Snap for 10453563 from 9d1d38c4a8c5cbb5b69d6d52edfb19ef7d85c651 to mainline-art-release

Change-Id: I5b72d8d6fcde76a9e03fccdfac0d3620b8f04443
tree: dc2692d0085b040a1674a3092cf72cedba7404ed
  1. .github/
  2. examples/
  3. src/
  4. tests/
  5. .cargo_vcs_info.json
  6. .gitignore
  7. Android.bp
  8. Cargo.toml
  9. Cargo.toml.orig
  10. cargo2android.json
  11. CHANGELOG.md
  12. LICENSE-APACHE
  13. LICENSE-MIT
  14. METADATA
  15. MODULE_LICENSE_APACHE2
  16. OWNERS
  17. publish.sh
  18. README.md
  19. TEST_MAPPING
README.md

About

The Arbitrary crate lets you construct arbitrary instances of a type.

This crate is primarily intended to be combined with a fuzzer like libFuzzer and cargo-fuzz or AFL, and to help you turn the raw, untyped byte buffers that they produce into well-typed, valid, structured values. This allows you to combine structure-aware test case generation with coverage-guided, mutation-based fuzzers.

Documentation

Read the API documentation on docs.rs!

Example

Say you're writing a color conversion library, and you have an Rgb struct to represent RGB colors. You might want to implement Arbitrary for Rgb so that you could take arbitrary Rgb instances in a test function that asserts some property (for example, asserting that RGB converted to HSL and converted back to RGB always ends up exactly where we started).

Automatically Deriving Arbitrary

Automatically deriving the Arbitrary trait is the recommended way to implement Arbitrary for your types.

Automatically deriving Arbitrary requires you to enable the "derive" cargo feature:

# Cargo.toml

[dependencies]
arbitrary = { version = "1", features = ["derive"] }

And then you can simply add #[derive(Arbitrary)] annotations to your types:

// rgb.rs

use arbitrary::Arbitrary;

#[derive(Arbitrary)]
pub struct Rgb {
    pub r: u8,
    pub g: u8,
    pub b: u8,
}

Customizing single fields

This can be particular handy if your structure uses a type that does not implement Arbitrary or you want to have more customization for particular fields.

#[derive(Arbitrary)]
pub struct Rgba {
    // set `r` to Default::default()
    #[arbitrary(default)]
    pub r: u8,

    // set `g` to 255
    #[arbitrary(value = 255)]
    pub g: u8,

    // Generate `b` with a custom function of type
    //
    //    fn(&mut Unstructured) -> arbitrary::Result<T>
    //
    // where `T` is the field's type.
    #[arbitrary(with = arbitrary_b)]
    pub b: u8,

    // Generate `a` with a custom closure (shortuct to avoid a custom funciton)
    #[arbitrary(with = |u: &mut Unstructured| u.int_in_range(0..=64))]
    pub a: u8,
}

fn arbitrary_b(u: &mut Unstructured) -> arbitrary::Result<u8> {
    u.int_in_range(64..=128)
}

Implementing Arbitrary By Hand

Alternatively, you can write an Arbitrary implementation by hand:

// rgb.rs

use arbitrary::{Arbitrary, Result, Unstructured};

#[derive(Copy, Clone, Debug)]
pub struct Rgb {
    pub r: u8,
    pub g: u8,
    pub b: u8,
}

impl<'a> Arbitrary<'a> for Rgb {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        let r = u8::arbitrary(u)?;
        let g = u8::arbitrary(u)?;
        let b = u8::arbitrary(u)?;
        Ok(Rgb { r, g, b })
    }
}

License

Licensed under dual MIT or Apache-2.0 at your choice.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.