| //! Compute dominators of a control-flow graph. |
| //! |
| //! # The Dominance Relation |
| //! |
| //! In a directed graph with a root node **R**, a node **A** is said to *dominate* a |
| //! node **B** iff every path from **R** to **B** contains **A**. |
| //! |
| //! The node **A** is said to *strictly dominate* the node **B** iff **A** dominates |
| //! **B** and **A ≠ B**. |
| //! |
| //! The node **A** is said to be the *immediate dominator* of a node **B** iff it |
| //! strictly dominates **B** and there does not exist any node **C** where **A** |
| //! dominates **C** and **C** dominates **B**. |
| |
| use std::cmp::Ordering; |
| use std::collections::{hash_map::Iter, HashMap, HashSet}; |
| use std::hash::Hash; |
| |
| use crate::visit::{DfsPostOrder, GraphBase, IntoNeighbors, Visitable, Walker}; |
| |
| /// The dominance relation for some graph and root. |
| #[derive(Debug, Clone)] |
| pub struct Dominators<N> |
| where |
| N: Copy + Eq + Hash, |
| { |
| root: N, |
| dominators: HashMap<N, N>, |
| } |
| |
| impl<N> Dominators<N> |
| where |
| N: Copy + Eq + Hash, |
| { |
| /// Get the root node used to construct these dominance relations. |
| pub fn root(&self) -> N { |
| self.root |
| } |
| |
| /// Get the immediate dominator of the given node. |
| /// |
| /// Returns `None` for any node that is not reachable from the root, and for |
| /// the root itself. |
| pub fn immediate_dominator(&self, node: N) -> Option<N> { |
| if node == self.root { |
| None |
| } else { |
| self.dominators.get(&node).cloned() |
| } |
| } |
| |
| /// Iterate over the given node's strict dominators. |
| /// |
| /// If the given node is not reachable from the root, then `None` is |
| /// returned. |
| pub fn strict_dominators(&self, node: N) -> Option<DominatorsIter<N>> { |
| if self.dominators.contains_key(&node) { |
| Some(DominatorsIter { |
| dominators: self, |
| node: self.immediate_dominator(node), |
| }) |
| } else { |
| None |
| } |
| } |
| |
| /// Iterate over all of the given node's dominators (including the given |
| /// node itself). |
| /// |
| /// If the given node is not reachable from the root, then `None` is |
| /// returned. |
| pub fn dominators(&self, node: N) -> Option<DominatorsIter<N>> { |
| if self.dominators.contains_key(&node) { |
| Some(DominatorsIter { |
| dominators: self, |
| node: Some(node), |
| }) |
| } else { |
| None |
| } |
| } |
| |
| /// Iterate over all nodes immediately dominated by the given node (not |
| /// including the given node itself). |
| pub fn immediately_dominated_by(&self, node: N) -> DominatedByIter<N> { |
| DominatedByIter { |
| iter: self.dominators.iter(), |
| node, |
| } |
| } |
| } |
| |
| /// Iterator for a node's dominators. |
| #[derive(Debug, Clone)] |
| pub struct DominatorsIter<'a, N> |
| where |
| N: 'a + Copy + Eq + Hash, |
| { |
| dominators: &'a Dominators<N>, |
| node: Option<N>, |
| } |
| |
| impl<'a, N> Iterator for DominatorsIter<'a, N> |
| where |
| N: 'a + Copy + Eq + Hash, |
| { |
| type Item = N; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| let next = self.node.take(); |
| if let Some(next) = next { |
| self.node = self.dominators.immediate_dominator(next); |
| } |
| next |
| } |
| } |
| |
| /// Iterator for nodes dominated by a given node. |
| #[derive(Debug, Clone)] |
| pub struct DominatedByIter<'a, N> |
| where |
| N: 'a + Copy + Eq + Hash, |
| { |
| iter: Iter<'a, N, N>, |
| node: N, |
| } |
| |
| impl<'a, N> Iterator for DominatedByIter<'a, N> |
| where |
| N: 'a + Copy + Eq + Hash, |
| { |
| type Item = N; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| for next in self.iter.by_ref() { |
| if next.1 == &self.node { |
| return Some(*next.0); |
| } |
| } |
| None |
| } |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (_, upper) = self.iter.size_hint(); |
| (0, upper) |
| } |
| } |
| |
| /// The undefined dominator sentinel, for when we have not yet discovered a |
| /// node's dominator. |
| const UNDEFINED: usize = ::std::usize::MAX; |
| |
| /// This is an implementation of the engineered ["Simple, Fast Dominance |
| /// Algorithm"][0] discovered by Cooper et al. |
| /// |
| /// This algorithm is **O(|V|²)**, and therefore has slower theoretical running time |
| /// than the Lengauer-Tarjan algorithm (which is **O(|E| log |V|)**. However, |
| /// Cooper et al found it to be faster in practice on control flow graphs of up |
| /// to ~30,000 vertices. |
| /// |
| /// [0]: http://www.hipersoft.rice.edu/grads/publications/dom14.pdf |
| pub fn simple_fast<G>(graph: G, root: G::NodeId) -> Dominators<G::NodeId> |
| where |
| G: IntoNeighbors + Visitable, |
| <G as GraphBase>::NodeId: Eq + Hash, |
| { |
| let (post_order, predecessor_sets) = simple_fast_post_order(graph, root); |
| let length = post_order.len(); |
| debug_assert!(length > 0); |
| debug_assert!(post_order.last() == Some(&root)); |
| |
| // From here on out we use indices into `post_order` instead of actual |
| // `NodeId`s wherever possible. This greatly improves the performance of |
| // this implementation, but we have to pay a little bit of upfront cost to |
| // convert our data structures to play along first. |
| |
| // Maps a node to its index into `post_order`. |
| let node_to_post_order_idx: HashMap<_, _> = post_order |
| .iter() |
| .enumerate() |
| .map(|(idx, &node)| (node, idx)) |
| .collect(); |
| |
| // Maps a node's `post_order` index to its set of predecessors's indices |
| // into `post_order` (as a vec). |
| let idx_to_predecessor_vec = |
| predecessor_sets_to_idx_vecs(&post_order, &node_to_post_order_idx, predecessor_sets); |
| |
| let mut dominators = vec![UNDEFINED; length]; |
| dominators[length - 1] = length - 1; |
| |
| let mut changed = true; |
| while changed { |
| changed = false; |
| |
| // Iterate in reverse post order, skipping the root. |
| |
| for idx in (0..length - 1).rev() { |
| debug_assert!(post_order[idx] != root); |
| |
| // Take the intersection of every predecessor's dominator set; that |
| // is the current best guess at the immediate dominator for this |
| // node. |
| |
| let new_idom_idx = { |
| let mut predecessors = idx_to_predecessor_vec[idx] |
| .iter() |
| .filter(|&&p| dominators[p] != UNDEFINED); |
| let new_idom_idx = predecessors.next().expect( |
| "Because the root is initialized to dominate itself, and is the \ |
| first node in every path, there must exist a predecessor to this \ |
| node that also has a dominator", |
| ); |
| predecessors.fold(*new_idom_idx, |new_idom_idx, &predecessor_idx| { |
| intersect(&dominators, new_idom_idx, predecessor_idx) |
| }) |
| }; |
| |
| debug_assert!(new_idom_idx < length); |
| |
| if new_idom_idx != dominators[idx] { |
| dominators[idx] = new_idom_idx; |
| changed = true; |
| } |
| } |
| } |
| |
| // All done! Translate the indices back into proper `G::NodeId`s. |
| |
| debug_assert!(!dominators.iter().any(|&dom| dom == UNDEFINED)); |
| |
| Dominators { |
| root, |
| dominators: dominators |
| .into_iter() |
| .enumerate() |
| .map(|(idx, dom_idx)| (post_order[idx], post_order[dom_idx])) |
| .collect(), |
| } |
| } |
| |
| fn intersect(dominators: &[usize], mut finger1: usize, mut finger2: usize) -> usize { |
| loop { |
| match finger1.cmp(&finger2) { |
| Ordering::Less => finger1 = dominators[finger1], |
| Ordering::Greater => finger2 = dominators[finger2], |
| Ordering::Equal => return finger1, |
| } |
| } |
| } |
| |
| fn predecessor_sets_to_idx_vecs<N>( |
| post_order: &[N], |
| node_to_post_order_idx: &HashMap<N, usize>, |
| mut predecessor_sets: HashMap<N, HashSet<N>>, |
| ) -> Vec<Vec<usize>> |
| where |
| N: Copy + Eq + Hash, |
| { |
| post_order |
| .iter() |
| .map(|node| { |
| predecessor_sets |
| .remove(node) |
| .map(|predecessors| { |
| predecessors |
| .into_iter() |
| .map(|p| *node_to_post_order_idx.get(&p).unwrap()) |
| .collect() |
| }) |
| .unwrap_or_default() |
| }) |
| .collect() |
| } |
| |
| type PredecessorSets<NodeId> = HashMap<NodeId, HashSet<NodeId>>; |
| |
| fn simple_fast_post_order<G>( |
| graph: G, |
| root: G::NodeId, |
| ) -> (Vec<G::NodeId>, PredecessorSets<G::NodeId>) |
| where |
| G: IntoNeighbors + Visitable, |
| <G as GraphBase>::NodeId: Eq + Hash, |
| { |
| let mut post_order = vec![]; |
| let mut predecessor_sets = HashMap::new(); |
| |
| for node in DfsPostOrder::new(graph, root).iter(graph) { |
| post_order.push(node); |
| |
| for successor in graph.neighbors(node) { |
| predecessor_sets |
| .entry(successor) |
| .or_insert_with(HashSet::new) |
| .insert(node); |
| } |
| } |
| |
| (post_order, predecessor_sets) |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| #[test] |
| fn test_iter_dominators() { |
| let doms: Dominators<u32> = Dominators { |
| root: 0, |
| dominators: [(2, 1), (1, 0), (0, 0)].iter().cloned().collect(), |
| }; |
| |
| let all_doms: Vec<_> = doms.dominators(2).unwrap().collect(); |
| assert_eq!(vec![2, 1, 0], all_doms); |
| |
| assert_eq!(None::<()>, doms.dominators(99).map(|_| unreachable!())); |
| |
| let strict_doms: Vec<_> = doms.strict_dominators(2).unwrap().collect(); |
| assert_eq!(vec![1, 0], strict_doms); |
| |
| assert_eq!( |
| None::<()>, |
| doms.strict_dominators(99).map(|_| unreachable!()) |
| ); |
| |
| let dom_by: Vec<_> = doms.immediately_dominated_by(1).collect(); |
| assert_eq!(vec![2], dom_by); |
| assert_eq!(None, doms.immediately_dominated_by(99).next()); |
| } |
| } |