| // This is a part of Chrono. |
| // See README.md and LICENSE.txt for details. |
| |
| //! ISO 8601 time without timezone. |
| |
| #[cfg(feature = "alloc")] |
| use core::borrow::Borrow; |
| use core::ops::{Add, AddAssign, Sub, SubAssign}; |
| use core::time::Duration; |
| use core::{fmt, str}; |
| |
| #[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))] |
| use rkyv::{Archive, Deserialize, Serialize}; |
| |
| #[cfg(feature = "alloc")] |
| use crate::format::DelayedFormat; |
| use crate::format::{ |
| parse, parse_and_remainder, write_hundreds, Fixed, Item, Numeric, Pad, ParseError, ParseResult, |
| Parsed, StrftimeItems, |
| }; |
| use crate::{expect, try_opt}; |
| use crate::{FixedOffset, TimeDelta, Timelike}; |
| |
| #[cfg(feature = "serde")] |
| mod serde; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| /// ISO 8601 time without timezone. |
| /// Allows for the nanosecond precision and optional leap second representation. |
| /// |
| /// # Leap Second Handling |
| /// |
| /// Since 1960s, the manmade atomic clock has been so accurate that |
| /// it is much more accurate than Earth's own motion. |
| /// It became desirable to define the civil time in terms of the atomic clock, |
| /// but that risks the desynchronization of the civil time from Earth. |
| /// To account for this, the designers of the Coordinated Universal Time (UTC) |
| /// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. |
| /// When the mean solar day is longer than the ideal (86,400 seconds), |
| /// the error slowly accumulates and it is necessary to add a **leap second** |
| /// to slow the UTC down a bit. |
| /// (We may also remove a second to speed the UTC up a bit, but it never happened.) |
| /// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC. |
| /// |
| /// Fast forward to the 21st century, |
| /// we have seen 26 leap seconds from January 1972 to December 2015. |
| /// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. |
| /// But those 26 seconds, and possibly more in the future, are never predictable, |
| /// and whether to add a leap second or not is known only before 6 months. |
| /// Internet-based clocks (via NTP) do account for known leap seconds, |
| /// but the system API normally doesn't (and often can't, with no network connection) |
| /// and there is no reliable way to retrieve leap second information. |
| /// |
| /// Chrono does not try to accurately implement leap seconds; it is impossible. |
| /// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.** |
| /// Various operations will ignore any possible leap second(s) |
| /// except when any of the operands were actually leap seconds. |
| /// |
| /// If you cannot tolerate this behavior, |
| /// you must use a separate `TimeZone` for the International Atomic Time (TAI). |
| /// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC. |
| /// Chrono does not yet provide such implementation, but it is planned. |
| /// |
| /// ## Representing Leap Seconds |
| /// |
| /// The leap second is indicated via fractional seconds more than 1 second. |
| /// This makes possible to treat a leap second as the prior non-leap second |
| /// if you don't care about sub-second accuracy. |
| /// You should use the proper formatting to get the raw leap second. |
| /// |
| /// All methods accepting fractional seconds will accept such values. |
| /// |
| /// ``` |
| /// use chrono::{NaiveDate, NaiveTime}; |
| /// |
| /// let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap(); |
| /// |
| /// let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1) |
| /// .unwrap() |
| /// .and_hms_micro_opt(8, 59, 59, 1_000_000) |
| /// .unwrap(); |
| /// |
| /// let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30) |
| /// .unwrap() |
| /// .and_hms_nano_opt(23, 59, 59, 1_000_000_000) |
| /// .unwrap() |
| /// .and_utc(); |
| /// # let _ = (t, dt1, dt2); |
| /// ``` |
| /// |
| /// Note that the leap second can happen anytime given an appropriate time zone; |
| /// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed. |
| /// Practically speaking, though, by the time of the first leap second on 1972-06-30, |
| /// every time zone offset around the world has standardized to the 5-minute alignment. |
| /// |
| /// ## Date And Time Arithmetics |
| /// |
| /// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds. |
| /// In reality, of course, leap seconds are separated by at least 6 months. |
| /// We will also use some intuitive concise notations for the explanation. |
| /// |
| /// `Time + TimeDelta` |
| /// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)): |
| /// |
| /// - `03:00:00 + 1s = 03:00:01`. |
| /// - `03:00:59 + 60s = 03:01:59`. |
| /// - `03:00:59 + 61s = 03:02:00`. |
| /// - `03:00:59 + 1s = 03:01:00`. |
| /// - `03:00:60 + 1s = 03:01:00`. |
| /// Note that the sum is identical to the previous. |
| /// - `03:00:60 + 60s = 03:01:59`. |
| /// - `03:00:60 + 61s = 03:02:00`. |
| /// - `03:00:60.1 + 0.8s = 03:00:60.9`. |
| /// |
| /// `Time - TimeDelta` |
| /// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)): |
| /// |
| /// - `03:00:00 - 1s = 02:59:59`. |
| /// - `03:01:00 - 1s = 03:00:59`. |
| /// - `03:01:00 - 60s = 03:00:00`. |
| /// - `03:00:60 - 60s = 03:00:00`. |
| /// Note that the result is identical to the previous. |
| /// - `03:00:60.7 - 0.4s = 03:00:60.3`. |
| /// - `03:00:60.7 - 0.9s = 03:00:59.8`. |
| /// |
| /// `Time - Time` |
| /// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)): |
| /// |
| /// - `04:00:00 - 03:00:00 = 3600s`. |
| /// - `03:01:00 - 03:00:00 = 60s`. |
| /// - `03:00:60 - 03:00:00 = 60s`. |
| /// Note that the difference is identical to the previous. |
| /// - `03:00:60.6 - 03:00:59.4 = 1.2s`. |
| /// - `03:01:00 - 03:00:59.8 = 0.2s`. |
| /// - `03:01:00 - 03:00:60.5 = 0.5s`. |
| /// Note that the difference is larger than the previous, |
| /// even though the leap second clearly follows the previous whole second. |
| /// - `04:00:60.9 - 03:00:60.1 = |
| /// (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) = |
| /// 60.9s + 3540s + 0.9s = 3601.8s`. |
| /// |
| /// In general, |
| /// |
| /// - `Time + TimeDelta` unconditionally equals to `TimeDelta + Time`. |
| /// |
| /// - `Time - TimeDelta` unconditionally equals to `Time + (-TimeDelta)`. |
| /// |
| /// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`. |
| /// |
| /// - Associativity does not generally hold, because |
| /// `(Time + TimeDelta1) - TimeDelta2` no longer equals to `Time + (TimeDelta1 - TimeDelta2)` |
| /// for two positive durations. |
| /// |
| /// - As a special case, `(Time + TimeDelta) - TimeDelta` also does not equal to `Time`. |
| /// |
| /// - If you can assume that all durations have the same sign, however, |
| /// then the associativity holds: |
| /// `(Time + TimeDelta1) + TimeDelta2` equals to `Time + (TimeDelta1 + TimeDelta2)` |
| /// for two positive durations. |
| /// |
| /// ## Reading And Writing Leap Seconds |
| /// |
| /// The "typical" leap seconds on the minute boundary are |
| /// correctly handled both in the formatting and parsing. |
| /// The leap second in the human-readable representation |
| /// will be represented as the second part being 60, as required by ISO 8601. |
| /// |
| /// ``` |
| /// use chrono::NaiveDate; |
| /// |
| /// let dt = NaiveDate::from_ymd_opt(2015, 6, 30) |
| /// .unwrap() |
| /// .and_hms_milli_opt(23, 59, 59, 1_000) |
| /// .unwrap() |
| /// .and_utc(); |
| /// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60Z"); |
| /// ``` |
| /// |
| /// There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono. |
| /// They are allowed for the sake of completeness and consistency; there were several "exotic" time |
| /// zone offsets with fractional minutes prior to UTC after all. |
| /// For such cases the human-readable representation is ambiguous and would be read back to the next |
| /// non-leap second. |
| /// |
| /// A `NaiveTime` with a leap second that is not on a minute boundary can only be created from a |
| /// [`DateTime`](crate::DateTime) with fractional minutes as offset, or using |
| /// [`Timelike::with_nanosecond()`]. |
| /// |
| /// ``` |
| /// use chrono::{FixedOffset, NaiveDate, TimeZone}; |
| /// |
| /// let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36 |
| /// let leap_sec_2015 = |
| /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
| /// let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015); |
| /// assert_eq!(format!("{:?}", dt1), "2015-06-30T20:19:24-03:40:36"); |
| /// assert_eq!(format!("{:?}", dt1.time()), "20:19:24"); |
| /// |
| /// let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap(); |
| /// let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec); |
| /// assert_eq!(format!("{:?}", dt2), "2015-06-30T20:19:24-03:40:36"); |
| /// assert_eq!(format!("{:?}", dt2.time()), "20:19:24"); |
| /// |
| /// assert!(dt1.time() != dt2.time()); |
| /// assert!(dt1.time().to_string() == dt2.time().to_string()); |
| /// ``` |
| /// |
| /// Since Chrono alone cannot determine any existence of leap seconds, |
| /// **there is absolutely no guarantee that the leap second read has actually happened**. |
| #[derive(PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] |
| #[cfg_attr( |
| any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"), |
| derive(Archive, Deserialize, Serialize), |
| archive(compare(PartialEq, PartialOrd)), |
| archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) |
| )] |
| #[cfg_attr(feature = "rkyv-validation", archive(check_bytes))] |
| pub struct NaiveTime { |
| secs: u32, |
| frac: u32, |
| } |
| |
| #[cfg(feature = "arbitrary")] |
| impl arbitrary::Arbitrary<'_> for NaiveTime { |
| fn arbitrary(u: &mut arbitrary::Unstructured) -> arbitrary::Result<NaiveTime> { |
| let mins = u.int_in_range(0..=1439)?; |
| let mut secs = u.int_in_range(0..=60)?; |
| let mut nano = u.int_in_range(0..=999_999_999)?; |
| if secs == 60 { |
| secs = 59; |
| nano += 1_000_000_000; |
| } |
| let time = NaiveTime::from_num_seconds_from_midnight_opt(mins * 60 + secs, nano) |
| .expect("Could not generate a valid chrono::NaiveTime. It looks like implementation of Arbitrary for NaiveTime is erroneous."); |
| Ok(time) |
| } |
| } |
| |
| impl NaiveTime { |
| /// Makes a new `NaiveTime` from hour, minute and second. |
| /// |
| /// No [leap second](#leap-second-handling) is allowed here; |
| /// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead. |
| /// |
| /// # Panics |
| /// |
| /// Panics on invalid hour, minute and/or second. |
| #[deprecated(since = "0.4.23", note = "use `from_hms_opt()` instead")] |
| #[inline] |
| #[must_use] |
| pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime { |
| expect(NaiveTime::from_hms_opt(hour, min, sec), "invalid time") |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute and second. |
| /// |
| /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` on invalid hour, minute and/or second. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let from_hms_opt = NaiveTime::from_hms_opt; |
| /// |
| /// assert!(from_hms_opt(0, 0, 0).is_some()); |
| /// assert!(from_hms_opt(23, 59, 59).is_some()); |
| /// assert!(from_hms_opt(24, 0, 0).is_none()); |
| /// assert!(from_hms_opt(23, 60, 0).is_none()); |
| /// assert!(from_hms_opt(23, 59, 60).is_none()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> { |
| NaiveTime::from_hms_nano_opt(hour, min, sec, 0) |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute, second and millisecond. |
| /// |
| /// The millisecond part can exceed 1,000 |
| /// in order to represent the [leap second](#leap-second-handling). |
| /// |
| /// # Panics |
| /// |
| /// Panics on invalid hour, minute, second and/or millisecond. |
| #[deprecated(since = "0.4.23", note = "use `from_hms_milli_opt()` instead")] |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime { |
| expect(NaiveTime::from_hms_milli_opt(hour, min, sec, milli), "invalid time") |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute, second and millisecond. |
| /// |
| /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` on invalid hour, minute, second and/or millisecond. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let from_hmsm_opt = NaiveTime::from_hms_milli_opt; |
| /// |
| /// assert!(from_hmsm_opt(0, 0, 0, 0).is_some()); |
| /// assert!(from_hmsm_opt(23, 59, 59, 999).is_some()); |
| /// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59 |
| /// assert!(from_hmsm_opt(24, 0, 0, 0).is_none()); |
| /// assert!(from_hmsm_opt(23, 60, 0, 0).is_none()); |
| /// assert!(from_hmsm_opt(23, 59, 60, 0).is_none()); |
| /// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_milli_opt( |
| hour: u32, |
| min: u32, |
| sec: u32, |
| milli: u32, |
| ) -> Option<NaiveTime> { |
| let nano = try_opt!(milli.checked_mul(1_000_000)); |
| NaiveTime::from_hms_nano_opt(hour, min, sec, nano) |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute, second and microsecond. |
| /// |
| /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| /// |
| /// # Panics |
| /// |
| /// Panics on invalid hour, minute, second and/or microsecond. |
| #[deprecated(since = "0.4.23", note = "use `from_hms_micro_opt()` instead")] |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime { |
| expect(NaiveTime::from_hms_micro_opt(hour, min, sec, micro), "invalid time") |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute, second and microsecond. |
| /// |
| /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` on invalid hour, minute, second and/or microsecond. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let from_hmsu_opt = NaiveTime::from_hms_micro_opt; |
| /// |
| /// assert!(from_hmsu_opt(0, 0, 0, 0).is_some()); |
| /// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some()); |
| /// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59 |
| /// assert!(from_hmsu_opt(24, 0, 0, 0).is_none()); |
| /// assert!(from_hmsu_opt(23, 60, 0, 0).is_none()); |
| /// assert!(from_hmsu_opt(23, 59, 60, 0).is_none()); |
| /// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_micro_opt( |
| hour: u32, |
| min: u32, |
| sec: u32, |
| micro: u32, |
| ) -> Option<NaiveTime> { |
| let nano = try_opt!(micro.checked_mul(1_000)); |
| NaiveTime::from_hms_nano_opt(hour, min, sec, nano) |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. |
| /// |
| /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| /// |
| /// # Panics |
| /// |
| /// Panics on invalid hour, minute, second and/or nanosecond. |
| #[deprecated(since = "0.4.23", note = "use `from_hms_nano_opt()` instead")] |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime { |
| expect(NaiveTime::from_hms_nano_opt(hour, min, sec, nano), "invalid time") |
| } |
| |
| /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. |
| /// |
| /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` on invalid hour, minute, second and/or nanosecond. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let from_hmsn_opt = NaiveTime::from_hms_nano_opt; |
| /// |
| /// assert!(from_hmsn_opt(0, 0, 0, 0).is_some()); |
| /// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some()); |
| /// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59 |
| /// assert!(from_hmsn_opt(24, 0, 0, 0).is_none()); |
| /// assert!(from_hmsn_opt(23, 60, 0, 0).is_none()); |
| /// assert!(from_hmsn_opt(23, 59, 60, 0).is_none()); |
| /// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> { |
| if (hour >= 24 || min >= 60 || sec >= 60) |
| || (nano >= 1_000_000_000 && sec != 59) |
| || nano >= 2_000_000_000 |
| { |
| return None; |
| } |
| let secs = hour * 3600 + min * 60 + sec; |
| Some(NaiveTime { secs, frac: nano }) |
| } |
| |
| /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. |
| /// |
| /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. |
| /// |
| /// # Panics |
| /// |
| /// Panics on invalid number of seconds and/or nanosecond. |
| #[deprecated(since = "0.4.23", note = "use `from_num_seconds_from_midnight_opt()` instead")] |
| #[inline] |
| #[must_use] |
| pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime { |
| expect(NaiveTime::from_num_seconds_from_midnight_opt(secs, nano), "invalid time") |
| } |
| |
| /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. |
| /// |
| /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` on invalid number of seconds and/or nanosecond. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt; |
| /// |
| /// assert!(from_nsecs_opt(0, 0).is_some()); |
| /// assert!(from_nsecs_opt(86399, 999_999_999).is_some()); |
| /// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59 |
| /// assert!(from_nsecs_opt(86_400, 0).is_none()); |
| /// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> { |
| if secs >= 86_400 || nano >= 2_000_000_000 || (nano >= 1_000_000_000 && secs % 60 != 59) { |
| return None; |
| } |
| Some(NaiveTime { secs, frac: nano }) |
| } |
| |
| /// Parses a string with the specified format string and returns a new `NaiveTime`. |
| /// See the [`format::strftime` module](crate::format::strftime) |
| /// on the supported escape sequences. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let parse_from_str = NaiveTime::parse_from_str; |
| /// |
| /// assert_eq!( |
| /// parse_from_str("23:56:04", "%H:%M:%S"), |
| /// Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap()) |
| /// ); |
| /// assert_eq!( |
| /// parse_from_str("pm012345.6789", "%p%I%M%S%.f"), |
| /// Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap()) |
| /// ); |
| /// ``` |
| /// |
| /// Date and offset is ignored for the purpose of parsing. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// # let parse_from_str = NaiveTime::parse_from_str; |
| /// assert_eq!( |
| /// parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), |
| /// Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap()) |
| /// ); |
| /// ``` |
| /// |
| /// [Leap seconds](#leap-second-handling) are correctly handled by |
| /// treating any time of the form `hh:mm:60` as a leap second. |
| /// (This equally applies to the formatting, so the round trip is possible.) |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// # let parse_from_str = NaiveTime::parse_from_str; |
| /// assert_eq!( |
| /// parse_from_str("08:59:60.123", "%H:%M:%S%.f"), |
| /// Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap()) |
| /// ); |
| /// ``` |
| /// |
| /// Missing seconds are assumed to be zero, |
| /// but out-of-bound times or insufficient fields are errors otherwise. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// # let parse_from_str = NaiveTime::parse_from_str; |
| /// assert_eq!(parse_from_str("7:15", "%H:%M"), Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap())); |
| /// |
| /// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err()); |
| /// assert!(parse_from_str("12", "%H").is_err()); |
| /// assert!(parse_from_str("17:60", "%H:%M").is_err()); |
| /// assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err()); |
| /// ``` |
| /// |
| /// All parsed fields should be consistent to each other, otherwise it's an error. |
| /// Here `%H` is for 24-hour clocks, unlike `%I`, |
| /// and thus can be independently determined without AM/PM. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// # let parse_from_str = NaiveTime::parse_from_str; |
| /// assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err()); |
| /// ``` |
| pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> { |
| let mut parsed = Parsed::new(); |
| parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
| parsed.to_naive_time() |
| } |
| |
| /// Parses a string from a user-specified format into a new `NaiveTime` value, and a slice with |
| /// the remaining portion of the string. |
| /// See the [`format::strftime` module](crate::format::strftime) |
| /// on the supported escape sequences. |
| /// |
| /// Similar to [`parse_from_str`](#method.parse_from_str). |
| /// |
| /// # Example |
| /// |
| /// ```rust |
| /// # use chrono::{NaiveTime}; |
| /// let (time, remainder) = |
| /// NaiveTime::parse_and_remainder("3h4m33s trailing text", "%-Hh%-Mm%-Ss").unwrap(); |
| /// assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap()); |
| /// assert_eq!(remainder, " trailing text"); |
| /// ``` |
| pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveTime, &'a str)> { |
| let mut parsed = Parsed::new(); |
| let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
| parsed.to_naive_time().map(|t| (t, remainder)) |
| } |
| |
| /// Adds given `TimeDelta` to the current time, and also returns the number of *seconds* |
| /// in the integral number of days ignored from the addition. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, TimeDelta}; |
| /// |
| /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); |
| /// |
| /// assert_eq!( |
| /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(11).unwrap()), |
| /// (from_hms(14, 4, 5), 0) |
| /// ); |
| /// assert_eq!( |
| /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(23).unwrap()), |
| /// (from_hms(2, 4, 5), 86_400) |
| /// ); |
| /// assert_eq!( |
| /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(-7).unwrap()), |
| /// (from_hms(20, 4, 5), -86_400) |
| /// ); |
| /// ``` |
| #[must_use] |
| pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { |
| let mut secs = self.secs as i64; |
| let mut frac = self.frac as i32; |
| let secs_to_add = rhs.num_seconds(); |
| let frac_to_add = rhs.subsec_nanos(); |
| |
| // Check if `self` is a leap second and adding `rhs` would escape that leap second. |
| // If that is the case, update `frac` and `secs` to involve no leap second. |
| // If it stays within the leap second or the second before, and only adds a fractional |
| // second, just do that and return (this way the rest of the code can ignore leap seconds). |
| if frac >= 1_000_000_000 { |
| // check below is adjusted to not overflow an i32: `frac + frac_to_add >= 2_000_000_000` |
| if secs_to_add > 0 || (frac_to_add > 0 && frac >= 2_000_000_000 - frac_to_add) { |
| frac -= 1_000_000_000; |
| } else if secs_to_add < 0 { |
| frac -= 1_000_000_000; |
| secs += 1; |
| } else { |
| return (NaiveTime { secs: self.secs, frac: (frac + frac_to_add) as u32 }, 0); |
| } |
| } |
| |
| let mut secs = secs + secs_to_add; |
| frac += frac_to_add; |
| |
| if frac < 0 { |
| frac += 1_000_000_000; |
| secs -= 1; |
| } else if frac >= 1_000_000_000 { |
| frac -= 1_000_000_000; |
| secs += 1; |
| } |
| |
| let secs_in_day = secs.rem_euclid(86_400); |
| let remaining = secs - secs_in_day; |
| (NaiveTime { secs: secs_in_day as u32, frac: frac as u32 }, remaining) |
| } |
| |
| /// Subtracts given `TimeDelta` from the current time, and also returns the number of *seconds* |
| /// in the integral number of days ignored from the subtraction. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, TimeDelta}; |
| /// |
| /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); |
| /// |
| /// assert_eq!( |
| /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(2).unwrap()), |
| /// (from_hms(1, 4, 5), 0) |
| /// ); |
| /// assert_eq!( |
| /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(17).unwrap()), |
| /// (from_hms(10, 4, 5), 86_400) |
| /// ); |
| /// assert_eq!( |
| /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(-22).unwrap()), |
| /// (from_hms(1, 4, 5), -86_400) |
| /// ); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { |
| let (time, rhs) = self.overflowing_add_signed(rhs.neg()); |
| (time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000) |
| } |
| |
| /// Subtracts another `NaiveTime` from the current time. |
| /// Returns a `TimeDelta` within +/- 1 day. |
| /// This does not overflow or underflow at all. |
| /// |
| /// As a part of Chrono's [leap second handling](#leap-second-handling), |
| /// the subtraction assumes that **there is no leap second ever**, |
| /// except when any of the `NaiveTime`s themselves represents a leap second |
| /// in which case the assumption becomes that |
| /// **there are exactly one (or two) leap second(s) ever**. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, TimeDelta}; |
| /// |
| /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| /// let since = NaiveTime::signed_duration_since; |
| /// |
| /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)), TimeDelta::zero()); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)), |
| /// TimeDelta::try_milliseconds(25).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)), |
| /// TimeDelta::try_milliseconds(975).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)), |
| /// TimeDelta::try_seconds(7).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)), |
| /// TimeDelta::try_seconds(5 * 60).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)), |
| /// TimeDelta::try_seconds(3 * 3600).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)), |
| /// TimeDelta::try_seconds(-3600).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)), |
| /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() |
| /// ); |
| /// ``` |
| /// |
| /// Leap seconds are handled, but the subtraction assumes that |
| /// there were no other leap seconds happened. |
| /// |
| /// ``` |
| /// # use chrono::{TimeDelta, NaiveTime}; |
| /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| /// # let since = NaiveTime::signed_duration_since; |
| /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)), |
| /// TimeDelta::try_seconds(1).unwrap()); |
| /// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)), |
| /// TimeDelta::try_milliseconds(1500).unwrap()); |
| /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)), |
| /// TimeDelta::try_seconds(60).unwrap()); |
| /// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)), |
| /// TimeDelta::try_seconds(1).unwrap()); |
| /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)), |
| /// TimeDelta::try_seconds(61).unwrap()); |
| /// ``` |
| #[must_use] |
| pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta { |
| // | | :leap| | | | | | | :leap| | |
| // | | : | | | | | | | : | | |
| // ----+----+-----*---+----+----+----+----+----+----+-------*-+----+---- |
| // | `rhs` | | `self` |
| // |======================================>| | |
| // | | `self.secs - rhs.secs` |`self.frac` |
| // |====>| | |======>| |
| // `rhs.frac`|========================================>| |
| // | | | `self - rhs` | | |
| |
| let mut secs = self.secs as i64 - rhs.secs as i64; |
| let frac = self.frac as i64 - rhs.frac as i64; |
| |
| // `secs` may contain a leap second yet to be counted |
| if self.secs > rhs.secs && rhs.frac >= 1_000_000_000 { |
| secs += 1; |
| } else if self.secs < rhs.secs && self.frac >= 1_000_000_000 { |
| secs -= 1; |
| } |
| |
| let secs_from_frac = frac.div_euclid(1_000_000_000); |
| let frac = frac.rem_euclid(1_000_000_000) as u32; |
| |
| expect(TimeDelta::new(secs + secs_from_frac, frac), "must be in range") |
| } |
| |
| /// Adds given `FixedOffset` to the current time, and returns the number of days that should be |
| /// added to a date as a result of the offset (either `-1`, `0`, or `1` because the offset is |
| /// always less than 24h). |
| /// |
| /// This method is similar to [`overflowing_add_signed`](#method.overflowing_add_signed), but |
| /// preserves leap seconds. |
| pub(super) const fn overflowing_add_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { |
| let secs = self.secs as i32 + offset.local_minus_utc(); |
| let days = secs.div_euclid(86_400); |
| let secs = secs.rem_euclid(86_400); |
| (NaiveTime { secs: secs as u32, frac: self.frac }, days) |
| } |
| |
| /// Subtracts given `FixedOffset` from the current time, and returns the number of days that |
| /// should be added to a date as a result of the offset (either `-1`, `0`, or `1` because the |
| /// offset is always less than 24h). |
| /// |
| /// This method is similar to [`overflowing_sub_signed`](#method.overflowing_sub_signed), but |
| /// preserves leap seconds. |
| pub(super) const fn overflowing_sub_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { |
| let secs = self.secs as i32 - offset.local_minus_utc(); |
| let days = secs.div_euclid(86_400); |
| let secs = secs.rem_euclid(86_400); |
| (NaiveTime { secs: secs as u32, frac: self.frac }, days) |
| } |
| |
| /// Formats the time with the specified formatting items. |
| /// Otherwise it is the same as the ordinary [`format`](#method.format) method. |
| /// |
| /// The `Iterator` of items should be `Clone`able, |
| /// since the resulting `DelayedFormat` value may be formatted multiple times. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::format::strftime::StrftimeItems; |
| /// use chrono::NaiveTime; |
| /// |
| /// let fmt = StrftimeItems::new("%H:%M:%S"); |
| /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
| /// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04"); |
| /// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04"); |
| /// ``` |
| /// |
| /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// # use chrono::format::strftime::StrftimeItems; |
| /// # let fmt = StrftimeItems::new("%H:%M:%S").clone(); |
| /// # let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
| /// assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04"); |
| /// ``` |
| #[cfg(feature = "alloc")] |
| #[inline] |
| #[must_use] |
| pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
| where |
| I: Iterator<Item = B> + Clone, |
| B: Borrow<Item<'a>>, |
| { |
| DelayedFormat::new(None, Some(*self), items) |
| } |
| |
| /// Formats the time with the specified format string. |
| /// See the [`format::strftime` module](crate::format::strftime) |
| /// on the supported escape sequences. |
| /// |
| /// This returns a `DelayedFormat`, |
| /// which gets converted to a string only when actual formatting happens. |
| /// You may use the `to_string` method to get a `String`, |
| /// or just feed it into `print!` and other formatting macros. |
| /// (In this way it avoids the redundant memory allocation.) |
| /// |
| /// A wrong format string does *not* issue an error immediately. |
| /// Rather, converting or formatting the `DelayedFormat` fails. |
| /// You are recommended to immediately use `DelayedFormat` for this reason. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04"); |
| /// assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345"); |
| /// assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM"); |
| /// ``` |
| /// |
| /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// # let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04"); |
| /// assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345"); |
| /// assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM"); |
| /// ``` |
| #[cfg(feature = "alloc")] |
| #[inline] |
| #[must_use] |
| pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
| self.format_with_items(StrftimeItems::new(fmt)) |
| } |
| |
| /// Returns a triple of the hour, minute and second numbers. |
| pub(crate) fn hms(&self) -> (u32, u32, u32) { |
| let sec = self.secs % 60; |
| let mins = self.secs / 60; |
| let min = mins % 60; |
| let hour = mins / 60; |
| (hour, min, sec) |
| } |
| |
| /// Returns the number of non-leap seconds past the last midnight. |
| // This duplicates `Timelike::num_seconds_from_midnight()`, because trait methods can't be const |
| // yet. |
| #[inline] |
| pub(crate) const fn num_seconds_from_midnight(&self) -> u32 { |
| self.secs |
| } |
| |
| /// Returns the number of nanoseconds since the whole non-leap second. |
| // This duplicates `Timelike::nanosecond()`, because trait methods can't be const yet. |
| #[inline] |
| pub(crate) const fn nanosecond(&self) -> u32 { |
| self.frac |
| } |
| |
| /// The earliest possible `NaiveTime` |
| pub const MIN: Self = Self { secs: 0, frac: 0 }; |
| pub(super) const MAX: Self = Self { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 }; |
| } |
| |
| impl Timelike for NaiveTime { |
| /// Returns the hour number from 0 to 23. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0); |
| /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23); |
| /// ``` |
| #[inline] |
| fn hour(&self) -> u32 { |
| self.hms().0 |
| } |
| |
| /// Returns the minute number from 0 to 59. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0); |
| /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56); |
| /// ``` |
| #[inline] |
| fn minute(&self) -> u32 { |
| self.hms().1 |
| } |
| |
| /// Returns the second number from 0 to 59. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0); |
| /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4); |
| /// ``` |
| /// |
| /// This method never returns 60 even when it is a leap second. |
| /// ([Why?](#leap-second-handling)) |
| /// Use the proper [formatting method](#method.format) to get a human-readable representation. |
| /// |
| /// ``` |
| /// # #[cfg(feature = "alloc")] { |
| /// # use chrono::{NaiveTime, Timelike}; |
| /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
| /// assert_eq!(leap.second(), 59); |
| /// assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60"); |
| /// # } |
| /// ``` |
| #[inline] |
| fn second(&self) -> u32 { |
| self.hms().2 |
| } |
| |
| /// Returns the number of nanoseconds since the whole non-leap second. |
| /// The range from 1,000,000,000 to 1,999,999,999 represents |
| /// the [leap second](#leap-second-handling). |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0); |
| /// assert_eq!( |
| /// NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(), |
| /// 12_345_678 |
| /// ); |
| /// ``` |
| /// |
| /// Leap seconds may have seemingly out-of-range return values. |
| /// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or |
| /// use the proper [formatting method](#method.format) to get a human-readable representation. |
| /// |
| /// ``` |
| /// # #[cfg(feature = "alloc")] { |
| /// # use chrono::{NaiveTime, Timelike}; |
| /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
| /// assert_eq!(leap.nanosecond(), 1_000_000_000); |
| /// assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000"); |
| /// # } |
| /// ``` |
| #[inline] |
| fn nanosecond(&self) -> u32 { |
| self.frac |
| } |
| |
| /// Makes a new `NaiveTime` with the hour number changed. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` if the value for `hour` is invalid. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap())); |
| /// assert_eq!(dt.with_hour(24), None); |
| /// ``` |
| #[inline] |
| fn with_hour(&self, hour: u32) -> Option<NaiveTime> { |
| if hour >= 24 { |
| return None; |
| } |
| let secs = hour * 3600 + self.secs % 3600; |
| Some(NaiveTime { secs, ..*self }) |
| } |
| |
| /// Makes a new `NaiveTime` with the minute number changed. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` if the value for `minute` is invalid. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!( |
| /// dt.with_minute(45), |
| /// Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap()) |
| /// ); |
| /// assert_eq!(dt.with_minute(60), None); |
| /// ``` |
| #[inline] |
| fn with_minute(&self, min: u32) -> Option<NaiveTime> { |
| if min >= 60 { |
| return None; |
| } |
| let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60; |
| Some(NaiveTime { secs, ..*self }) |
| } |
| |
| /// Makes a new `NaiveTime` with the second number changed. |
| /// |
| /// As with the [`second`](#method.second) method, |
| /// the input range is restricted to 0 through 59. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` if the value for `second` is invalid. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!( |
| /// dt.with_second(17), |
| /// Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap()) |
| /// ); |
| /// assert_eq!(dt.with_second(60), None); |
| /// ``` |
| #[inline] |
| fn with_second(&self, sec: u32) -> Option<NaiveTime> { |
| if sec >= 60 { |
| return None; |
| } |
| let secs = self.secs / 60 * 60 + sec; |
| Some(NaiveTime { secs, ..*self }) |
| } |
| |
| /// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed. |
| /// |
| /// As with the [`nanosecond`](#method.nanosecond) method, |
| /// the input range can exceed 1,000,000,000 for leap seconds. |
| /// |
| /// # Errors |
| /// |
| /// Returns `None` if `nanosecond >= 2,000,000,000`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!( |
| /// dt.with_nanosecond(333_333_333), |
| /// Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap()) |
| /// ); |
| /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); |
| /// ``` |
| /// |
| /// Leap seconds can theoretically follow *any* whole second. |
| /// The following would be a proper leap second at the time zone offset of UTC-00:03:57 |
| /// (there are several historical examples comparable to this "non-sense" offset), |
| /// and therefore is allowed. |
| /// |
| /// ``` |
| /// # use chrono::{NaiveTime, Timelike}; |
| /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap(); |
| /// assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333); |
| /// ``` |
| #[inline] |
| fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> { |
| if nano >= 2_000_000_000 { |
| return None; |
| } |
| Some(NaiveTime { frac: nano, ..*self }) |
| } |
| |
| /// Returns the number of non-leap seconds past the last midnight. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, Timelike}; |
| /// |
| /// assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(), 3723); |
| /// assert_eq!( |
| /// NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(), |
| /// 86164 |
| /// ); |
| /// assert_eq!( |
| /// NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(), |
| /// 86399 |
| /// ); |
| /// ``` |
| #[inline] |
| fn num_seconds_from_midnight(&self) -> u32 { |
| self.secs // do not repeat the calculation! |
| } |
| } |
| |
| /// Add `TimeDelta` to `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the addition ignores integral number of days. |
| /// |
| /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the |
| /// assumption becomes that **there is exactly a single leap second ever**. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, TimeDelta}; |
| /// |
| /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| /// |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 8, 0)); |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-1).unwrap(), from_hmsm(3, 5, 6, 0)); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(60 + 4).unwrap(), |
| /// from_hmsm(3, 6, 11, 0) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(7 * 60 * 60 - 6 * 60).unwrap(), |
| /// from_hmsm(9, 59, 7, 0) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_milliseconds(80).unwrap(), |
| /// from_hmsm(3, 5, 7, 80) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(280).unwrap(), |
| /// from_hmsm(3, 5, 8, 230) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(-980).unwrap(), |
| /// from_hmsm(3, 5, 6, 970) |
| /// ); |
| /// ``` |
| /// |
| /// The addition wraps around. |
| /// |
| /// ``` |
| /// # use chrono::{TimeDelta, NaiveTime}; |
| /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(22*60*60).unwrap(), from_hmsm(1, 5, 7, 0)); |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); |
| /// ``` |
| /// |
| /// Leap seconds are handled, but the addition assumes that it is the only leap second happened. |
| /// |
| /// ``` |
| /// # use chrono::{TimeDelta, NaiveTime}; |
| /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| /// let leap = from_hmsm(3, 5, 59, 1_300); |
| /// assert_eq!(leap + TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); |
| /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), from_hmsm(3, 5, 59, 800)); |
| /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 1_800)); |
| /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), from_hmsm(3, 6, 0, 100)); |
| /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), from_hmsm(3, 6, 9, 300)); |
| /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), from_hmsm(3, 5, 50, 300)); |
| /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), from_hmsm(3, 5, 59, 300)); |
| /// ``` |
| /// |
| /// [leap second handling]: crate::NaiveTime#leap-second-handling |
| impl Add<TimeDelta> for NaiveTime { |
| type Output = NaiveTime; |
| |
| #[inline] |
| fn add(self, rhs: TimeDelta) -> NaiveTime { |
| self.overflowing_add_signed(rhs).0 |
| } |
| } |
| |
| /// Add-assign `TimeDelta` to `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the addition ignores integral number of days. |
| impl AddAssign<TimeDelta> for NaiveTime { |
| #[inline] |
| fn add_assign(&mut self, rhs: TimeDelta) { |
| *self = self.add(rhs); |
| } |
| } |
| |
| /// Add `std::time::Duration` to `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the addition ignores integral number of days. |
| impl Add<Duration> for NaiveTime { |
| type Output = NaiveTime; |
| |
| #[inline] |
| fn add(self, rhs: Duration) -> NaiveTime { |
| // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid |
| // overflow during the conversion to `TimeDelta`. |
| // But we limit to double that just in case `self` is a leap-second. |
| let secs = rhs.as_secs() % (2 * 24 * 60 * 60); |
| let d = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); |
| self.overflowing_add_signed(d).0 |
| } |
| } |
| |
| /// Add-assign `std::time::Duration` to `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the addition ignores integral number of days. |
| impl AddAssign<Duration> for NaiveTime { |
| #[inline] |
| fn add_assign(&mut self, rhs: Duration) { |
| *self = *self + rhs; |
| } |
| } |
| |
| /// Add `FixedOffset` to `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the addition ignores integral number of days. |
| impl Add<FixedOffset> for NaiveTime { |
| type Output = NaiveTime; |
| |
| #[inline] |
| fn add(self, rhs: FixedOffset) -> NaiveTime { |
| self.overflowing_add_offset(rhs).0 |
| } |
| } |
| |
| /// Subtract `TimeDelta` from `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the subtraction ignores integral number of days. |
| /// This is the same as addition with a negated `TimeDelta`. |
| /// |
| /// As a part of Chrono's [leap second handling], the subtraction assumes that **there is no leap |
| /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the |
| /// assumption becomes that **there is exactly a single leap second ever**. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, TimeDelta}; |
| /// |
| /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| /// |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 6, 0)); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(60 + 5).unwrap(), |
| /// from_hmsm(3, 4, 2, 0) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(2 * 60 * 60 + 6 * 60).unwrap(), |
| /// from_hmsm(0, 59, 7, 0) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_milliseconds(80).unwrap(), |
| /// from_hmsm(3, 5, 6, 920) |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 950) - TimeDelta::try_milliseconds(280).unwrap(), |
| /// from_hmsm(3, 5, 7, 670) |
| /// ); |
| /// ``` |
| /// |
| /// The subtraction wraps around. |
| /// |
| /// ``` |
| /// # use chrono::{TimeDelta, NaiveTime}; |
| /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); |
| /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); |
| /// ``` |
| /// |
| /// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened. |
| /// |
| /// ``` |
| /// # use chrono::{TimeDelta, NaiveTime}; |
| /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| /// let leap = from_hmsm(3, 5, 59, 1_300); |
| /// assert_eq!(leap - TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); |
| /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), from_hmsm(3, 5, 59, 1_100)); |
| /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 800)); |
| /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), from_hmsm(3, 5, 0, 300)); |
| /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), from_hmsm(3, 6, 0, 300)); |
| /// ``` |
| /// |
| /// [leap second handling]: crate::NaiveTime#leap-second-handling |
| impl Sub<TimeDelta> for NaiveTime { |
| type Output = NaiveTime; |
| |
| #[inline] |
| fn sub(self, rhs: TimeDelta) -> NaiveTime { |
| self.overflowing_sub_signed(rhs).0 |
| } |
| } |
| |
| /// Subtract-assign `TimeDelta` from `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the subtraction ignores integral number of days. |
| impl SubAssign<TimeDelta> for NaiveTime { |
| #[inline] |
| fn sub_assign(&mut self, rhs: TimeDelta) { |
| *self = self.sub(rhs); |
| } |
| } |
| |
| /// Subtract `std::time::Duration` from `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the subtraction ignores integral number of days. |
| impl Sub<Duration> for NaiveTime { |
| type Output = NaiveTime; |
| |
| #[inline] |
| fn sub(self, rhs: Duration) -> NaiveTime { |
| // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid |
| // overflow during the conversion to `TimeDelta`. |
| // But we limit to double that just in case `self` is a leap-second. |
| let secs = rhs.as_secs() % (2 * 24 * 60 * 60); |
| let d = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); |
| self.overflowing_sub_signed(d).0 |
| } |
| } |
| |
| /// Subtract-assign `std::time::Duration` from `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the subtraction ignores integral number of days. |
| impl SubAssign<Duration> for NaiveTime { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Duration) { |
| *self = *self - rhs; |
| } |
| } |
| |
| /// Subtract `FixedOffset` from `NaiveTime`. |
| /// |
| /// This wraps around and never overflows or underflows. |
| /// In particular the subtraction ignores integral number of days. |
| impl Sub<FixedOffset> for NaiveTime { |
| type Output = NaiveTime; |
| |
| #[inline] |
| fn sub(self, rhs: FixedOffset) -> NaiveTime { |
| self.overflowing_sub_offset(rhs).0 |
| } |
| } |
| |
| /// Subtracts another `NaiveTime` from the current time. |
| /// Returns a `TimeDelta` within +/- 1 day. |
| /// This does not overflow or underflow at all. |
| /// |
| /// As a part of Chrono's [leap second handling](#leap-second-handling), |
| /// the subtraction assumes that **there is no leap second ever**, |
| /// except when any of the `NaiveTime`s themselves represents a leap second |
| /// in which case the assumption becomes that |
| /// **there are exactly one (or two) leap second(s) ever**. |
| /// |
| /// The implementation is a wrapper around |
| /// [`NaiveTime::signed_duration_since`](#method.signed_duration_since). |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::{NaiveTime, TimeDelta}; |
| /// |
| /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| /// |
| /// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero()); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), |
| /// TimeDelta::try_milliseconds(25).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), |
| /// TimeDelta::try_milliseconds(975).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), |
| /// TimeDelta::try_seconds(7).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), |
| /// TimeDelta::try_seconds(5 * 60).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), |
| /// TimeDelta::try_seconds(3 * 3600).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), |
| /// TimeDelta::try_seconds(-3600).unwrap() |
| /// ); |
| /// assert_eq!( |
| /// from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800), |
| /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() |
| /// ); |
| /// ``` |
| /// |
| /// Leap seconds are handled, but the subtraction assumes that |
| /// there were no other leap seconds happened. |
| /// |
| /// ``` |
| /// # use chrono::{TimeDelta, NaiveTime}; |
| /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::try_seconds(1).unwrap()); |
| /// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0), |
| /// TimeDelta::try_milliseconds(1500).unwrap()); |
| /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::try_seconds(60).unwrap()); |
| /// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::try_seconds(1).unwrap()); |
| /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000), |
| /// TimeDelta::try_seconds(61).unwrap()); |
| /// ``` |
| impl Sub<NaiveTime> for NaiveTime { |
| type Output = TimeDelta; |
| |
| #[inline] |
| fn sub(self, rhs: NaiveTime) -> TimeDelta { |
| self.signed_duration_since(rhs) |
| } |
| } |
| |
| /// The `Debug` output of the naive time `t` is the same as |
| /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). |
| /// |
| /// The string printed can be readily parsed via the `parse` method on `str`. |
| /// |
| /// It should be noted that, for leap seconds not on the minute boundary, |
| /// it may print a representation not distinguishable from non-leap seconds. |
| /// This doesn't matter in practice, since such leap seconds never happened. |
| /// (By the time of the first leap second on 1972-06-30, |
| /// every time zone offset around the world has standardized to the 5-minute alignment.) |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// assert_eq!(format!("{:?}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04"); |
| /// assert_eq!( |
| /// format!("{:?}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), |
| /// "23:56:04.012" |
| /// ); |
| /// assert_eq!( |
| /// format!("{:?}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), |
| /// "23:56:04.001234" |
| /// ); |
| /// assert_eq!( |
| /// format!("{:?}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), |
| /// "23:56:04.000123456" |
| /// ); |
| /// ``` |
| /// |
| /// Leap seconds may also be used. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// assert_eq!( |
| /// format!("{:?}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), |
| /// "06:59:60.500" |
| /// ); |
| /// ``` |
| impl fmt::Debug for NaiveTime { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| let (hour, min, sec) = self.hms(); |
| let (sec, nano) = if self.frac >= 1_000_000_000 { |
| (sec + 1, self.frac - 1_000_000_000) |
| } else { |
| (sec, self.frac) |
| }; |
| |
| use core::fmt::Write; |
| write_hundreds(f, hour as u8)?; |
| f.write_char(':')?; |
| write_hundreds(f, min as u8)?; |
| f.write_char(':')?; |
| write_hundreds(f, sec as u8)?; |
| |
| if nano == 0 { |
| Ok(()) |
| } else if nano % 1_000_000 == 0 { |
| write!(f, ".{:03}", nano / 1_000_000) |
| } else if nano % 1_000 == 0 { |
| write!(f, ".{:06}", nano / 1_000) |
| } else { |
| write!(f, ".{:09}", nano) |
| } |
| } |
| } |
| |
| /// The `Display` output of the naive time `t` is the same as |
| /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). |
| /// |
| /// The string printed can be readily parsed via the `parse` method on `str`. |
| /// |
| /// It should be noted that, for leap seconds not on the minute boundary, |
| /// it may print a representation not distinguishable from non-leap seconds. |
| /// This doesn't matter in practice, since such leap seconds never happened. |
| /// (By the time of the first leap second on 1972-06-30, |
| /// every time zone offset around the world has standardized to the 5-minute alignment.) |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// assert_eq!(format!("{}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04"); |
| /// assert_eq!( |
| /// format!("{}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), |
| /// "23:56:04.012" |
| /// ); |
| /// assert_eq!( |
| /// format!("{}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), |
| /// "23:56:04.001234" |
| /// ); |
| /// assert_eq!( |
| /// format!("{}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), |
| /// "23:56:04.000123456" |
| /// ); |
| /// ``` |
| /// |
| /// Leap seconds may also be used. |
| /// |
| /// ``` |
| /// # use chrono::NaiveTime; |
| /// assert_eq!( |
| /// format!("{}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), |
| /// "06:59:60.500" |
| /// ); |
| /// ``` |
| impl fmt::Display for NaiveTime { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| fmt::Debug::fmt(self, f) |
| } |
| } |
| |
| /// Parsing a `str` into a `NaiveTime` uses the same format, |
| /// [`%H:%M:%S%.f`](crate::format::strftime), as in `Debug` and `Display`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use chrono::NaiveTime; |
| /// |
| /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
| /// assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t)); |
| /// |
| /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| /// assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t)); |
| /// |
| /// let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second |
| /// assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t)); |
| /// |
| /// // Seconds are optional |
| /// let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap(); |
| /// assert_eq!("23:56".parse::<NaiveTime>(), Ok(t)); |
| /// |
| /// assert!("foo".parse::<NaiveTime>().is_err()); |
| /// ``` |
| impl str::FromStr for NaiveTime { |
| type Err = ParseError; |
| |
| fn from_str(s: &str) -> ParseResult<NaiveTime> { |
| const HOUR_AND_MINUTE: &[Item<'static>] = &[ |
| Item::Numeric(Numeric::Hour, Pad::Zero), |
| Item::Space(""), |
| Item::Literal(":"), |
| Item::Numeric(Numeric::Minute, Pad::Zero), |
| ]; |
| const SECOND_AND_NANOS: &[Item<'static>] = &[ |
| Item::Space(""), |
| Item::Literal(":"), |
| Item::Numeric(Numeric::Second, Pad::Zero), |
| Item::Fixed(Fixed::Nanosecond), |
| Item::Space(""), |
| ]; |
| const TRAILING_WHITESPACE: [Item<'static>; 1] = [Item::Space("")]; |
| |
| let mut parsed = Parsed::new(); |
| let s = parse_and_remainder(&mut parsed, s, HOUR_AND_MINUTE.iter())?; |
| // Seconds are optional, don't fail if parsing them doesn't succeed. |
| let s = parse_and_remainder(&mut parsed, s, SECOND_AND_NANOS.iter()).unwrap_or(s); |
| parse(&mut parsed, s, TRAILING_WHITESPACE.iter())?; |
| parsed.to_naive_time() |
| } |
| } |
| |
| /// The default value for a NaiveTime is midnight, 00:00:00 exactly. |
| /// |
| /// # Example |
| /// |
| /// ```rust |
| /// use chrono::NaiveTime; |
| /// |
| /// let default_time = NaiveTime::default(); |
| /// assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap()); |
| /// ``` |
| impl Default for NaiveTime { |
| fn default() -> Self { |
| NaiveTime::from_hms_opt(0, 0, 0).unwrap() |
| } |
| } |