| #define TORCH_ASSERT_NO_OPERATORS |
| #include <ATen/AccumulateType.h> |
| #include <ATen/Context.h> |
| #include <ATen/Dispatch.h> |
| #include <ATen/native/cuda/Loops.cuh> |
| #include <ATen/native/cuda/JitLoops.cuh> |
| #include <ATen/native/DispatchStub.h> |
| #include <ATen/native/TensorIterator.h> |
| #include <ATen/native/PointwiseOps.h> |
| #include <c10/core/Scalar.h> |
| |
| namespace at { namespace native { |
| |
| const char addcmul_name[] = "addcmul"; |
| void addcmul_cuda_kernel(TensorIteratorBase& iter, const Scalar& value) { |
| auto dtype = iter.common_dtype(); |
| if (at::isComplexType(dtype)) { |
| // When using Jiterator, addcmul and addcdiv kernels get stuck during a |
| // promotion test on CUDA 11.3, so only enable that from CUDA 11.5: |
| // https://github.com/pytorch/pytorch/pull/74234#issuecomment-1100932209 |
| #if AT_USE_JITERATOR() && CUDA_VERSION >= 11050 |
| AT_DISPATCH_COMPLEX_TYPES(dtype, "addcmul_cuda", [&]() { |
| auto alpha = value.to<scalar_t>(); |
| static const auto addcmul_string = jiterator_stringify( |
| template <typename T> T addcmul(T a, T b, T c, T alpha) { return a + alpha * (b * c); }); |
| jitted_gpu_kernel< |
| /*name=*/addcmul_name, |
| /*return_dtype=*/scalar_t, |
| /*common_dtype=*/scalar_t, |
| /*arity=*/3>( |
| iter, |
| addcmul_string, |
| /*scalar_pos=*/at::cuda::jit::BinaryFuncVariant::NoScalar, |
| /*scalar_val=*/0, |
| /*extra_args=*/std::make_tuple(alpha)); |
| }); |
| #else |
| AT_DISPATCH_COMPLEX_TYPES(dtype, "addcmul_cuda", [&]() { |
| auto alpha = value.to<scalar_t>(); |
| gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t { |
| return a + alpha * b * c; |
| }); |
| }); |
| #endif |
| } else { |
| AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "addcmul_cuda", [&]() { |
| // note(mkozuki): If scalar_t is fp16 or bfloat16, cast scalar to float |
| // and do math in fp32 for better accuracy. |
| using accscalar_t = at::acc_type<scalar_t, true>; |
| auto alpha = value.to<accscalar_t>(); |
| gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t { |
| return a + alpha * (static_cast<accscalar_t>(b) * static_cast<accscalar_t>(c)); |
| }); |
| }); |
| } |
| } |
| |
| // return a + alpha * (b / static_cast<accscalar_t>(c)); |
| const char addcdiv_name[] = "addcdiv"; |
| void addcdiv_cuda_kernel(TensorIteratorBase& iter, const Scalar& value) { |
| auto dtype = iter.common_dtype(); |
| if (at::isComplexType(dtype)) { |
| // When using Jiterator, addcmul and addcdiv kernels get stuck during a |
| // promotion test on CUDA 11.3, so only enable that from CUDA 11.5: |
| // https://github.com/pytorch/pytorch/pull/74234#issuecomment-1100932209 |
| #if AT_USE_JITERATOR() && CUDA_VERSION >= 11050 |
| AT_DISPATCH_COMPLEX_TYPES(dtype, "addcdiv_cuda", [&]() { |
| auto alpha = value.to<scalar_t>(); |
| static const auto addcdiv_string = |
| jiterator_stringify(template <typename T> T addcdiv( |
| T a, T b, T c, T alpha) { return a + alpha * (b / c); }); |
| jitted_gpu_kernel< |
| /*name=*/addcdiv_name, |
| /*return_dtype=*/scalar_t, |
| /*common_dtype=*/scalar_t, |
| /*arity=*/3>( |
| iter, |
| addcdiv_string, |
| /*scalar_pos=*/at::cuda::jit::BinaryFuncVariant::NoScalar, |
| /*scalar_val=*/0, |
| /*extra_args=*/std::make_tuple(alpha)); |
| }); |
| #else |
| AT_DISPATCH_COMPLEX_TYPES(dtype, "addcdiv_cuda", [&]() { |
| auto alpha = value.to<scalar_t>(); |
| gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t { |
| return a + alpha * (b / c); |
| }); |
| }); |
| #endif |
| } else { |
| AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "addcdiv_cuda", [&]() { |
| // note(mkozuki): If scalar_t is fp16 or bfloat16, cast scalar to float |
| // and do math in fp32 for better accuracy. |
| using accscalar_t = at::acc_type<scalar_t, true>; |
| auto alpha = value.to<accscalar_t>(); |
| gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t { |
| return a + alpha * (b / static_cast<accscalar_t>(c)); |
| }); |
| }); |
| } |
| } |
| |
| void smooth_l1_backward_cuda_kernel(TensorIterator& iter, const Scalar& norm, double beta) { |
| AT_DISPATCH_ALL_TYPES_AND(kHalf, iter.dtype(), "smooth_l1_backward_cuda", [&iter, &norm, beta] { |
| auto norm_val = norm.to<scalar_t>(); |
| scalar_t beta_val(beta); |
| gpu_kernel(iter, [norm_val, beta_val]GPU_LAMBDA(scalar_t input, scalar_t target, scalar_t grad_output) -> scalar_t { |
| const auto x = input - target; |
| if (x < -beta_val) |
| return -norm_val * grad_output; |
| else if (x > beta_val) |
| return norm_val * grad_output; |
| else |
| return norm_val * x * grad_output / beta_val; |
| }); |
| }); |
| } |
| |
| void huber_backward_cuda_kernel(TensorIterator& iter, const Scalar& norm, double delta) { |
| AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "huber_backward_cuda", [&iter, &norm, delta] { |
| auto norm_val = norm.to<scalar_t>(); |
| scalar_t delta_val(delta); |
| gpu_kernel(iter, [norm_val, delta_val]GPU_LAMBDA(scalar_t input, scalar_t target, scalar_t grad_output) -> scalar_t { |
| const auto x = input - target; |
| if (x < -delta_val) { |
| return -norm_val * grad_output * delta_val; |
| } else if (x > delta_val) { |
| return norm_val * grad_output * delta_val; |
| } else { |
| return norm_val * x * grad_output; |
| } |
| }); |
| }); |
| } |
| |
| void mse_backward_cuda_kernel(TensorIterator& iter, const Scalar& value) { |
| AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "mse_backward_cuda", [&]() { |
| auto alpha = value.to<scalar_t>(); |
| gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t { |
| return alpha * (a - b) * c; |
| }); |
| }); |
| } |
| |
| REGISTER_DISPATCH(addcdiv_stub, &addcdiv_cuda_kernel); |
| REGISTER_DISPATCH(addcmul_stub, &addcmul_cuda_kernel); |
| REGISTER_DISPATCH(smooth_l1_backward_stub, &smooth_l1_backward_cuda_kernel); |
| REGISTER_DISPATCH(huber_backward_stub, &huber_backward_cuda_kernel); |
| REGISTER_DISPATCH(mse_backward_stub, &mse_backward_cuda_kernel); |
| }} // namespace at::native |