Turn on meta converter for complex (#98869)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98869
Approved by: https://github.com/ngimel
diff --git a/test/test_proxy_tensor.py b/test/test_proxy_tensor.py
index 49d0af7..928e84c 100644
--- a/test/test_proxy_tensor.py
+++ b/test/test_proxy_tensor.py
@@ -1330,6 +1330,22 @@
     xfail('nanquantile'),
     xfail('narrow'),
 
+    # many complex operators incorrect striding, metadata
+    skip('fft.fft', ''),
+    skip('fft.hfft2', ''),
+    skip('fft.hfft', ''),
+    skip('fft.hfftn', ''),
+    skip('fft.ifft', ''),
+    skip('fft.ihfft2', ''),
+    skip('fft.ihfft', ''),
+    skip('fft.ihfftn', ''),
+    skip('fft.irfft2', ''),
+    skip('fft.irfft', ''),
+    skip('fft.irfftn', ''),
+    skip('fft.rfft2', ''),
+    skip('fft.rfft', ''),
+    skip('fft.rfftn', ''),
+
     # Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
     xfail('sparse.sampled_addmm'),
     xfail('sparse.mm', 'reduce'),
@@ -1350,6 +1366,23 @@
     xfail('repeat_interleave'),
     # ASAN failures due to divide by 0
     skip('nn.functional.nll_loss'),
+
+    xfail('linalg.cond', ''),
+    xfail("linalg.matrix_norm"),
+    xfail("linalg.norm"),
+    xfail("linalg.matrix_norm"),
+    xfail("linalg.matrix_rank"),
+    xfail("linalg.norm"),
+    xfail("linalg.norm", "subgradients_at_zero"),
+    xfail("linalg.svd"),
+    xfail("linalg.svdvals"),
+
+    xfail("norm", "nuc"),
+    xfail("pca_lowrank"),
+    xfail("stft"),
+    xfail("svd"),
+    xfail("svd_lowrank"),
+    xfail("linalg.matrix_norm"),
 }
 
 symbolic_tensor_failures = {