srcs[1]);
break;
case ir_binop_all_equal:
if (type_is_float(types[0])) {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_feq(&b, srcs[0], srcs[1]); break;
case 2: result = nir_ball_fequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_ball_fequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_ball_fequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
} else {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_ieq(&b, srcs[0], srcs[1]); break;
case 2: result = nir_ball_iequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_ball_iequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_ball_iequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
}
break;
case ir_binop_any_nequal:
if (type_is_float(types[0])) {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_fneu(&b, srcs[0], srcs[1]); break;
case 2: result = nir_bany_fnequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_bany_fnequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_bany_fnequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
} else {
switch (ir->operands[0]->type->vector_elements) {
case 1: result = nir_ine(&b, srcs[0], srcs[1]); break;
case 2: result = nir_bany_inequal2(&b, srcs[0], srcs[1]); break;
case 3: result = nir_bany_inequal3(&b, srcs[0], srcs[1]); break;
case 4: result = nir_bany_inequal4(&b, srcs[0], srcs[1]); break;
default:
unreachable("not reached");
}
}
break;
case ir_binop_dot:
result = nir_fdot(&b, srcs[0], srcs[1]);
break;
case ir_binop_vector_extract:
result = nir_vector_extract(&b, srcs[0], srcs[1]);
break;
case ir_triop_vector_insert:
result = nir_vector_insert(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_binop_atan2:
result = nir_atan2(&b, srcs[0], srcs[1]);
break;
case ir_binop_ldexp: result = nir_ldexp(&b, srcs[0], srcs[1]); break;
case ir_triop_fma:
result = nir_ffma(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_triop_lrp:
result = nir_flrp(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_triop_csel:
result = nir_bcsel(&b, srcs[0], srcs[1], srcs[2]);
break;
case ir_triop_bitfield_extract:
result = glsl_type_is_int_16_32(ir->type) ?
nir_ibitfield_extract(&b, nir_i2i32(&b, srcs[0]), nir_i2i32(&b, srcs[1]), nir_i2i32(&b, srcs[2])) :
nir_ubitfield_extract(&b, nir_u2u32(&b, srcs[0]), nir_i2i32(&b, srcs[1]), nir_i2i32(&b, srcs[2]));
if (ir->type->base_type == GLSL_TYPE_INT16) {
result = nir_i2i16(&b, result);
} else if (ir->type->base_type == GLSL_TYPE_UINT16) {
result = nir_u2u16(&b, result);
}
break;
case ir_quadop_bitfield_insert:
result = nir_bitfield_insert(&b,
nir_u2u32(&b, srcs[0]), nir_u2u32(&b, srcs[1]),
nir_i2i32(&b, srcs[2]), nir_i2i32(&b, srcs[3]));
if (ir->type->base_type == GLSL_TYPE_INT16) {
result = nir_i2i16(&b, result);
} else if (ir->type->base_type == GLSL_TYPE_UINT16) {
result = nir_u2u16(&b, result);
}
break;
case ir_quadop_vector:
result = nir_vec(&b, srcs, ir->type->vector_elements);
break;
default:
unreachable("not reached");
}
/* The bit-size of the NIR SSA value must match the bit-size of the
* original GLSL IR expression.
*/
assert(result->bit_size == glsl_base_type_get_bit_size(ir->type->base_type));
}
void
nir_visitor::visit(ir_swizzle *ir)
{
unsigned swizzle[4] = { ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w };
result = nir_swizzle(&b, evaluate_rvalue(ir->val), swizzle,
ir->type->vector_elements);
}
void
nir_visitor::visit(ir_texture *ir)
{
unsigned num_srcs;
nir_texop op;
switch (ir->op) {
case ir_tex:
op = nir_texop_tex;
num_srcs = 1; /* coordinate */
break;
case ir_txb:
case ir_txl:
op = (ir->op == ir_txb) ? nir_texop_txb : nir_texop_txl;
num_srcs = 2; /* coordinate, bias/lod */
break;
case ir_txd:
op = nir_texop_txd; /* coordinate, dPdx, dPdy */
num_srcs = 3;
break;
case ir_txf:
op = nir_texop_txf;
if (ir->lod_info.lod != NULL)
num_srcs = 2; /* coordinate, lod */
else
num_srcs = 1; /* coordinate */
break;
case ir_txf_ms:
op = nir_texop_txf_ms;
num_srcs = 2; /* coordinate, sample_index */
break;
case ir_txs:
op = nir_texop_txs;
if (ir->lod_info.lod != NULL)
num_srcs = 1; /* lod */
else
num_srcs = 0;
break;
case ir_lod:
op = nir_texop_lod;
num_srcs = 1; /* coordinate */
break;
case ir_tg4:
op = nir_texop_tg4;
num_srcs = 1; /* coordinate */
break;
case ir_query_levels:
op = nir_texop_query_levels;
num_srcs = 0;
break;
case ir_texture_samples:
op = nir_texop_texture_samples;
num_srcs = 0;
break;
case ir_samples_identical:
op = nir_texop_samples_identical;
num_srcs = 1; /* coordinate */
break;
default:
unreachable("not reached");
}
if (ir->projector != NULL)
num_srcs++;
if (ir->shadow_comparator != NULL)
num_srcs++;
/* offsets are constants we store inside nir_tex_intrs.offsets */
if (ir->offset != NULL && !glsl_type_is_array(ir->offset->type))
num_srcs++;
if (ir->clamp != NULL)
num_srcs++;
/* Add one for the texture deref */
num_srcs += 2;
nir_tex_instr *instr = nir_tex_instr_create(this->shader, num_srcs);
instr->op = op;
instr->sampler_dim =
(glsl_sampler_dim) ir->sampler->type->sampler_dimensionality;
instr->is_array = ir->sampler->type->sampler_array;
instr->is_shadow = ir->sampler->type->sampler_shadow;
const glsl_type *dest_type
= ir->is_sparse ? glsl_get_field_type(ir->type, "texel") : ir->type;
assert(dest_type != &glsl_type_builtin_error);
if (instr->is_shadow)
instr->is_new_style_shadow = (dest_type->vector_elements == 1);
instr->dest_type = nir_get_nir_type_for_glsl_type(dest_type);
instr->is_sparse = ir->is_sparse;
nir_deref_instr *sampler_deref = evaluate_deref(ir->sampler);
nir_def *tex_intrin = nir_deref_texture_src(&b, 32, &sampler_deref->def);
instr->src[0] = nir_tex_src_for_ssa(nir_tex_src_sampler_deref_intrinsic,
tex_intrin);
instr->src[1] = nir_tex_src_for_ssa(nir_tex_src_texture_deref_intrinsic,
tex_intrin);
unsigned src_number = 2;
if (ir->coordinate != NULL) {
instr->coord_components = ir->coordinate->type->vector_elements;
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_coord,
evaluate_rvalue(ir->coordinate));
src_number++;
}
if (ir->projector != NULL) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_projector,
evaluate_rvalue(ir->projector));
src_number++;
}
if (ir->shadow_comparator != NULL) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_comparator,
evaluate_rvalue(ir->shadow_comparator));
src_number++;
}
if (ir->offset != NULL) {
if (glsl_type_is_array(ir->offset->type)) {
const int size = MIN2(glsl_array_size(ir->offset->type), 4);
for (int i = 0; i < size; i++) {
const ir_constant *c =
ir->offset->as_constant()->get_array_element(i);
for (unsigned j = 0; j < 2; ++j) {
int val = c->get_int_component(j);
instr->tg4_offsets[i][j] = val;
}
}
} else {
assert(glsl_type_is_vector(ir->offset->type) || glsl_type_is_scalar(ir->offset->type));
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_offset,
evaluate_rvalue(ir->offset));
src_number++;
}
}
if (ir->clamp) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_min_lod,
evaluate_rvalue(ir->clamp));
src_number++;
}
switch (ir->op) {
case ir_txb:
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_bias,
evaluate_rvalue(ir->lod_info.bias));
src_number++;
break;
case ir_txl:
case ir_txf:
case ir_txs:
if (ir->lod_info.lod != NULL) {
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_lod,
evaluate_rvalue(ir->lod_info.lod));
src_number++;
}
break;
case ir_txd:
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_ddx,
evaluate_rvalue(ir->lod_info.grad.dPdx));
src_number++;
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_ddy,
evaluate_rvalue(ir->lod_info.grad.dPdy));
src_number++;
break;
case ir_txf_ms:
instr->src[src_number] = nir_tex_src_for_ssa(nir_tex_src_ms_index,
evaluate_rvalue(ir->lod_info.sample_index));
src_number++;
break;
case ir_tg4:
instr->component = ir->lod_info.component->as_constant()->value.u[0];
break;
default:
break;
}
assert(src_number == num_srcs);
unsigned bit_size = glsl_get_bit_size(dest_type);
add_instr(&instr->instr, nir_tex_instr_dest_size(instr), bit_size);
}
void
nir_visitor::visit(ir_constant *ir)
{
/*
* We don't know if this variable is an array or struct that gets
* dereferenced, so do the safe thing an make it a variable with a
* constant initializer and return a dereference.
*/
nir_variable *var =
nir_local_variable_create(this->impl, ir->type, "const_temp");
var->data.read_only = true;
var->constant_initializer = constant_copy(ir, var);
this->deref = nir_build_deref_var(&b, var);
}
void
nir_visitor::visit(ir_dereference_variable *ir)
{
if (ir->variable_referenced()->data.mode == ir_var_function_out ||
ir->variable_referenced()->data.mode == ir_var_function_inout ||
ir->variable_referenced()->data.mode == ir_var_function_in) {
unsigned i = (sig->return_type != &glsl_type_builtin_void) ? 1 : 0;
foreach_in_list(ir_variable, param, &sig->parameters) {
if (param == ir->variable_referenced()) {
break;
}
i++;
}
this->deref = nir_build_deref_cast(&b, nir_load_param(&b, i),
nir_var_function_temp, ir->type, 0);
return;
}
struct hash_entry *entry =
_mesa_hash_table_search(this->var_table, ir->var);
assert(entry);
nir_variable *var = (nir_variable *) entry->data;
this->deref = nir_build_deref_var(&b, var);
}
void
nir_visitor::visit(ir_dereference_record *ir)
{
ir->record->accept(this);
int field_index = ir->field_idx;
assert(field_index >= 0);
/* sparse texture variable is a struct for ir_variable, but it has been
* converted to a vector for nir_variable.
*/
if (this->deref->deref_type == nir_deref_type_var &&
_mesa_set_search(this->sparse_variable_set, this->deref->var)) {
nir_def *load = nir_load_deref(&b, this->deref);
assert(load->num_components >= 2);
nir_def *ssa;
const glsl_type *type = ir->record->type;
if (field_index == glsl_get_field_index(type, "code")) {
/* last channel holds residency code */
ssa = nir_channel(&b, load, load->num_components - 1);
} else {
assert(field_index == glsl_get_field_index(type, "texel"));
unsigned mask = BITFIELD_MASK(load->num_components - 1);
ssa = nir_channels(&b, load, mask);
}
/* still need to create a deref for return */
nir_variable *tmp =
nir_local_variable_create(this->impl, ir->type, "deref_tmp");
this->deref = nir_build_deref_var(&b, tmp);
nir_store_deref(&b, this->deref, ssa, ~0);
} else
this->deref = nir_build_deref_struct(&b, this->deref, field_index);
}
void
nir_visitor::visit(ir_dereference_array *ir)
{
nir_def *index = evaluate_rvalue(ir->array_index);
ir->array->accept(this);
this->deref = nir_build_deref_array(&b, this->deref, index);
}
void
nir_visitor::visit(ir_barrier *)
{
if (shader->info.stage == MESA_SHADER_COMPUTE) {
nir_barrier(&b, SCOPE_WORKGROUP, SCOPE_WORKGROUP,
NIR_MEMORY_ACQ_REL, nir_var_mem_shared);
} else if (shader->info.stage == MESA_SHADER_TESS_CTRL) {
nir_barrier(&b, SCOPE_WORKGROUP, SCOPE_WORKGROUP,
NIR_MEMORY_ACQ_REL, nir_var_shader_out);
}
}
nir_shader *
glsl_float64_funcs_to_nir(struct gl_context *ctx,
const nir_shader_compiler_options *options)
{
/* We pretend it's a vertex shader. Ultimately, the stage shouldn't
* matter because we're not optimizing anything here.
*/
struct gl_shader *sh = _mesa_new_shader(-1, MESA_SHADER_VERTEX);
sh->Source = float64_source;
sh->CompileStatus = COMPILE_FAILURE;
_mesa_glsl_compile_shader(ctx, sh, NULL, false, false, true);
nir_shader *nir = nir_shader_clone(NULL, sh->nir);
if (!sh->CompileStatus) {
if (sh->InfoLog) {
_mesa_problem(ctx,
"fp64 software impl compile failed:\n%s\nsource:\n%s\n",
sh->InfoLog, float64_source);
}
return NULL;
}
/* _mesa_delete_shader will try to free sh->Source but it's static const */
sh->Source = NULL;
_mesa_delete_shader(ctx, sh);
nir_validate_shader(nir, "float64_funcs_to_nir");
NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_function_temp);
NIR_PASS(_, nir, nir_lower_returns);
NIR_PASS(_, nir, nir_inline_functions);
NIR_PASS(_, nir, nir_opt_deref);
/* Do some optimizations to clean up the shader now. By optimizing the
* functions in the library, we avoid having to re-do that work every
* time we inline a copy of a function. Reducing basic blocks also helps
* with compile times.
*/
NIR_PASS(_, nir, nir_lower_vars_to_ssa);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
NIR_PASS(_, nir, nir_copy_prop);
NIR_PASS(_, nir, nir_opt_dce);
NIR_PASS(_, nir, nir_opt_cse);
NIR_PASS(_, nir, nir_opt_gcm, true);
NIR_PASS(_, nir, nir_opt_peephole_select, 1, false, false);
NIR_PASS(_, nir, nir_opt_dce);
return nir;
}