| from collections import namedtuple |
| from functools import partial |
| import torch |
| import torchvision.models as cnn |
| |
| from .factory import (dropoutlstm_creator, imagenet_cnn_creator, |
| layernorm_pytorch_lstm_creator, lnlstm_creator, |
| lstm_creator, lstm_multilayer_creator, |
| lstm_premul_bias_creator, lstm_premul_creator, |
| lstm_simple_creator, pytorch_lstm_creator, |
| varlen_lstm_creator, varlen_pytorch_lstm_creator) |
| |
| |
| class DisableCuDNN(): |
| def __enter__(self): |
| self.saved = torch.backends.cudnn.enabled |
| torch.backends.cudnn.enabled = False |
| |
| def __exit__(self, *args, **kwargs): |
| torch.backends.cudnn.enabled = self.saved |
| |
| |
| class DummyContext(): |
| def __enter__(self): |
| pass |
| |
| def __exit__(self, *args, **kwargs): |
| pass |
| |
| |
| class AssertNoJIT(): |
| def __enter__(self): |
| import os |
| enabled = os.environ.get('PYTORCH_JIT', 1) |
| assert not enabled |
| |
| def __exit__(self, *args, **kwargs): |
| pass |
| |
| |
| RNNRunner = namedtuple('RNNRunner', [ |
| 'name', 'creator', 'context', |
| ]) |
| |
| |
| def get_nn_runners(*names): |
| return [nn_runners[name] for name in names] |
| |
| |
| nn_runners = { |
| 'cudnn': RNNRunner('cudnn', pytorch_lstm_creator, DummyContext), |
| 'cudnn_dropout': RNNRunner('cudnn_dropout', partial(pytorch_lstm_creator, dropout=0.4), DummyContext), |
| 'cudnn_layernorm': RNNRunner('cudnn_layernorm', layernorm_pytorch_lstm_creator, DummyContext), |
| 'vl_cudnn': RNNRunner('vl_cudnn', varlen_pytorch_lstm_creator, DummyContext), |
| 'vl_jit': RNNRunner('vl_jit', partial(varlen_lstm_creator, script=True), DummyContext), |
| 'vl_py': RNNRunner('vl_py', varlen_lstm_creator, DummyContext), |
| 'aten': RNNRunner('aten', pytorch_lstm_creator, DisableCuDNN), |
| 'jit': RNNRunner('jit', lstm_creator, DummyContext), |
| 'jit_premul': RNNRunner('jit_premul', lstm_premul_creator, DummyContext), |
| 'jit_premul_bias': RNNRunner('jit_premul_bias', lstm_premul_bias_creator, DummyContext), |
| 'jit_simple': RNNRunner('jit_simple', lstm_simple_creator, DummyContext), |
| 'jit_multilayer': RNNRunner('jit_multilayer', lstm_multilayer_creator, DummyContext), |
| 'jit_layernorm': RNNRunner('jit_layernorm', lnlstm_creator, DummyContext), |
| 'jit_layernorm_decom': RNNRunner('jit_layernorm_decom', |
| partial(lnlstm_creator, decompose_layernorm=True), |
| DummyContext), |
| 'jit_dropout': RNNRunner('jit_dropout', dropoutlstm_creator, DummyContext), |
| 'py': RNNRunner('py', partial(lstm_creator, script=False), DummyContext), |
| 'resnet18': RNNRunner('resnet18', imagenet_cnn_creator(cnn.resnet18, jit=False), DummyContext), |
| 'resnet18_jit': RNNRunner('resnet18_jit', imagenet_cnn_creator(cnn.resnet18), DummyContext), |
| 'resnet50': RNNRunner('resnet50', imagenet_cnn_creator(cnn.resnet50, jit=False), DummyContext), |
| 'resnet50_jit': RNNRunner('resnet50_jit', imagenet_cnn_creator(cnn.resnet50), DummyContext), |
| } |