| #pragma once |
| |
| // This file provides two functions to help write GPU elementwise kernels: |
| // |
| // gpu_kernel(TensorIterator iter, <lambda>) |
| // gpu_kernel_with_scalars(TensorIterator iter, <lambda>) |
| // |
| // The gpu_kernel_with_scalars generates specializations that support a |
| // single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar |
| // is lifted to a kernel parameter instead of copying to device memory. |
| // This should be used in conjunction with TensorIterator::allow_cpu_scalars_, |
| // which is the default for TensorIterator::binary_op. Otherwise, all inputs |
| // and the output must be on the GPU. |
| // |
| // For example, to write a reciprocal kernel for GPU float Tensors: |
| // |
| // gpu_kernel(iter, []GPU_LAMBDA(float a) { |
| // return 1.0f / a; |
| // }); |
| // |
| // To write a multiplication kernel for GPU float Tensors where one argument |
| // may be a CPU scalar: |
| // |
| // gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) { |
| // return a * b; |
| // }); |
| // |
| // See BinaryOpsKernel.cu for the complete implementation |
| // |
| |
| #include <type_traits> |
| |
| #include <ATen/cuda/CUDAContext.h> |
| #include <ATen/core/Array.h> |
| #include <ATen/cuda/detail/OffsetCalculator.cuh> |
| #include <ATen/detail/FunctionTraits.h> |
| #include <ATen/native/TensorIterator.h> |
| #include <c10/macros/Macros.h> |
| #include <c10/core/ScalarType.h> |
| #include <c10/core/DynamicCast.h> |
| |
| |
| #ifdef __NVCC__ |
| #define ASSERT_HOST_DEVICE_LAMBDA(type) \ |
| static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \ |
| #type " must be a __host__ __device__ lambda") |
| #else |
| #define ASSERT_HOST_DEVICE_LAMBDA(type) |
| #endif |
| |
| static constexpr int launch_size_1d = 512; |
| static constexpr int launch_size_nd = 128; |
| static constexpr int launch_bound2 = 4; |
| |
| |
| namespace at { namespace native { |
| |
| // See [NOTE: Complex Operator Unification] |
| // std::complex and thrust::complex don't work with some !needs_dynamic_casting optimizations. |
| // They always currently map to !needs_dynamic_casting even though we sometimes rely on the ability |
| // to reinterpret_cast between these representations. |
| // In order to separate these concerns, we have a check for non-c10 complex separately. |
| template<typename func_t, int nargs=function_traits<func_t>::arity> |
| struct uses_non_c10_complex { |
| constexpr static bool check() { |
| using traits = function_traits<func_t>; |
| using type = typename traits::template arg<nargs - 1>::type; |
| constexpr bool non_c10_complex = |
| std::is_same<std::complex<float>, type>::value |
| || std::is_same<std::complex<double>, type>::value |
| || std::is_same<thrust::complex<float>, type>::value |
| || std::is_same<thrust::complex<double>, type>::value; |
| |
| return c10::guts::if_constexpr<non_c10_complex>([]() { |
| return true; |
| }, /* else */ []() { |
| return uses_non_c10_complex<func_t, nargs - 1>::check(); |
| }); |
| } |
| }; |
| |
| template<typename func_t> |
| struct uses_non_c10_complex<func_t, 0> { |
| constexpr static bool check() { |
| using traits = function_traits<func_t>; |
| using type = typename traits::result_type; |
| constexpr bool non_c10_complex = |
| std::is_same<std::complex<float>, type>::value |
| || std::is_same<std::complex<double>, type>::value |
| || std::is_same<thrust::complex<float>, type>::value |
| || std::is_same<thrust::complex<double>, type>::value; |
| |
| return non_c10_complex; |
| } |
| }; |
| |
| // NOTE: @zasdfgbnm is currently working on rewriting the gpu loops. |
| // Some of the old codes has been moved to namespace legacy, and |
| // new codes will be put into namespace modern. These two namespaces |
| // will coexists for a while until the rewrite is done. Once the rewrite |
| // is done, we will remove the legacy and modern namespace and everything |
| // will be in at::native directly. |
| namespace legacy { |
| |
| template<int nt, int vt, typename func_t> |
| C10_LAUNCH_BOUNDS_2(nt, launch_bound2) |
| __global__ void elementwise_kernel(int N, func_t f) { |
| int tid = threadIdx.x; |
| int nv = nt * vt; |
| int idx = nv * blockIdx.x + tid; |
| #pragma unroll |
| for (int i = 0; i < vt; i++) { |
| if (idx < N) { |
| f(idx); |
| idx += nt; |
| } |
| } |
| } |
| |
| template<int nt, int vt, typename func_t> |
| static void launch_kernel(int64_t N, const func_t& f) { |
| TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max()); |
| if (N == 0) { |
| return; |
| } |
| dim3 block(nt); |
| dim3 grid((N + block.x * vt - 1) / (block.x * vt)); |
| auto stream = at::cuda::getCurrentCUDAStream(); |
| elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } |
| |
| template <typename traits, typename func_t, typename index_t, size_t... INDEX> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i, |
| std::index_sequence<INDEX...>) { |
| return f(c10::load<typename traits::template arg<INDEX>::type>(data[INDEX] + i * strides[INDEX])...); |
| } |
| |
| template <typename func_t, typename index_t, typename traits = function_traits<func_t>> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i) { |
| using Indices = std::make_index_sequence<traits::arity>; |
| return invoke_impl<traits>(f, data, strides, i, Indices{}); |
| } |
| |
| template <typename traits, typename func_t, typename index_t, size_t... I> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i, |
| std::index_sequence<I...>) { |
| return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(dtypes[I], data[I] + i * strides[I])...); |
| } |
| |
| template <typename func_t, typename index_t, typename traits = function_traits<func_t>> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i) { |
| using Indices = std::make_index_sequence<traits::arity>; |
| return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{}); |
| } |
| |
| } // namespace legacy |
| |
| // See the note for namespace legacy above. |
| namespace modern { |
| |
| namespace detail { |
| |
| template <typename func_t, typename array_t, std::size_t... I> |
| __device__ inline constexpr decltype(auto) invoke_with_array_impl(func_t f, array_t t, std::index_sequence<I...>) |
| { |
| return f(t[I]...); |
| } |
| template <typename func_t, typename array_t> |
| __device__ inline constexpr decltype(auto) invoke_with_array(func_t f, array_t a) { |
| constexpr auto arity = function_traits<func_t>::arity; |
| return invoke_with_array_impl(f, a, std::make_index_sequence<arity>{}); |
| } |
| |
| namespace arg_type { |
| |
| // We need a way to compute the argument type of a function. But |
| // for nullary function, it does not really have an argument type |
| // in this case, we still need to return a valid type, but we don't |
| // really care what type this is. |
| |
| struct dont_care {}; |
| |
| template <typename func_t, std::size_t arity> |
| struct arg_type_helper { |
| using type = typename function_traits<func_t>::template arg<0>::type; |
| }; |
| |
| template <typename func_t> |
| struct arg_type_helper<func_t, 0> { |
| using type = dont_care; |
| }; |
| |
| template <typename func_t> |
| using type = typename arg_type_helper<func_t, function_traits<func_t>::arity>::type; |
| |
| } // namespace arg_type |
| |
| template<typename func_t, int remaining=function_traits<func_t>::arity-1> |
| struct has_same_arg_types { |
| using traits = function_traits<func_t>; |
| static constexpr bool value = std::is_same< |
| typename traits::template arg<remaining>::type, |
| typename traits::template arg<remaining-1>::type |
| >::value && has_same_arg_types<func_t, remaining-1>::value; |
| }; |
| |
| template<typename func_t> |
| struct has_same_arg_types<func_t, 0> { |
| static constexpr bool value = true; |
| }; |
| |
| template<typename func_t> |
| struct has_same_arg_types<func_t, -1> { |
| static constexpr bool value = true; |
| }; |
| |
| } // namespace detail |
| |
| template<typename func_t, typename array_t> |
| C10_LAUNCH_BOUNDS_1(num_threads()) |
| __global__ void elementwise_kernel(int N, func_t f, array_t data) { |
| // Assumption: |
| // 1. all arguments of `f` have the same type, which could be different from the return type of `f` |
| // 2. all tensors are contiguous, that is: stride == sizeof(type) for all tensors |
| |
| using traits = function_traits<func_t>; |
| using return_t = typename traits::result_type; |
| using arg_t = detail::arg_type::type<func_t>; |
| constexpr int arity = traits::arity; |
| |
| // We need to create array to hold all the arguments, for nullary `f`, this means array of size 0. |
| // Unfortunately the compiler don't allow us to create array of 0 size, so for this case, we create |
| // an array of size 1 and just don't use it. |
| constexpr int nargs = traits::arity == 0 ? 1 : traits::arity; |
| |
| int tid = threadIdx.x; |
| int idx = block_work_size() * blockIdx.x + tid; |
| |
| // compute base pointers |
| return_t *result_base = reinterpret_cast<return_t *>(data[0]) + idx; |
| arg_t *args_base[nargs]; |
| #pragma unroll |
| for (int i = 0; i < arity; i++) { |
| args_base[i] = reinterpret_cast<arg_t *>(data[i + 1]) + idx; |
| } |
| |
| // fetch data |
| return_t results[thread_work_size()]; |
| arg_t args[thread_work_size()][nargs]; |
| #pragma unroll |
| for (int i = 0; i < thread_work_size(); i++) { |
| if (idx + num_threads() * i < N) { |
| #pragma unroll |
| for (int j = 0; j < arity; j++) { |
| args[i][j] = c10::load(args_base[j] + i * num_threads()); |
| } |
| } |
| } |
| |
| // compute |
| #pragma unroll |
| for (int i = 0; i < thread_work_size(); i++) { |
| if (idx + num_threads() * i < N) { |
| results[i] = detail::invoke_with_array<func_t, arg_t[nargs]>(f, args[i]); |
| } |
| } |
| |
| // store data |
| #pragma unroll |
| for (int i = 0; i < thread_work_size(); i++) { |
| if (idx + num_threads() * i < N) { |
| *(result_base + i * num_threads()) = results[i]; |
| } |
| } |
| } |
| |
| // TODO (@zasdfgbnm): this function assume trivial 1d and no dynamic casting |
| template<typename func_t, typename array_t, std::enable_if_t<detail::has_same_arg_types<func_t>::value, int> = 0> |
| static void launch_kernel(int64_t N, const func_t& f, array_t data) { |
| TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max()); |
| if (N == 0) { |
| return; |
| } |
| int64_t grid = (N + block_work_size() - 1) / block_work_size(); |
| auto stream = at::cuda::getCurrentCUDAStream(); |
| elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } |
| |
| template<typename func_t, typename array_t, std::enable_if_t<!detail::has_same_arg_types<func_t>::value, int> = 0> |
| static void launch_kernel(int64_t N, const func_t& f, array_t data) {} |
| |
| } // namespace modern |
| |
| |
| template <typename func_t> |
| void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) { |
| using traits = function_traits<func_t>; |
| using arg0_t = typename traits::result_type; |
| constexpr int ntensors = traits::arity + 1; |
| |
| TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing()); |
| TORCH_INTERNAL_ASSERT(iter.ntensors() == traits::arity + 1); |
| bool non_c10_complex = uses_non_c10_complex<func_t>::check(); |
| |
| at::detail::Array<char*, ntensors> data; |
| for (int i = 0; i < ntensors; i++) { |
| data[i] = (char*)iter.data_ptr(i); |
| } |
| |
| at::detail::Array<ScalarType, ntensors> dtypes; |
| for (int i = 0; i < ntensors; i++) { |
| dtypes[i] = iter.dtype(i); |
| } |
| |
| int64_t numel = iter.numel(); |
| if (iter.is_trivial_1d()) { |
| auto inner_strides = iter.get_inner_strides(); |
| at::detail::Array<int, ntensors> strides; |
| for (int i = 0; i < ntensors; i++) { |
| strides[i] = inner_strides[i]; |
| } |
| |
| // TODO: can non_c10_complex go through the other path? Need to verify. |
| if (needs_dynamic_casting<func_t>::check(iter) || non_c10_complex) { |
| legacy::launch_kernel<launch_size_1d, 1>(numel, [=]GPU_LAMBDA(int idx) { |
| void* out = data[0] + strides[0] * idx; |
| arg0_t result = legacy::invoke(f, &data.data[1], &strides.data[1], &dtypes.data[1], idx); |
| c10::cast_and_store<arg0_t>(dtypes[0], out, result); |
| }); |
| } else if (iter.has_contiguous_first_dim() && modern::detail::has_same_arg_types<func_t>::value) { |
| modern::launch_kernel(numel, f, data); |
| } else { |
| legacy::launch_kernel<launch_size_1d, 1>(numel, [=]GPU_LAMBDA(int idx) { |
| arg0_t* out = (arg0_t*)(data[0] + strides[0] * idx); |
| *out = legacy::invoke(f, &data.data[1], &strides.data[1], idx); |
| }); |
| } |
| } else { |
| auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter); |
| // TODO: can non_c10_complex go through the other path? Need to verify. |
| if (needs_dynamic_casting<func_t>::check(iter) || non_c10_complex) { |
| legacy::launch_kernel<launch_size_nd, launch_bound2>(numel, [=]GPU_LAMBDA(int idx) { |
| auto offsets = offset_calc.get(idx); |
| void* out = data[0] + offsets[0]; |
| arg0_t result = legacy::invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1); |
| c10::cast_and_store<arg0_t>(dtypes[0], out, result); |
| }); |
| } else { |
| legacy::launch_kernel<launch_size_nd, launch_bound2>(numel, [=]GPU_LAMBDA(int idx) { |
| auto offsets = offset_calc.get(idx); |
| arg0_t* out = (arg0_t*)(data[0] + offsets[0]); |
| *out = legacy::invoke(f, &data.data[1], &offsets.data[1], 1); |
| }); |
| } |
| } |
| } |
| |
| }} // namespace at::native |