tree: fd648cc2147bfd196a0f92000b070515af4c0c09 [path history] [tgz]
  1. alerts/
  2. amd_build/
  3. autograd/
  4. bazel_tools/
  5. build/
  6. build_defs/
  7. code_analyzer/
  8. code_coverage/
  9. config/
  10. coverage_plugins_package/
  11. dynamo/
  12. gdb/
  13. github/
  14. iwyu/
  15. jit/
  16. linter/
  17. lite_interpreter/
  18. lldb/
  19. onnx/
  20. pyi/
  21. rules/
  22. rules_cc/
  23. setup_helpers/
  24. shared/
  25. stats/
  26. test/
  27. testing/
  28. __init__.py
  29. bazel.bzl
  30. BUCK.bzl
  31. BUCK.oss
  32. build_libtorch.py
  33. build_pytorch_libs.py
  34. build_with_debinfo.py
  35. download_mnist.py
  36. extract_scripts.py
  37. gen_flatbuffers.sh
  38. gen_vulkan_spv.py
  39. generate_torch_version.py
  40. generated_dirs.txt
  41. git_add_generated_dirs.sh
  42. git_reset_generated_dirs.sh
  43. nightly.py
  44. nvcc_fix_deps.py
  45. pytorch.version
  46. README.md
  47. render_junit.py
  48. substitute.py
  49. update_masked_docs.py
  50. vscode_settings.py
tools/README.md

This folder contains a number of scripts which are used as part of the PyTorch build process. This directory also doubles as a Python module hierarchy (thus the __init__.py).

Overview

Modern infrastructure:

  • autograd - Code generation for autograd. This includes definitions of all our derivatives.
  • jit - Code generation for JIT
  • shared - Generic infrastructure that scripts in tools may find useful.
    • module_loader.py - Makes it easier to import arbitrary Python files in a script, without having to add them to the PYTHONPATH first.

Build system pieces:

  • setup_helpers - Helper code for searching for third-party dependencies on the user system.
  • build_pytorch_libs.py - cross-platform script that builds all of the constituent libraries of PyTorch, but not the PyTorch Python extension itself.
  • build_libtorch.py - Script for building libtorch, a standalone C++ library without Python support. This build script is tested in CI.

Developer tools which you might find useful:

Important if you want to run on AMD GPU:

  • amd_build - HIPify scripts, for transpiling CUDA into AMD HIP. Right now, PyTorch and Caffe2 share logic for how to do this transpilation, but have separate entry-points for transpiling either PyTorch or Caffe2 code.
    • build_amd.py - Top-level entry point for HIPifying our codebase.

Tools which are only situationally useful: