Snap for 8564071 from 2c42ea7d350c4666c81f8ecb8d943d383c3df0c0 to mainline-os-statsd-release

Change-Id: I21d1d61d62c0bbc3594db0c3b05a781efdf9f06f
diff --git a/.cargo_vcs_info.json b/.cargo_vcs_info.json
index b7e57dc..2507469 100644
--- a/.cargo_vcs_info.json
+++ b/.cargo_vcs_info.json
@@ -1,5 +1,5 @@
 {
   "git": {
-    "sha1": "d6b81866920615a75e1e53f880050e1e8d3f565a"
+    "sha1": "8e1da98fee06d66c13e66c330e3a3dd6ccf0e3a0"
   }
 }
diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
deleted file mode 100644
index ce38a62..0000000
--- a/.github/workflows/ci.yml
+++ /dev/null
@@ -1,190 +0,0 @@
-name: ci
-on:
-  pull_request:
-  push:
-    branches:
-    - master
-  schedule:
-  - cron: '00 01 * * *'
-jobs:
-  test:
-    name: test
-    env:
-      # For some builds, we use cross to test on 32-bit and big-endian
-      # systems.
-      CARGO: cargo
-      # When CARGO is set to CROSS, TARGET is set to `--target matrix.target`.
-      TARGET:
-    runs-on: ${{ matrix.os }}
-    strategy:
-      matrix:
-        build:
-        - pinned
-        - stable
-        - stable-32
-        - stable-mips
-        - beta
-        - nightly
-        - macos
-        - win-msvc
-        - win-gnu
-        include:
-        - build: pinned
-          os: ubuntu-18.04
-          rust: 1.28.0
-        - build: stable
-          os: ubuntu-18.04
-          rust: stable
-        - build: stable-32
-          os: ubuntu-18.04
-          rust: stable
-          target: i686-unknown-linux-gnu
-        - build: stable-mips
-          os: ubuntu-18.04
-          rust: stable
-          target: mips64-unknown-linux-gnuabi64
-        - build: beta
-          os: ubuntu-18.04
-          rust: beta
-        - build: nightly
-          os: ubuntu-18.04
-          rust: nightly
-        - build: macos
-          os: macos-latest
-          rust: stable
-        - build: win-msvc
-          os: windows-2019
-          rust: stable
-        - build: win-gnu
-          os: windows-2019
-          rust: stable-x86_64-gnu
-    steps:
-    - name: Checkout repository
-      uses: actions/checkout@v1
-      with:
-        fetch-depth: 1
-    - name: Install Rust
-      uses: actions-rs/toolchain@v1
-      with:
-        toolchain: ${{ matrix.rust }}
-        profile: minimal
-        override: true
-    - name: Use Cross
-      if: matrix.target != ''
-      run: |
-        # FIXME: to work around bugs in latest cross release, install master.
-        # See: https://github.com/rust-embedded/cross/issues/357
-        cargo install --git https://github.com/rust-embedded/cross
-        echo "::set-env name=CARGO::cross"
-        echo "::set-env name=TARGET::--target ${{ matrix.target }}"
-    - name: Show command used for Cargo
-      run: |
-        echo "cargo command is: ${{ env.CARGO }}"
-        echo "target flag is: ${{ env.TARGET }}"
-    - name: Show CPU info for debugging
-      if: matrix.os == 'ubuntu-18.04'
-      run: lscpu
-    - run: ${{ env.CARGO }} build --verbose $TARGET
-    - run: ${{ env.CARGO }} build --verbose $TARGET --no-default-features
-    - run: ${{ env.CARGO }} doc --verbose $TARGET
-    # Our dev dependencies evolve more rapidly than we'd like, so only run
-    # tests when we aren't pinning the Rust version.
-    - if: matrix.build != 'pinned'
-      name: Show byte order for debugging
-      run: ${{ env.CARGO }} test --verbose $TARGET byte_order -- --nocapture
-    - if: matrix.build != 'pinned'
-      run: ${{ env.CARGO }} test --verbose $TARGET
-    - if: matrix.build == 'stable'
-      name: Run under different SIMD configurations
-      run: |
-        set -x
-
-        # Enable libc while using SIMD, libc won't be used.
-        # (This is to ensure valid logic in the picking process.)
-        cargo test --verbose --features libc
-
-        preamble="--cfg memchr_disable_auto_simd"
-
-        # Force use of fallback without libc.
-        RUSTFLAGS="$preamble" cargo test --verbose
-
-        # Force use of libc.
-        RUSTFLAGS="$preamble" cargo test --verbose --features libc
-
-        preamble="$preamble --cfg memchr_runtime_simd"
-        # Force use of fallback even when SIMD is enabled.
-        RUSTFLAGS="$preamble" cargo test --verbose
-
-        # For some reason, cargo seems to get confused which results in
-        # link errors. So wipe the slate clean.
-        cargo clean
-        # Force use of sse2 only
-        RUSTFLAGS="$preamble --cfg memchr_runtime_sse2" cargo test --verbose
-
-        # ... and wipe it again. So weird.
-        cargo clean
-        # Force use of avx only
-        RUSTFLAGS="$preamble --cfg memchr_runtime_avx" cargo test --verbose
-    - if: matrix.build == 'nightly'
-      name: Run benchmarks as tests
-      run: cargo bench --manifest-path bench/Cargo.toml --verbose -- --test
-
-  build-for-non_sse-target:
-    name: build for non-SSE target
-    runs-on: ubuntu-18.04
-    steps:
-    - name: Checkout repository
-      uses: actions/checkout@v1
-      with:
-        fetch-depth: 1
-    - name: Install Rust
-      uses: actions-rs/toolchain@v1
-      with:
-        toolchain: nightly
-        profile: minimal
-        override: true
-        components: rust-src
-    - run: cargo build -Z build-std=core --target=src/tests/x86_64-soft_float.json --verbose --no-default-features
-
-  test-with-miri:
-    name: test with miri
-    runs-on: ubuntu-18.04
-    steps:
-    - name: Checkout repository
-      uses: actions/checkout@v1
-      with:
-        fetch-depth: 1
-    - name: Install Rust
-      uses: actions-rs/toolchain@v1
-      with:
-        toolchain: nightly
-        profile: minimal
-        override: true
-        components: miri
-    - name: Show CPU info for debugging
-      run: lscpu
-    - run: cargo miri test --verbose
-    - run: cargo miri test --verbose --no-default-features
-    - run: cargo miri test --verbose --features libc
-
-  rustfmt:
-    name: rustfmt
-    runs-on: ubuntu-18.04
-    steps:
-    - name: Checkout repository
-      uses: actions/checkout@v1
-      with:
-        fetch-depth: 1
-    - name: Install Rust
-      uses: actions-rs/toolchain@v1
-      with:
-        toolchain: stable
-        override: true
-        profile: minimal
-        components: rustfmt
-    - name: Check formatting
-      run: |
-        cargo fmt -- --check
-    - name: Check formatting on benchmarks
-      run: |
-        cargo fmt --manifest-path bench/Cargo.toml -- --check
diff --git a/Android.bp b/Android.bp
index a26ded6..20c4928 100644
--- a/Android.bp
+++ b/Android.bp
@@ -42,8 +42,10 @@
     name: "libmemchr",
     host_supported: true,
     crate_name: "memchr",
+    cargo_env_compat: true,
+    cargo_pkg_version: "2.4.1",
     srcs: ["src/lib.rs"],
-    edition: "2015",
+    edition: "2018",
     features: [
         "default",
         "std",
@@ -56,8 +58,12 @@
     ],
     apex_available: [
         "//apex_available:platform",
+        "com.android.bluetooth",
+        "com.android.compos",
         "com.android.resolv",
+        "com.android.uwb",
         "com.android.virt",
     ],
+    vendor_available: true,
     min_sdk_version: "29",
 }
diff --git a/Cargo.toml b/Cargo.toml
index 1fc0b64..e739019 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -3,40 +3,57 @@
 # When uploading crates to the registry Cargo will automatically
 # "normalize" Cargo.toml files for maximal compatibility
 # with all versions of Cargo and also rewrite `path` dependencies
-# to registry (e.g., crates.io) dependencies
+# to registry (e.g., crates.io) dependencies.
 #
-# If you believe there's an error in this file please file an
-# issue against the rust-lang/cargo repository. If you're
-# editing this file be aware that the upstream Cargo.toml
-# will likely look very different (and much more reasonable)
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
 
 [package]
+edition = "2018"
 name = "memchr"
-version = "2.3.4"
+version = "2.4.1"
 authors = ["Andrew Gallant <[email protected]>", "bluss"]
-exclude = ["/ci/*", "/.travis.yml", "/Makefile", "/appveyor.yml"]
+exclude = ["/bench", "/.github", "/fuzz"]
 description = "Safe interface to memchr."
-homepage = "https://github.com/BurntSushi/rust-memchr"
+homepage = "https://github.com/BurntSushi/memchr"
 documentation = "https://docs.rs/memchr/"
 readme = "README.md"
 keywords = ["memchr", "char", "scan", "strchr", "string"]
 license = "Unlicense/MIT"
-repository = "https://github.com/BurntSushi/rust-memchr"
+repository = "https://github.com/BurntSushi/memchr"
+[profile.bench]
+debug = true
+
+[profile.release]
+debug = true
+
 [profile.test]
 opt-level = 3
+debug = true
 
 [lib]
 name = "memchr"
 bench = false
+[dependencies.compiler_builtins]
+version = "0.1.2"
+optional = true
+
+[dependencies.core]
+version = "1.0.0"
+optional = true
+package = "rustc-std-workspace-core"
+
 [dependencies.libc]
 version = "0.2.18"
 optional = true
 default-features = false
 [dev-dependencies.quickcheck]
-version = "0.9"
+version = "1.0.3"
 default-features = false
 
 [features]
 default = ["std"]
+rustc-dep-of-std = ["core", "compiler_builtins"]
 std = []
 use_std = ["std"]
diff --git a/Cargo.toml.orig b/Cargo.toml.orig
index 1beab16..2348487 100644
--- a/Cargo.toml.orig
+++ b/Cargo.toml.orig
@@ -1,15 +1,19 @@
 [package]
 name = "memchr"
-version = "2.3.4"  #:version
+version = "2.4.1"  #:version
 authors = ["Andrew Gallant <[email protected]>", "bluss"]
 description = "Safe interface to memchr."
 documentation = "https://docs.rs/memchr/"
-homepage = "https://github.com/BurntSushi/rust-memchr"
-repository = "https://github.com/BurntSushi/rust-memchr"
+homepage = "https://github.com/BurntSushi/memchr"
+repository = "https://github.com/BurntSushi/memchr"
 readme = "README.md"
 keywords = ["memchr", "char", "scan", "strchr", "string"]
 license = "Unlicense/MIT"
-exclude = ["/ci/*", "/.travis.yml", "/Makefile", "/appveyor.yml"]
+exclude = ["/bench", "/.github", "/fuzz"]
+edition = "2018"
+
+[workspace]
+members = ["bench"]
 
 [lib]
 name = "memchr"
@@ -27,11 +31,27 @@
 # then, it is alias for the 'std' feature.
 use_std = ["std"]
 
+# Internal feature, only used when building as part of libstd, not part of the
+# stable interface of this crate.
+rustc-dep-of-std = ['core', 'compiler_builtins']
+
 [dependencies]
 libc = { version = "0.2.18", default-features = false, optional = true }
 
+# Internal feature, only used when building as part of libstd, not part of the
+# stable interface of this crate.
+core = { version = '1.0.0', optional = true, package = 'rustc-std-workspace-core' }
+compiler_builtins = { version = '0.1.2', optional = true }
+
 [dev-dependencies]
-quickcheck = { version = "0.9", default-features = false }
+quickcheck = { version = "1.0.3", default-features = false }
+
+[profile.release]
+debug = true
+
+[profile.bench]
+debug = true
 
 [profile.test]
 opt-level = 3
+debug = true
diff --git a/METADATA b/METADATA
index 9c56e2e..2112cd0 100644
--- a/METADATA
+++ b/METADATA
@@ -7,13 +7,13 @@
   }
   url {
     type: ARCHIVE
-    value: "https://static.crates.io/crates/memchr/memchr-2.3.4.crate"
+    value: "https://static.crates.io/crates/memchr/memchr-2.4.1.crate"
   }
-  version: "2.3.4"
+  version: "2.4.1"
   license_type: NOTICE
   last_upgrade_date {
-    year: 2020
-    month: 10
-    day: 28
+    year: 2021
+    month: 9
+    day: 22
   }
 }
diff --git a/README.md b/README.md
index f78a5a5..df75816 100644
--- a/README.md
+++ b/README.md
@@ -1,11 +1,11 @@
 memchr
 ======
-The `memchr` crate provides heavily optimized routines for searching bytes.
+This library provides heavily optimized routines for string search primitives.
 
-[![Build status](https://github.com/BurntSushi/rust-memchr/workflows/ci/badge.svg)](https://github.com/BurntSushi/rust-memchr/actions)
-[![](http://meritbadge.herokuapp.com/memchr)](https://crates.io/crates/memchr)
+[![Build status](https://github.com/BurntSushi/memchr/workflows/ci/badge.svg)](https://github.com/BurntSushi/memchr/actions)
+[![](https://meritbadge.herokuapp.com/memchr)](https://crates.io/crates/memchr)
 
-Dual-licensed under MIT or the [UNLICENSE](http://unlicense.org).
+Dual-licensed under MIT or the [UNLICENSE](https://unlicense.org/).
 
 
 ### Documentation
@@ -15,23 +15,15 @@
 
 ### Overview
 
-The `memchr` function is traditionally provided by libc, but its
-performance can vary significantly depending on the specific
-implementation of libc that is used. They can range from manually tuned
-Assembly implementations (like that found in GNU's libc) all the way to
-non-vectorized C implementations (like that found in MUSL).
+* The top-level module provides routines for searching for 1, 2 or 3 bytes
+  in the forward or reverse direction. When searching for more than one byte,
+  positions are considered a match if the byte at that position matches any
+  of the bytes.
+* The `memmem` sub-module provides forward and reverse substring search
+  routines.
 
-To smooth out the differences between implementations of libc, at least
-on `x86_64` for Rust 1.27+, this crate provides its own implementation of
-`memchr` that should perform competitively with the one found in GNU's libc.
-The implementation is in pure Rust and has no dependency on a C compiler or an
-Assembler.
-
-Additionally, GNU libc also provides an extension, `memrchr`. This crate
-provides its own implementation of `memrchr` as well, on top of `memchr2`,
-`memchr3`, `memrchr2` and `memrchr3`. The difference between `memchr` and
-`memchr2` is that `memchr2` permits finding all occurrences of two bytes
-instead of one. Similarly for `memchr3`.
+In all such cases, routines operate on `&[u8]` without regard to encoding. This
+is exactly what you want when searching either UTF-8 or arbitrary bytes.
 
 ### Compiling without the standard library
 
@@ -43,10 +35,9 @@
 memchr = { version = "2", default-features = false }
 ```
 
-On x86 platforms, when the `std` feature is disabled, the SSE2
-implementation of memchr will be used in compilers that support it. When
-`std` is enabled, the AVX implementation of memchr will be used if the CPU
-is determined to support it at runtime.
+On x86 platforms, when the `std` feature is disabled, the SSE2 accelerated
+implementations will be used. When `std` is enabled, AVX accelerated
+implementations will be used if the CPU is determined to support it at runtime.
 
 ### Using libc
 
@@ -58,16 +49,16 @@
 available in this crate, then enabling the `libc` feature will use libc's
 version of `memchr`.
 
-The rest of the functions in this crate, e.g., `memchr2` or `memrchr3`, are not
-a standard part of libc, so they will always use the implementations in this
-crate. One exception to this is `memrchr`, which is an extension commonly found
-on Linux. On Linux, `memrchr` is used in precisely the same scenario as
-`memchr`, as described above.
+The rest of the functions in this crate, e.g., `memchr2` or `memrchr3` and the
+substring search routines, will always use the implementations in this crate.
+One exception to this is `memrchr`, which is an extension in `libc` found on
+Linux. On Linux, `memrchr` is used in precisely the same scenario as `memchr`,
+as described above.
 
 
 ### Minimum Rust version policy
 
-This crate's minimum supported `rustc` version is `1.28.0`.
+This crate's minimum supported `rustc` version is `1.41.1`.
 
 The current policy is that the minimum Rust version required to use this crate
 can be increased in minor version updates. For example, if `crate 1.0` requires
@@ -77,3 +68,40 @@
 
 In general, this crate will be conservative with respect to the minimum
 supported version of Rust.
+
+
+### Testing strategy
+
+Given the complexity of the code in this crate, along with the pervasive use
+of `unsafe`, this crate has an extensive testing strategy. It combines multiple
+approaches:
+
+* Hand-written tests.
+* Exhaustive-style testing meant to exercise all possible branching and offset
+  calculations.
+* Property based testing through [`quickcheck`](https://github.com/BurntSushi/quickcheck).
+* Fuzz testing through [`cargo fuzz`](https://github.com/rust-fuzz/cargo-fuzz).
+* A huge suite of benchmarks that are also run as tests. Benchmarks always
+  confirm that the expected result occurs.
+
+Improvements to the testing infrastructure are very welcome.
+
+
+### Algorithms used
+
+At time of writing, this crate's implementation of substring search actually
+has a few different algorithms to choose from depending on the situation.
+
+* For very small haystacks,
+  [Rabin-Karp](https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm)
+  is used to reduce latency. Rabin-Karp has very small overhead and can often
+  complete before other searchers have even been constructed.
+* For small needles, a variant of the
+  ["Generic SIMD"](http://0x80.pl/articles/simd-strfind.html#algorithm-1-generic-simd)
+  algorithm is used. Instead of using the first and last bytes, a heuristic is
+  used to select bytes based on a background distribution of byte frequencies.
+* In all other cases,
+  [Two-Way](https://en.wikipedia.org/wiki/Two-way_string-matching_algorithm)
+  is used. If possible, a prefilter based on the "Generic SIMD" algorithm
+  linked above is used to find candidates quickly. A dynamic heuristic is used
+  to detect if the prefilter is ineffective, and if so, disables it.
diff --git a/TEST_MAPPING b/TEST_MAPPING
index a7a574d..481ff59 100644
--- a/TEST_MAPPING
+++ b/TEST_MAPPING
@@ -1,11 +1,114 @@
-// Generated by cargo2android.py for tests in Android.bp
+// Generated by update_crate_tests.py for tests that depend on this crate.
 {
-  "presubmit": [
+  "imports": [
     {
-      "name": "futures-util_device_test_src_lib"
+      "path": "external/rust/crates/aho-corasick"
     },
     {
-      "name": "libsqlite3-sys_device_test_src_lib"
+      "path": "external/rust/crates/anyhow"
+    },
+    {
+      "path": "external/rust/crates/base64"
+    },
+    {
+      "path": "external/rust/crates/futures-util"
+    },
+    {
+      "path": "external/rust/crates/jni"
+    },
+    {
+      "path": "external/rust/crates/libsqlite3-sys"
+    },
+    {
+      "path": "external/rust/crates/oid-registry"
+    },
+    {
+      "path": "external/rust/crates/once_cell"
+    },
+    {
+      "path": "external/rust/crates/regex"
+    },
+    {
+      "path": "external/rust/crates/rusticata-macros"
+    },
+    {
+      "path": "external/rust/crates/tinytemplate"
+    },
+    {
+      "path": "external/rust/crates/tinyvec"
+    },
+    {
+      "path": "external/rust/crates/tokio"
+    },
+    {
+      "path": "external/rust/crates/tokio-test"
+    },
+    {
+      "path": "external/rust/crates/unicode-xid"
+    }
+  ],
+  "presubmit": [
+    {
+      "name": "ZipFuseTest"
+    },
+    {
+      "name": "authfs_device_test_src_lib"
+    },
+    {
+      "name": "doh_unit_test"
+    },
+    {
+      "name": "keystore2_test"
+    },
+    {
+      "name": "legacykeystore_test"
+    },
+    {
+      "name": "libapkverify.integration_test"
+    },
+    {
+      "name": "libapkverify.test"
+    },
+    {
+      "name": "microdroid_manager_test"
+    },
+    {
+      "name": "rustBinderTest"
+    },
+    {
+      "name": "virtualizationservice_device_test"
+    }
+  ],
+  "presubmit-rust": [
+    {
+      "name": "ZipFuseTest"
+    },
+    {
+      "name": "authfs_device_test_src_lib"
+    },
+    {
+      "name": "doh_unit_test"
+    },
+    {
+      "name": "keystore2_test"
+    },
+    {
+      "name": "legacykeystore_test"
+    },
+    {
+      "name": "libapkverify.integration_test"
+    },
+    {
+      "name": "libapkverify.test"
+    },
+    {
+      "name": "microdroid_manager_test"
+    },
+    {
+      "name": "rustBinderTest"
+    },
+    {
+      "name": "virtualizationservice_device_test"
     }
   ]
 }
diff --git a/cargo2android.json b/cargo2android.json
index 01465d0..6adfa56 100644
--- a/cargo2android.json
+++ b/cargo2android.json
@@ -1,11 +1,15 @@
 {
   "apex-available": [
     "//apex_available:platform",
+    "com.android.bluetooth",
+    "com.android.compos",
     "com.android.resolv",
+    "com.android.uwb",
     "com.android.virt"
   ],
-  "min_sdk_version": "29",
   "dependencies": true,
   "device": true,
+  "min-sdk-version": "29",
+  "vendor-available": true,
   "run": true
-}
\ No newline at end of file
+}
diff --git a/scripts/make-byte-frequency-table b/scripts/make-byte-frequency-table
new file mode 100755
index 0000000..37eeca7
--- /dev/null
+++ b/scripts/make-byte-frequency-table
@@ -0,0 +1,74 @@
+#!/usr/bin/env python
+
+# This does simple normalized frequency analysis on UTF-8 encoded text. The
+# result of the analysis is translated to a ranked list, where every byte is
+# assigned a rank. This list is written to src/freqs.rs.
+#
+# Currently, the frequencies are generated from the following corpuses:
+#
+#   * The CIA world fact book
+#   * The source code of rustc
+#   * Septuaginta
+
+from __future__ import absolute_import, division, print_function
+
+import argparse
+from collections import Counter
+import sys
+
+preamble = '''
+// NOTE: The following code was generated by "scripts/frequencies.py", do not
+// edit directly
+'''.lstrip()
+
+
+def eprint(*args, **kwargs):
+    kwargs['file'] = sys.stderr
+    print(*args, **kwargs)
+
+
+def main():
+    p = argparse.ArgumentParser()
+    p.add_argument('corpus', metavar='FILE', nargs='+')
+    args = p.parse_args()
+
+    # Get frequency counts of each byte.
+    freqs = Counter()
+    for i in range(0, 256):
+        freqs[i] = 0
+
+    eprint('reading entire corpus into memory')
+    corpus = []
+    for fpath in args.corpus:
+        corpus.append(open(fpath, 'rb').read())
+
+    eprint('computing byte frequencies')
+    for c in corpus:
+        for byte in c:
+            freqs[byte] += 1.0 / float(len(c))
+
+    eprint('writing Rust code')
+    # Get the rank of each byte. A lower rank => lower relative frequency.
+    rank = [0] * 256
+    for i, (byte, _) in enumerate(freqs.most_common()):
+        # print(byte)
+        rank[byte] = 255 - i
+
+    # Forcefully set the highest rank possible for bytes that start multi-byte
+    # UTF-8 sequences. The idea here is that a continuation byte will be more
+    # discerning in a homogenous haystack.
+    for byte in range(0xC0, 0xFF + 1):
+        rank[byte] = 255
+
+    # Now write Rust.
+    olines = ['pub const BYTE_FREQUENCIES: [u8; 256] = [']
+    for byte in range(256):
+        olines.append('    %3d, // %r' % (rank[byte], chr(byte)))
+    olines.append('];')
+
+    print(preamble)
+    print('\n'.join(olines))
+
+
+if __name__ == '__main__':
+    main()
diff --git a/src/cow.rs b/src/cow.rs
new file mode 100644
index 0000000..0b7d0da
--- /dev/null
+++ b/src/cow.rs
@@ -0,0 +1,97 @@
+use core::ops;
+
+/// A specialized copy-on-write byte string.
+///
+/// The purpose of this type is to permit usage of a "borrowed or owned
+/// byte string" in a way that keeps std/no-std compatibility. That is, in
+/// no-std mode, this type devolves into a simple &[u8] with no owned variant
+/// available. We can't just use a plain Cow because Cow is not in core.
+#[derive(Clone, Debug)]
+pub struct CowBytes<'a>(Imp<'a>);
+
+// N.B. We don't use std::borrow::Cow here since we can get away with a
+// Box<[u8]> for our use case, which is 1/3 smaller than the Vec<u8> that
+// a Cow<[u8]> would use.
+#[cfg(feature = "std")]
+#[derive(Clone, Debug)]
+enum Imp<'a> {
+    Borrowed(&'a [u8]),
+    Owned(Box<[u8]>),
+}
+
+#[cfg(not(feature = "std"))]
+#[derive(Clone, Debug)]
+struct Imp<'a>(&'a [u8]);
+
+impl<'a> ops::Deref for CowBytes<'a> {
+    type Target = [u8];
+
+    #[inline(always)]
+    fn deref(&self) -> &[u8] {
+        self.as_slice()
+    }
+}
+
+impl<'a> CowBytes<'a> {
+    /// Create a new borrowed CowBytes.
+    #[inline(always)]
+    pub fn new<B: ?Sized + AsRef<[u8]>>(bytes: &'a B) -> CowBytes<'a> {
+        CowBytes(Imp::new(bytes.as_ref()))
+    }
+
+    /// Create a new owned CowBytes.
+    #[cfg(feature = "std")]
+    #[inline(always)]
+    pub fn new_owned(bytes: Box<[u8]>) -> CowBytes<'static> {
+        CowBytes(Imp::Owned(bytes))
+    }
+
+    /// Return a borrowed byte string, regardless of whether this is an owned
+    /// or borrowed byte string internally.
+    #[inline(always)]
+    pub fn as_slice(&self) -> &[u8] {
+        self.0.as_slice()
+    }
+
+    /// Return an owned version of this copy-on-write byte string.
+    ///
+    /// If this is already an owned byte string internally, then this is a
+    /// no-op. Otherwise, the internal byte string is copied.
+    #[cfg(feature = "std")]
+    #[inline(always)]
+    pub fn into_owned(self) -> CowBytes<'static> {
+        match self.0 {
+            Imp::Borrowed(b) => CowBytes::new_owned(Box::from(b)),
+            Imp::Owned(b) => CowBytes::new_owned(b),
+        }
+    }
+}
+
+impl<'a> Imp<'a> {
+    #[cfg(feature = "std")]
+    #[inline(always)]
+    pub fn new(bytes: &'a [u8]) -> Imp<'a> {
+        Imp::Borrowed(bytes)
+    }
+
+    #[cfg(not(feature = "std"))]
+    #[inline(always)]
+    pub fn new(bytes: &'a [u8]) -> Imp<'a> {
+        Imp(bytes)
+    }
+
+    #[cfg(feature = "std")]
+    #[inline(always)]
+    pub fn as_slice(&self) -> &[u8] {
+        match self {
+            Imp::Owned(ref x) => x,
+            Imp::Borrowed(x) => x,
+        }
+    }
+
+    #[cfg(not(feature = "std"))]
+    #[inline(always)]
+    pub fn as_slice(&self) -> &[u8] {
+        self.0
+    }
+}
diff --git a/src/lib.rs b/src/lib.rs
index fed7108..e0b4ce3 100644
--- a/src/lib.rs
+++ b/src/lib.rs
@@ -1,451 +1,181 @@
 /*!
-The `memchr` crate provides heavily optimized routines for searching bytes.
+This library provides heavily optimized routines for string search primitives.
 
-The `memchr` function is traditionally provided by libc, however, the
-performance of `memchr` can vary significantly depending on the specific
-implementation of libc that is used. They can range from manually tuned
-Assembly implementations (like that found in GNU's libc) all the way to
-non-vectorized C implementations (like that found in MUSL).
+# Overview
 
-To smooth out the differences between implementations of libc, at least
-on `x86_64` for Rust 1.27+, this crate provides its own implementation of
-`memchr` that should perform competitively with the one found in GNU's libc.
-The implementation is in pure Rust and has no dependency on a C compiler or an
-Assembler.
+This section gives a brief high level overview of what this crate offers.
 
-Additionally, GNU libc also provides an extension, `memrchr`. This crate
-provides its own implementation of `memrchr` as well, on top of `memchr2`,
-`memchr3`, `memrchr2` and `memrchr3`. The difference between `memchr` and
-`memchr2` is that that `memchr2` permits finding all occurrences of two bytes
-instead of one. Similarly for `memchr3`.
+* The top-level module provides routines for searching for 1, 2 or 3 bytes
+  in the forward or reverse direction. When searching for more than one byte,
+  positions are considered a match if the byte at that position matches any
+  of the bytes.
+* The [`memmem`] sub-module provides forward and reverse substring search
+  routines.
+
+In all such cases, routines operate on `&[u8]` without regard to encoding. This
+is exactly what you want when searching either UTF-8 or arbitrary bytes.
+
+# Example: using `memchr`
+
+This example shows how to use `memchr` to find the first occurrence of `z` in
+a haystack:
+
+```
+use memchr::memchr;
+
+let haystack = b"foo bar baz quuz";
+assert_eq!(Some(10), memchr(b'z', haystack));
+```
+
+# Example: matching one of three possible bytes
+
+This examples shows how to use `memrchr3` to find occurrences of `a`, `b` or
+`c`, starting at the end of the haystack.
+
+```
+use memchr::memchr3_iter;
+
+let haystack = b"xyzaxyzbxyzc";
+
+let mut it = memchr3_iter(b'a', b'b', b'c', haystack).rev();
+assert_eq!(Some(11), it.next());
+assert_eq!(Some(7), it.next());
+assert_eq!(Some(3), it.next());
+assert_eq!(None, it.next());
+```
+
+# Example: iterating over substring matches
+
+This example shows how to use the [`memmem`] sub-module to find occurrences of
+a substring in a haystack.
+
+```
+use memchr::memmem;
+
+let haystack = b"foo bar foo baz foo";
+
+let mut it = memmem::find_iter(haystack, "foo");
+assert_eq!(Some(0), it.next());
+assert_eq!(Some(8), it.next());
+assert_eq!(Some(16), it.next());
+assert_eq!(None, it.next());
+```
+
+# Example: repeating a search for the same needle
+
+It may be possible for the overhead of constructing a substring searcher to be
+measurable in some workloads. In cases where the same needle is used to search
+many haystacks, it is possible to do construction once and thus to avoid it for
+subsequent searches. This can be done with a [`memmem::Finder`]:
+
+```
+use memchr::memmem;
+
+let finder = memmem::Finder::new("foo");
+
+assert_eq!(Some(4), finder.find(b"baz foo quux"));
+assert_eq!(None, finder.find(b"quux baz bar"));
+```
+
+# Why use this crate?
+
+At first glance, the APIs provided by this crate might seem weird. Why provide
+a dedicated routine like `memchr` for something that could be implemented
+clearly and trivially in one line:
+
+```
+fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
+    haystack.iter().position(|&b| b == needle)
+}
+```
+
+Or similarly, why does this crate provide substring search routines when Rust's
+core library already provides them?
+
+```
+fn search(haystack: &str, needle: &str) -> Option<usize> {
+    haystack.find(needle)
+}
+```
+
+The primary reason for both of them to exist is performance. When it comes to
+performance, at a high level at least, there are two primary ways to look at
+it:
+
+* **Throughput**: For this, think about it as, "given some very large haystack
+  and a byte that never occurs in that haystack, how long does it take to
+  search through it and determine that it, in fact, does not occur?"
+* **Latency**: For this, think about it as, "given a tiny haystack---just a
+  few bytes---how long does it take to determine if a byte is in it?"
+
+The `memchr` routine in this crate has _slightly_ worse latency than the
+solution presented above, however, its throughput can easily be over an
+order of magnitude faster. This is a good general purpose trade off to make.
+You rarely lose, but often gain big.
+
+**NOTE:** The name `memchr` comes from the corresponding routine in libc. A key
+advantage of using this library is that its performance is not tied to its
+quality of implementation in the libc you happen to be using, which can vary
+greatly from platform to platform.
+
+But what about substring search? This one is a bit more complicated. The
+primary reason for its existence is still indeed performance, but it's also
+useful because Rust's core library doesn't actually expose any substring
+search routine on arbitrary bytes. The only substring search routine that
+exists works exclusively on valid UTF-8.
+
+So if you have valid UTF-8, is there a reason to use this over the standard
+library substring search routine? Yes. This routine is faster on almost every
+metric, including latency. The natural question then, is why isn't this
+implementation in the standard library, even if only for searching on UTF-8?
+The reason is that the implementation details for using SIMD in the standard
+library haven't quite been worked out yet.
+
+**NOTE:** Currently, only `x86_64` targets have highly accelerated
+implementations of substring search. For `memchr`, all targets have
+somewhat-accelerated implementations, while only `x86_64` targets have highly
+accelerated implementations. This limitation is expected to be lifted once the
+standard library exposes a platform independent SIMD API.
+
+# Crate features
+
+* **std** - When enabled (the default), this will permit this crate to use
+  features specific to the standard library. Currently, the only thing used
+  from the standard library is runtime SIMD CPU feature detection. This means
+  that this feature must be enabled to get AVX accelerated routines. When
+  `std` is not enabled, this crate will still attempt to use SSE2 accelerated
+  routines on `x86_64`.
+* **libc** - When enabled (**not** the default), this library will use your
+  platform's libc implementation of `memchr` (and `memrchr` on Linux). This
+  can be useful on non-`x86_64` targets where the fallback implementation in
+  this crate is not as good as the one found in your libc. All other routines
+  (e.g., `memchr[23]` and substring search) unconditionally use the
+  implementation in this crate.
 */
 
-#![cfg_attr(not(feature = "std"), no_std)]
 #![deny(missing_docs)]
-#![doc(html_root_url = "https://docs.rs/memchr/2.0.0")]
+#![cfg_attr(not(feature = "std"), no_std)]
+// It's not worth trying to gate all code on just miri, so turn off relevant
+// dead code warnings.
+#![cfg_attr(miri, allow(dead_code, unused_macros))]
 
 // Supporting 8-bit (or others) would be fine. If you need it, please submit a
-// bug report at https://github.com/BurntSushi/rust-memchr
+// bug report at https://github.com/BurntSushi/memchr
 #[cfg(not(any(
     target_pointer_width = "16",
     target_pointer_width = "32",
     target_pointer_width = "64"
 )))]
-compile_error!("memchr currently not supported on non-32 or non-64 bit");
+compile_error!("memchr currently not supported on non-{16,32,64}");
 
-#[cfg(feature = "std")]
-extern crate core;
+pub use crate::memchr::{
+    memchr, memchr2, memchr2_iter, memchr3, memchr3_iter, memchr_iter,
+    memrchr, memrchr2, memrchr2_iter, memrchr3, memrchr3_iter, memrchr_iter,
+    Memchr, Memchr2, Memchr3,
+};
 
-#[cfg(all(test, all(not(miri), feature = "std")))]
-#[macro_use]
-extern crate quickcheck;
-
-use core::iter::Rev;
-
-pub use iter::{Memchr, Memchr2, Memchr3};
-
-// N.B. If you're looking for the cfg knobs for libc, see build.rs.
-#[cfg(memchr_libc)]
-mod c;
-#[allow(dead_code)]
-mod fallback;
-mod iter;
-mod naive;
-#[cfg(all(test, all(not(miri), feature = "std")))]
+mod cow;
+mod memchr;
+pub mod memmem;
+#[cfg(test)]
 mod tests;
-#[cfg(all(test, any(miri, not(feature = "std"))))]
-#[path = "tests/miri.rs"]
-mod tests;
-#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
-mod x86;
-
-/// An iterator over all occurrences of the needle in a haystack.
-#[inline]
-pub fn memchr_iter(needle: u8, haystack: &[u8]) -> Memchr {
-    Memchr::new(needle, haystack)
-}
-
-/// An iterator over all occurrences of the needles in a haystack.
-#[inline]
-pub fn memchr2_iter(needle1: u8, needle2: u8, haystack: &[u8]) -> Memchr2 {
-    Memchr2::new(needle1, needle2, haystack)
-}
-
-/// An iterator over all occurrences of the needles in a haystack.
-#[inline]
-pub fn memchr3_iter(
-    needle1: u8,
-    needle2: u8,
-    needle3: u8,
-    haystack: &[u8],
-) -> Memchr3 {
-    Memchr3::new(needle1, needle2, needle3, haystack)
-}
-
-/// An iterator over all occurrences of the needle in a haystack, in reverse.
-#[inline]
-pub fn memrchr_iter(needle: u8, haystack: &[u8]) -> Rev<Memchr> {
-    Memchr::new(needle, haystack).rev()
-}
-
-/// An iterator over all occurrences of the needles in a haystack, in reverse.
-#[inline]
-pub fn memrchr2_iter(
-    needle1: u8,
-    needle2: u8,
-    haystack: &[u8],
-) -> Rev<Memchr2> {
-    Memchr2::new(needle1, needle2, haystack).rev()
-}
-
-/// An iterator over all occurrences of the needles in a haystack, in reverse.
-#[inline]
-pub fn memrchr3_iter(
-    needle1: u8,
-    needle2: u8,
-    needle3: u8,
-    haystack: &[u8],
-) -> Rev<Memchr3> {
-    Memchr3::new(needle1, needle2, needle3, haystack).rev()
-}
-
-/// Search for the first occurrence of a byte in a slice.
-///
-/// This returns the index corresponding to the first occurrence of `needle` in
-/// `haystack`, or `None` if one is not found.
-///
-/// While this is operationally the same as something like
-/// `haystack.iter().position(|&b| b == needle)`, `memchr` will use a highly
-/// optimized routine that can be up to an order of magnitude faster in some
-/// cases.
-///
-/// # Example
-///
-/// This shows how to find the first position of a byte in a byte string.
-///
-/// ```
-/// use memchr::memchr;
-///
-/// let haystack = b"the quick brown fox";
-/// assert_eq!(memchr(b'k', haystack), Some(8));
-/// ```
-#[inline]
-pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
-    #[cfg(miri)]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        naive::memchr(n1, haystack)
-    }
-
-    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        x86::memchr(n1, haystack)
-    }
-
-    #[cfg(all(
-        memchr_libc,
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        c::memchr(n1, haystack)
-    }
-
-    #[cfg(all(
-        not(memchr_libc),
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        fallback::memchr(n1, haystack)
-    }
-
-    if haystack.is_empty() {
-        None
-    } else {
-        imp(needle, haystack)
-    }
-}
-
-/// Like `memchr`, but searches for either of two bytes instead of just one.
-///
-/// This returns the index corresponding to the first occurrence of `needle1`
-/// or the first occurrence of `needle2` in `haystack` (whichever occurs
-/// earlier), or `None` if neither one is found.
-///
-/// While this is operationally the same as something like
-/// `haystack.iter().position(|&b| b == needle1 || b == needle2)`, `memchr2`
-/// will use a highly optimized routine that can be up to an order of magnitude
-/// faster in some cases.
-///
-/// # Example
-///
-/// This shows how to find the first position of either of two bytes in a byte
-/// string.
-///
-/// ```
-/// use memchr::memchr2;
-///
-/// let haystack = b"the quick brown fox";
-/// assert_eq!(memchr2(b'k', b'q', haystack), Some(4));
-/// ```
-#[inline]
-pub fn memchr2(needle1: u8, needle2: u8, haystack: &[u8]) -> Option<usize> {
-    #[cfg(miri)]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-        naive::memchr2(n1, n2, haystack)
-    }
-
-    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-        x86::memchr2(n1, n2, haystack)
-    }
-
-    #[cfg(all(
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-        fallback::memchr2(n1, n2, haystack)
-    }
-
-    if haystack.is_empty() {
-        None
-    } else {
-        imp(needle1, needle2, haystack)
-    }
-}
-
-/// Like `memchr`, but searches for any of three bytes instead of just one.
-///
-/// This returns the index corresponding to the first occurrence of `needle1`,
-/// the first occurrence of `needle2`, or the first occurrence of `needle3` in
-/// `haystack` (whichever occurs earliest), or `None` if none are found.
-///
-/// While this is operationally the same as something like
-/// `haystack.iter().position(|&b| b == needle1 || b == needle2 ||
-/// b == needle3)`, `memchr3` will use a highly optimized routine that can be
-/// up to an order of magnitude faster in some cases.
-///
-/// # Example
-///
-/// This shows how to find the first position of any of three bytes in a byte
-/// string.
-///
-/// ```
-/// use memchr::memchr3;
-///
-/// let haystack = b"the quick brown fox";
-/// assert_eq!(memchr3(b'k', b'q', b'e', haystack), Some(2));
-/// ```
-#[inline]
-pub fn memchr3(
-    needle1: u8,
-    needle2: u8,
-    needle3: u8,
-    haystack: &[u8],
-) -> Option<usize> {
-    #[cfg(miri)]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-        naive::memchr3(n1, n2, n3, haystack)
-    }
-
-    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-        x86::memchr3(n1, n2, n3, haystack)
-    }
-
-    #[cfg(all(
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-        fallback::memchr3(n1, n2, n3, haystack)
-    }
-
-    if haystack.is_empty() {
-        None
-    } else {
-        imp(needle1, needle2, needle3, haystack)
-    }
-}
-
-/// Search for the last occurrence of a byte in a slice.
-///
-/// This returns the index corresponding to the last occurrence of `needle` in
-/// `haystack`, or `None` if one is not found.
-///
-/// While this is operationally the same as something like
-/// `haystack.iter().rposition(|&b| b == needle)`, `memrchr` will use a highly
-/// optimized routine that can be up to an order of magnitude faster in some
-/// cases.
-///
-/// # Example
-///
-/// This shows how to find the last position of a byte in a byte string.
-///
-/// ```
-/// use memchr::memrchr;
-///
-/// let haystack = b"the quick brown fox";
-/// assert_eq!(memrchr(b'o', haystack), Some(17));
-/// ```
-#[inline]
-pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> {
-    #[cfg(miri)]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        naive::memrchr(n1, haystack)
-    }
-
-    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        x86::memrchr(n1, haystack)
-    }
-
-    #[cfg(all(
-        memchr_libc,
-        target_os = "linux",
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri)
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        c::memrchr(n1, haystack)
-    }
-
-    #[cfg(all(
-        not(all(memchr_libc, target_os = "linux")),
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
-        fallback::memrchr(n1, haystack)
-    }
-
-    if haystack.is_empty() {
-        None
-    } else {
-        imp(needle, haystack)
-    }
-}
-
-/// Like `memrchr`, but searches for either of two bytes instead of just one.
-///
-/// This returns the index corresponding to the last occurrence of `needle1`
-/// or the last occurrence of `needle2` in `haystack` (whichever occurs later),
-/// or `None` if neither one is found.
-///
-/// While this is operationally the same as something like
-/// `haystack.iter().rposition(|&b| b == needle1 || b == needle2)`, `memrchr2`
-/// will use a highly optimized routine that can be up to an order of magnitude
-/// faster in some cases.
-///
-/// # Example
-///
-/// This shows how to find the last position of either of two bytes in a byte
-/// string.
-///
-/// ```
-/// use memchr::memrchr2;
-///
-/// let haystack = b"the quick brown fox";
-/// assert_eq!(memrchr2(b'k', b'q', haystack), Some(8));
-/// ```
-#[inline]
-pub fn memrchr2(needle1: u8, needle2: u8, haystack: &[u8]) -> Option<usize> {
-    #[cfg(miri)]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-        naive::memrchr2(n1, n2, haystack)
-    }
-
-    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-        x86::memrchr2(n1, n2, haystack)
-    }
-
-    #[cfg(all(
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-        fallback::memrchr2(n1, n2, haystack)
-    }
-
-    if haystack.is_empty() {
-        None
-    } else {
-        imp(needle1, needle2, haystack)
-    }
-}
-
-/// Like `memrchr`, but searches for any of three bytes instead of just one.
-///
-/// This returns the index corresponding to the last occurrence of `needle1`,
-/// the last occurrence of `needle2`, or the last occurrence of `needle3` in
-/// `haystack` (whichever occurs later), or `None` if none are found.
-///
-/// While this is operationally the same as something like
-/// `haystack.iter().rposition(|&b| b == needle1 || b == needle2 ||
-/// b == needle3)`, `memrchr3` will use a highly optimized routine that can be
-/// up to an order of magnitude faster in some cases.
-///
-/// # Example
-///
-/// This shows how to find the last position of any of three bytes in a byte
-/// string.
-///
-/// ```
-/// use memchr::memrchr3;
-///
-/// let haystack = b"the quick brown fox";
-/// assert_eq!(memrchr3(b'k', b'q', b'e', haystack), Some(8));
-/// ```
-#[inline]
-pub fn memrchr3(
-    needle1: u8,
-    needle2: u8,
-    needle3: u8,
-    haystack: &[u8],
-) -> Option<usize> {
-    #[cfg(miri)]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-        naive::memrchr3(n1, n2, n3, haystack)
-    }
-
-    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-        x86::memrchr3(n1, n2, n3, haystack)
-    }
-
-    #[cfg(all(
-        not(all(target_arch = "x86_64", memchr_runtime_simd)),
-        not(miri),
-    ))]
-    #[inline(always)]
-    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-        fallback::memrchr3(n1, n2, n3, haystack)
-    }
-
-    if haystack.is_empty() {
-        None
-    } else {
-        imp(needle1, needle2, needle3, haystack)
-    }
-}
diff --git a/src/c.rs b/src/memchr/c.rs
similarity index 80%
rename from src/c.rs
rename to src/memchr/c.rs
index 63feca9..608aabc 100644
--- a/src/c.rs
+++ b/src/memchr/c.rs
@@ -3,11 +3,10 @@
 
 #![allow(dead_code)]
 
-extern crate libc;
-
-use self::libc::{c_int, c_void, size_t};
+use libc::{c_int, c_void, size_t};
 
 pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
+    // SAFETY: This is safe to call since all pointers are valid.
     let p = unsafe {
         libc::memchr(
             haystack.as_ptr() as *const c_void,
@@ -22,13 +21,14 @@
     }
 }
 
-// memrchr is a GNU extension. We know it's available on Linux, so start there.
+// memrchr is a GNU extension. We know it's available on Linux at least.
 #[cfg(target_os = "linux")]
 pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> {
     // GNU's memrchr() will - unlike memchr() - error if haystack is empty.
     if haystack.is_empty() {
         return None;
     }
+    // SAFETY: This is safe to call since all pointers are valid.
     let p = unsafe {
         libc::memrchr(
             haystack.as_ptr() as *const c_void,
diff --git a/src/fallback.rs b/src/memchr/fallback.rs
similarity index 95%
rename from src/fallback.rs
rename to src/memchr/fallback.rs
index 8bc32b2..b01f224 100644
--- a/src/fallback.rs
+++ b/src/memchr/fallback.rs
@@ -2,8 +2,7 @@
 // the memchr routines. We do our best to make them fast. Some of them may even
 // get auto-vectorized.
 
-use core::cmp;
-use core::usize;
+use core::{cmp, usize};
 
 #[cfg(target_pointer_width = "16")]
 const USIZE_BYTES: usize = 2;
@@ -50,10 +49,10 @@
     let loop_size = cmp::min(LOOP_SIZE, haystack.len());
     let align = USIZE_BYTES - 1;
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
     let mut ptr = start_ptr;
 
     unsafe {
+        let end_ptr = start_ptr.add(haystack.len());
         if haystack.len() < USIZE_BYTES {
             return forward_search(start_ptr, end_ptr, ptr, confirm);
         }
@@ -89,10 +88,10 @@
     let confirm = |byte| byte == n1 || byte == n2;
     let align = USIZE_BYTES - 1;
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
     let mut ptr = start_ptr;
 
     unsafe {
+        let end_ptr = start_ptr.add(haystack.len());
         if haystack.len() < USIZE_BYTES {
             return forward_search(start_ptr, end_ptr, ptr, confirm);
         }
@@ -130,10 +129,10 @@
     let confirm = |byte| byte == n1 || byte == n2 || byte == n3;
     let align = USIZE_BYTES - 1;
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
     let mut ptr = start_ptr;
 
     unsafe {
+        let end_ptr = start_ptr.add(haystack.len());
         if haystack.len() < USIZE_BYTES {
             return forward_search(start_ptr, end_ptr, ptr, confirm);
         }
@@ -172,10 +171,10 @@
     let loop_size = cmp::min(LOOP_SIZE, haystack.len());
     let align = USIZE_BYTES - 1;
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
-    let mut ptr = end_ptr;
 
     unsafe {
+        let end_ptr = start_ptr.add(haystack.len());
+        let mut ptr = end_ptr;
         if haystack.len() < USIZE_BYTES {
             return reverse_search(start_ptr, end_ptr, ptr, confirm);
         }
@@ -210,10 +209,10 @@
     let confirm = |byte| byte == n1 || byte == n2;
     let align = USIZE_BYTES - 1;
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
-    let mut ptr = end_ptr;
 
     unsafe {
+        let end_ptr = start_ptr.add(haystack.len());
+        let mut ptr = end_ptr;
         if haystack.len() < USIZE_BYTES {
             return reverse_search(start_ptr, end_ptr, ptr, confirm);
         }
@@ -250,10 +249,10 @@
     let confirm = |byte| byte == n1 || byte == n2 || byte == n3;
     let align = USIZE_BYTES - 1;
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
-    let mut ptr = end_ptr;
 
     unsafe {
+        let end_ptr = start_ptr.add(haystack.len());
+        let mut ptr = end_ptr;
         if haystack.len() < USIZE_BYTES {
             return reverse_search(start_ptr, end_ptr, ptr, confirm);
         }
diff --git a/src/iter.rs b/src/memchr/iter.rs
similarity index 95%
rename from src/iter.rs
rename to src/memchr/iter.rs
index 6217ae4..16e203f 100644
--- a/src/iter.rs
+++ b/src/memchr/iter.rs
@@ -1,4 +1,4 @@
-use {memchr, memchr2, memchr3, memrchr, memrchr2, memrchr3};
+use crate::{memchr, memchr2, memchr3, memrchr, memrchr2, memrchr3};
 
 macro_rules! iter_next {
     // Common code for the memchr iterators:
@@ -42,7 +42,7 @@
 impl<'a> Memchr<'a> {
     /// Creates a new iterator that yields all positions of needle in haystack.
     #[inline]
-    pub fn new(needle: u8, haystack: &[u8]) -> Memchr {
+    pub fn new(needle: u8, haystack: &[u8]) -> Memchr<'_> {
         Memchr { needle: needle, haystack: haystack, position: 0 }
     }
 }
@@ -81,7 +81,7 @@
 impl<'a> Memchr2<'a> {
     /// Creates a new iterator that yields all positions of needle in haystack.
     #[inline]
-    pub fn new(needle1: u8, needle2: u8, haystack: &[u8]) -> Memchr2 {
+    pub fn new(needle1: u8, needle2: u8, haystack: &[u8]) -> Memchr2<'_> {
         Memchr2 {
             needle1: needle1,
             needle2: needle2,
@@ -134,7 +134,7 @@
         needle2: u8,
         needle3: u8,
         haystack: &[u8],
-    ) -> Memchr3 {
+    ) -> Memchr3<'_> {
         Memchr3 {
             needle1: needle1,
             needle2: needle2,
diff --git a/src/memchr/mod.rs b/src/memchr/mod.rs
new file mode 100644
index 0000000..09ce6ef
--- /dev/null
+++ b/src/memchr/mod.rs
@@ -0,0 +1,410 @@
+use core::iter::Rev;
+
+pub use self::iter::{Memchr, Memchr2, Memchr3};
+
+// N.B. If you're looking for the cfg knobs for libc, see build.rs.
+#[cfg(memchr_libc)]
+mod c;
+#[allow(dead_code)]
+pub mod fallback;
+mod iter;
+pub mod naive;
+#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+mod x86;
+
+/// An iterator over all occurrences of the needle in a haystack.
+#[inline]
+pub fn memchr_iter(needle: u8, haystack: &[u8]) -> Memchr<'_> {
+    Memchr::new(needle, haystack)
+}
+
+/// An iterator over all occurrences of the needles in a haystack.
+#[inline]
+pub fn memchr2_iter(needle1: u8, needle2: u8, haystack: &[u8]) -> Memchr2<'_> {
+    Memchr2::new(needle1, needle2, haystack)
+}
+
+/// An iterator over all occurrences of the needles in a haystack.
+#[inline]
+pub fn memchr3_iter(
+    needle1: u8,
+    needle2: u8,
+    needle3: u8,
+    haystack: &[u8],
+) -> Memchr3<'_> {
+    Memchr3::new(needle1, needle2, needle3, haystack)
+}
+
+/// An iterator over all occurrences of the needle in a haystack, in reverse.
+#[inline]
+pub fn memrchr_iter(needle: u8, haystack: &[u8]) -> Rev<Memchr<'_>> {
+    Memchr::new(needle, haystack).rev()
+}
+
+/// An iterator over all occurrences of the needles in a haystack, in reverse.
+#[inline]
+pub fn memrchr2_iter(
+    needle1: u8,
+    needle2: u8,
+    haystack: &[u8],
+) -> Rev<Memchr2<'_>> {
+    Memchr2::new(needle1, needle2, haystack).rev()
+}
+
+/// An iterator over all occurrences of the needles in a haystack, in reverse.
+#[inline]
+pub fn memrchr3_iter(
+    needle1: u8,
+    needle2: u8,
+    needle3: u8,
+    haystack: &[u8],
+) -> Rev<Memchr3<'_>> {
+    Memchr3::new(needle1, needle2, needle3, haystack).rev()
+}
+
+/// Search for the first occurrence of a byte in a slice.
+///
+/// This returns the index corresponding to the first occurrence of `needle` in
+/// `haystack`, or `None` if one is not found. If an index is returned, it is
+/// guaranteed to be less than `usize::MAX`.
+///
+/// While this is operationally the same as something like
+/// `haystack.iter().position(|&b| b == needle)`, `memchr` will use a highly
+/// optimized routine that can be up to an order of magnitude faster in some
+/// cases.
+///
+/// # Example
+///
+/// This shows how to find the first position of a byte in a byte string.
+///
+/// ```
+/// use memchr::memchr;
+///
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memchr(b'k', haystack), Some(8));
+/// ```
+#[inline]
+pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
+    #[cfg(miri)]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        naive::memchr(n1, haystack)
+    }
+
+    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        x86::memchr(n1, haystack)
+    }
+
+    #[cfg(all(
+        memchr_libc,
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        c::memchr(n1, haystack)
+    }
+
+    #[cfg(all(
+        not(memchr_libc),
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        fallback::memchr(n1, haystack)
+    }
+
+    if haystack.is_empty() {
+        None
+    } else {
+        imp(needle, haystack)
+    }
+}
+
+/// Like `memchr`, but searches for either of two bytes instead of just one.
+///
+/// This returns the index corresponding to the first occurrence of `needle1`
+/// or the first occurrence of `needle2` in `haystack` (whichever occurs
+/// earlier), or `None` if neither one is found. If an index is returned, it is
+/// guaranteed to be less than `usize::MAX`.
+///
+/// While this is operationally the same as something like
+/// `haystack.iter().position(|&b| b == needle1 || b == needle2)`, `memchr2`
+/// will use a highly optimized routine that can be up to an order of magnitude
+/// faster in some cases.
+///
+/// # Example
+///
+/// This shows how to find the first position of either of two bytes in a byte
+/// string.
+///
+/// ```
+/// use memchr::memchr2;
+///
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memchr2(b'k', b'q', haystack), Some(4));
+/// ```
+#[inline]
+pub fn memchr2(needle1: u8, needle2: u8, haystack: &[u8]) -> Option<usize> {
+    #[cfg(miri)]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+        naive::memchr2(n1, n2, haystack)
+    }
+
+    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+        x86::memchr2(n1, n2, haystack)
+    }
+
+    #[cfg(all(
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+        fallback::memchr2(n1, n2, haystack)
+    }
+
+    if haystack.is_empty() {
+        None
+    } else {
+        imp(needle1, needle2, haystack)
+    }
+}
+
+/// Like `memchr`, but searches for any of three bytes instead of just one.
+///
+/// This returns the index corresponding to the first occurrence of `needle1`,
+/// the first occurrence of `needle2`, or the first occurrence of `needle3` in
+/// `haystack` (whichever occurs earliest), or `None` if none are found. If an
+/// index is returned, it is guaranteed to be less than `usize::MAX`.
+///
+/// While this is operationally the same as something like
+/// `haystack.iter().position(|&b| b == needle1 || b == needle2 ||
+/// b == needle3)`, `memchr3` will use a highly optimized routine that can be
+/// up to an order of magnitude faster in some cases.
+///
+/// # Example
+///
+/// This shows how to find the first position of any of three bytes in a byte
+/// string.
+///
+/// ```
+/// use memchr::memchr3;
+///
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memchr3(b'k', b'q', b'e', haystack), Some(2));
+/// ```
+#[inline]
+pub fn memchr3(
+    needle1: u8,
+    needle2: u8,
+    needle3: u8,
+    haystack: &[u8],
+) -> Option<usize> {
+    #[cfg(miri)]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+        naive::memchr3(n1, n2, n3, haystack)
+    }
+
+    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+        x86::memchr3(n1, n2, n3, haystack)
+    }
+
+    #[cfg(all(
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+        fallback::memchr3(n1, n2, n3, haystack)
+    }
+
+    if haystack.is_empty() {
+        None
+    } else {
+        imp(needle1, needle2, needle3, haystack)
+    }
+}
+
+/// Search for the last occurrence of a byte in a slice.
+///
+/// This returns the index corresponding to the last occurrence of `needle` in
+/// `haystack`, or `None` if one is not found. If an index is returned, it is
+/// guaranteed to be less than `usize::MAX`.
+///
+/// While this is operationally the same as something like
+/// `haystack.iter().rposition(|&b| b == needle)`, `memrchr` will use a highly
+/// optimized routine that can be up to an order of magnitude faster in some
+/// cases.
+///
+/// # Example
+///
+/// This shows how to find the last position of a byte in a byte string.
+///
+/// ```
+/// use memchr::memrchr;
+///
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memrchr(b'o', haystack), Some(17));
+/// ```
+#[inline]
+pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> {
+    #[cfg(miri)]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        naive::memrchr(n1, haystack)
+    }
+
+    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        x86::memrchr(n1, haystack)
+    }
+
+    #[cfg(all(
+        memchr_libc,
+        target_os = "linux",
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri)
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        c::memrchr(n1, haystack)
+    }
+
+    #[cfg(all(
+        not(all(memchr_libc, target_os = "linux")),
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, haystack: &[u8]) -> Option<usize> {
+        fallback::memrchr(n1, haystack)
+    }
+
+    if haystack.is_empty() {
+        None
+    } else {
+        imp(needle, haystack)
+    }
+}
+
+/// Like `memrchr`, but searches for either of two bytes instead of just one.
+///
+/// This returns the index corresponding to the last occurrence of `needle1` or
+/// the last occurrence of `needle2` in `haystack` (whichever occurs later), or
+/// `None` if neither one is found. If an index is returned, it is guaranteed
+/// to be less than `usize::MAX`.
+///
+/// While this is operationally the same as something like
+/// `haystack.iter().rposition(|&b| b == needle1 || b == needle2)`, `memrchr2`
+/// will use a highly optimized routine that can be up to an order of magnitude
+/// faster in some cases.
+///
+/// # Example
+///
+/// This shows how to find the last position of either of two bytes in a byte
+/// string.
+///
+/// ```
+/// use memchr::memrchr2;
+///
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memrchr2(b'k', b'q', haystack), Some(8));
+/// ```
+#[inline]
+pub fn memrchr2(needle1: u8, needle2: u8, haystack: &[u8]) -> Option<usize> {
+    #[cfg(miri)]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+        naive::memrchr2(n1, n2, haystack)
+    }
+
+    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+        x86::memrchr2(n1, n2, haystack)
+    }
+
+    #[cfg(all(
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+        fallback::memrchr2(n1, n2, haystack)
+    }
+
+    if haystack.is_empty() {
+        None
+    } else {
+        imp(needle1, needle2, haystack)
+    }
+}
+
+/// Like `memrchr`, but searches for any of three bytes instead of just one.
+///
+/// This returns the index corresponding to the last occurrence of `needle1`,
+/// the last occurrence of `needle2`, or the last occurrence of `needle3` in
+/// `haystack` (whichever occurs later), or `None` if none are found. If an
+/// index is returned, it is guaranteed to be less than `usize::MAX`.
+///
+/// While this is operationally the same as something like
+/// `haystack.iter().rposition(|&b| b == needle1 || b == needle2 ||
+/// b == needle3)`, `memrchr3` will use a highly optimized routine that can be
+/// up to an order of magnitude faster in some cases.
+///
+/// # Example
+///
+/// This shows how to find the last position of any of three bytes in a byte
+/// string.
+///
+/// ```
+/// use memchr::memrchr3;
+///
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memrchr3(b'k', b'q', b'e', haystack), Some(8));
+/// ```
+#[inline]
+pub fn memrchr3(
+    needle1: u8,
+    needle2: u8,
+    needle3: u8,
+    haystack: &[u8],
+) -> Option<usize> {
+    #[cfg(miri)]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+        naive::memrchr3(n1, n2, n3, haystack)
+    }
+
+    #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+        x86::memrchr3(n1, n2, n3, haystack)
+    }
+
+    #[cfg(all(
+        not(all(target_arch = "x86_64", memchr_runtime_simd)),
+        not(miri),
+    ))]
+    #[inline(always)]
+    fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+        fallback::memrchr3(n1, n2, n3, haystack)
+    }
+
+    if haystack.is_empty() {
+        None
+    } else {
+        imp(needle1, needle2, needle3, haystack)
+    }
+}
diff --git a/src/naive.rs b/src/memchr/naive.rs
similarity index 100%
rename from src/naive.rs
rename to src/memchr/naive.rs
diff --git a/src/x86/avx.rs b/src/memchr/x86/avx.rs
similarity index 86%
rename from src/x86/avx.rs
rename to src/memchr/x86/avx.rs
index e3d8e89..5351230 100644
--- a/src/x86/avx.rs
+++ b/src/memchr/x86/avx.rs
@@ -1,8 +1,6 @@
-use core::arch::x86_64::*;
-use core::cmp;
-use core::mem::size_of;
+use core::{arch::x86_64::*, cmp, mem::size_of};
 
-use x86::sse2;
+use super::sse2;
 
 const VECTOR_SIZE: usize = size_of::<__m256i>();
 const VECTOR_ALIGN: usize = VECTOR_SIZE - 1;
@@ -22,8 +20,50 @@
     // sse2 implementation. The avx implementation here is the same, but with
     // 256-bit vectors instead of 128-bit vectors.
 
+    // This routine is called whenever a match is detected. It is specifically
+    // marked as unlineable because it improves the codegen of the unrolled
+    // loop below. Inlining this seems to cause codegen with some extra adds
+    // and a load that aren't necessary. This seems to result in about a 10%
+    // improvement for the memchr1/crate/huge/never benchmark.
+    //
+    // Interestingly, I couldn't observe a similar improvement for memrchr.
+    #[cold]
+    #[inline(never)]
+    #[target_feature(enable = "avx2")]
+    unsafe fn matched(
+        start_ptr: *const u8,
+        ptr: *const u8,
+        eqa: __m256i,
+        eqb: __m256i,
+        eqc: __m256i,
+        eqd: __m256i,
+    ) -> usize {
+        let mut at = sub(ptr, start_ptr);
+        let mask = _mm256_movemask_epi8(eqa);
+        if mask != 0 {
+            return at + forward_pos(mask);
+        }
+
+        at += VECTOR_SIZE;
+        let mask = _mm256_movemask_epi8(eqb);
+        if mask != 0 {
+            return at + forward_pos(mask);
+        }
+
+        at += VECTOR_SIZE;
+        let mask = _mm256_movemask_epi8(eqc);
+        if mask != 0 {
+            return at + forward_pos(mask);
+        }
+
+        at += VECTOR_SIZE;
+        let mask = _mm256_movemask_epi8(eqd);
+        debug_assert!(mask != 0);
+        at + forward_pos(mask)
+    }
+
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = start_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -54,29 +94,9 @@
         let or1 = _mm256_or_si256(eqa, eqb);
         let or2 = _mm256_or_si256(eqc, eqd);
         let or3 = _mm256_or_si256(or1, or2);
+
         if _mm256_movemask_epi8(or3) != 0 {
-            let mut at = sub(ptr, start_ptr);
-            let mask = _mm256_movemask_epi8(eqa);
-            if mask != 0 {
-                return Some(at + forward_pos(mask));
-            }
-
-            at += VECTOR_SIZE;
-            let mask = _mm256_movemask_epi8(eqb);
-            if mask != 0 {
-                return Some(at + forward_pos(mask));
-            }
-
-            at += VECTOR_SIZE;
-            let mask = _mm256_movemask_epi8(eqc);
-            if mask != 0 {
-                return Some(at + forward_pos(mask));
-            }
-
-            at += VECTOR_SIZE;
-            let mask = _mm256_movemask_epi8(eqd);
-            debug_assert!(mask != 0);
-            return Some(at + forward_pos(mask));
+            return Some(matched(start_ptr, ptr, eqa, eqb, eqc, eqd));
         }
         ptr = ptr.add(loop_size);
     }
@@ -100,12 +120,36 @@
 
 #[target_feature(enable = "avx2")]
 pub unsafe fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+    #[cold]
+    #[inline(never)]
+    #[target_feature(enable = "avx2")]
+    unsafe fn matched(
+        start_ptr: *const u8,
+        ptr: *const u8,
+        eqa1: __m256i,
+        eqa2: __m256i,
+        eqb1: __m256i,
+        eqb2: __m256i,
+    ) -> usize {
+        let mut at = sub(ptr, start_ptr);
+        let mask1 = _mm256_movemask_epi8(eqa1);
+        let mask2 = _mm256_movemask_epi8(eqa2);
+        if mask1 != 0 || mask2 != 0 {
+            return at + forward_pos2(mask1, mask2);
+        }
+
+        at += VECTOR_SIZE;
+        let mask1 = _mm256_movemask_epi8(eqb1);
+        let mask2 = _mm256_movemask_epi8(eqb2);
+        at + forward_pos2(mask1, mask2)
+    }
+
     let vn1 = _mm256_set1_epi8(n1 as i8);
     let vn2 = _mm256_set1_epi8(n2 as i8);
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = start_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -137,17 +181,7 @@
         let or2 = _mm256_or_si256(eqa2, eqb2);
         let or3 = _mm256_or_si256(or1, or2);
         if _mm256_movemask_epi8(or3) != 0 {
-            let mut at = sub(ptr, start_ptr);
-            let mask1 = _mm256_movemask_epi8(eqa1);
-            let mask2 = _mm256_movemask_epi8(eqa2);
-            if mask1 != 0 || mask2 != 0 {
-                return Some(at + forward_pos2(mask1, mask2));
-            }
-
-            at += VECTOR_SIZE;
-            let mask1 = _mm256_movemask_epi8(eqb1);
-            let mask2 = _mm256_movemask_epi8(eqb2);
-            return Some(at + forward_pos2(mask1, mask2));
+            return Some(matched(start_ptr, ptr, eqa1, eqa2, eqb1, eqb2));
         }
         ptr = ptr.add(loop_size);
     }
@@ -174,13 +208,41 @@
     n3: u8,
     haystack: &[u8],
 ) -> Option<usize> {
+    #[cold]
+    #[inline(never)]
+    #[target_feature(enable = "avx2")]
+    unsafe fn matched(
+        start_ptr: *const u8,
+        ptr: *const u8,
+        eqa1: __m256i,
+        eqa2: __m256i,
+        eqa3: __m256i,
+        eqb1: __m256i,
+        eqb2: __m256i,
+        eqb3: __m256i,
+    ) -> usize {
+        let mut at = sub(ptr, start_ptr);
+        let mask1 = _mm256_movemask_epi8(eqa1);
+        let mask2 = _mm256_movemask_epi8(eqa2);
+        let mask3 = _mm256_movemask_epi8(eqa3);
+        if mask1 != 0 || mask2 != 0 || mask3 != 0 {
+            return at + forward_pos3(mask1, mask2, mask3);
+        }
+
+        at += VECTOR_SIZE;
+        let mask1 = _mm256_movemask_epi8(eqb1);
+        let mask2 = _mm256_movemask_epi8(eqb2);
+        let mask3 = _mm256_movemask_epi8(eqb3);
+        at + forward_pos3(mask1, mask2, mask3)
+    }
+
     let vn1 = _mm256_set1_epi8(n1 as i8);
     let vn2 = _mm256_set1_epi8(n2 as i8);
     let vn3 = _mm256_set1_epi8(n3 as i8);
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = start_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -216,19 +278,9 @@
         let or4 = _mm256_or_si256(or1, or2);
         let or5 = _mm256_or_si256(or3, or4);
         if _mm256_movemask_epi8(or5) != 0 {
-            let mut at = sub(ptr, start_ptr);
-            let mask1 = _mm256_movemask_epi8(eqa1);
-            let mask2 = _mm256_movemask_epi8(eqa2);
-            let mask3 = _mm256_movemask_epi8(eqa3);
-            if mask1 != 0 || mask2 != 0 || mask3 != 0 {
-                return Some(at + forward_pos3(mask1, mask2, mask3));
-            }
-
-            at += VECTOR_SIZE;
-            let mask1 = _mm256_movemask_epi8(eqb1);
-            let mask2 = _mm256_movemask_epi8(eqb2);
-            let mask3 = _mm256_movemask_epi8(eqb3);
-            return Some(at + forward_pos3(mask1, mask2, mask3));
+            return Some(matched(
+                start_ptr, ptr, eqa1, eqa2, eqa3, eqb1, eqb2, eqb3,
+            ));
         }
         ptr = ptr.add(loop_size);
     }
@@ -256,7 +308,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = end_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -336,7 +388,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = end_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -409,7 +461,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = end_ptr;
 
     if haystack.len() < VECTOR_SIZE {
diff --git a/src/memchr/x86/mod.rs b/src/memchr/x86/mod.rs
new file mode 100644
index 0000000..aec35db
--- /dev/null
+++ b/src/memchr/x86/mod.rs
@@ -0,0 +1,148 @@
+use super::fallback;
+
+// We only use AVX when we can detect at runtime whether it's available, which
+// requires std.
+#[cfg(feature = "std")]
+mod avx;
+mod sse2;
+
+/// This macro employs a gcc-like "ifunc" trick where by upon first calling
+/// `memchr` (for example), CPU feature detection will be performed at runtime
+/// to determine the best implementation to use. After CPU feature detection
+/// is done, we replace `memchr`'s function pointer with the selection. Upon
+/// subsequent invocations, the CPU-specific routine is invoked directly, which
+/// skips the CPU feature detection and subsequent branch that's required.
+///
+/// While this typically doesn't matter for rare occurrences or when used on
+/// larger haystacks, `memchr` can be called in tight loops where the overhead
+/// of this branch can actually add up *and is measurable*. This trick was
+/// necessary to bring this implementation up to glibc's speeds for the 'tiny'
+/// benchmarks, for example.
+///
+/// At some point, I expect the Rust ecosystem will get a nice macro for doing
+/// exactly this, at which point, we can replace our hand-jammed version of it.
+///
+/// N.B. The ifunc strategy does prevent function inlining of course, but
+/// on modern CPUs, you'll probably end up with the AVX2 implementation,
+/// which probably can't be inlined anyway---unless you've compiled your
+/// entire program with AVX2 enabled. However, even then, the various memchr
+/// implementations aren't exactly small, so inlining might not help anyway!
+///
+/// # Safety
+///
+/// Callers must ensure that fnty is function pointer type.
+#[cfg(feature = "std")]
+macro_rules! unsafe_ifunc {
+    ($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
+        use std::{mem, sync::atomic::{AtomicPtr, Ordering}};
+
+        type FnRaw = *mut ();
+
+        static FN: AtomicPtr<()> = AtomicPtr::new(detect as FnRaw);
+
+        fn detect($($needle: u8),+, haystack: &[u8]) -> Option<usize> {
+            let fun =
+                if cfg!(memchr_runtime_avx) && is_x86_feature_detected!("avx2") {
+                    avx::$name as FnRaw
+                } else if cfg!(memchr_runtime_sse2) {
+                    sse2::$name as FnRaw
+                } else {
+                    fallback::$name as FnRaw
+                };
+            FN.store(fun as FnRaw, Ordering::Relaxed);
+            // SAFETY: By virtue of the caller contract, $fnty is a function
+            // pointer, which is always safe to transmute with a *mut ().
+            // Also, if 'fun is the AVX routine, then it is guaranteed to be
+            // supported since we checked the avx2 feature.
+            unsafe {
+                mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, haystack)
+            }
+        }
+
+        // SAFETY: By virtue of the caller contract, $fnty is a function
+        // pointer, which is always safe to transmute with a *mut (). Also, if
+        // 'fun is the AVX routine, then it is guaranteed to be supported since
+        // we checked the avx2 feature.
+        unsafe {
+            let fun = FN.load(Ordering::Relaxed);
+            mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, $haystack)
+        }
+    }}
+}
+
+/// When std isn't available to provide runtime CPU feature detection, or if
+/// runtime CPU feature detection has been explicitly disabled, then just
+/// call our optimized SSE2 routine directly. SSE2 is avalbale on all x86_64
+/// targets, so no CPU feature detection is necessary.
+///
+/// # Safety
+///
+/// There are no safety requirements for this definition of the macro. It is
+/// safe for all inputs since it is restricted to either the fallback routine
+/// or the SSE routine, which is always safe to call on x86_64.
+#[cfg(not(feature = "std"))]
+macro_rules! unsafe_ifunc {
+    ($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
+        if cfg!(memchr_runtime_sse2) {
+            unsafe { sse2::$name($($needle),+, $haystack) }
+        } else {
+            fallback::$name($($needle),+, $haystack)
+        }
+    }}
+}
+
+#[inline(always)]
+pub fn memchr(n1: u8, haystack: &[u8]) -> Option<usize> {
+    unsafe_ifunc!(fn(u8, &[u8]) -> Option<usize>, memchr, haystack, n1)
+}
+
+#[inline(always)]
+pub fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+    unsafe_ifunc!(
+        fn(u8, u8, &[u8]) -> Option<usize>,
+        memchr2,
+        haystack,
+        n1,
+        n2
+    )
+}
+
+#[inline(always)]
+pub fn memchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+    unsafe_ifunc!(
+        fn(u8, u8, u8, &[u8]) -> Option<usize>,
+        memchr3,
+        haystack,
+        n1,
+        n2,
+        n3
+    )
+}
+
+#[inline(always)]
+pub fn memrchr(n1: u8, haystack: &[u8]) -> Option<usize> {
+    unsafe_ifunc!(fn(u8, &[u8]) -> Option<usize>, memrchr, haystack, n1)
+}
+
+#[inline(always)]
+pub fn memrchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
+    unsafe_ifunc!(
+        fn(u8, u8, &[u8]) -> Option<usize>,
+        memrchr2,
+        haystack,
+        n1,
+        n2
+    )
+}
+
+#[inline(always)]
+pub fn memrchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
+    unsafe_ifunc!(
+        fn(u8, u8, u8, &[u8]) -> Option<usize>,
+        memrchr3,
+        haystack,
+        n1,
+        n2,
+        n3
+    )
+}
diff --git a/src/x86/sse2.rs b/src/memchr/x86/sse2.rs
similarity index 98%
rename from src/x86/sse2.rs
rename to src/memchr/x86/sse2.rs
index 76f5a78..b7b3a93 100644
--- a/src/x86/sse2.rs
+++ b/src/memchr/x86/sse2.rs
@@ -1,6 +1,4 @@
-use core::arch::x86_64::*;
-use core::cmp;
-use core::mem::size_of;
+use core::{arch::x86_64::*, cmp, mem::size_of};
 
 const VECTOR_SIZE: usize = size_of::<__m128i>();
 const VECTOR_ALIGN: usize = VECTOR_SIZE - 1;
@@ -111,7 +109,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = start_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -195,7 +193,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = start_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -270,7 +268,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = start_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -346,7 +344,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = end_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -426,7 +424,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = end_ptr;
 
     if haystack.len() < VECTOR_SIZE {
@@ -499,7 +497,7 @@
     let len = haystack.len();
     let loop_size = cmp::min(LOOP_SIZE2, len);
     let start_ptr = haystack.as_ptr();
-    let end_ptr = haystack[haystack.len()..].as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
     let mut ptr = end_ptr;
 
     if haystack.len() < VECTOR_SIZE {
diff --git a/src/x86/sse42.rs b/src/memchr/x86/sse42.rs
similarity index 89%
rename from src/x86/sse42.rs
rename to src/memchr/x86/sse42.rs
index 78a9b37..da38e50 100644
--- a/src/x86/sse42.rs
+++ b/src/memchr/x86/sse42.rs
@@ -9,31 +9,28 @@
 // I don't see a way of effectively using PCMPISTRI unless there's some fast
 // way to replace zero bytes with a byte that is not not a needle byte.
 
-use core::arch::x86_64::*;
-use core::mem::size_of;
+use core::{arch::x86_64::*, mem::size_of};
 
 use x86::sse2;
 
 const VECTOR_SIZE: usize = size_of::<__m128i>();
-const CONTROL_ANY: i32 =
-    _SIDD_UBYTE_OPS
+const CONTROL_ANY: i32 = _SIDD_UBYTE_OPS
     | _SIDD_CMP_EQUAL_ANY
     | _SIDD_POSITIVE_POLARITY
     | _SIDD_LEAST_SIGNIFICANT;
 
 #[target_feature(enable = "sse4.2")]
 pub unsafe fn memchr3(
-    n1: u8, n2: u8, n3: u8,
-    haystack: &[u8]
+    n1: u8,
+    n2: u8,
+    n3: u8,
+    haystack: &[u8],
 ) -> Option<usize> {
     let vn1 = _mm_set1_epi8(n1 as i8);
     let vn2 = _mm_set1_epi8(n2 as i8);
     let vn3 = _mm_set1_epi8(n3 as i8);
     let vn = _mm_setr_epi8(
-        n1 as i8, n2 as i8, n3 as i8, 0,
-        0, 0, 0, 0,
-        0, 0, 0, 0,
-        0, 0, 0, 0,
+        n1 as i8, n2 as i8, n3 as i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     );
     let len = haystack.len();
     let start_ptr = haystack.as_ptr();
diff --git a/src/memmem/byte_frequencies.rs b/src/memmem/byte_frequencies.rs
new file mode 100644
index 0000000..c313b62
--- /dev/null
+++ b/src/memmem/byte_frequencies.rs
@@ -0,0 +1,258 @@
+pub const BYTE_FREQUENCIES: [u8; 256] = [
+    55,  // '\x00'
+    52,  // '\x01'
+    51,  // '\x02'
+    50,  // '\x03'
+    49,  // '\x04'
+    48,  // '\x05'
+    47,  // '\x06'
+    46,  // '\x07'
+    45,  // '\x08'
+    103, // '\t'
+    242, // '\n'
+    66,  // '\x0b'
+    67,  // '\x0c'
+    229, // '\r'
+    44,  // '\x0e'
+    43,  // '\x0f'
+    42,  // '\x10'
+    41,  // '\x11'
+    40,  // '\x12'
+    39,  // '\x13'
+    38,  // '\x14'
+    37,  // '\x15'
+    36,  // '\x16'
+    35,  // '\x17'
+    34,  // '\x18'
+    33,  // '\x19'
+    56,  // '\x1a'
+    32,  // '\x1b'
+    31,  // '\x1c'
+    30,  // '\x1d'
+    29,  // '\x1e'
+    28,  // '\x1f'
+    255, // ' '
+    148, // '!'
+    164, // '"'
+    149, // '#'
+    136, // '$'
+    160, // '%'
+    155, // '&'
+    173, // "'"
+    221, // '('
+    222, // ')'
+    134, // '*'
+    122, // '+'
+    232, // ','
+    202, // '-'
+    215, // '.'
+    224, // '/'
+    208, // '0'
+    220, // '1'
+    204, // '2'
+    187, // '3'
+    183, // '4'
+    179, // '5'
+    177, // '6'
+    168, // '7'
+    178, // '8'
+    200, // '9'
+    226, // ':'
+    195, // ';'
+    154, // '<'
+    184, // '='
+    174, // '>'
+    126, // '?'
+    120, // '@'
+    191, // 'A'
+    157, // 'B'
+    194, // 'C'
+    170, // 'D'
+    189, // 'E'
+    162, // 'F'
+    161, // 'G'
+    150, // 'H'
+    193, // 'I'
+    142, // 'J'
+    137, // 'K'
+    171, // 'L'
+    176, // 'M'
+    185, // 'N'
+    167, // 'O'
+    186, // 'P'
+    112, // 'Q'
+    175, // 'R'
+    192, // 'S'
+    188, // 'T'
+    156, // 'U'
+    140, // 'V'
+    143, // 'W'
+    123, // 'X'
+    133, // 'Y'
+    128, // 'Z'
+    147, // '['
+    138, // '\\'
+    146, // ']'
+    114, // '^'
+    223, // '_'
+    151, // '`'
+    249, // 'a'
+    216, // 'b'
+    238, // 'c'
+    236, // 'd'
+    253, // 'e'
+    227, // 'f'
+    218, // 'g'
+    230, // 'h'
+    247, // 'i'
+    135, // 'j'
+    180, // 'k'
+    241, // 'l'
+    233, // 'm'
+    246, // 'n'
+    244, // 'o'
+    231, // 'p'
+    139, // 'q'
+    245, // 'r'
+    243, // 's'
+    251, // 't'
+    235, // 'u'
+    201, // 'v'
+    196, // 'w'
+    240, // 'x'
+    214, // 'y'
+    152, // 'z'
+    182, // '{'
+    205, // '|'
+    181, // '}'
+    127, // '~'
+    27,  // '\x7f'
+    212, // '\x80'
+    211, // '\x81'
+    210, // '\x82'
+    213, // '\x83'
+    228, // '\x84'
+    197, // '\x85'
+    169, // '\x86'
+    159, // '\x87'
+    131, // '\x88'
+    172, // '\x89'
+    105, // '\x8a'
+    80,  // '\x8b'
+    98,  // '\x8c'
+    96,  // '\x8d'
+    97,  // '\x8e'
+    81,  // '\x8f'
+    207, // '\x90'
+    145, // '\x91'
+    116, // '\x92'
+    115, // '\x93'
+    144, // '\x94'
+    130, // '\x95'
+    153, // '\x96'
+    121, // '\x97'
+    107, // '\x98'
+    132, // '\x99'
+    109, // '\x9a'
+    110, // '\x9b'
+    124, // '\x9c'
+    111, // '\x9d'
+    82,  // '\x9e'
+    108, // '\x9f'
+    118, // '\xa0'
+    141, // '¡'
+    113, // '¢'
+    129, // '£'
+    119, // '¤'
+    125, // '¥'
+    165, // '¦'
+    117, // '§'
+    92,  // '¨'
+    106, // '©'
+    83,  // 'ª'
+    72,  // '«'
+    99,  // '¬'
+    93,  // '\xad'
+    65,  // '®'
+    79,  // '¯'
+    166, // '°'
+    237, // '±'
+    163, // '²'
+    199, // '³'
+    190, // '´'
+    225, // 'µ'
+    209, // '¶'
+    203, // '·'
+    198, // '¸'
+    217, // '¹'
+    219, // 'º'
+    206, // '»'
+    234, // '¼'
+    248, // '½'
+    158, // '¾'
+    239, // '¿'
+    255, // 'À'
+    255, // 'Á'
+    255, // 'Â'
+    255, // 'Ã'
+    255, // 'Ä'
+    255, // 'Å'
+    255, // 'Æ'
+    255, // 'Ç'
+    255, // 'È'
+    255, // 'É'
+    255, // 'Ê'
+    255, // 'Ë'
+    255, // 'Ì'
+    255, // 'Í'
+    255, // 'Î'
+    255, // 'Ï'
+    255, // 'Ð'
+    255, // 'Ñ'
+    255, // 'Ò'
+    255, // 'Ó'
+    255, // 'Ô'
+    255, // 'Õ'
+    255, // 'Ö'
+    255, // '×'
+    255, // 'Ø'
+    255, // 'Ù'
+    255, // 'Ú'
+    255, // 'Û'
+    255, // 'Ü'
+    255, // 'Ý'
+    255, // 'Þ'
+    255, // 'ß'
+    255, // 'à'
+    255, // 'á'
+    255, // 'â'
+    255, // 'ã'
+    255, // 'ä'
+    255, // 'å'
+    255, // 'æ'
+    255, // 'ç'
+    255, // 'è'
+    255, // 'é'
+    255, // 'ê'
+    255, // 'ë'
+    255, // 'ì'
+    255, // 'í'
+    255, // 'î'
+    255, // 'ï'
+    255, // 'ð'
+    255, // 'ñ'
+    255, // 'ò'
+    255, // 'ó'
+    255, // 'ô'
+    255, // 'õ'
+    255, // 'ö'
+    255, // '÷'
+    255, // 'ø'
+    255, // 'ù'
+    255, // 'ú'
+    255, // 'û'
+    255, // 'ü'
+    255, // 'ý'
+    255, // 'þ'
+    255, // 'ÿ'
+];
diff --git a/src/memmem/genericsimd.rs b/src/memmem/genericsimd.rs
new file mode 100644
index 0000000..28bfdab
--- /dev/null
+++ b/src/memmem/genericsimd.rs
@@ -0,0 +1,266 @@
+use core::mem::size_of;
+
+use crate::memmem::{util::memcmp, vector::Vector, NeedleInfo};
+
+/// The minimum length of a needle required for this algorithm. The minimum
+/// is 2 since a length of 1 should just use memchr and a length of 0 isn't
+/// a case handled by this searcher.
+pub(crate) const MIN_NEEDLE_LEN: usize = 2;
+
+/// The maximum length of a needle required for this algorithm.
+///
+/// In reality, there is no hard max here. The code below can handle any
+/// length needle. (Perhaps that suggests there are missing optimizations.)
+/// Instead, this is a heuristic and a bound guaranteeing our linear time
+/// complexity.
+///
+/// It is a heuristic because when a candidate match is found, memcmp is run.
+/// For very large needles with lots of false positives, memcmp can make the
+/// code run quite slow.
+///
+/// It is a bound because the worst case behavior with memcmp is multiplicative
+/// in the size of the needle and haystack, and we want to keep that additive.
+/// This bound ensures we still meet that bound theoretically, since it's just
+/// a constant. We aren't acting in bad faith here, memcmp on tiny needles
+/// is so fast that even in pathological cases (see pathological vector
+/// benchmarks), this is still just as fast or faster in practice.
+///
+/// This specific number was chosen by tweaking a bit and running benchmarks.
+/// The rare-medium-needle, for example, gets about 5% faster by using this
+/// algorithm instead of a prefilter-accelerated Two-Way. There's also a
+/// theoretical desire to keep this number reasonably low, to mitigate the
+/// impact of pathological cases. I did try 64, and some benchmarks got a
+/// little better, and others (particularly the pathological ones), got a lot
+/// worse. So... 32 it is?
+pub(crate) const MAX_NEEDLE_LEN: usize = 32;
+
+/// The implementation of the forward vector accelerated substring search.
+///
+/// This is extremely similar to the prefilter vector module by the same name.
+/// The key difference is that this is not a prefilter. Instead, it handles
+/// confirming its own matches. The trade off is that this only works with
+/// smaller needles. The speed up here is that an inlined memcmp on a tiny
+/// needle is very quick, even on pathological inputs. This is much better than
+/// combining a prefilter with Two-Way, where using Two-Way to confirm the
+/// match has higher latency.
+///
+/// So why not use this for all needles? We could, and it would probably work
+/// really well on most inputs. But its worst case is multiplicative and we
+/// want to guarantee worst case additive time. Some of the benchmarks try to
+/// justify this (see the pathological ones).
+///
+/// The prefilter variant of this has more comments. Also note that we only
+/// implement this for forward searches for now. If you have a compelling use
+/// case for accelerated reverse search, please file an issue.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct Forward {
+    rare1i: u8,
+    rare2i: u8,
+}
+
+impl Forward {
+    /// Create a new "generic simd" forward searcher. If one could not be
+    /// created from the given inputs, then None is returned.
+    pub(crate) fn new(ninfo: &NeedleInfo, needle: &[u8]) -> Option<Forward> {
+        let (rare1i, rare2i) = ninfo.rarebytes.as_rare_ordered_u8();
+        // If the needle is too short or too long, give up. Also, give up
+        // if the rare bytes detected are at the same position. (It likely
+        // suggests a degenerate case, although it should technically not be
+        // possible.)
+        if needle.len() < MIN_NEEDLE_LEN
+            || needle.len() > MAX_NEEDLE_LEN
+            || rare1i == rare2i
+        {
+            return None;
+        }
+        Some(Forward { rare1i, rare2i })
+    }
+
+    /// Returns the minimum length of haystack that is needed for this searcher
+    /// to work for a particular vector. Passing a haystack with a length
+    /// smaller than this will cause `fwd_find` to panic.
+    #[inline(always)]
+    pub(crate) fn min_haystack_len<V: Vector>(&self) -> usize {
+        self.rare2i as usize + size_of::<V>()
+    }
+}
+
+/// Searches the given haystack for the given needle. The needle given should
+/// be the same as the needle that this searcher was initialized with.
+///
+/// # Panics
+///
+/// When the given haystack has a length smaller than `min_haystack_len`.
+///
+/// # Safety
+///
+/// Since this is meant to be used with vector functions, callers need to
+/// specialize this inside of a function with a `target_feature` attribute.
+/// Therefore, callers must ensure that whatever target feature is being used
+/// supports the vector functions that this function is specialized for. (For
+/// the specific vector functions used, see the Vector trait implementations.)
+#[inline(always)]
+pub(crate) unsafe fn fwd_find<V: Vector>(
+    fwd: &Forward,
+    haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize> {
+    // It would be nice if we didn't have this check here, since the meta
+    // searcher should handle it for us. But without this, I don't think we
+    // guarantee that end_ptr.sub(needle.len()) won't result in UB. We could
+    // put it as part of the safety contract, but it makes it more complicated
+    // than necessary.
+    if haystack.len() < needle.len() {
+        return None;
+    }
+    let min_haystack_len = fwd.min_haystack_len::<V>();
+    assert!(haystack.len() >= min_haystack_len, "haystack too small");
+    debug_assert!(needle.len() <= haystack.len());
+    debug_assert!(
+        needle.len() >= MIN_NEEDLE_LEN,
+        "needle must be at least {} bytes",
+        MIN_NEEDLE_LEN,
+    );
+    debug_assert!(
+        needle.len() <= MAX_NEEDLE_LEN,
+        "needle must be at most {} bytes",
+        MAX_NEEDLE_LEN,
+    );
+
+    let (rare1i, rare2i) = (fwd.rare1i as usize, fwd.rare2i as usize);
+    let rare1chunk = V::splat(needle[rare1i]);
+    let rare2chunk = V::splat(needle[rare2i]);
+
+    let start_ptr = haystack.as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
+    let max_ptr = end_ptr.sub(min_haystack_len);
+    let mut ptr = start_ptr;
+
+    // N.B. I did experiment with unrolling the loop to deal with size(V)
+    // bytes at a time and 2*size(V) bytes at a time. The double unroll was
+    // marginally faster while the quadruple unroll was unambiguously slower.
+    // In the end, I decided the complexity from unrolling wasn't worth it. I
+    // used the memmem/krate/prebuilt/huge-en/ benchmarks to compare.
+    while ptr <= max_ptr {
+        let m = fwd_find_in_chunk(
+            fwd, needle, ptr, end_ptr, rare1chunk, rare2chunk, !0,
+        );
+        if let Some(chunki) = m {
+            return Some(matched(start_ptr, ptr, chunki));
+        }
+        ptr = ptr.add(size_of::<V>());
+    }
+    if ptr < end_ptr {
+        let remaining = diff(end_ptr, ptr);
+        debug_assert!(
+            remaining < min_haystack_len,
+            "remaining bytes should be smaller than the minimum haystack \
+             length of {}, but there are {} bytes remaining",
+            min_haystack_len,
+            remaining,
+        );
+        if remaining < needle.len() {
+            return None;
+        }
+        debug_assert!(
+            max_ptr < ptr,
+            "after main loop, ptr should have exceeded max_ptr",
+        );
+        let overlap = diff(ptr, max_ptr);
+        debug_assert!(
+            overlap > 0,
+            "overlap ({}) must always be non-zero",
+            overlap,
+        );
+        debug_assert!(
+            overlap < size_of::<V>(),
+            "overlap ({}) cannot possibly be >= than a vector ({})",
+            overlap,
+            size_of::<V>(),
+        );
+        // The mask has all of its bits set except for the first N least
+        // significant bits, where N=overlap. This way, any matches that
+        // occur in find_in_chunk within the overlap are automatically
+        // ignored.
+        let mask = !((1 << overlap) - 1);
+        ptr = max_ptr;
+        let m = fwd_find_in_chunk(
+            fwd, needle, ptr, end_ptr, rare1chunk, rare2chunk, mask,
+        );
+        if let Some(chunki) = m {
+            return Some(matched(start_ptr, ptr, chunki));
+        }
+    }
+    None
+}
+
+/// Search for an occurrence of two rare bytes from the needle in the chunk
+/// pointed to by ptr, with the end of the haystack pointed to by end_ptr. When
+/// an occurrence is found, memcmp is run to check if a match occurs at the
+/// corresponding position.
+///
+/// rare1chunk and rare2chunk correspond to vectors with the rare1 and rare2
+/// bytes repeated in each 8-bit lane, respectively.
+///
+/// mask should have bits set corresponding the positions in the chunk in which
+/// matches are considered. This is only used for the last vector load where
+/// the beginning of the vector might have overlapped with the last load in
+/// the main loop. The mask lets us avoid visiting positions that have already
+/// been discarded as matches.
+///
+/// # Safety
+///
+/// It must be safe to do an unaligned read of size(V) bytes starting at both
+/// (ptr + rare1i) and (ptr + rare2i). It must also be safe to do unaligned
+/// loads on ptr up to (end_ptr - needle.len()).
+#[inline(always)]
+unsafe fn fwd_find_in_chunk<V: Vector>(
+    fwd: &Forward,
+    needle: &[u8],
+    ptr: *const u8,
+    end_ptr: *const u8,
+    rare1chunk: V,
+    rare2chunk: V,
+    mask: u32,
+) -> Option<usize> {
+    let chunk0 = V::load_unaligned(ptr.add(fwd.rare1i as usize));
+    let chunk1 = V::load_unaligned(ptr.add(fwd.rare2i as usize));
+
+    let eq0 = chunk0.cmpeq(rare1chunk);
+    let eq1 = chunk1.cmpeq(rare2chunk);
+
+    let mut match_offsets = eq0.and(eq1).movemask() & mask;
+    while match_offsets != 0 {
+        let offset = match_offsets.trailing_zeros() as usize;
+        let ptr = ptr.add(offset);
+        if end_ptr.sub(needle.len()) < ptr {
+            return None;
+        }
+        let chunk = core::slice::from_raw_parts(ptr, needle.len());
+        if memcmp(needle, chunk) {
+            return Some(offset);
+        }
+        match_offsets &= match_offsets - 1;
+    }
+    None
+}
+
+/// Accepts a chunk-relative offset and returns a haystack relative offset
+/// after updating the prefilter state.
+///
+/// See the same function with the same name in the prefilter variant of this
+/// algorithm to learned why it's tagged with inline(never). Even here, where
+/// the function is simpler, inlining it leads to poorer codegen. (Although
+/// it does improve some benchmarks, like prebuiltiter/huge-en/common-you.)
+#[cold]
+#[inline(never)]
+fn matched(start_ptr: *const u8, ptr: *const u8, chunki: usize) -> usize {
+    diff(ptr, start_ptr) + chunki
+}
+
+/// Subtract `b` from `a` and return the difference. `a` must be greater than
+/// or equal to `b`.
+fn diff(a: *const u8, b: *const u8) -> usize {
+    debug_assert!(a >= b);
+    (a as usize) - (b as usize)
+}
diff --git a/src/memmem/mod.rs b/src/memmem/mod.rs
new file mode 100644
index 0000000..0dd6186
--- /dev/null
+++ b/src/memmem/mod.rs
@@ -0,0 +1,1296 @@
+/*!
+This module provides forward and reverse substring search routines.
+
+Unlike the standard library's substring search routines, these work on
+arbitrary bytes. For all non-empty needles, these routines will report exactly
+the same values as the corresponding routines in the standard library. For
+the empty needle, the standard library reports matches only at valid UTF-8
+boundaries, where as these routines will report matches at every position.
+
+Other than being able to work on arbitrary bytes, the primary reason to prefer
+these routines over the standard library routines is that these will generally
+be faster. In some cases, significantly so.
+
+# Example: iterating over substring matches
+
+This example shows how to use [`find_iter`] to find occurrences of a substring
+in a haystack.
+
+```
+use memchr::memmem;
+
+let haystack = b"foo bar foo baz foo";
+
+let mut it = memmem::find_iter(haystack, "foo");
+assert_eq!(Some(0), it.next());
+assert_eq!(Some(8), it.next());
+assert_eq!(Some(16), it.next());
+assert_eq!(None, it.next());
+```
+
+# Example: iterating over substring matches in reverse
+
+This example shows how to use [`rfind_iter`] to find occurrences of a substring
+in a haystack starting from the end of the haystack.
+
+**NOTE:** This module does not implement double ended iterators, so reverse
+searches aren't done by calling `rev` on a forward iterator.
+
+```
+use memchr::memmem;
+
+let haystack = b"foo bar foo baz foo";
+
+let mut it = memmem::rfind_iter(haystack, "foo");
+assert_eq!(Some(16), it.next());
+assert_eq!(Some(8), it.next());
+assert_eq!(Some(0), it.next());
+assert_eq!(None, it.next());
+```
+
+# Example: repeating a search for the same needle
+
+It may be possible for the overhead of constructing a substring searcher to be
+measurable in some workloads. In cases where the same needle is used to search
+many haystacks, it is possible to do construction once and thus to avoid it for
+subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for
+reverse searches).
+
+```
+use memchr::memmem;
+
+let finder = memmem::Finder::new("foo");
+
+assert_eq!(Some(4), finder.find(b"baz foo quux"));
+assert_eq!(None, finder.find(b"quux baz bar"));
+```
+*/
+
+pub use self::prefilter::Prefilter;
+
+use crate::{
+    cow::CowBytes,
+    memmem::{
+        prefilter::{Pre, PrefilterFn, PrefilterState},
+        rabinkarp::NeedleHash,
+        rarebytes::RareNeedleBytes,
+    },
+};
+
+/// Defines a suite of quickcheck properties for forward and reverse
+/// substring searching.
+///
+/// This is defined in this specific spot so that it can be used freely among
+/// the different substring search implementations. I couldn't be bothered to
+/// fight with the macro-visibility rules enough to figure out how to stuff it
+/// somewhere more convenient.
+#[cfg(all(test, feature = "std"))]
+macro_rules! define_memmem_quickcheck_tests {
+    ($fwd:expr, $rev:expr) => {
+        use crate::memmem::proptests;
+
+        quickcheck::quickcheck! {
+            fn qc_fwd_prefix_is_substring(bs: Vec<u8>) -> bool {
+                proptests::prefix_is_substring(false, &bs, $fwd)
+            }
+
+            fn qc_fwd_suffix_is_substring(bs: Vec<u8>) -> bool {
+                proptests::suffix_is_substring(false, &bs, $fwd)
+            }
+
+            fn qc_fwd_matches_naive(
+                haystack: Vec<u8>,
+                needle: Vec<u8>
+            ) -> bool {
+                proptests::matches_naive(false, &haystack, &needle, $fwd)
+            }
+
+            fn qc_rev_prefix_is_substring(bs: Vec<u8>) -> bool {
+                proptests::prefix_is_substring(true, &bs, $rev)
+            }
+
+            fn qc_rev_suffix_is_substring(bs: Vec<u8>) -> bool {
+                proptests::suffix_is_substring(true, &bs, $rev)
+            }
+
+            fn qc_rev_matches_naive(
+                haystack: Vec<u8>,
+                needle: Vec<u8>
+            ) -> bool {
+                proptests::matches_naive(true, &haystack, &needle, $rev)
+            }
+        }
+    };
+}
+
+/// Defines a suite of "simple" hand-written tests for a substring
+/// implementation.
+///
+/// This is defined here for the same reason that
+/// define_memmem_quickcheck_tests is defined here.
+#[cfg(test)]
+macro_rules! define_memmem_simple_tests {
+    ($fwd:expr, $rev:expr) => {
+        use crate::memmem::testsimples;
+
+        #[test]
+        fn simple_forward() {
+            testsimples::run_search_tests_fwd($fwd);
+        }
+
+        #[test]
+        fn simple_reverse() {
+            testsimples::run_search_tests_rev($rev);
+        }
+    };
+}
+
+mod byte_frequencies;
+#[cfg(all(target_arch = "x86_64", memchr_runtime_simd))]
+mod genericsimd;
+mod prefilter;
+mod rabinkarp;
+mod rarebytes;
+mod twoway;
+mod util;
+// SIMD is only supported on x86_64 currently.
+#[cfg(target_arch = "x86_64")]
+mod vector;
+#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+mod x86;
+
+/// Returns an iterator over all occurrences of a substring in a haystack.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar foo baz foo";
+/// let mut it = memmem::find_iter(haystack, b"foo");
+/// assert_eq!(Some(0), it.next());
+/// assert_eq!(Some(8), it.next());
+/// assert_eq!(Some(16), it.next());
+/// assert_eq!(None, it.next());
+/// ```
+#[inline]
+pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
+    haystack: &'h [u8],
+    needle: &'n N,
+) -> FindIter<'h, 'n> {
+    FindIter::new(haystack, Finder::new(needle))
+}
+
+/// Returns a reverse iterator over all occurrences of a substring in a
+/// haystack.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar foo baz foo";
+/// let mut it = memmem::rfind_iter(haystack, b"foo");
+/// assert_eq!(Some(16), it.next());
+/// assert_eq!(Some(8), it.next());
+/// assert_eq!(Some(0), it.next());
+/// assert_eq!(None, it.next());
+/// ```
+#[inline]
+pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
+    haystack: &'h [u8],
+    needle: &'n N,
+) -> FindRevIter<'h, 'n> {
+    FindRevIter::new(haystack, FinderRev::new(needle))
+}
+
+/// Returns the index of the first occurrence of the given needle.
+///
+/// Note that if you're are searching for the same needle in many different
+/// small haystacks, it may be faster to initialize a [`Finder`] once,
+/// and reuse it for each search.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar baz";
+/// assert_eq!(Some(0), memmem::find(haystack, b"foo"));
+/// assert_eq!(Some(4), memmem::find(haystack, b"bar"));
+/// assert_eq!(None, memmem::find(haystack, b"quux"));
+/// ```
+#[inline]
+pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+    if haystack.len() < 64 {
+        rabinkarp::find(haystack, needle)
+    } else {
+        Finder::new(needle).find(haystack)
+    }
+}
+
+/// Returns the index of the last occurrence of the given needle.
+///
+/// Note that if you're are searching for the same needle in many different
+/// small haystacks, it may be faster to initialize a [`FinderRev`] once,
+/// and reuse it for each search.
+///
+/// # Complexity
+///
+/// This routine is guaranteed to have worst case linear time complexity
+/// with respect to both the needle and the haystack. That is, this runs
+/// in `O(needle.len() + haystack.len())` time.
+///
+/// This routine is also guaranteed to have worst case constant space
+/// complexity.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use memchr::memmem;
+///
+/// let haystack = b"foo bar baz";
+/// assert_eq!(Some(0), memmem::rfind(haystack, b"foo"));
+/// assert_eq!(Some(4), memmem::rfind(haystack, b"bar"));
+/// assert_eq!(Some(8), memmem::rfind(haystack, b"ba"));
+/// assert_eq!(None, memmem::rfind(haystack, b"quux"));
+/// ```
+#[inline]
+pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+    if haystack.len() < 64 {
+        rabinkarp::rfind(haystack, needle)
+    } else {
+        FinderRev::new(needle).rfind(haystack)
+    }
+}
+
+/// An iterator over non-overlapping substring matches.
+///
+/// Matches are reported by the byte offset at which they begin.
+///
+/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
+/// needle.
+#[derive(Debug)]
+pub struct FindIter<'h, 'n> {
+    haystack: &'h [u8],
+    prestate: PrefilterState,
+    finder: Finder<'n>,
+    pos: usize,
+}
+
+impl<'h, 'n> FindIter<'h, 'n> {
+    #[inline(always)]
+    pub(crate) fn new(
+        haystack: &'h [u8],
+        finder: Finder<'n>,
+    ) -> FindIter<'h, 'n> {
+        let prestate = finder.searcher.prefilter_state();
+        FindIter { haystack, prestate, finder, pos: 0 }
+    }
+}
+
+impl<'h, 'n> Iterator for FindIter<'h, 'n> {
+    type Item = usize;
+
+    fn next(&mut self) -> Option<usize> {
+        if self.pos > self.haystack.len() {
+            return None;
+        }
+        let result = self
+            .finder
+            .searcher
+            .find(&mut self.prestate, &self.haystack[self.pos..]);
+        match result {
+            None => None,
+            Some(i) => {
+                let pos = self.pos + i;
+                self.pos = pos + core::cmp::max(1, self.finder.needle().len());
+                Some(pos)
+            }
+        }
+    }
+}
+
+/// An iterator over non-overlapping substring matches in reverse.
+///
+/// Matches are reported by the byte offset at which they begin.
+///
+/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
+/// needle.
+#[derive(Debug)]
+pub struct FindRevIter<'h, 'n> {
+    haystack: &'h [u8],
+    finder: FinderRev<'n>,
+    /// When searching with an empty needle, this gets set to `None` after
+    /// we've yielded the last element at `0`.
+    pos: Option<usize>,
+}
+
+impl<'h, 'n> FindRevIter<'h, 'n> {
+    #[inline(always)]
+    pub(crate) fn new(
+        haystack: &'h [u8],
+        finder: FinderRev<'n>,
+    ) -> FindRevIter<'h, 'n> {
+        let pos = Some(haystack.len());
+        FindRevIter { haystack, finder, pos }
+    }
+}
+
+impl<'h, 'n> Iterator for FindRevIter<'h, 'n> {
+    type Item = usize;
+
+    fn next(&mut self) -> Option<usize> {
+        let pos = match self.pos {
+            None => return None,
+            Some(pos) => pos,
+        };
+        let result = self.finder.rfind(&self.haystack[..pos]);
+        match result {
+            None => None,
+            Some(i) => {
+                if pos == i {
+                    self.pos = pos.checked_sub(1);
+                } else {
+                    self.pos = Some(i);
+                }
+                Some(i)
+            }
+        }
+    }
+}
+
+/// A single substring searcher fixed to a particular needle.
+///
+/// The purpose of this type is to permit callers to construct a substring
+/// searcher that can be used to search haystacks without the overhead of
+/// constructing the searcher in the first place. This is a somewhat niche
+/// concern when it's necessary to re-use the same needle to search multiple
+/// different haystacks with as little overhead as possible. In general, using
+/// [`find`] is good enough, but `Finder` is useful when you can meaningfully
+/// observe searcher construction time in a profile.
+///
+/// When the `std` feature is enabled, then this type has an `into_owned`
+/// version which permits building a `Finder` that is not connected to
+/// the lifetime of its needle.
+#[derive(Clone, Debug)]
+pub struct Finder<'n> {
+    searcher: Searcher<'n>,
+}
+
+impl<'n> Finder<'n> {
+    /// Create a new finder for the given needle.
+    #[inline]
+    pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> {
+        FinderBuilder::new().build_forward(needle)
+    }
+
+    /// Returns the index of the first occurrence of this needle in the given
+    /// haystack.
+    ///
+    /// # Complexity
+    ///
+    /// This routine is guaranteed to have worst case linear time complexity
+    /// with respect to both the needle and the haystack. That is, this runs
+    /// in `O(needle.len() + haystack.len())` time.
+    ///
+    /// This routine is also guaranteed to have worst case constant space
+    /// complexity.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// use memchr::memmem::Finder;
+    ///
+    /// let haystack = b"foo bar baz";
+    /// assert_eq!(Some(0), Finder::new("foo").find(haystack));
+    /// assert_eq!(Some(4), Finder::new("bar").find(haystack));
+    /// assert_eq!(None, Finder::new("quux").find(haystack));
+    /// ```
+    pub fn find(&self, haystack: &[u8]) -> Option<usize> {
+        self.searcher.find(&mut self.searcher.prefilter_state(), haystack)
+    }
+
+    /// Returns an iterator over all occurrences of a substring in a haystack.
+    ///
+    /// # Complexity
+    ///
+    /// This routine is guaranteed to have worst case linear time complexity
+    /// with respect to both the needle and the haystack. That is, this runs
+    /// in `O(needle.len() + haystack.len())` time.
+    ///
+    /// This routine is also guaranteed to have worst case constant space
+    /// complexity.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// use memchr::memmem::Finder;
+    ///
+    /// let haystack = b"foo bar foo baz foo";
+    /// let finder = Finder::new(b"foo");
+    /// let mut it = finder.find_iter(haystack);
+    /// assert_eq!(Some(0), it.next());
+    /// assert_eq!(Some(8), it.next());
+    /// assert_eq!(Some(16), it.next());
+    /// assert_eq!(None, it.next());
+    /// ```
+    #[inline]
+    pub fn find_iter<'a, 'h>(
+        &'a self,
+        haystack: &'h [u8],
+    ) -> FindIter<'h, 'a> {
+        FindIter::new(haystack, self.as_ref())
+    }
+
+    /// Convert this finder into its owned variant, such that it no longer
+    /// borrows the needle.
+    ///
+    /// If this is already an owned finder, then this is a no-op. Otherwise,
+    /// this copies the needle.
+    ///
+    /// This is only available when the `std` feature is enabled.
+    #[cfg(feature = "std")]
+    #[inline]
+    pub fn into_owned(self) -> Finder<'static> {
+        Finder { searcher: self.searcher.into_owned() }
+    }
+
+    /// Convert this finder into its borrowed variant.
+    ///
+    /// This is primarily useful if your finder is owned and you'd like to
+    /// store its borrowed variant in some intermediate data structure.
+    ///
+    /// Note that the lifetime parameter of the returned finder is tied to the
+    /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
+    /// needle itself. Namely, a finder's needle can be either borrowed or
+    /// owned, so the lifetime of the needle returned must necessarily be the
+    /// shorter of the two.
+    #[inline]
+    pub fn as_ref(&self) -> Finder<'_> {
+        Finder { searcher: self.searcher.as_ref() }
+    }
+
+    /// Returns the needle that this finder searches for.
+    ///
+    /// Note that the lifetime of the needle returned is tied to the lifetime
+    /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
+    /// finder's needle can be either borrowed or owned, so the lifetime of the
+    /// needle returned must necessarily be the shorter of the two.
+    #[inline]
+    pub fn needle(&self) -> &[u8] {
+        self.searcher.needle()
+    }
+}
+
+/// A single substring reverse searcher fixed to a particular needle.
+///
+/// The purpose of this type is to permit callers to construct a substring
+/// searcher that can be used to search haystacks without the overhead of
+/// constructing the searcher in the first place. This is a somewhat niche
+/// concern when it's necessary to re-use the same needle to search multiple
+/// different haystacks with as little overhead as possible. In general,
+/// using [`rfind`] is good enough, but `FinderRev` is useful when you can
+/// meaningfully observe searcher construction time in a profile.
+///
+/// When the `std` feature is enabled, then this type has an `into_owned`
+/// version which permits building a `FinderRev` that is not connected to
+/// the lifetime of its needle.
+#[derive(Clone, Debug)]
+pub struct FinderRev<'n> {
+    searcher: SearcherRev<'n>,
+}
+
+impl<'n> FinderRev<'n> {
+    /// Create a new reverse finder for the given needle.
+    #[inline]
+    pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> {
+        FinderBuilder::new().build_reverse(needle)
+    }
+
+    /// Returns the index of the last occurrence of this needle in the given
+    /// haystack.
+    ///
+    /// The haystack may be any type that can be cheaply converted into a
+    /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
+    ///
+    /// # Complexity
+    ///
+    /// This routine is guaranteed to have worst case linear time complexity
+    /// with respect to both the needle and the haystack. That is, this runs
+    /// in `O(needle.len() + haystack.len())` time.
+    ///
+    /// This routine is also guaranteed to have worst case constant space
+    /// complexity.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// use memchr::memmem::FinderRev;
+    ///
+    /// let haystack = b"foo bar baz";
+    /// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack));
+    /// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack));
+    /// assert_eq!(None, FinderRev::new("quux").rfind(haystack));
+    /// ```
+    pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
+        self.searcher.rfind(haystack.as_ref())
+    }
+
+    /// Returns a reverse iterator over all occurrences of a substring in a
+    /// haystack.
+    ///
+    /// # Complexity
+    ///
+    /// This routine is guaranteed to have worst case linear time complexity
+    /// with respect to both the needle and the haystack. That is, this runs
+    /// in `O(needle.len() + haystack.len())` time.
+    ///
+    /// This routine is also guaranteed to have worst case constant space
+    /// complexity.
+    ///
+    /// # Examples
+    ///
+    /// Basic usage:
+    ///
+    /// ```
+    /// use memchr::memmem::FinderRev;
+    ///
+    /// let haystack = b"foo bar foo baz foo";
+    /// let finder = FinderRev::new(b"foo");
+    /// let mut it = finder.rfind_iter(haystack);
+    /// assert_eq!(Some(16), it.next());
+    /// assert_eq!(Some(8), it.next());
+    /// assert_eq!(Some(0), it.next());
+    /// assert_eq!(None, it.next());
+    /// ```
+    #[inline]
+    pub fn rfind_iter<'a, 'h>(
+        &'a self,
+        haystack: &'h [u8],
+    ) -> FindRevIter<'h, 'a> {
+        FindRevIter::new(haystack, self.as_ref())
+    }
+
+    /// Convert this finder into its owned variant, such that it no longer
+    /// borrows the needle.
+    ///
+    /// If this is already an owned finder, then this is a no-op. Otherwise,
+    /// this copies the needle.
+    ///
+    /// This is only available when the `std` feature is enabled.
+    #[cfg(feature = "std")]
+    #[inline]
+    pub fn into_owned(self) -> FinderRev<'static> {
+        FinderRev { searcher: self.searcher.into_owned() }
+    }
+
+    /// Convert this finder into its borrowed variant.
+    ///
+    /// This is primarily useful if your finder is owned and you'd like to
+    /// store its borrowed variant in some intermediate data structure.
+    ///
+    /// Note that the lifetime parameter of the returned finder is tied to the
+    /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
+    /// needle itself. Namely, a finder's needle can be either borrowed or
+    /// owned, so the lifetime of the needle returned must necessarily be the
+    /// shorter of the two.
+    #[inline]
+    pub fn as_ref(&self) -> FinderRev<'_> {
+        FinderRev { searcher: self.searcher.as_ref() }
+    }
+
+    /// Returns the needle that this finder searches for.
+    ///
+    /// Note that the lifetime of the needle returned is tied to the lifetime
+    /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
+    /// finder's needle can be either borrowed or owned, so the lifetime of the
+    /// needle returned must necessarily be the shorter of the two.
+    #[inline]
+    pub fn needle(&self) -> &[u8] {
+        self.searcher.needle()
+    }
+}
+
+/// A builder for constructing non-default forward or reverse memmem finders.
+///
+/// A builder is primarily useful for configuring a substring searcher.
+/// Currently, the only configuration exposed is the ability to disable
+/// heuristic prefilters used to speed up certain searches.
+#[derive(Clone, Debug, Default)]
+pub struct FinderBuilder {
+    config: SearcherConfig,
+}
+
+impl FinderBuilder {
+    /// Create a new finder builder with default settings.
+    pub fn new() -> FinderBuilder {
+        FinderBuilder::default()
+    }
+
+    /// Build a forward finder using the given needle from the current
+    /// settings.
+    pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>(
+        &self,
+        needle: &'n B,
+    ) -> Finder<'n> {
+        Finder { searcher: Searcher::new(self.config, needle.as_ref()) }
+    }
+
+    /// Build a reverse finder using the given needle from the current
+    /// settings.
+    pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>(
+        &self,
+        needle: &'n B,
+    ) -> FinderRev<'n> {
+        FinderRev { searcher: SearcherRev::new(needle.as_ref()) }
+    }
+
+    /// Configure the prefilter setting for the finder.
+    ///
+    /// See the documentation for [`Prefilter`] for more discussion on why
+    /// you might want to configure this.
+    pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder {
+        self.config.prefilter = prefilter;
+        self
+    }
+}
+
+/// The internal implementation of a forward substring searcher.
+///
+/// The reality is that this is a "meta" searcher. Namely, depending on a
+/// variety of parameters (CPU support, target, needle size, haystack size and
+/// even dynamic properties such as prefilter effectiveness), the actual
+/// algorithm employed to do substring search may change.
+#[derive(Clone, Debug)]
+struct Searcher<'n> {
+    /// The actual needle we're searching for.
+    ///
+    /// A CowBytes is like a Cow<[u8]>, except in no_std environments, it is
+    /// specialized to a single variant (the borrowed form).
+    needle: CowBytes<'n>,
+    /// A collection of facts computed on the needle that are useful for more
+    /// than one substring search algorithm.
+    ninfo: NeedleInfo,
+    /// A prefilter function, if it was deemed appropriate.
+    ///
+    /// Some substring search implementations (like Two-Way) benefit greatly
+    /// if we can quickly find candidate starting positions for a match.
+    prefn: Option<PrefilterFn>,
+    /// The actual substring implementation in use.
+    kind: SearcherKind,
+}
+
+/// A collection of facts computed about a search needle.
+///
+/// We group these things together because it's useful to be able to hand them
+/// to prefilters or substring algorithms that want them.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct NeedleInfo {
+    /// The offsets of "rare" bytes detected in the needle.
+    ///
+    /// This is meant to be a heuristic in order to maximize the effectiveness
+    /// of vectorized code. Namely, vectorized code tends to focus on only
+    /// one or two bytes. If we pick bytes from the needle that occur
+    /// infrequently, then more time will be spent in the vectorized code and
+    /// will likely make the overall search (much) faster.
+    ///
+    /// Of course, this is only a heuristic based on a background frequency
+    /// distribution of bytes. But it tends to work very well in practice.
+    pub(crate) rarebytes: RareNeedleBytes,
+    /// A Rabin-Karp hash of the needle.
+    ///
+    /// This is store here instead of in a more specific Rabin-Karp search
+    /// since Rabin-Karp may be used even if another SearchKind corresponds
+    /// to some other search implementation. e.g., If measurements suggest RK
+    /// is faster in some cases or if a search implementation can't handle
+    /// particularly small haystack. (Moreover, we cannot use RK *generally*,
+    /// since its worst case time is multiplicative. Instead, we only use it
+    /// some small haystacks, where "small" is a constant.)
+    pub(crate) nhash: NeedleHash,
+}
+
+/// Configuration for substring search.
+#[derive(Clone, Copy, Debug, Default)]
+struct SearcherConfig {
+    /// This permits changing the behavior of the prefilter, since it can have
+    /// a variable impact on performance.
+    prefilter: Prefilter,
+}
+
+#[derive(Clone, Debug)]
+enum SearcherKind {
+    /// A special case for empty needles. An empty needle always matches, even
+    /// in an empty haystack.
+    Empty,
+    /// This is used whenever the needle is a single byte. In this case, we
+    /// always use memchr.
+    OneByte(u8),
+    /// Two-Way is the generic work horse and is what provides our additive
+    /// linear time guarantee. In general, it's used when the needle is bigger
+    /// than 8 bytes or so.
+    TwoWay(twoway::Forward),
+    #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+    GenericSIMD128(x86::sse::Forward),
+    #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+    GenericSIMD256(x86::avx::Forward),
+}
+
+impl<'n> Searcher<'n> {
+    #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+    fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> {
+        use self::SearcherKind::*;
+
+        let ninfo = NeedleInfo::new(needle);
+        let prefn =
+            prefilter::forward(&config.prefilter, &ninfo.rarebytes, needle);
+        let kind = if needle.len() == 0 {
+            Empty
+        } else if needle.len() == 1 {
+            OneByte(needle[0])
+        } else if let Some(fwd) = x86::avx::Forward::new(&ninfo, needle) {
+            GenericSIMD256(fwd)
+        } else if let Some(fwd) = x86::sse::Forward::new(&ninfo, needle) {
+            GenericSIMD128(fwd)
+        } else {
+            TwoWay(twoway::Forward::new(needle))
+        };
+        Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind }
+    }
+
+    #[cfg(not(all(not(miri), target_arch = "x86_64", memchr_runtime_simd)))]
+    fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> {
+        use self::SearcherKind::*;
+
+        let ninfo = NeedleInfo::new(needle);
+        let prefn =
+            prefilter::forward(&config.prefilter, &ninfo.rarebytes, needle);
+        let kind = if needle.len() == 0 {
+            Empty
+        } else if needle.len() == 1 {
+            OneByte(needle[0])
+        } else {
+            TwoWay(twoway::Forward::new(needle))
+        };
+        Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind }
+    }
+
+    /// Return a fresh prefilter state that can be used with this searcher.
+    /// A prefilter state is used to track the effectiveness of a searcher's
+    /// prefilter for speeding up searches. Therefore, the prefilter state
+    /// should generally be reused on subsequent searches (such as in an
+    /// iterator). For searches on a different haystack, then a new prefilter
+    /// state should be used.
+    ///
+    /// This always initializes a valid (but possibly inert) prefilter state
+    /// even if this searcher does not have a prefilter enabled.
+    fn prefilter_state(&self) -> PrefilterState {
+        if self.prefn.is_none() {
+            PrefilterState::inert()
+        } else {
+            PrefilterState::new()
+        }
+    }
+
+    fn needle(&self) -> &[u8] {
+        self.needle.as_slice()
+    }
+
+    fn as_ref(&self) -> Searcher<'_> {
+        use self::SearcherKind::*;
+
+        let kind = match self.kind {
+            Empty => Empty,
+            OneByte(b) => OneByte(b),
+            TwoWay(tw) => TwoWay(tw),
+            #[cfg(all(
+                not(miri),
+                target_arch = "x86_64",
+                memchr_runtime_simd
+            ))]
+            GenericSIMD128(gs) => GenericSIMD128(gs),
+            #[cfg(all(
+                not(miri),
+                target_arch = "x86_64",
+                memchr_runtime_simd
+            ))]
+            GenericSIMD256(gs) => GenericSIMD256(gs),
+        };
+        Searcher {
+            needle: CowBytes::new(self.needle()),
+            ninfo: self.ninfo,
+            prefn: self.prefn,
+            kind,
+        }
+    }
+
+    #[cfg(feature = "std")]
+    fn into_owned(self) -> Searcher<'static> {
+        use self::SearcherKind::*;
+
+        let kind = match self.kind {
+            Empty => Empty,
+            OneByte(b) => OneByte(b),
+            TwoWay(tw) => TwoWay(tw),
+            #[cfg(all(
+                not(miri),
+                target_arch = "x86_64",
+                memchr_runtime_simd
+            ))]
+            GenericSIMD128(gs) => GenericSIMD128(gs),
+            #[cfg(all(
+                not(miri),
+                target_arch = "x86_64",
+                memchr_runtime_simd
+            ))]
+            GenericSIMD256(gs) => GenericSIMD256(gs),
+        };
+        Searcher {
+            needle: self.needle.into_owned(),
+            ninfo: self.ninfo,
+            prefn: self.prefn,
+            kind,
+        }
+    }
+
+    /// Implements forward substring search by selecting the implementation
+    /// chosen at construction and executing it on the given haystack with the
+    /// prefilter's current state of effectiveness.
+    #[inline(always)]
+    fn find(
+        &self,
+        state: &mut PrefilterState,
+        haystack: &[u8],
+    ) -> Option<usize> {
+        use self::SearcherKind::*;
+
+        let needle = self.needle();
+        if haystack.len() < needle.len() {
+            return None;
+        }
+        match self.kind {
+            Empty => Some(0),
+            OneByte(b) => crate::memchr(b, haystack),
+            TwoWay(ref tw) => {
+                // For very short haystacks (e.g., where the prefilter probably
+                // can't run), it's faster to just run RK.
+                if rabinkarp::is_fast(haystack, needle) {
+                    rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
+                } else {
+                    self.find_tw(tw, state, haystack, needle)
+                }
+            }
+            #[cfg(all(
+                not(miri),
+                target_arch = "x86_64",
+                memchr_runtime_simd
+            ))]
+            GenericSIMD128(ref gs) => {
+                // The SIMD matcher can't handle particularly short haystacks,
+                // so we fall back to RK in these cases.
+                if haystack.len() < gs.min_haystack_len() {
+                    rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
+                } else {
+                    gs.find(haystack, needle)
+                }
+            }
+            #[cfg(all(
+                not(miri),
+                target_arch = "x86_64",
+                memchr_runtime_simd
+            ))]
+            GenericSIMD256(ref gs) => {
+                // The SIMD matcher can't handle particularly short haystacks,
+                // so we fall back to RK in these cases.
+                if haystack.len() < gs.min_haystack_len() {
+                    rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
+                } else {
+                    gs.find(haystack, needle)
+                }
+            }
+        }
+    }
+
+    /// Calls Two-Way on the given haystack/needle.
+    ///
+    /// This is marked as unlineable since it seems to have a better overall
+    /// effect on benchmarks. However, this is one of those cases where
+    /// inlining it results an improvement in other benchmarks too, so I
+    /// suspect we just don't have enough data yet to make the right call here.
+    ///
+    /// I suspect the main problem is that this function contains two different
+    /// inlined copies of Two-Way: one with and one without prefilters enabled.
+    #[inline(never)]
+    fn find_tw(
+        &self,
+        tw: &twoway::Forward,
+        state: &mut PrefilterState,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        if let Some(prefn) = self.prefn {
+            // We used to look at the length of a haystack here. That is, if
+            // it was too small, then don't bother with the prefilter. But two
+            // things changed: the prefilter falls back to memchr for small
+            // haystacks, and, above, Rabin-Karp is employed for tiny haystacks
+            // anyway.
+            if state.is_effective() {
+                let mut pre = Pre { state, prefn, ninfo: &self.ninfo };
+                return tw.find(Some(&mut pre), haystack, needle);
+            }
+        }
+        tw.find(None, haystack, needle)
+    }
+}
+
+impl NeedleInfo {
+    pub(crate) fn new(needle: &[u8]) -> NeedleInfo {
+        NeedleInfo {
+            rarebytes: RareNeedleBytes::forward(needle),
+            nhash: NeedleHash::forward(needle),
+        }
+    }
+}
+
+/// The internal implementation of a reverse substring searcher.
+///
+/// See the forward searcher docs for more details. Currently, the reverse
+/// searcher is considerably simpler since it lacks prefilter support. This
+/// was done because it adds a lot of code, and more surface area to test. And
+/// in particular, it's not clear whether a prefilter on reverse searching is
+/// worth it. (If you have a compelling use case, please file an issue!)
+#[derive(Clone, Debug)]
+struct SearcherRev<'n> {
+    /// The actual needle we're searching for.
+    needle: CowBytes<'n>,
+    /// A Rabin-Karp hash of the needle.
+    nhash: NeedleHash,
+    /// The actual substring implementation in use.
+    kind: SearcherRevKind,
+}
+
+#[derive(Clone, Debug)]
+enum SearcherRevKind {
+    /// A special case for empty needles. An empty needle always matches, even
+    /// in an empty haystack.
+    Empty,
+    /// This is used whenever the needle is a single byte. In this case, we
+    /// always use memchr.
+    OneByte(u8),
+    /// Two-Way is the generic work horse and is what provides our additive
+    /// linear time guarantee. In general, it's used when the needle is bigger
+    /// than 8 bytes or so.
+    TwoWay(twoway::Reverse),
+}
+
+impl<'n> SearcherRev<'n> {
+    fn new(needle: &'n [u8]) -> SearcherRev<'n> {
+        use self::SearcherRevKind::*;
+
+        let kind = if needle.len() == 0 {
+            Empty
+        } else if needle.len() == 1 {
+            OneByte(needle[0])
+        } else {
+            TwoWay(twoway::Reverse::new(needle))
+        };
+        SearcherRev {
+            needle: CowBytes::new(needle),
+            nhash: NeedleHash::reverse(needle),
+            kind,
+        }
+    }
+
+    fn needle(&self) -> &[u8] {
+        self.needle.as_slice()
+    }
+
+    fn as_ref(&self) -> SearcherRev<'_> {
+        use self::SearcherRevKind::*;
+
+        let kind = match self.kind {
+            Empty => Empty,
+            OneByte(b) => OneByte(b),
+            TwoWay(tw) => TwoWay(tw),
+        };
+        SearcherRev {
+            needle: CowBytes::new(self.needle()),
+            nhash: self.nhash,
+            kind,
+        }
+    }
+
+    #[cfg(feature = "std")]
+    fn into_owned(self) -> SearcherRev<'static> {
+        use self::SearcherRevKind::*;
+
+        let kind = match self.kind {
+            Empty => Empty,
+            OneByte(b) => OneByte(b),
+            TwoWay(tw) => TwoWay(tw),
+        };
+        SearcherRev {
+            needle: self.needle.into_owned(),
+            nhash: self.nhash,
+            kind,
+        }
+    }
+
+    /// Implements reverse substring search by selecting the implementation
+    /// chosen at construction and executing it on the given haystack with the
+    /// prefilter's current state of effectiveness.
+    #[inline(always)]
+    fn rfind(&self, haystack: &[u8]) -> Option<usize> {
+        use self::SearcherRevKind::*;
+
+        let needle = self.needle();
+        if haystack.len() < needle.len() {
+            return None;
+        }
+        match self.kind {
+            Empty => Some(haystack.len()),
+            OneByte(b) => crate::memrchr(b, haystack),
+            TwoWay(ref tw) => {
+                // For very short haystacks (e.g., where the prefilter probably
+                // can't run), it's faster to just run RK.
+                if rabinkarp::is_fast(haystack, needle) {
+                    rabinkarp::rfind_with(&self.nhash, haystack, needle)
+                } else {
+                    tw.rfind(haystack, needle)
+                }
+            }
+        }
+    }
+}
+
+/// This module defines some generic quickcheck properties useful for testing
+/// any substring search algorithm. It also runs those properties for the
+/// top-level public API memmem routines. (The properties are also used to
+/// test various substring search implementations more granularly elsewhere as
+/// well.)
+#[cfg(all(test, feature = "std", not(miri)))]
+mod proptests {
+    // N.B. This defines the quickcheck tests using the properties defined
+    // below. Because of macro-visibility weirdness, the actual macro is
+    // defined at the top of this file.
+    define_memmem_quickcheck_tests!(super::find, super::rfind);
+
+    /// Check that every prefix of the given byte string is a substring.
+    pub(crate) fn prefix_is_substring(
+        reverse: bool,
+        bs: &[u8],
+        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
+    ) -> bool {
+        if bs.is_empty() {
+            return true;
+        }
+        for i in 0..(bs.len() - 1) {
+            let prefix = &bs[..i];
+            if reverse {
+                assert_eq!(naive_rfind(bs, prefix), search(bs, prefix));
+            } else {
+                assert_eq!(naive_find(bs, prefix), search(bs, prefix));
+            }
+        }
+        true
+    }
+
+    /// Check that every suffix of the given byte string is a substring.
+    pub(crate) fn suffix_is_substring(
+        reverse: bool,
+        bs: &[u8],
+        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
+    ) -> bool {
+        if bs.is_empty() {
+            return true;
+        }
+        for i in 0..(bs.len() - 1) {
+            let suffix = &bs[i..];
+            if reverse {
+                assert_eq!(naive_rfind(bs, suffix), search(bs, suffix));
+            } else {
+                assert_eq!(naive_find(bs, suffix), search(bs, suffix));
+            }
+        }
+        true
+    }
+
+    /// Check that naive substring search matches the result of the given search
+    /// algorithm.
+    pub(crate) fn matches_naive(
+        reverse: bool,
+        haystack: &[u8],
+        needle: &[u8],
+        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
+    ) -> bool {
+        if reverse {
+            naive_rfind(haystack, needle) == search(haystack, needle)
+        } else {
+            naive_find(haystack, needle) == search(haystack, needle)
+        }
+    }
+
+    /// Naively search forwards for the given needle in the given haystack.
+    fn naive_find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+        if needle.is_empty() {
+            return Some(0);
+        } else if haystack.len() < needle.len() {
+            return None;
+        }
+        for i in 0..(haystack.len() - needle.len() + 1) {
+            if needle == &haystack[i..i + needle.len()] {
+                return Some(i);
+            }
+        }
+        None
+    }
+
+    /// Naively search in reverse for the given needle in the given haystack.
+    fn naive_rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+        if needle.is_empty() {
+            return Some(haystack.len());
+        } else if haystack.len() < needle.len() {
+            return None;
+        }
+        for i in (0..(haystack.len() - needle.len() + 1)).rev() {
+            if needle == &haystack[i..i + needle.len()] {
+                return Some(i);
+            }
+        }
+        None
+    }
+}
+
+/// This module defines some hand-written "simple" substring tests. It
+/// also provides routines for easily running them on any substring search
+/// implementation.
+#[cfg(test)]
+mod testsimples {
+    define_memmem_simple_tests!(super::find, super::rfind);
+
+    /// Each test is a (needle, haystack, expected_fwd, expected_rev) tuple.
+    type SearchTest =
+        (&'static str, &'static str, Option<usize>, Option<usize>);
+
+    const SEARCH_TESTS: &'static [SearchTest] = &[
+        ("", "", Some(0), Some(0)),
+        ("", "a", Some(0), Some(1)),
+        ("", "ab", Some(0), Some(2)),
+        ("", "abc", Some(0), Some(3)),
+        ("a", "", None, None),
+        ("a", "a", Some(0), Some(0)),
+        ("a", "aa", Some(0), Some(1)),
+        ("a", "ba", Some(1), Some(1)),
+        ("a", "bba", Some(2), Some(2)),
+        ("a", "bbba", Some(3), Some(3)),
+        ("a", "bbbab", Some(3), Some(3)),
+        ("a", "bbbabb", Some(3), Some(3)),
+        ("a", "bbbabbb", Some(3), Some(3)),
+        ("a", "bbbbbb", None, None),
+        ("ab", "", None, None),
+        ("ab", "a", None, None),
+        ("ab", "b", None, None),
+        ("ab", "ab", Some(0), Some(0)),
+        ("ab", "aab", Some(1), Some(1)),
+        ("ab", "aaab", Some(2), Some(2)),
+        ("ab", "abaab", Some(0), Some(3)),
+        ("ab", "baaab", Some(3), Some(3)),
+        ("ab", "acb", None, None),
+        ("ab", "abba", Some(0), Some(0)),
+        ("abc", "ab", None, None),
+        ("abc", "abc", Some(0), Some(0)),
+        ("abc", "abcz", Some(0), Some(0)),
+        ("abc", "abczz", Some(0), Some(0)),
+        ("abc", "zabc", Some(1), Some(1)),
+        ("abc", "zzabc", Some(2), Some(2)),
+        ("abc", "azbc", None, None),
+        ("abc", "abzc", None, None),
+        ("abczdef", "abczdefzzzzzzzzzzzzzzzzzzzz", Some(0), Some(0)),
+        ("abczdef", "zzzzzzzzzzzzzzzzzzzzabczdef", Some(20), Some(20)),
+        ("xyz", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaxyz", Some(32), Some(32)),
+        // Failures caught by quickcheck.
+        ("\u{0}\u{15}", "\u{0}\u{15}\u{15}\u{0}", Some(0), Some(0)),
+        ("\u{0}\u{1e}", "\u{1e}\u{0}", None, None),
+    ];
+
+    /// Run the substring search tests. `search` should be a closure that
+    /// accepts a haystack and a needle and returns the starting position
+    /// of the first occurrence of needle in the haystack, or `None` if one
+    /// doesn't exist.
+    pub(crate) fn run_search_tests_fwd(
+        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
+    ) {
+        for &(needle, haystack, expected_fwd, _) in SEARCH_TESTS {
+            let (n, h) = (needle.as_bytes(), haystack.as_bytes());
+            assert_eq!(
+                expected_fwd,
+                search(h, n),
+                "needle: {:?}, haystack: {:?}, expected: {:?}",
+                n,
+                h,
+                expected_fwd
+            );
+        }
+    }
+
+    /// Run the substring search tests. `search` should be a closure that
+    /// accepts a haystack and a needle and returns the starting position of
+    /// the last occurrence of needle in the haystack, or `None` if one doesn't
+    /// exist.
+    pub(crate) fn run_search_tests_rev(
+        mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
+    ) {
+        for &(needle, haystack, _, expected_rev) in SEARCH_TESTS {
+            let (n, h) = (needle.as_bytes(), haystack.as_bytes());
+            assert_eq!(
+                expected_rev,
+                search(h, n),
+                "needle: {:?}, haystack: {:?}, expected: {:?}",
+                n,
+                h,
+                expected_rev
+            );
+        }
+    }
+}
diff --git a/src/memmem/prefilter/fallback.rs b/src/memmem/prefilter/fallback.rs
new file mode 100644
index 0000000..ae1bbcc
--- /dev/null
+++ b/src/memmem/prefilter/fallback.rs
@@ -0,0 +1,122 @@
+/*
+This module implements a "fallback" prefilter that only relies on memchr to
+function. While memchr works best when it's explicitly vectorized, its
+fallback implementations are fast enough to make a prefilter like this
+worthwhile.
+
+The essence of this implementation is to identify two rare bytes in a needle
+based on a background frequency distribution of bytes. We then run memchr on the
+rarer byte. For each match, we use the second rare byte as a guard to quickly
+check if a match is possible. If the position passes the guard test, then we do
+a naive memcmp to confirm the match.
+
+In practice, this formulation works amazingly well, primarily because of the
+heuristic use of a background frequency distribution. However, it does have a
+number of weaknesses where it can get quite slow when its background frequency
+distribution doesn't line up with the haystack being searched. This is why we
+have specialized vector routines that essentially take this idea and move the
+guard check into vectorized code. (Those specialized vector routines do still
+make use of the background frequency distribution of bytes though.)
+
+This fallback implementation was originally formulated in regex many moons ago:
+https://github.com/rust-lang/regex/blob/3db8722d0b204a85380fe2a65e13d7065d7dd968/src/literal/imp.rs#L370-L501
+Prior to that, I'm not aware of anyone using this technique in any prominent
+substring search implementation. Although, I'm sure folks have had this same
+insight long before me.
+
+Another version of this also appeared in bstr:
+https://github.com/BurntSushi/bstr/blob/a444256ca7407fe180ee32534688549655b7a38e/src/search/prefilter.rs#L83-L340
+*/
+
+use crate::memmem::{
+    prefilter::{PrefilterFnTy, PrefilterState},
+    NeedleInfo,
+};
+
+// Check that the functions below satisfy the Prefilter function type.
+const _: PrefilterFnTy = find;
+
+/// Look for a possible occurrence of needle. The position returned
+/// corresponds to the beginning of the occurrence, if one exists.
+///
+/// Callers may assume that this never returns false negatives (i.e., it
+/// never misses an actual occurrence), but must check that the returned
+/// position corresponds to a match. That is, it can return false
+/// positives.
+///
+/// This should only be used when Freqy is constructed for forward
+/// searching.
+pub(crate) fn find(
+    prestate: &mut PrefilterState,
+    ninfo: &NeedleInfo,
+    haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize> {
+    let mut i = 0;
+    let (rare1i, rare2i) = ninfo.rarebytes.as_rare_usize();
+    let (rare1, rare2) = ninfo.rarebytes.as_rare_bytes(needle);
+    while prestate.is_effective() {
+        // Use a fast vectorized implementation to skip to the next
+        // occurrence of the rarest byte (heuristically chosen) in the
+        // needle.
+        let found = crate::memchr(rare1, &haystack[i..])?;
+        prestate.update(found);
+        i += found;
+
+        // If we can't align our first match with the haystack, then a
+        // match is impossible.
+        if i < rare1i {
+            i += 1;
+            continue;
+        }
+
+        // Align our rare2 byte with the haystack. A mismatch means that
+        // a match is impossible.
+        let aligned_rare2i = i - rare1i + rare2i;
+        if haystack.get(aligned_rare2i) != Some(&rare2) {
+            i += 1;
+            continue;
+        }
+
+        // We've done what we can. There might be a match here.
+        return Some(i - rare1i);
+    }
+    // The only way we get here is if we believe our skipping heuristic
+    // has become ineffective. We're allowed to return false positives,
+    // so return the position at which we advanced to, aligned to the
+    // haystack.
+    Some(i.saturating_sub(rare1i))
+}
+
+#[cfg(all(test, feature = "std"))]
+mod tests {
+    use super::*;
+
+    fn freqy_find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+        let ninfo = NeedleInfo::new(needle);
+        let mut prestate = PrefilterState::new();
+        find(&mut prestate, &ninfo, haystack, needle)
+    }
+
+    #[test]
+    fn freqy_forward() {
+        assert_eq!(Some(0), freqy_find(b"BARFOO", b"BAR"));
+        assert_eq!(Some(3), freqy_find(b"FOOBAR", b"BAR"));
+        assert_eq!(Some(0), freqy_find(b"zyzz", b"zyzy"));
+        assert_eq!(Some(2), freqy_find(b"zzzy", b"zyzy"));
+        assert_eq!(None, freqy_find(b"zazb", b"zyzy"));
+        assert_eq!(Some(0), freqy_find(b"yzyy", b"yzyz"));
+        assert_eq!(Some(2), freqy_find(b"yyyz", b"yzyz"));
+        assert_eq!(None, freqy_find(b"yayb", b"yzyz"));
+    }
+
+    #[test]
+    #[cfg(not(miri))]
+    fn prefilter_permutations() {
+        use crate::memmem::prefilter::tests::PrefilterTest;
+
+        // SAFETY: super::find is safe to call for all inputs and on all
+        // platforms.
+        unsafe { PrefilterTest::run_all_tests(super::find) };
+    }
+}
diff --git a/src/memmem/prefilter/genericsimd.rs b/src/memmem/prefilter/genericsimd.rs
new file mode 100644
index 0000000..1a6e387
--- /dev/null
+++ b/src/memmem/prefilter/genericsimd.rs
@@ -0,0 +1,207 @@
+use core::mem::size_of;
+
+use crate::memmem::{
+    prefilter::{PrefilterFnTy, PrefilterState},
+    vector::Vector,
+    NeedleInfo,
+};
+
+/// The implementation of the forward vector accelerated candidate finder.
+///
+/// This is inspired by the "generic SIMD" algorithm described here:
+/// http://0x80.pl/articles/simd-strfind.html#algorithm-1-generic-simd
+///
+/// The main difference is that this is just a prefilter. That is, it reports
+/// candidates once they are seen and doesn't attempt to confirm them. Also,
+/// the bytes this routine uses to check for candidates are selected based on
+/// an a priori background frequency distribution. This means that on most
+/// haystacks, this will on average spend more time in vectorized code than you
+/// would if you just selected the first and last bytes of the needle.
+///
+/// Note that a non-prefilter variant of this algorithm can be found in the
+/// parent module, but it only works on smaller needles.
+///
+/// `prestate`, `ninfo`, `haystack` and `needle` are the four prefilter
+/// function parameters. `fallback` is a prefilter that is used if the haystack
+/// is too small to be handled with the given vector size.
+///
+/// This routine is not safe because it is intended for callers to specialize
+/// this with a particular vector (e.g., __m256i) and then call it with the
+/// relevant target feature (e.g., avx2) enabled.
+///
+/// # Panics
+///
+/// If `needle.len() <= 1`, then this panics.
+///
+/// # Safety
+///
+/// Since this is meant to be used with vector functions, callers need to
+/// specialize this inside of a function with a `target_feature` attribute.
+/// Therefore, callers must ensure that whatever target feature is being used
+/// supports the vector functions that this function is specialized for. (For
+/// the specific vector functions used, see the Vector trait implementations.)
+#[inline(always)]
+pub(crate) unsafe fn find<V: Vector>(
+    prestate: &mut PrefilterState,
+    ninfo: &NeedleInfo,
+    haystack: &[u8],
+    needle: &[u8],
+    fallback: PrefilterFnTy,
+) -> Option<usize> {
+    assert!(needle.len() >= 2, "needle must be at least 2 bytes");
+    let (rare1i, rare2i) = ninfo.rarebytes.as_rare_ordered_usize();
+    let min_haystack_len = rare2i + size_of::<V>();
+    if haystack.len() < min_haystack_len {
+        return fallback(prestate, ninfo, haystack, needle);
+    }
+
+    let start_ptr = haystack.as_ptr();
+    let end_ptr = start_ptr.add(haystack.len());
+    let max_ptr = end_ptr.sub(min_haystack_len);
+    let mut ptr = start_ptr;
+
+    let rare1chunk = V::splat(needle[rare1i]);
+    let rare2chunk = V::splat(needle[rare2i]);
+
+    // N.B. I did experiment with unrolling the loop to deal with size(V)
+    // bytes at a time and 2*size(V) bytes at a time. The double unroll
+    // was marginally faster while the quadruple unroll was unambiguously
+    // slower. In the end, I decided the complexity from unrolling wasn't
+    // worth it. I used the memmem/krate/prebuilt/huge-en/ benchmarks to
+    // compare.
+    while ptr <= max_ptr {
+        let m = find_in_chunk2(ptr, rare1i, rare2i, rare1chunk, rare2chunk);
+        if let Some(chunki) = m {
+            return Some(matched(prestate, start_ptr, ptr, chunki));
+        }
+        ptr = ptr.add(size_of::<V>());
+    }
+    if ptr < end_ptr {
+        // This routine immediately quits if a candidate match is found.
+        // That means that if we're here, no candidate matches have been
+        // found at or before 'ptr'. Thus, we don't need to mask anything
+        // out even though we might technically search part of the haystack
+        // that we've already searched (because we know it can't match).
+        ptr = max_ptr;
+        let m = find_in_chunk2(ptr, rare1i, rare2i, rare1chunk, rare2chunk);
+        if let Some(chunki) = m {
+            return Some(matched(prestate, start_ptr, ptr, chunki));
+        }
+    }
+    prestate.update(haystack.len());
+    None
+}
+
+// Below are two different techniques for checking whether a candidate
+// match exists in a given chunk or not. find_in_chunk2 checks two bytes
+// where as find_in_chunk3 checks three bytes. The idea behind checking
+// three bytes is that while we do a bit more work per iteration, we
+// decrease the chances of a false positive match being reported and thus
+// make the search faster overall. This actually works out for the
+// memmem/krate/prebuilt/huge-en/never-all-common-bytes benchmark, where
+// using find_in_chunk3 is about 25% faster than find_in_chunk2. However,
+// it turns out that find_in_chunk2 is faster for all other benchmarks, so
+// perhaps the extra check isn't worth it in practice.
+//
+// For now, we go with find_in_chunk2, but we leave find_in_chunk3 around
+// to make it easy to switch to and benchmark when possible.
+
+/// Search for an occurrence of two rare bytes from the needle in the current
+/// chunk pointed to by ptr.
+///
+/// rare1chunk and rare2chunk correspond to vectors with the rare1 and rare2
+/// bytes repeated in each 8-bit lane, respectively.
+///
+/// # Safety
+///
+/// It must be safe to do an unaligned read of size(V) bytes starting at both
+/// (ptr + rare1i) and (ptr + rare2i).
+#[inline(always)]
+unsafe fn find_in_chunk2<V: Vector>(
+    ptr: *const u8,
+    rare1i: usize,
+    rare2i: usize,
+    rare1chunk: V,
+    rare2chunk: V,
+) -> Option<usize> {
+    let chunk0 = V::load_unaligned(ptr.add(rare1i));
+    let chunk1 = V::load_unaligned(ptr.add(rare2i));
+
+    let eq0 = chunk0.cmpeq(rare1chunk);
+    let eq1 = chunk1.cmpeq(rare2chunk);
+
+    let match_offsets = eq0.and(eq1).movemask();
+    if match_offsets == 0 {
+        return None;
+    }
+    Some(match_offsets.trailing_zeros() as usize)
+}
+
+/// Search for an occurrence of two rare bytes and the first byte (even if one
+/// of the rare bytes is equivalent to the first byte) from the needle in the
+/// current chunk pointed to by ptr.
+///
+/// firstchunk, rare1chunk and rare2chunk correspond to vectors with the first,
+/// rare1 and rare2 bytes repeated in each 8-bit lane, respectively.
+///
+/// # Safety
+///
+/// It must be safe to do an unaligned read of size(V) bytes starting at ptr,
+/// (ptr + rare1i) and (ptr + rare2i).
+#[allow(dead_code)]
+#[inline(always)]
+unsafe fn find_in_chunk3<V: Vector>(
+    ptr: *const u8,
+    rare1i: usize,
+    rare2i: usize,
+    firstchunk: V,
+    rare1chunk: V,
+    rare2chunk: V,
+) -> Option<usize> {
+    let chunk0 = V::load_unaligned(ptr);
+    let chunk1 = V::load_unaligned(ptr.add(rare1i));
+    let chunk2 = V::load_unaligned(ptr.add(rare2i));
+
+    let eq0 = chunk0.cmpeq(firstchunk);
+    let eq1 = chunk1.cmpeq(rare1chunk);
+    let eq2 = chunk2.cmpeq(rare2chunk);
+
+    let match_offsets = eq0.and(eq1).and(eq2).movemask();
+    if match_offsets == 0 {
+        return None;
+    }
+    Some(match_offsets.trailing_zeros() as usize)
+}
+
+/// Accepts a chunk-relative offset and returns a haystack relative offset
+/// after updating the prefilter state.
+///
+/// Why do we use this unlineable function when a search completes? Well,
+/// I don't know. Really. Obviously this function was not here initially.
+/// When doing profiling, the codegen for the inner loop here looked bad and
+/// I didn't know why. There were a couple extra 'add' instructions and an
+/// extra 'lea' instruction that I couldn't explain. I hypothesized that the
+/// optimizer was having trouble untangling the hot code in the loop from the
+/// code that deals with a candidate match. By putting the latter into an
+/// unlineable function, it kind of forces the issue and it had the intended
+/// effect: codegen improved measurably. It's good for a ~10% improvement
+/// across the board on the memmem/krate/prebuilt/huge-en/ benchmarks.
+#[cold]
+#[inline(never)]
+fn matched(
+    prestate: &mut PrefilterState,
+    start_ptr: *const u8,
+    ptr: *const u8,
+    chunki: usize,
+) -> usize {
+    let found = diff(ptr, start_ptr) + chunki;
+    prestate.update(found);
+    found
+}
+
+/// Subtract `b` from `a` and return the difference. `a` must be greater than
+/// or equal to `b`.
+fn diff(a: *const u8, b: *const u8) -> usize {
+    debug_assert!(a >= b);
+    (a as usize) - (b as usize)
+}
diff --git a/src/memmem/prefilter/mod.rs b/src/memmem/prefilter/mod.rs
new file mode 100644
index 0000000..6461f33
--- /dev/null
+++ b/src/memmem/prefilter/mod.rs
@@ -0,0 +1,562 @@
+use crate::memmem::{rarebytes::RareNeedleBytes, NeedleInfo};
+
+mod fallback;
+#[cfg(all(target_arch = "x86_64", memchr_runtime_simd))]
+mod genericsimd;
+#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+mod x86;
+
+/// The maximum frequency rank permitted for the fallback prefilter. If the
+/// rarest byte in the needle has a frequency rank above this value, then no
+/// prefilter is used if the fallback prefilter would otherwise be selected.
+const MAX_FALLBACK_RANK: usize = 250;
+
+/// A combination of prefilter effectiveness state, the prefilter function and
+/// the needle info required to run a prefilter.
+///
+/// For the most part, these are grouped into a single type for convenience,
+/// instead of needing to pass around all three as distinct function
+/// parameters.
+pub(crate) struct Pre<'a> {
+    /// State that tracks the effectiveness of a prefilter.
+    pub(crate) state: &'a mut PrefilterState,
+    /// The actual prefilter function.
+    pub(crate) prefn: PrefilterFn,
+    /// Information about a needle, such as its RK hash and rare byte offsets.
+    pub(crate) ninfo: &'a NeedleInfo,
+}
+
+impl<'a> Pre<'a> {
+    /// Call this prefilter on the given haystack with the given needle.
+    #[inline(always)]
+    pub(crate) fn call(
+        &mut self,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        self.prefn.call(self.state, self.ninfo, haystack, needle)
+    }
+
+    /// Return true if and only if this prefilter should be used.
+    #[inline(always)]
+    pub(crate) fn should_call(&mut self) -> bool {
+        self.state.is_effective()
+    }
+}
+
+/// A prefilter function.
+///
+/// A prefilter function describes both forward and reverse searches.
+/// (Although, we don't currently implement prefilters for reverse searching.)
+/// In the case of a forward search, the position returned corresponds to
+/// the starting offset of a match (confirmed or possible). Its minimum
+/// value is `0`, and its maximum value is `haystack.len() - 1`. In the case
+/// of a reverse search, the position returned corresponds to the position
+/// immediately after a match (confirmed or possible). Its minimum value is `1`
+/// and its maximum value is `haystack.len()`.
+///
+/// In both cases, the position returned is the starting (or ending) point of a
+/// _possible_ match. That is, returning a false positive is okay. A prefilter,
+/// however, must never return any false negatives. That is, if a match exists
+/// at a particular position `i`, then a prefilter _must_ return that position.
+/// It cannot skip past it.
+///
+/// # Safety
+///
+/// A prefilter function is not safe to create, since not all prefilters are
+/// safe to call in all contexts. (e.g., A prefilter that uses AVX instructions
+/// may only be called on x86_64 CPUs with the relevant AVX feature enabled.)
+/// Thus, callers must ensure that when a prefilter function is created that it
+/// is safe to call for the current environment.
+#[derive(Clone, Copy)]
+pub(crate) struct PrefilterFn(PrefilterFnTy);
+
+/// The type of a prefilter function. All prefilters must satisfy this
+/// signature.
+///
+/// Using a function pointer like this does inhibit inlining, but it does
+/// eliminate branching and the extra costs associated with copying a larger
+/// enum. Note also, that using Box<dyn SomePrefilterTrait> can't really work
+/// here, since we want to work in contexts that don't have dynamic memory
+/// allocation. Moreover, in the default configuration of this crate on x86_64
+/// CPUs released in the past ~decade, we will use an AVX2-optimized prefilter,
+/// which generally won't be inlineable into the surrounding code anyway.
+/// (Unless AVX2 is enabled at compile time, but this is typically rare, since
+/// it produces a non-portable binary.)
+pub(crate) type PrefilterFnTy = unsafe fn(
+    prestate: &mut PrefilterState,
+    ninfo: &NeedleInfo,
+    haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize>;
+
+impl PrefilterFn {
+    /// Create a new prefilter function from the function pointer given.
+    ///
+    /// # Safety
+    ///
+    /// Callers must ensure that the given prefilter function is safe to call
+    /// for all inputs in the current environment. For example, if the given
+    /// prefilter function uses AVX instructions, then the caller must ensure
+    /// that the appropriate AVX CPU features are enabled.
+    pub(crate) unsafe fn new(prefn: PrefilterFnTy) -> PrefilterFn {
+        PrefilterFn(prefn)
+    }
+
+    /// Call the underlying prefilter function with the given arguments.
+    pub fn call(
+        self,
+        prestate: &mut PrefilterState,
+        ninfo: &NeedleInfo,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        // SAFETY: Callers have the burden of ensuring that a prefilter
+        // function is safe to call for all inputs in the current environment.
+        unsafe { (self.0)(prestate, ninfo, haystack, needle) }
+    }
+}
+
+impl core::fmt::Debug for PrefilterFn {
+    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+        "<prefilter-fn(...)>".fmt(f)
+    }
+}
+
+/// Prefilter controls whether heuristics are used to accelerate searching.
+///
+/// A prefilter refers to the idea of detecting candidate matches very quickly,
+/// and then confirming whether those candidates are full matches. This
+/// idea can be quite effective since it's often the case that looking for
+/// candidates can be a lot faster than running a complete substring search
+/// over the entire input. Namely, looking for candidates can be done with
+/// extremely fast vectorized code.
+///
+/// The downside of a prefilter is that it assumes false positives (which are
+/// candidates generated by a prefilter that aren't matches) are somewhat rare
+/// relative to the frequency of full matches. That is, if a lot of false
+/// positives are generated, then it's possible for search time to be worse
+/// than if the prefilter wasn't enabled in the first place.
+///
+/// Another downside of a prefilter is that it can result in highly variable
+/// performance, where some cases are extraordinarily fast and others aren't.
+/// Typically, variable performance isn't a problem, but it may be for your use
+/// case.
+///
+/// The use of prefilters in this implementation does use a heuristic to detect
+/// when a prefilter might not be carrying its weight, and will dynamically
+/// disable its use. Nevertheless, this configuration option gives callers
+/// the ability to disable prefilters if you have knowledge that they won't be
+/// useful.
+#[derive(Clone, Copy, Debug)]
+#[non_exhaustive]
+pub enum Prefilter {
+    /// Never used a prefilter in substring search.
+    None,
+    /// Automatically detect whether a heuristic prefilter should be used. If
+    /// it is used, then heuristics will be used to dynamically disable the
+    /// prefilter if it is believed to not be carrying its weight.
+    Auto,
+}
+
+impl Default for Prefilter {
+    fn default() -> Prefilter {
+        Prefilter::Auto
+    }
+}
+
+impl Prefilter {
+    pub(crate) fn is_none(&self) -> bool {
+        match *self {
+            Prefilter::None => true,
+            _ => false,
+        }
+    }
+}
+
+/// PrefilterState tracks state associated with the effectiveness of a
+/// prefilter. It is used to track how many bytes, on average, are skipped by
+/// the prefilter. If this average dips below a certain threshold over time,
+/// then the state renders the prefilter inert and stops using it.
+///
+/// A prefilter state should be created for each search. (Where creating an
+/// iterator is treated as a single search.) A prefilter state should only be
+/// created from a `Freqy`. e.g., An inert `Freqy` will produce an inert
+/// `PrefilterState`.
+#[derive(Clone, Debug)]
+pub(crate) struct PrefilterState {
+    /// The number of skips that has been executed. This is always 1 greater
+    /// than the actual number of skips. The special sentinel value of 0
+    /// indicates that the prefilter is inert. This is useful to avoid
+    /// additional checks to determine whether the prefilter is still
+    /// "effective." Once a prefilter becomes inert, it should no longer be
+    /// used (according to our heuristics).
+    skips: u32,
+    /// The total number of bytes that have been skipped.
+    skipped: u32,
+}
+
+impl PrefilterState {
+    /// The minimum number of skip attempts to try before considering whether
+    /// a prefilter is effective or not.
+    const MIN_SKIPS: u32 = 50;
+
+    /// The minimum amount of bytes that skipping must average.
+    ///
+    /// This value was chosen based on varying it and checking
+    /// the microbenchmarks. In particular, this can impact the
+    /// pathological/repeated-{huge,small} benchmarks quite a bit if it's set
+    /// too low.
+    const MIN_SKIP_BYTES: u32 = 8;
+
+    /// Create a fresh prefilter state.
+    pub(crate) fn new() -> PrefilterState {
+        PrefilterState { skips: 1, skipped: 0 }
+    }
+
+    /// Create a fresh prefilter state that is always inert.
+    pub(crate) fn inert() -> PrefilterState {
+        PrefilterState { skips: 0, skipped: 0 }
+    }
+
+    /// Update this state with the number of bytes skipped on the last
+    /// invocation of the prefilter.
+    #[inline]
+    pub(crate) fn update(&mut self, skipped: usize) {
+        self.skips = self.skips.saturating_add(1);
+        // We need to do this dance since it's technically possible for
+        // `skipped` to overflow a `u32`. (And we use a `u32` to reduce the
+        // size of a prefilter state.)
+        if skipped > core::u32::MAX as usize {
+            self.skipped = core::u32::MAX;
+        } else {
+            self.skipped = self.skipped.saturating_add(skipped as u32);
+        }
+    }
+
+    /// Return true if and only if this state indicates that a prefilter is
+    /// still effective.
+    #[inline]
+    pub(crate) fn is_effective(&mut self) -> bool {
+        if self.is_inert() {
+            return false;
+        }
+        if self.skips() < PrefilterState::MIN_SKIPS {
+            return true;
+        }
+        if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips() {
+            return true;
+        }
+
+        // We're inert.
+        self.skips = 0;
+        false
+    }
+
+    #[inline]
+    fn is_inert(&self) -> bool {
+        self.skips == 0
+    }
+
+    #[inline]
+    fn skips(&self) -> u32 {
+        self.skips.saturating_sub(1)
+    }
+}
+
+/// Determine which prefilter function, if any, to use.
+///
+/// This only applies to x86_64 when runtime SIMD detection is enabled (which
+/// is the default). In general, we try to use an AVX prefilter, followed by
+/// SSE and then followed by a generic one based on memchr.
+#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
+#[inline(always)]
+pub(crate) fn forward(
+    config: &Prefilter,
+    rare: &RareNeedleBytes,
+    needle: &[u8],
+) -> Option<PrefilterFn> {
+    if config.is_none() || needle.len() <= 1 {
+        return None;
+    }
+
+    #[cfg(feature = "std")]
+    {
+        if cfg!(memchr_runtime_avx) {
+            if is_x86_feature_detected!("avx2") {
+                // SAFETY: x86::avx::find only requires the avx2 feature,
+                // which we've just checked above.
+                return unsafe { Some(PrefilterFn::new(x86::avx::find)) };
+            }
+        }
+    }
+    if cfg!(memchr_runtime_sse2) {
+        // SAFETY: x86::sse::find only requires the sse2 feature, which is
+        // guaranteed to be available on x86_64.
+        return unsafe { Some(PrefilterFn::new(x86::sse::find)) };
+    }
+    // Check that our rarest byte has a reasonably low rank. The main issue
+    // here is that the fallback prefilter can perform pretty poorly if it's
+    // given common bytes. So we try to avoid the worst cases here.
+    let (rare1_rank, _) = rare.as_ranks(needle);
+    if rare1_rank <= MAX_FALLBACK_RANK {
+        // SAFETY: fallback::find is safe to call in all environments.
+        return unsafe { Some(PrefilterFn::new(fallback::find)) };
+    }
+    None
+}
+
+/// Determine which prefilter function, if any, to use.
+///
+/// Since SIMD is currently only supported on x86_64, this will just select
+/// the fallback prefilter if the rare bytes provided have a low enough rank.
+#[cfg(not(all(not(miri), target_arch = "x86_64", memchr_runtime_simd)))]
+#[inline(always)]
+pub(crate) fn forward(
+    config: &Prefilter,
+    rare: &RareNeedleBytes,
+    needle: &[u8],
+) -> Option<PrefilterFn> {
+    if config.is_none() || needle.len() <= 1 {
+        return None;
+    }
+    let (rare1_rank, _) = rare.as_ranks(needle);
+    if rare1_rank <= MAX_FALLBACK_RANK {
+        // SAFETY: fallback::find is safe to call in all environments.
+        return unsafe { Some(PrefilterFn::new(fallback::find)) };
+    }
+    None
+}
+
+/// Return the minimum length of the haystack in which a prefilter should be
+/// used. If the haystack is below this length, then it's probably not worth
+/// the overhead of running the prefilter.
+///
+/// We used to look at the length of a haystack here. That is, if it was too
+/// small, then don't bother with the prefilter. But two things changed:
+/// the prefilter falls back to memchr for small haystacks, and, at the
+/// meta-searcher level, Rabin-Karp is employed for tiny haystacks anyway.
+///
+/// We keep it around for now in case we want to bring it back.
+#[allow(dead_code)]
+pub(crate) fn minimum_len(_haystack: &[u8], needle: &[u8]) -> usize {
+    // If the haystack length isn't greater than needle.len() * FACTOR, then
+    // no prefilter will be used. The presumption here is that since there
+    // are so few bytes to check, it's not worth running the prefilter since
+    // there will need to be a validation step anyway. Thus, the prefilter is
+    // largely redundant work.
+    //
+    // Increase the factor noticeably hurts the
+    // memmem/krate/prebuilt/teeny-*/never-john-watson benchmarks.
+    const PREFILTER_LENGTH_FACTOR: usize = 2;
+    const VECTOR_MIN_LENGTH: usize = 16;
+    let min = core::cmp::max(
+        VECTOR_MIN_LENGTH,
+        PREFILTER_LENGTH_FACTOR * needle.len(),
+    );
+    // For haystacks with length==min, we still want to avoid the prefilter,
+    // so add 1.
+    min + 1
+}
+
+#[cfg(all(test, feature = "std", not(miri)))]
+pub(crate) mod tests {
+    use std::convert::{TryFrom, TryInto};
+
+    use super::*;
+    use crate::memmem::{
+        prefilter::PrefilterFnTy, rabinkarp, rarebytes::RareNeedleBytes,
+    };
+
+    // Below is a small jig that generates prefilter tests. The main purpose
+    // of this jig is to generate tests of varying needle/haystack lengths
+    // in order to try and exercise all code paths in our prefilters. And in
+    // particular, this is especially important for vectorized prefilters where
+    // certain code paths might only be exercised at certain lengths.
+
+    /// A test that represents the input and expected output to a prefilter
+    /// function. The test should be able to run with any prefilter function
+    /// and get the expected output.
+    pub(crate) struct PrefilterTest {
+        // These fields represent the inputs and expected output of a forwards
+        // prefilter function.
+        pub(crate) ninfo: NeedleInfo,
+        pub(crate) haystack: Vec<u8>,
+        pub(crate) needle: Vec<u8>,
+        pub(crate) output: Option<usize>,
+    }
+
+    impl PrefilterTest {
+        /// Run all generated forward prefilter tests on the given prefn.
+        ///
+        /// # Safety
+        ///
+        /// Callers must ensure that the given prefilter function pointer is
+        /// safe to call for all inputs in the current environment.
+        pub(crate) unsafe fn run_all_tests(prefn: PrefilterFnTy) {
+            PrefilterTest::run_all_tests_filter(prefn, |_| true)
+        }
+
+        /// Run all generated forward prefilter tests that pass the given
+        /// predicate on the given prefn.
+        ///
+        /// # Safety
+        ///
+        /// Callers must ensure that the given prefilter function pointer is
+        /// safe to call for all inputs in the current environment.
+        pub(crate) unsafe fn run_all_tests_filter(
+            prefn: PrefilterFnTy,
+            mut predicate: impl FnMut(&PrefilterTest) -> bool,
+        ) {
+            for seed in PREFILTER_TEST_SEEDS {
+                for test in seed.generate() {
+                    if predicate(&test) {
+                        test.run(prefn);
+                    }
+                }
+            }
+        }
+
+        /// Create a new prefilter test from a seed and some chose offsets to
+        /// rare bytes in the seed's needle.
+        ///
+        /// If a valid test could not be constructed, then None is returned.
+        /// (Currently, we take the approach of massaging tests to be valid
+        /// instead of rejecting them outright.)
+        fn new(
+            seed: &PrefilterTestSeed,
+            rare1i: usize,
+            rare2i: usize,
+            haystack_len: usize,
+            needle_len: usize,
+            output: Option<usize>,
+        ) -> Option<PrefilterTest> {
+            let mut rare1i: u8 = rare1i.try_into().unwrap();
+            let mut rare2i: u8 = rare2i.try_into().unwrap();
+            // The '#' byte is never used in a haystack (unless we're expecting
+            // a match), while the '@' byte is never used in a needle.
+            let mut haystack = vec![b'@'; haystack_len];
+            let mut needle = vec![b'#'; needle_len];
+            needle[0] = seed.first;
+            needle[rare1i as usize] = seed.rare1;
+            needle[rare2i as usize] = seed.rare2;
+            // If we're expecting a match, then make sure the needle occurs
+            // in the haystack at the expected position.
+            if let Some(i) = output {
+                haystack[i..i + needle.len()].copy_from_slice(&needle);
+            }
+            // If the operations above lead to rare offsets pointing to the
+            // non-first occurrence of a byte, then adjust it. This might lead
+            // to redundant tests, but it's simpler than trying to change the
+            // generation process I think.
+            if let Some(i) = crate::memchr(seed.rare1, &needle) {
+                rare1i = u8::try_from(i).unwrap();
+            }
+            if let Some(i) = crate::memchr(seed.rare2, &needle) {
+                rare2i = u8::try_from(i).unwrap();
+            }
+            let ninfo = NeedleInfo {
+                rarebytes: RareNeedleBytes::new(rare1i, rare2i),
+                nhash: rabinkarp::NeedleHash::forward(&needle),
+            };
+            Some(PrefilterTest { ninfo, haystack, needle, output })
+        }
+
+        /// Run this specific test on the given prefilter function. If the
+        /// outputs do no match, then this routine panics with a failure
+        /// message.
+        ///
+        /// # Safety
+        ///
+        /// Callers must ensure that the given prefilter function pointer is
+        /// safe to call for all inputs in the current environment.
+        unsafe fn run(&self, prefn: PrefilterFnTy) {
+            let mut prestate = PrefilterState::new();
+            assert_eq!(
+                self.output,
+                prefn(
+                    &mut prestate,
+                    &self.ninfo,
+                    &self.haystack,
+                    &self.needle
+                ),
+                "ninfo: {:?}, haystack(len={}): {:?}, needle(len={}): {:?}",
+                self.ninfo,
+                self.haystack.len(),
+                std::str::from_utf8(&self.haystack).unwrap(),
+                self.needle.len(),
+                std::str::from_utf8(&self.needle).unwrap(),
+            );
+        }
+    }
+
+    /// A set of prefilter test seeds. Each seed serves as the base for the
+    /// generation of many other tests. In essence, the seed captures the
+    /// "rare" and first bytes among our needle. The tests generated from each
+    /// seed essentially vary the length of the needle and haystack, while
+    /// using the rare/first byte configuration from the seed.
+    ///
+    /// The purpose of this is to test many different needle/haystack lengths.
+    /// In particular, some of the vector optimizations might only have bugs
+    /// in haystacks of a certain size.
+    const PREFILTER_TEST_SEEDS: &[PrefilterTestSeed] = &[
+        PrefilterTestSeed { first: b'x', rare1: b'y', rare2: b'z' },
+        PrefilterTestSeed { first: b'x', rare1: b'x', rare2: b'z' },
+        PrefilterTestSeed { first: b'x', rare1: b'y', rare2: b'x' },
+        PrefilterTestSeed { first: b'x', rare1: b'x', rare2: b'x' },
+        PrefilterTestSeed { first: b'x', rare1: b'y', rare2: b'y' },
+    ];
+
+    /// Data that describes a single prefilter test seed.
+    struct PrefilterTestSeed {
+        first: u8,
+        rare1: u8,
+        rare2: u8,
+    }
+
+    impl PrefilterTestSeed {
+        /// Generate a series of prefilter tests from this seed.
+        fn generate(&self) -> Vec<PrefilterTest> {
+            let mut tests = vec![];
+            let mut push = |test: Option<PrefilterTest>| {
+                if let Some(test) = test {
+                    tests.push(test);
+                }
+            };
+            let len_start = 2;
+            // The loop below generates *a lot* of tests. The number of tests
+            // was chosen somewhat empirically to be "bearable" when running
+            // the test suite.
+            for needle_len in len_start..=40 {
+                let rare_start = len_start - 1;
+                for rare1i in rare_start..needle_len {
+                    for rare2i in rare1i..needle_len {
+                        for haystack_len in needle_len..=66 {
+                            push(PrefilterTest::new(
+                                self,
+                                rare1i,
+                                rare2i,
+                                haystack_len,
+                                needle_len,
+                                None,
+                            ));
+                            // Test all possible match scenarios for this
+                            // needle and haystack.
+                            for output in 0..=(haystack_len - needle_len) {
+                                push(PrefilterTest::new(
+                                    self,
+                                    rare1i,
+                                    rare2i,
+                                    haystack_len,
+                                    needle_len,
+                                    Some(output),
+                                ));
+                            }
+                        }
+                    }
+                }
+            }
+            tests
+        }
+    }
+}
diff --git a/src/memmem/prefilter/x86/avx.rs b/src/memmem/prefilter/x86/avx.rs
new file mode 100644
index 0000000..fb11f33
--- /dev/null
+++ b/src/memmem/prefilter/x86/avx.rs
@@ -0,0 +1,46 @@
+use core::arch::x86_64::__m256i;
+
+use crate::memmem::{
+    prefilter::{PrefilterFnTy, PrefilterState},
+    NeedleInfo,
+};
+
+// Check that the functions below satisfy the Prefilter function type.
+const _: PrefilterFnTy = find;
+
+/// An AVX2 accelerated candidate finder for single-substring search.
+///
+/// # Safety
+///
+/// Callers must ensure that the avx2 CPU feature is enabled in the current
+/// environment.
+#[target_feature(enable = "avx2")]
+pub(crate) unsafe fn find(
+    prestate: &mut PrefilterState,
+    ninfo: &NeedleInfo,
+    haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize> {
+    super::super::genericsimd::find::<__m256i>(
+        prestate,
+        ninfo,
+        haystack,
+        needle,
+        super::sse::find,
+    )
+}
+
+#[cfg(test)]
+mod tests {
+    #[test]
+    #[cfg(not(miri))]
+    fn prefilter_permutations() {
+        use crate::memmem::prefilter::tests::PrefilterTest;
+        if !is_x86_feature_detected!("avx2") {
+            return;
+        }
+        // SAFETY: The safety of super::find only requires that the current
+        // CPU support AVX2, which we checked above.
+        unsafe { PrefilterTest::run_all_tests(super::find) };
+    }
+}
diff --git a/src/memmem/prefilter/x86/mod.rs b/src/memmem/prefilter/x86/mod.rs
new file mode 100644
index 0000000..91381e5
--- /dev/null
+++ b/src/memmem/prefilter/x86/mod.rs
@@ -0,0 +1,5 @@
+// We only use AVX when we can detect at runtime whether it's available, which
+// requires std.
+#[cfg(feature = "std")]
+pub(crate) mod avx;
+pub(crate) mod sse;
diff --git a/src/memmem/prefilter/x86/sse.rs b/src/memmem/prefilter/x86/sse.rs
new file mode 100644
index 0000000..b11356e
--- /dev/null
+++ b/src/memmem/prefilter/x86/sse.rs
@@ -0,0 +1,55 @@
+use core::arch::x86_64::__m128i;
+
+use crate::memmem::{
+    prefilter::{PrefilterFnTy, PrefilterState},
+    NeedleInfo,
+};
+
+// Check that the functions below satisfy the Prefilter function type.
+const _: PrefilterFnTy = find;
+
+/// An SSE2 accelerated candidate finder for single-substring search.
+///
+/// # Safety
+///
+/// Callers must ensure that the sse2 CPU feature is enabled in the current
+/// environment. This feature should be enabled in all x86_64 targets.
+#[target_feature(enable = "sse2")]
+pub(crate) unsafe fn find(
+    prestate: &mut PrefilterState,
+    ninfo: &NeedleInfo,
+    haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize> {
+    // If the haystack is too small for SSE2, then just run memchr on the
+    // rarest byte and be done with it. (It is likely that this code path is
+    // rarely exercised, since a higher level routine will probably dispatch to
+    // Rabin-Karp for such a small haystack.)
+    fn simple_memchr_fallback(
+        _prestate: &mut PrefilterState,
+        ninfo: &NeedleInfo,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        let (rare, _) = ninfo.rarebytes.as_rare_ordered_usize();
+        crate::memchr(needle[rare], haystack).map(|i| i.saturating_sub(rare))
+    }
+    super::super::genericsimd::find::<__m128i>(
+        prestate,
+        ninfo,
+        haystack,
+        needle,
+        simple_memchr_fallback,
+    )
+}
+
+#[cfg(all(test, feature = "std"))]
+mod tests {
+    #[test]
+    #[cfg(not(miri))]
+    fn prefilter_permutations() {
+        use crate::memmem::prefilter::tests::PrefilterTest;
+        // SAFETY: super::find is safe to call for all inputs on x86.
+        unsafe { PrefilterTest::run_all_tests(super::find) };
+    }
+}
diff --git a/src/memmem/rabinkarp.rs b/src/memmem/rabinkarp.rs
new file mode 100644
index 0000000..daa4015
--- /dev/null
+++ b/src/memmem/rabinkarp.rs
@@ -0,0 +1,233 @@
+/*
+This module implements the classical Rabin-Karp substring search algorithm,
+with no extra frills. While its use would seem to break our time complexity
+guarantee of O(m+n) (RK's time complexity is O(mn)), we are careful to only
+ever use RK on a constant subset of haystacks. The main point here is that
+RK has good latency properties for small needles/haystacks. It's very quick
+to compute a needle hash and zip through the haystack when compared to
+initializing Two-Way, for example. And this is especially useful for cases
+where the haystack is just too short for vector instructions to do much good.
+
+The hashing function used here is the same one recommended by ESMAJ.
+
+Another choice instead of Rabin-Karp would be Shift-Or. But its latency
+isn't quite as good since its preprocessing time is a bit more expensive
+(both in practice and in theory). However, perhaps Shift-Or has a place
+somewhere else for short patterns. I think the main problem is that it
+requires space proportional to the alphabet and the needle. If we, for
+example, supported needles up to length 16, then the total table size would be
+len(alphabet)*size_of::<u16>()==512 bytes. Which isn't exactly small, and it's
+probably bad to put that on the stack. So ideally, we'd throw it on the heap,
+but we'd really like to write as much code without using alloc/std as possible.
+But maybe it's worth the special casing. It's a TODO to benchmark.
+
+Wikipedia has a decent explanation, if a bit heavy on the theory:
+https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
+
+But ESMAJ provides something a bit more concrete:
+http://www-igm.univ-mlv.fr/~lecroq/string/node5.html
+
+Finally, aho-corasick uses Rabin-Karp for multiple pattern match in some cases:
+https://github.com/BurntSushi/aho-corasick/blob/3852632f10587db0ff72ef29e88d58bf305a0946/src/packed/rabinkarp.rs
+*/
+
+/// Whether RK is believed to be very fast for the given needle/haystack.
+pub(crate) fn is_fast(haystack: &[u8], _needle: &[u8]) -> bool {
+    haystack.len() < 16
+}
+
+/// Search for the first occurrence of needle in haystack using Rabin-Karp.
+pub(crate) fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+    find_with(&NeedleHash::forward(needle), haystack, needle)
+}
+
+/// Search for the first occurrence of needle in haystack using Rabin-Karp with
+/// a pre-computed needle hash.
+pub(crate) fn find_with(
+    nhash: &NeedleHash,
+    mut haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize> {
+    if haystack.len() < needle.len() {
+        return None;
+    }
+    let start = haystack.as_ptr() as usize;
+    let mut hash = Hash::from_bytes_fwd(&haystack[..needle.len()]);
+    // N.B. I've experimented with unrolling this loop, but couldn't realize
+    // any obvious gains.
+    loop {
+        if nhash.eq(hash) && is_prefix(haystack, needle) {
+            return Some(haystack.as_ptr() as usize - start);
+        }
+        if needle.len() >= haystack.len() {
+            return None;
+        }
+        hash.roll(&nhash, haystack[0], haystack[needle.len()]);
+        haystack = &haystack[1..];
+    }
+}
+
+/// Search for the last occurrence of needle in haystack using Rabin-Karp.
+pub(crate) fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
+    rfind_with(&NeedleHash::reverse(needle), haystack, needle)
+}
+
+/// Search for the last occurrence of needle in haystack using Rabin-Karp with
+/// a pre-computed needle hash.
+pub(crate) fn rfind_with(
+    nhash: &NeedleHash,
+    mut haystack: &[u8],
+    needle: &[u8],
+) -> Option<usize> {
+    if haystack.len() < needle.len() {
+        return None;
+    }
+    let mut hash =
+        Hash::from_bytes_rev(&haystack[haystack.len() - needle.len()..]);
+    loop {
+        if nhash.eq(hash) && is_suffix(haystack, needle) {
+            return Some(haystack.len() - needle.len());
+        }
+        if needle.len() >= haystack.len() {
+            return None;
+        }
+        hash.roll(
+            &nhash,
+            haystack[haystack.len() - 1],
+            haystack[haystack.len() - needle.len() - 1],
+        );
+        haystack = &haystack[..haystack.len() - 1];
+    }
+}
+
+/// A hash derived from a needle.
+#[derive(Clone, Copy, Debug, Default)]
+pub(crate) struct NeedleHash {
+    /// The actual hash.
+    hash: Hash,
+    /// The factor needed to multiply a byte by in order to subtract it from
+    /// the hash. It is defined to be 2^(n-1) (using wrapping exponentiation),
+    /// where n is the length of the needle. This is how we "remove" a byte
+    /// from the hash once the hash window rolls past it.
+    hash_2pow: u32,
+}
+
+impl NeedleHash {
+    /// Create a new Rabin-Karp hash for the given needle for use in forward
+    /// searching.
+    pub(crate) fn forward(needle: &[u8]) -> NeedleHash {
+        let mut nh = NeedleHash { hash: Hash::new(), hash_2pow: 1 };
+        if needle.is_empty() {
+            return nh;
+        }
+        nh.hash.add(needle[0]);
+        for &b in needle.iter().skip(1) {
+            nh.hash.add(b);
+            nh.hash_2pow = nh.hash_2pow.wrapping_shl(1);
+        }
+        nh
+    }
+
+    /// Create a new Rabin-Karp hash for the given needle for use in reverse
+    /// searching.
+    pub(crate) fn reverse(needle: &[u8]) -> NeedleHash {
+        let mut nh = NeedleHash { hash: Hash::new(), hash_2pow: 1 };
+        if needle.is_empty() {
+            return nh;
+        }
+        nh.hash.add(needle[needle.len() - 1]);
+        for &b in needle.iter().rev().skip(1) {
+            nh.hash.add(b);
+            nh.hash_2pow = nh.hash_2pow.wrapping_shl(1);
+        }
+        nh
+    }
+
+    /// Return true if the hashes are equivalent.
+    fn eq(&self, hash: Hash) -> bool {
+        self.hash == hash
+    }
+}
+
+/// A Rabin-Karp hash. This might represent the hash of a needle, or the hash
+/// of a rolling window in the haystack.
+#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
+pub(crate) struct Hash(u32);
+
+impl Hash {
+    /// Create a new hash that represents the empty string.
+    pub(crate) fn new() -> Hash {
+        Hash(0)
+    }
+
+    /// Create a new hash from the bytes given for use in forward searches.
+    pub(crate) fn from_bytes_fwd(bytes: &[u8]) -> Hash {
+        let mut hash = Hash::new();
+        for &b in bytes {
+            hash.add(b);
+        }
+        hash
+    }
+
+    /// Create a new hash from the bytes given for use in reverse searches.
+    fn from_bytes_rev(bytes: &[u8]) -> Hash {
+        let mut hash = Hash::new();
+        for &b in bytes.iter().rev() {
+            hash.add(b);
+        }
+        hash
+    }
+
+    /// Add 'new' and remove 'old' from this hash. The given needle hash should
+    /// correspond to the hash computed for the needle being searched for.
+    ///
+    /// This is meant to be used when the rolling window of the haystack is
+    /// advanced.
+    fn roll(&mut self, nhash: &NeedleHash, old: u8, new: u8) {
+        self.del(nhash, old);
+        self.add(new);
+    }
+
+    /// Add a byte to this hash.
+    fn add(&mut self, byte: u8) {
+        self.0 = self.0.wrapping_shl(1).wrapping_add(byte as u32);
+    }
+
+    /// Remove a byte from this hash. The given needle hash should correspond
+    /// to the hash computed for the needle being searched for.
+    fn del(&mut self, nhash: &NeedleHash, byte: u8) {
+        let factor = nhash.hash_2pow;
+        self.0 = self.0.wrapping_sub((byte as u32).wrapping_mul(factor));
+    }
+}
+
+/// Returns true if the given needle is a prefix of the given haystack.
+///
+/// We forcefully don't inline the is_prefix call and hint at the compiler that
+/// it is unlikely to be called. This causes the inner rabinkarp loop above
+/// to be a bit tighter and leads to some performance improvement. See the
+/// memmem/krate/prebuilt/sliceslice-words/words benchmark.
+#[cold]
+#[inline(never)]
+fn is_prefix(haystack: &[u8], needle: &[u8]) -> bool {
+    crate::memmem::util::is_prefix(haystack, needle)
+}
+
+/// Returns true if the given needle is a suffix of the given haystack.
+///
+/// See is_prefix for why this is forcefully not inlined.
+#[cold]
+#[inline(never)]
+fn is_suffix(haystack: &[u8], needle: &[u8]) -> bool {
+    crate::memmem::util::is_suffix(haystack, needle)
+}
+
+#[cfg(test)]
+mod simpletests {
+    define_memmem_simple_tests!(super::find, super::rfind);
+}
+
+#[cfg(all(test, feature = "std", not(miri)))]
+mod proptests {
+    define_memmem_quickcheck_tests!(super::find, super::rfind);
+}
diff --git a/src/memmem/rarebytes.rs b/src/memmem/rarebytes.rs
new file mode 100644
index 0000000..fb33f68
--- /dev/null
+++ b/src/memmem/rarebytes.rs
@@ -0,0 +1,136 @@
+/// A heuristic frequency based detection of rare bytes for substring search.
+///
+/// This detector attempts to pick out two bytes in a needle that are predicted
+/// to occur least frequently. The purpose is to use these bytes to implement
+/// fast candidate search using vectorized code.
+///
+/// A set of offsets is only computed for needles of length 2 or greater.
+/// Smaller needles should be special cased by the substring search algorithm
+/// in use. (e.g., Use memchr for single byte needles.)
+///
+/// Note that we use `u8` to represent the offsets of the rare bytes in a
+/// needle to reduce space usage. This means that rare byte occurring after the
+/// first 255 bytes in a needle will never be used.
+#[derive(Clone, Copy, Debug, Default)]
+pub(crate) struct RareNeedleBytes {
+    /// The leftmost offset of the rarest byte in the needle, according to
+    /// pre-computed frequency analysis. The "leftmost offset" means that
+    /// rare1i <= i for all i where needle[i] == needle[rare1i].
+    rare1i: u8,
+    /// The leftmost offset of the second rarest byte in the needle, according
+    /// to pre-computed frequency analysis. The "leftmost offset" means that
+    /// rare2i <= i for all i where needle[i] == needle[rare2i].
+    ///
+    /// The second rarest byte is used as a type of guard for quickly detecting
+    /// a mismatch if the first byte matches. This is a hedge against
+    /// pathological cases where the pre-computed frequency analysis may be
+    /// off. (But of course, does not prevent *all* pathological cases.)
+    ///
+    /// In general, rare1i != rare2i by construction, although there is no hard
+    /// requirement that they be different. However, since the case of a single
+    /// byte needle is handled specially by memchr itself, rare2i generally
+    /// always should be different from rare1i since it would otherwise be
+    /// ineffective as a guard.
+    rare2i: u8,
+}
+
+impl RareNeedleBytes {
+    /// Create a new pair of rare needle bytes with the given offsets. This is
+    /// only used in tests for generating input data.
+    #[cfg(all(test, feature = "std"))]
+    pub(crate) fn new(rare1i: u8, rare2i: u8) -> RareNeedleBytes {
+        RareNeedleBytes { rare1i, rare2i }
+    }
+
+    /// Detect the leftmost offsets of the two rarest bytes in the given
+    /// needle.
+    pub(crate) fn forward(needle: &[u8]) -> RareNeedleBytes {
+        if needle.len() <= 1 || needle.len() > core::u8::MAX as usize {
+            // For needles bigger than u8::MAX, our offsets aren't big enough.
+            // (We make our offsets small to reduce stack copying.)
+            // If you have a use case for it, please file an issue. In that
+            // case, we should probably just adjust the routine below to pick
+            // some rare bytes from the first 255 bytes of the needle.
+            //
+            // Also note that for needles of size 0 or 1, they are special
+            // cased in Two-Way.
+            //
+            // TODO: Benchmar this.
+            return RareNeedleBytes { rare1i: 0, rare2i: 0 };
+        }
+
+        // Find the rarest two bytes. We make them distinct by construction.
+        let (mut rare1, mut rare1i) = (needle[0], 0);
+        let (mut rare2, mut rare2i) = (needle[1], 1);
+        if rank(rare2) < rank(rare1) {
+            core::mem::swap(&mut rare1, &mut rare2);
+            core::mem::swap(&mut rare1i, &mut rare2i);
+        }
+        for (i, &b) in needle.iter().enumerate().skip(2) {
+            if rank(b) < rank(rare1) {
+                rare2 = rare1;
+                rare2i = rare1i;
+                rare1 = b;
+                rare1i = i as u8;
+            } else if b != rare1 && rank(b) < rank(rare2) {
+                rare2 = b;
+                rare2i = i as u8;
+            }
+        }
+        // While not strictly required, we really don't want these to be
+        // equivalent. If they were, it would reduce the effectiveness of
+        // candidate searching using these rare bytes by increasing the rate of
+        // false positives.
+        assert_ne!(rare1i, rare2i);
+        RareNeedleBytes { rare1i, rare2i }
+    }
+
+    /// Return the rare bytes in the given needle in the forward direction.
+    /// The needle given must be the same one given to the RareNeedleBytes
+    /// constructor.
+    pub(crate) fn as_rare_bytes(&self, needle: &[u8]) -> (u8, u8) {
+        (needle[self.rare1i as usize], needle[self.rare2i as usize])
+    }
+
+    /// Return the rare offsets such that the first offset is always <= to the
+    /// second offset. This is useful when the caller doesn't care whether
+    /// rare1 is rarer than rare2, but just wants to ensure that they are
+    /// ordered with respect to one another.
+    #[cfg(memchr_runtime_simd)]
+    pub(crate) fn as_rare_ordered_usize(&self) -> (usize, usize) {
+        let (rare1i, rare2i) = self.as_rare_ordered_u8();
+        (rare1i as usize, rare2i as usize)
+    }
+
+    /// Like as_rare_ordered_usize, but returns the offsets as their native
+    /// u8 values.
+    #[cfg(memchr_runtime_simd)]
+    pub(crate) fn as_rare_ordered_u8(&self) -> (u8, u8) {
+        if self.rare1i <= self.rare2i {
+            (self.rare1i, self.rare2i)
+        } else {
+            (self.rare2i, self.rare1i)
+        }
+    }
+
+    /// Return the rare offsets as usize values in the order in which they were
+    /// constructed. rare1, for example, is constructed as the "rarer" byte,
+    /// and thus, callers may want to treat it differently from rare2.
+    pub(crate) fn as_rare_usize(&self) -> (usize, usize) {
+        (self.rare1i as usize, self.rare2i as usize)
+    }
+
+    /// Return the byte frequency rank of each byte. The higher the rank, the
+    /// more frequency the byte is predicted to be. The needle given must be
+    /// the same one given to the RareNeedleBytes constructor.
+    pub(crate) fn as_ranks(&self, needle: &[u8]) -> (usize, usize) {
+        let (b1, b2) = self.as_rare_bytes(needle);
+        (rank(b1), rank(b2))
+    }
+}
+
+/// Return the heuristical frequency rank of the given byte. A lower rank
+/// means the byte is believed to occur less frequently.
+fn rank(b: u8) -> usize {
+    crate::memmem::byte_frequencies::BYTE_FREQUENCIES[b as usize] as usize
+}
diff --git a/src/memmem/twoway.rs b/src/memmem/twoway.rs
new file mode 100644
index 0000000..7f82ed1
--- /dev/null
+++ b/src/memmem/twoway.rs
@@ -0,0 +1,878 @@
+use core::cmp;
+
+use crate::memmem::{prefilter::Pre, util};
+
+/// Two-Way search in the forward direction.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct Forward(TwoWay);
+
+/// Two-Way search in the reverse direction.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct Reverse(TwoWay);
+
+/// An implementation of the TwoWay substring search algorithm, with heuristics
+/// for accelerating search based on frequency analysis.
+///
+/// This searcher supports forward and reverse search, although not
+/// simultaneously. It runs in O(n + m) time and O(1) space, where
+/// `n ~ len(needle)` and `m ~ len(haystack)`.
+///
+/// The implementation here roughly matches that which was developed by
+/// Crochemore and Perrin in their 1991 paper "Two-way string-matching." The
+/// changes in this implementation are 1) the use of zero-based indices, 2) a
+/// heuristic skip table based on the last byte (borrowed from Rust's standard
+/// library) and 3) the addition of heuristics for a fast skip loop. That is,
+/// (3) this will detect bytes that are believed to be rare in the needle and
+/// use fast vectorized instructions to find their occurrences quickly. The
+/// Two-Way algorithm is then used to confirm whether a match at that location
+/// occurred.
+///
+/// The heuristic for fast skipping is automatically shut off if it's
+/// detected to be ineffective at search time. Generally, this only occurs in
+/// pathological cases. But this is generally necessary in order to preserve
+/// a `O(n + m)` time bound.
+///
+/// The code below is fairly complex and not obviously correct at all. It's
+/// likely necessary to read the Two-Way paper cited above in order to fully
+/// grok this code. The essence of it is:
+///
+/// 1) Do something to detect a "critical" position in the needle.
+/// 2) For the current position in the haystack, look if needle[critical..]
+///    matches at that position.
+/// 3) If so, look if needle[..critical] matches.
+/// 4) If a mismatch occurs, shift the search by some amount based on the
+///    critical position and a pre-computed shift.
+///
+/// This type is wrapped in Forward and Reverse types that expose consistent
+/// forward or reverse APIs.
+#[derive(Clone, Copy, Debug)]
+struct TwoWay {
+    /// A small bitset used as a quick prefilter (in addition to the faster
+    /// SIMD based prefilter). Namely, a bit 'i' is set if and only if b%64==i
+    /// for any b in the needle.
+    ///
+    /// When used as a prefilter, if the last byte at the current candidate
+    /// position is NOT in this set, then we can skip that entire candidate
+    /// position (the length of the needle). This is essentially the shift
+    /// trick found in Boyer-Moore, but only applied to bytes that don't appear
+    /// in the needle.
+    ///
+    /// N.B. This trick was inspired by something similar in std's
+    /// implementation of Two-Way.
+    byteset: ApproximateByteSet,
+    /// A critical position in needle. Specifically, this position corresponds
+    /// to beginning of either the minimal or maximal suffix in needle. (N.B.
+    /// See SuffixType below for why "minimal" isn't quite the correct word
+    /// here.)
+    ///
+    /// This is the position at which every search begins. Namely, search
+    /// starts by scanning text to the right of this position, and only if
+    /// there's a match does the text to the left of this position get scanned.
+    critical_pos: usize,
+    /// The amount we shift by in the Two-Way search algorithm. This
+    /// corresponds to the "small period" and "large period" cases.
+    shift: Shift,
+}
+
+impl Forward {
+    /// Create a searcher that uses the Two-Way algorithm by searching forwards
+    /// through any haystack.
+    pub(crate) fn new(needle: &[u8]) -> Forward {
+        if needle.is_empty() {
+            return Forward(TwoWay::empty());
+        }
+
+        let byteset = ApproximateByteSet::new(needle);
+        let min_suffix = Suffix::forward(needle, SuffixKind::Minimal);
+        let max_suffix = Suffix::forward(needle, SuffixKind::Maximal);
+        let (period_lower_bound, critical_pos) =
+            if min_suffix.pos > max_suffix.pos {
+                (min_suffix.period, min_suffix.pos)
+            } else {
+                (max_suffix.period, max_suffix.pos)
+            };
+        let shift = Shift::forward(needle, period_lower_bound, critical_pos);
+        Forward(TwoWay { byteset, critical_pos, shift })
+    }
+
+    /// Find the position of the first occurrence of this searcher's needle in
+    /// the given haystack. If one does not exist, then return None.
+    ///
+    /// This accepts prefilter state that is useful when using the same
+    /// searcher multiple times, such as in an iterator.
+    ///
+    /// Callers must guarantee that the needle is non-empty and its length is
+    /// <= the haystack's length.
+    #[inline(always)]
+    pub(crate) fn find(
+        &self,
+        pre: Option<&mut Pre<'_>>,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        debug_assert!(!needle.is_empty(), "needle should not be empty");
+        debug_assert!(needle.len() <= haystack.len(), "haystack too short");
+
+        match self.0.shift {
+            Shift::Small { period } => {
+                self.find_small_imp(pre, haystack, needle, period)
+            }
+            Shift::Large { shift } => {
+                self.find_large_imp(pre, haystack, needle, shift)
+            }
+        }
+    }
+
+    /// Like find, but handles the degenerate substring test cases. This is
+    /// only useful for conveniently testing this substring implementation in
+    /// isolation.
+    #[cfg(test)]
+    fn find_general(
+        &self,
+        pre: Option<&mut Pre<'_>>,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        if needle.is_empty() {
+            Some(0)
+        } else if haystack.len() < needle.len() {
+            None
+        } else {
+            self.find(pre, haystack, needle)
+        }
+    }
+
+    // Each of the two search implementations below can be accelerated by a
+    // prefilter, but it is not always enabled. To avoid its overhead when
+    // its disabled, we explicitly inline each search implementation based on
+    // whether a prefilter will be used or not. The decision on which to use
+    // is made in the parent meta searcher.
+
+    #[inline(always)]
+    fn find_small_imp(
+        &self,
+        mut pre: Option<&mut Pre<'_>>,
+        haystack: &[u8],
+        needle: &[u8],
+        period: usize,
+    ) -> Option<usize> {
+        let last_byte = needle.len() - 1;
+        let mut pos = 0;
+        let mut shift = 0;
+        while pos + needle.len() <= haystack.len() {
+            let mut i = cmp::max(self.0.critical_pos, shift);
+            if let Some(pre) = pre.as_mut() {
+                if pre.should_call() {
+                    pos += pre.call(&haystack[pos..], needle)?;
+                    shift = 0;
+                    i = self.0.critical_pos;
+                    if pos + needle.len() > haystack.len() {
+                        return None;
+                    }
+                }
+            }
+            if !self.0.byteset.contains(haystack[pos + last_byte]) {
+                pos += needle.len();
+                shift = 0;
+                continue;
+            }
+            while i < needle.len() && needle[i] == haystack[pos + i] {
+                i += 1;
+            }
+            if i < needle.len() {
+                pos += i - self.0.critical_pos + 1;
+                shift = 0;
+            } else {
+                let mut j = self.0.critical_pos;
+                while j > shift && needle[j] == haystack[pos + j] {
+                    j -= 1;
+                }
+                if j <= shift && needle[shift] == haystack[pos + shift] {
+                    return Some(pos);
+                }
+                pos += period;
+                shift = needle.len() - period;
+            }
+        }
+        None
+    }
+
+    #[inline(always)]
+    fn find_large_imp(
+        &self,
+        mut pre: Option<&mut Pre<'_>>,
+        haystack: &[u8],
+        needle: &[u8],
+        shift: usize,
+    ) -> Option<usize> {
+        let last_byte = needle.len() - 1;
+        let mut pos = 0;
+        'outer: while pos + needle.len() <= haystack.len() {
+            if let Some(pre) = pre.as_mut() {
+                if pre.should_call() {
+                    pos += pre.call(&haystack[pos..], needle)?;
+                    if pos + needle.len() > haystack.len() {
+                        return None;
+                    }
+                }
+            }
+
+            if !self.0.byteset.contains(haystack[pos + last_byte]) {
+                pos += needle.len();
+                continue;
+            }
+            let mut i = self.0.critical_pos;
+            while i < needle.len() && needle[i] == haystack[pos + i] {
+                i += 1;
+            }
+            if i < needle.len() {
+                pos += i - self.0.critical_pos + 1;
+            } else {
+                for j in (0..self.0.critical_pos).rev() {
+                    if needle[j] != haystack[pos + j] {
+                        pos += shift;
+                        continue 'outer;
+                    }
+                }
+                return Some(pos);
+            }
+        }
+        None
+    }
+}
+
+impl Reverse {
+    /// Create a searcher that uses the Two-Way algorithm by searching in
+    /// reverse through any haystack.
+    pub(crate) fn new(needle: &[u8]) -> Reverse {
+        if needle.is_empty() {
+            return Reverse(TwoWay::empty());
+        }
+
+        let byteset = ApproximateByteSet::new(needle);
+        let min_suffix = Suffix::reverse(needle, SuffixKind::Minimal);
+        let max_suffix = Suffix::reverse(needle, SuffixKind::Maximal);
+        let (period_lower_bound, critical_pos) =
+            if min_suffix.pos < max_suffix.pos {
+                (min_suffix.period, min_suffix.pos)
+            } else {
+                (max_suffix.period, max_suffix.pos)
+            };
+        // let critical_pos = needle.len() - critical_pos;
+        let shift = Shift::reverse(needle, period_lower_bound, critical_pos);
+        Reverse(TwoWay { byteset, critical_pos, shift })
+    }
+
+    /// Find the position of the last occurrence of this searcher's needle
+    /// in the given haystack. If one does not exist, then return None.
+    ///
+    /// This will automatically initialize prefilter state. This should only
+    /// be used for one-off searches.
+    ///
+    /// Callers must guarantee that the needle is non-empty and its length is
+    /// <= the haystack's length.
+    #[inline(always)]
+    pub(crate) fn rfind(
+        &self,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        debug_assert!(!needle.is_empty(), "needle should not be empty");
+        debug_assert!(needle.len() <= haystack.len(), "haystack too short");
+        // For the reverse case, we don't use a prefilter. It's plausible that
+        // perhaps we should, but it's a lot of additional code to do it, and
+        // it's not clear that it's actually worth it. If you have a really
+        // compelling use case for this, please file an issue.
+        match self.0.shift {
+            Shift::Small { period } => {
+                self.rfind_small_imp(haystack, needle, period)
+            }
+            Shift::Large { shift } => {
+                self.rfind_large_imp(haystack, needle, shift)
+            }
+        }
+    }
+
+    /// Like rfind, but handles the degenerate substring test cases. This is
+    /// only useful for conveniently testing this substring implementation in
+    /// isolation.
+    #[cfg(test)]
+    fn rfind_general(&self, haystack: &[u8], needle: &[u8]) -> Option<usize> {
+        if needle.is_empty() {
+            Some(haystack.len())
+        } else if haystack.len() < needle.len() {
+            None
+        } else {
+            self.rfind(haystack, needle)
+        }
+    }
+
+    #[inline(always)]
+    fn rfind_small_imp(
+        &self,
+        haystack: &[u8],
+        needle: &[u8],
+        period: usize,
+    ) -> Option<usize> {
+        let nlen = needle.len();
+        let mut pos = haystack.len();
+        let mut shift = nlen;
+        while pos >= nlen {
+            if !self.0.byteset.contains(haystack[pos - nlen]) {
+                pos -= nlen;
+                shift = nlen;
+                continue;
+            }
+            let mut i = cmp::min(self.0.critical_pos, shift);
+            while i > 0 && needle[i - 1] == haystack[pos - nlen + i - 1] {
+                i -= 1;
+            }
+            if i > 0 || needle[0] != haystack[pos - nlen] {
+                pos -= self.0.critical_pos - i + 1;
+                shift = nlen;
+            } else {
+                let mut j = self.0.critical_pos;
+                while j < shift && needle[j] == haystack[pos - nlen + j] {
+                    j += 1;
+                }
+                if j >= shift {
+                    return Some(pos - nlen);
+                }
+                pos -= period;
+                shift = period;
+            }
+        }
+        None
+    }
+
+    #[inline(always)]
+    fn rfind_large_imp(
+        &self,
+        haystack: &[u8],
+        needle: &[u8],
+        shift: usize,
+    ) -> Option<usize> {
+        let nlen = needle.len();
+        let mut pos = haystack.len();
+        while pos >= nlen {
+            if !self.0.byteset.contains(haystack[pos - nlen]) {
+                pos -= nlen;
+                continue;
+            }
+            let mut i = self.0.critical_pos;
+            while i > 0 && needle[i - 1] == haystack[pos - nlen + i - 1] {
+                i -= 1;
+            }
+            if i > 0 || needle[0] != haystack[pos - nlen] {
+                pos -= self.0.critical_pos - i + 1;
+            } else {
+                let mut j = self.0.critical_pos;
+                while j < nlen && needle[j] == haystack[pos - nlen + j] {
+                    j += 1;
+                }
+                if j == nlen {
+                    return Some(pos - nlen);
+                }
+                pos -= shift;
+            }
+        }
+        None
+    }
+}
+
+impl TwoWay {
+    fn empty() -> TwoWay {
+        TwoWay {
+            byteset: ApproximateByteSet::new(b""),
+            critical_pos: 0,
+            shift: Shift::Large { shift: 0 },
+        }
+    }
+}
+
+/// A representation of the amount we're allowed to shift by during Two-Way
+/// search.
+///
+/// When computing a critical factorization of the needle, we find the position
+/// of the critical factorization by finding the needle's maximal (or minimal)
+/// suffix, along with the period of that suffix. It turns out that the period
+/// of that suffix is a lower bound on the period of the needle itself.
+///
+/// This lower bound is equivalent to the actual period of the needle in
+/// some cases. To describe that case, we denote the needle as `x` where
+/// `x = uv` and `v` is the lexicographic maximal suffix of `v`. The lower
+/// bound given here is always the period of `v`, which is `<= period(x)`. The
+/// case where `period(v) == period(x)` occurs when `len(u) < (len(x) / 2)` and
+/// where `u` is a suffix of `v[0..period(v)]`.
+///
+/// This case is important because the search algorithm for when the
+/// periods are equivalent is slightly different than the search algorithm
+/// for when the periods are not equivalent. In particular, when they aren't
+/// equivalent, we know that the period of the needle is no less than half its
+/// length. In this case, we shift by an amount less than or equal to the
+/// period of the needle (determined by the maximum length of the components
+/// of the critical factorization of `x`, i.e., `max(len(u), len(v))`)..
+///
+/// The above two cases are represented by the variants below. Each entails
+/// a different instantiation of the Two-Way search algorithm.
+///
+/// N.B. If we could find a way to compute the exact period in all cases,
+/// then we could collapse this case analysis and simplify the algorithm. The
+/// Two-Way paper suggests this is possible, but more reading is required to
+/// grok why the authors didn't pursue that path.
+#[derive(Clone, Copy, Debug)]
+enum Shift {
+    Small { period: usize },
+    Large { shift: usize },
+}
+
+impl Shift {
+    /// Compute the shift for a given needle in the forward direction.
+    ///
+    /// This requires a lower bound on the period and a critical position.
+    /// These can be computed by extracting both the minimal and maximal
+    /// lexicographic suffixes, and choosing the right-most starting position.
+    /// The lower bound on the period is then the period of the chosen suffix.
+    fn forward(
+        needle: &[u8],
+        period_lower_bound: usize,
+        critical_pos: usize,
+    ) -> Shift {
+        let large = cmp::max(critical_pos, needle.len() - critical_pos);
+        if critical_pos * 2 >= needle.len() {
+            return Shift::Large { shift: large };
+        }
+
+        let (u, v) = needle.split_at(critical_pos);
+        if !util::is_suffix(&v[..period_lower_bound], u) {
+            return Shift::Large { shift: large };
+        }
+        Shift::Small { period: period_lower_bound }
+    }
+
+    /// Compute the shift for a given needle in the reverse direction.
+    ///
+    /// This requires a lower bound on the period and a critical position.
+    /// These can be computed by extracting both the minimal and maximal
+    /// lexicographic suffixes, and choosing the left-most starting position.
+    /// The lower bound on the period is then the period of the chosen suffix.
+    fn reverse(
+        needle: &[u8],
+        period_lower_bound: usize,
+        critical_pos: usize,
+    ) -> Shift {
+        let large = cmp::max(critical_pos, needle.len() - critical_pos);
+        if (needle.len() - critical_pos) * 2 >= needle.len() {
+            return Shift::Large { shift: large };
+        }
+
+        let (v, u) = needle.split_at(critical_pos);
+        if !util::is_prefix(&v[v.len() - period_lower_bound..], u) {
+            return Shift::Large { shift: large };
+        }
+        Shift::Small { period: period_lower_bound }
+    }
+}
+
+/// A suffix extracted from a needle along with its period.
+#[derive(Debug)]
+struct Suffix {
+    /// The starting position of this suffix.
+    ///
+    /// If this is a forward suffix, then `&bytes[pos..]` can be used. If this
+    /// is a reverse suffix, then `&bytes[..pos]` can be used. That is, for
+    /// forward suffixes, this is an inclusive starting position, where as for
+    /// reverse suffixes, this is an exclusive ending position.
+    pos: usize,
+    /// The period of this suffix.
+    ///
+    /// Note that this is NOT necessarily the period of the string from which
+    /// this suffix comes from. (It is always less than or equal to the period
+    /// of the original string.)
+    period: usize,
+}
+
+impl Suffix {
+    fn forward(needle: &[u8], kind: SuffixKind) -> Suffix {
+        debug_assert!(!needle.is_empty());
+
+        // suffix represents our maximal (or minimal) suffix, along with
+        // its period.
+        let mut suffix = Suffix { pos: 0, period: 1 };
+        // The start of a suffix in `needle` that we are considering as a
+        // more maximal (or minimal) suffix than what's in `suffix`.
+        let mut candidate_start = 1;
+        // The current offset of our suffixes that we're comparing.
+        //
+        // When the characters at this offset are the same, then we mush on
+        // to the next position since no decision is possible. When the
+        // candidate's character is greater (or lesser) than the corresponding
+        // character than our current maximal (or minimal) suffix, then the
+        // current suffix is changed over to the candidate and we restart our
+        // search. Otherwise, the candidate suffix is no good and we restart
+        // our search on the next candidate.
+        //
+        // The three cases above correspond to the three cases in the loop
+        // below.
+        let mut offset = 0;
+
+        while candidate_start + offset < needle.len() {
+            let current = needle[suffix.pos + offset];
+            let candidate = needle[candidate_start + offset];
+            match kind.cmp(current, candidate) {
+                SuffixOrdering::Accept => {
+                    suffix = Suffix { pos: candidate_start, period: 1 };
+                    candidate_start += 1;
+                    offset = 0;
+                }
+                SuffixOrdering::Skip => {
+                    candidate_start += offset + 1;
+                    offset = 0;
+                    suffix.period = candidate_start - suffix.pos;
+                }
+                SuffixOrdering::Push => {
+                    if offset + 1 == suffix.period {
+                        candidate_start += suffix.period;
+                        offset = 0;
+                    } else {
+                        offset += 1;
+                    }
+                }
+            }
+        }
+        suffix
+    }
+
+    fn reverse(needle: &[u8], kind: SuffixKind) -> Suffix {
+        debug_assert!(!needle.is_empty());
+
+        // See the comments in `forward` for how this works.
+        let mut suffix = Suffix { pos: needle.len(), period: 1 };
+        if needle.len() == 1 {
+            return suffix;
+        }
+        let mut candidate_start = needle.len() - 1;
+        let mut offset = 0;
+
+        while offset < candidate_start {
+            let current = needle[suffix.pos - offset - 1];
+            let candidate = needle[candidate_start - offset - 1];
+            match kind.cmp(current, candidate) {
+                SuffixOrdering::Accept => {
+                    suffix = Suffix { pos: candidate_start, period: 1 };
+                    candidate_start -= 1;
+                    offset = 0;
+                }
+                SuffixOrdering::Skip => {
+                    candidate_start -= offset + 1;
+                    offset = 0;
+                    suffix.period = suffix.pos - candidate_start;
+                }
+                SuffixOrdering::Push => {
+                    if offset + 1 == suffix.period {
+                        candidate_start -= suffix.period;
+                        offset = 0;
+                    } else {
+                        offset += 1;
+                    }
+                }
+            }
+        }
+        suffix
+    }
+}
+
+/// The kind of suffix to extract.
+#[derive(Clone, Copy, Debug)]
+enum SuffixKind {
+    /// Extract the smallest lexicographic suffix from a string.
+    ///
+    /// Technically, this doesn't actually pick the smallest lexicographic
+    /// suffix. e.g., Given the choice between `a` and `aa`, this will choose
+    /// the latter over the former, even though `a < aa`. The reasoning for
+    /// this isn't clear from the paper, but it still smells like a minimal
+    /// suffix.
+    Minimal,
+    /// Extract the largest lexicographic suffix from a string.
+    ///
+    /// Unlike `Minimal`, this really does pick the maximum suffix. e.g., Given
+    /// the choice between `z` and `zz`, this will choose the latter over the
+    /// former.
+    Maximal,
+}
+
+/// The result of comparing corresponding bytes between two suffixes.
+#[derive(Clone, Copy, Debug)]
+enum SuffixOrdering {
+    /// This occurs when the given candidate byte indicates that the candidate
+    /// suffix is better than the current maximal (or minimal) suffix. That is,
+    /// the current candidate suffix should supplant the current maximal (or
+    /// minimal) suffix.
+    Accept,
+    /// This occurs when the given candidate byte excludes the candidate suffix
+    /// from being better than the current maximal (or minimal) suffix. That
+    /// is, the current candidate suffix should be dropped and the next one
+    /// should be considered.
+    Skip,
+    /// This occurs when no decision to accept or skip the candidate suffix
+    /// can be made, e.g., when corresponding bytes are equivalent. In this
+    /// case, the next corresponding bytes should be compared.
+    Push,
+}
+
+impl SuffixKind {
+    /// Returns true if and only if the given candidate byte indicates that
+    /// it should replace the current suffix as the maximal (or minimal)
+    /// suffix.
+    fn cmp(self, current: u8, candidate: u8) -> SuffixOrdering {
+        use self::SuffixOrdering::*;
+
+        match self {
+            SuffixKind::Minimal if candidate < current => Accept,
+            SuffixKind::Minimal if candidate > current => Skip,
+            SuffixKind::Minimal => Push,
+            SuffixKind::Maximal if candidate > current => Accept,
+            SuffixKind::Maximal if candidate < current => Skip,
+            SuffixKind::Maximal => Push,
+        }
+    }
+}
+
+/// A bitset used to track whether a particular byte exists in a needle or not.
+///
+/// Namely, bit 'i' is set if and only if byte%64==i for any byte in the
+/// needle. If a particular byte in the haystack is NOT in this set, then one
+/// can conclude that it is also not in the needle, and thus, one can advance
+/// in the haystack by needle.len() bytes.
+#[derive(Clone, Copy, Debug)]
+struct ApproximateByteSet(u64);
+
+impl ApproximateByteSet {
+    /// Create a new set from the given needle.
+    fn new(needle: &[u8]) -> ApproximateByteSet {
+        let mut bits = 0;
+        for &b in needle {
+            bits |= 1 << (b % 64);
+        }
+        ApproximateByteSet(bits)
+    }
+
+    /// Return true if and only if the given byte might be in this set. This
+    /// may return a false positive, but will never return a false negative.
+    #[inline(always)]
+    fn contains(&self, byte: u8) -> bool {
+        self.0 & (1 << (byte % 64)) != 0
+    }
+}
+
+#[cfg(all(test, feature = "std", not(miri)))]
+mod tests {
+    use quickcheck::quickcheck;
+
+    use super::*;
+
+    define_memmem_quickcheck_tests!(
+        super::simpletests::twoway_find,
+        super::simpletests::twoway_rfind
+    );
+
+    /// Convenience wrapper for computing the suffix as a byte string.
+    fn get_suffix_forward(needle: &[u8], kind: SuffixKind) -> (&[u8], usize) {
+        let s = Suffix::forward(needle, kind);
+        (&needle[s.pos..], s.period)
+    }
+
+    /// Convenience wrapper for computing the reverse suffix as a byte string.
+    fn get_suffix_reverse(needle: &[u8], kind: SuffixKind) -> (&[u8], usize) {
+        let s = Suffix::reverse(needle, kind);
+        (&needle[..s.pos], s.period)
+    }
+
+    /// Return all of the non-empty suffixes in the given byte string.
+    fn suffixes(bytes: &[u8]) -> Vec<&[u8]> {
+        (0..bytes.len()).map(|i| &bytes[i..]).collect()
+    }
+
+    /// Return the lexicographically maximal suffix of the given byte string.
+    fn naive_maximal_suffix_forward(needle: &[u8]) -> &[u8] {
+        let mut sufs = suffixes(needle);
+        sufs.sort();
+        sufs.pop().unwrap()
+    }
+
+    /// Return the lexicographically maximal suffix of the reverse of the given
+    /// byte string.
+    fn naive_maximal_suffix_reverse(needle: &[u8]) -> Vec<u8> {
+        let mut reversed = needle.to_vec();
+        reversed.reverse();
+        let mut got = naive_maximal_suffix_forward(&reversed).to_vec();
+        got.reverse();
+        got
+    }
+
+    #[test]
+    fn suffix_forward() {
+        macro_rules! assert_suffix_min {
+            ($given:expr, $expected:expr, $period:expr) => {
+                let (got_suffix, got_period) =
+                    get_suffix_forward($given.as_bytes(), SuffixKind::Minimal);
+                let got_suffix = std::str::from_utf8(got_suffix).unwrap();
+                assert_eq!(($expected, $period), (got_suffix, got_period));
+            };
+        }
+
+        macro_rules! assert_suffix_max {
+            ($given:expr, $expected:expr, $period:expr) => {
+                let (got_suffix, got_period) =
+                    get_suffix_forward($given.as_bytes(), SuffixKind::Maximal);
+                let got_suffix = std::str::from_utf8(got_suffix).unwrap();
+                assert_eq!(($expected, $period), (got_suffix, got_period));
+            };
+        }
+
+        assert_suffix_min!("a", "a", 1);
+        assert_suffix_max!("a", "a", 1);
+
+        assert_suffix_min!("ab", "ab", 2);
+        assert_suffix_max!("ab", "b", 1);
+
+        assert_suffix_min!("ba", "a", 1);
+        assert_suffix_max!("ba", "ba", 2);
+
+        assert_suffix_min!("abc", "abc", 3);
+        assert_suffix_max!("abc", "c", 1);
+
+        assert_suffix_min!("acb", "acb", 3);
+        assert_suffix_max!("acb", "cb", 2);
+
+        assert_suffix_min!("cba", "a", 1);
+        assert_suffix_max!("cba", "cba", 3);
+
+        assert_suffix_min!("abcabc", "abcabc", 3);
+        assert_suffix_max!("abcabc", "cabc", 3);
+
+        assert_suffix_min!("abcabcabc", "abcabcabc", 3);
+        assert_suffix_max!("abcabcabc", "cabcabc", 3);
+
+        assert_suffix_min!("abczz", "abczz", 5);
+        assert_suffix_max!("abczz", "zz", 1);
+
+        assert_suffix_min!("zzabc", "abc", 3);
+        assert_suffix_max!("zzabc", "zzabc", 5);
+
+        assert_suffix_min!("aaa", "aaa", 1);
+        assert_suffix_max!("aaa", "aaa", 1);
+
+        assert_suffix_min!("foobar", "ar", 2);
+        assert_suffix_max!("foobar", "r", 1);
+    }
+
+    #[test]
+    fn suffix_reverse() {
+        macro_rules! assert_suffix_min {
+            ($given:expr, $expected:expr, $period:expr) => {
+                let (got_suffix, got_period) =
+                    get_suffix_reverse($given.as_bytes(), SuffixKind::Minimal);
+                let got_suffix = std::str::from_utf8(got_suffix).unwrap();
+                assert_eq!(($expected, $period), (got_suffix, got_period));
+            };
+        }
+
+        macro_rules! assert_suffix_max {
+            ($given:expr, $expected:expr, $period:expr) => {
+                let (got_suffix, got_period) =
+                    get_suffix_reverse($given.as_bytes(), SuffixKind::Maximal);
+                let got_suffix = std::str::from_utf8(got_suffix).unwrap();
+                assert_eq!(($expected, $period), (got_suffix, got_period));
+            };
+        }
+
+        assert_suffix_min!("a", "a", 1);
+        assert_suffix_max!("a", "a", 1);
+
+        assert_suffix_min!("ab", "a", 1);
+        assert_suffix_max!("ab", "ab", 2);
+
+        assert_suffix_min!("ba", "ba", 2);
+        assert_suffix_max!("ba", "b", 1);
+
+        assert_suffix_min!("abc", "a", 1);
+        assert_suffix_max!("abc", "abc", 3);
+
+        assert_suffix_min!("acb", "a", 1);
+        assert_suffix_max!("acb", "ac", 2);
+
+        assert_suffix_min!("cba", "cba", 3);
+        assert_suffix_max!("cba", "c", 1);
+
+        assert_suffix_min!("abcabc", "abca", 3);
+        assert_suffix_max!("abcabc", "abcabc", 3);
+
+        assert_suffix_min!("abcabcabc", "abcabca", 3);
+        assert_suffix_max!("abcabcabc", "abcabcabc", 3);
+
+        assert_suffix_min!("abczz", "a", 1);
+        assert_suffix_max!("abczz", "abczz", 5);
+
+        assert_suffix_min!("zzabc", "zza", 3);
+        assert_suffix_max!("zzabc", "zz", 1);
+
+        assert_suffix_min!("aaa", "aaa", 1);
+        assert_suffix_max!("aaa", "aaa", 1);
+    }
+
+    quickcheck! {
+        fn qc_suffix_forward_maximal(bytes: Vec<u8>) -> bool {
+            if bytes.is_empty() {
+                return true;
+            }
+
+            let (got, _) = get_suffix_forward(&bytes, SuffixKind::Maximal);
+            let expected = naive_maximal_suffix_forward(&bytes);
+            got == expected
+        }
+
+        fn qc_suffix_reverse_maximal(bytes: Vec<u8>) -> bool {
+            if bytes.is_empty() {
+                return true;
+            }
+
+            let (got, _) = get_suffix_reverse(&bytes, SuffixKind::Maximal);
+            let expected = naive_maximal_suffix_reverse(&bytes);
+            expected == got
+        }
+    }
+}
+
+#[cfg(test)]
+mod simpletests {
+    use super::*;
+
+    pub(crate) fn twoway_find(
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        Forward::new(needle).find_general(None, haystack, needle)
+    }
+
+    pub(crate) fn twoway_rfind(
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        Reverse::new(needle).rfind_general(haystack, needle)
+    }
+
+    define_memmem_simple_tests!(twoway_find, twoway_rfind);
+
+    // This is a regression test caught by quickcheck that exercised a bug in
+    // the reverse small period handling. The bug was that we were using 'if j
+    // == shift' to determine if a match occurred, but the correct guard is 'if
+    // j >= shift', which matches the corresponding guard in the forward impl.
+    #[test]
+    fn regression_rev_small_period() {
+        let rfind = super::simpletests::twoway_rfind;
+        let haystack = "ababaz";
+        let needle = "abab";
+        assert_eq!(Some(0), rfind(haystack.as_bytes(), needle.as_bytes()));
+    }
+}
diff --git a/src/memmem/util.rs b/src/memmem/util.rs
new file mode 100644
index 0000000..de0e385
--- /dev/null
+++ b/src/memmem/util.rs
@@ -0,0 +1,88 @@
+// These routines are meant to be optimized specifically for low latency as
+// compared to the equivalent routines offered by std. (Which may invoke the
+// dynamic linker and call out to libc, which introduces a bit more latency
+// than we'd like.)
+
+/// Returns true if and only if needle is a prefix of haystack.
+#[inline(always)]
+pub(crate) fn is_prefix(haystack: &[u8], needle: &[u8]) -> bool {
+    needle.len() <= haystack.len() && memcmp(&haystack[..needle.len()], needle)
+}
+
+/// Returns true if and only if needle is a suffix of haystack.
+#[inline(always)]
+pub(crate) fn is_suffix(haystack: &[u8], needle: &[u8]) -> bool {
+    needle.len() <= haystack.len()
+        && memcmp(&haystack[haystack.len() - needle.len()..], needle)
+}
+
+/// Return true if and only if x.len() == y.len() && x[i] == y[i] for all
+/// 0 <= i < x.len().
+///
+/// Why not just use actual memcmp for this? Well, memcmp requires calling out
+/// to libc, and this routine is called in fairly hot code paths. Other than
+/// just calling out to libc, it also seems to result in worse codegen. By
+/// rolling our own memcmp in pure Rust, it seems to appear more friendly to
+/// the optimizer.
+///
+/// We mark this as inline always, although, some callers may not want it
+/// inlined for better codegen (like Rabin-Karp). In that case, callers are
+/// advised to create a non-inlineable wrapper routine that calls memcmp.
+#[inline(always)]
+pub(crate) fn memcmp(x: &[u8], y: &[u8]) -> bool {
+    if x.len() != y.len() {
+        return false;
+    }
+    // If we don't have enough bytes to do 4-byte at a time loads, then
+    // fall back to the naive slow version.
+    //
+    // TODO: We could do a copy_nonoverlapping combined with a mask instead
+    // of a loop. Benchmark it.
+    if x.len() < 4 {
+        for (&b1, &b2) in x.iter().zip(y) {
+            if b1 != b2 {
+                return false;
+            }
+        }
+        return true;
+    }
+    // When we have 4 or more bytes to compare, then proceed in chunks of 4 at
+    // a time using unaligned loads.
+    //
+    // Also, why do 4 byte loads instead of, say, 8 byte loads? The reason is
+    // that this particular version of memcmp is likely to be called with tiny
+    // needles. That means that if we do 8 byte loads, then a higher proportion
+    // of memcmp calls will use the slower variant above. With that said, this
+    // is a hypothesis and is only loosely supported by benchmarks. There's
+    // likely some improvement that could be made here. The main thing here
+    // though is to optimize for latency, not throughput.
+
+    // SAFETY: Via the conditional above, we know that both `px` and `py`
+    // have the same length, so `px < pxend` implies that `py < pyend`.
+    // Thus, derefencing both `px` and `py` in the loop below is safe.
+    //
+    // Moreover, we set `pxend` and `pyend` to be 4 bytes before the actual
+    // end of of `px` and `py`. Thus, the final dereference outside of the
+    // loop is guaranteed to be valid. (The final comparison will overlap with
+    // the last comparison done in the loop for lengths that aren't multiples
+    // of four.)
+    //
+    // Finally, we needn't worry about alignment here, since we do unaligned
+    // loads.
+    unsafe {
+        let (mut px, mut py) = (x.as_ptr(), y.as_ptr());
+        let (pxend, pyend) = (px.add(x.len() - 4), py.add(y.len() - 4));
+        while px < pxend {
+            let vx = (px as *const u32).read_unaligned();
+            let vy = (py as *const u32).read_unaligned();
+            if vx != vy {
+                return false;
+            }
+            px = px.add(4);
+            py = py.add(4);
+        }
+        let vx = (pxend as *const u32).read_unaligned();
+        let vy = (pyend as *const u32).read_unaligned();
+        vx == vy
+    }
+}
diff --git a/src/memmem/vector.rs b/src/memmem/vector.rs
new file mode 100644
index 0000000..a67d3c5
--- /dev/null
+++ b/src/memmem/vector.rs
@@ -0,0 +1,98 @@
+/// A trait for describing vector operations used by vectorized searchers.
+///
+/// The trait is highly constrained to low level vector operations needed. In
+/// general, it was invented mostly to be generic over x86's __m128i and
+/// __m256i types. It's likely that once std::simd becomes a thing, we can
+/// migrate to that since the operations required are quite simple.
+///
+/// TODO: Consider moving this trait up a level and using it to implement
+/// memchr as well. The trait might need to grow one or two methods, but
+/// otherwise should be close to sufficient already.
+///
+/// # Safety
+///
+/// All methods are not safe since they are intended to be implemented using
+/// vendor intrinsics, which are also not safe. Callers must ensure that the
+/// appropriate target features are enabled in the calling function, and that
+/// the current CPU supports them. All implementations should avoid marking the
+/// routines with #[target_feature] and instead mark them as #[inline(always)]
+/// to ensure they get appropriately inlined. (inline(always) cannot be used
+/// with target_feature.)
+pub(crate) trait Vector: Copy + core::fmt::Debug {
+    /// _mm_set1_epi8 or _mm256_set1_epi8
+    unsafe fn splat(byte: u8) -> Self;
+    /// _mm_loadu_si128 or _mm256_loadu_si256
+    unsafe fn load_unaligned(data: *const u8) -> Self;
+    /// _mm_movemask_epi8 or _mm256_movemask_epi8
+    unsafe fn movemask(self) -> u32;
+    /// _mm_cmpeq_epi8 or _mm256_cmpeq_epi8
+    unsafe fn cmpeq(self, vector2: Self) -> Self;
+    /// _mm_and_si128 or _mm256_and_si256
+    unsafe fn and(self, vector2: Self) -> Self;
+}
+
+#[cfg(target_arch = "x86_64")]
+mod x86sse {
+    use super::Vector;
+    use core::arch::x86_64::*;
+
+    impl Vector for __m128i {
+        #[inline(always)]
+        unsafe fn splat(byte: u8) -> __m128i {
+            _mm_set1_epi8(byte as i8)
+        }
+
+        #[inline(always)]
+        unsafe fn load_unaligned(data: *const u8) -> __m128i {
+            _mm_loadu_si128(data as *const __m128i)
+        }
+
+        #[inline(always)]
+        unsafe fn movemask(self) -> u32 {
+            _mm_movemask_epi8(self) as u32
+        }
+
+        #[inline(always)]
+        unsafe fn cmpeq(self, vector2: Self) -> __m128i {
+            _mm_cmpeq_epi8(self, vector2)
+        }
+
+        #[inline(always)]
+        unsafe fn and(self, vector2: Self) -> __m128i {
+            _mm_and_si128(self, vector2)
+        }
+    }
+}
+
+#[cfg(all(feature = "std", target_arch = "x86_64"))]
+mod x86avx {
+    use super::Vector;
+    use core::arch::x86_64::*;
+
+    impl Vector for __m256i {
+        #[inline(always)]
+        unsafe fn splat(byte: u8) -> __m256i {
+            _mm256_set1_epi8(byte as i8)
+        }
+
+        #[inline(always)]
+        unsafe fn load_unaligned(data: *const u8) -> __m256i {
+            _mm256_loadu_si256(data as *const __m256i)
+        }
+
+        #[inline(always)]
+        unsafe fn movemask(self) -> u32 {
+            _mm256_movemask_epi8(self) as u32
+        }
+
+        #[inline(always)]
+        unsafe fn cmpeq(self, vector2: Self) -> __m256i {
+            _mm256_cmpeq_epi8(self, vector2)
+        }
+
+        #[inline(always)]
+        unsafe fn and(self, vector2: Self) -> __m256i {
+            _mm256_and_si256(self, vector2)
+        }
+    }
+}
diff --git a/src/memmem/x86/avx.rs b/src/memmem/x86/avx.rs
new file mode 100644
index 0000000..ce168dd
--- /dev/null
+++ b/src/memmem/x86/avx.rs
@@ -0,0 +1,139 @@
+#[cfg(not(feature = "std"))]
+pub(crate) use self::nostd::Forward;
+#[cfg(feature = "std")]
+pub(crate) use self::std::Forward;
+
+#[cfg(feature = "std")]
+mod std {
+    use core::arch::x86_64::{__m128i, __m256i};
+
+    use crate::memmem::{genericsimd, NeedleInfo};
+
+    /// An AVX accelerated vectorized substring search routine that only works
+    /// on small needles.
+    #[derive(Clone, Copy, Debug)]
+    pub(crate) struct Forward(genericsimd::Forward);
+
+    impl Forward {
+        /// Create a new "generic simd" forward searcher. If one could not be
+        /// created from the given inputs, then None is returned.
+        pub(crate) fn new(
+            ninfo: &NeedleInfo,
+            needle: &[u8],
+        ) -> Option<Forward> {
+            if !cfg!(memchr_runtime_avx) || !is_x86_feature_detected!("avx2") {
+                return None;
+            }
+            genericsimd::Forward::new(ninfo, needle).map(Forward)
+        }
+
+        /// Returns the minimum length of haystack that is needed for this
+        /// searcher to work. Passing a haystack with a length smaller than
+        /// this will cause `find` to panic.
+        #[inline(always)]
+        pub(crate) fn min_haystack_len(&self) -> usize {
+            self.0.min_haystack_len::<__m128i>()
+        }
+
+        #[inline(always)]
+        pub(crate) fn find(
+            &self,
+            haystack: &[u8],
+            needle: &[u8],
+        ) -> Option<usize> {
+            // SAFETY: The only way a Forward value can exist is if the avx2
+            // target feature is enabled. This is the only safety requirement
+            // for calling the genericsimd searcher.
+            unsafe { self.find_impl(haystack, needle) }
+        }
+
+        /// The implementation of find marked with the appropriate target
+        /// feature.
+        ///
+        /// # Safety
+        ///
+        /// Callers must ensure that the avx2 CPU feature is enabled in the
+        /// current environment.
+        #[target_feature(enable = "avx2")]
+        unsafe fn find_impl(
+            &self,
+            haystack: &[u8],
+            needle: &[u8],
+        ) -> Option<usize> {
+            if haystack.len() < self.0.min_haystack_len::<__m256i>() {
+                genericsimd::fwd_find::<__m128i>(&self.0, haystack, needle)
+            } else {
+                genericsimd::fwd_find::<__m256i>(&self.0, haystack, needle)
+            }
+        }
+    }
+}
+
+// We still define the avx "forward" type on nostd to make caller code a bit
+// simpler. This avoids needing a lot more conditional compilation.
+#[cfg(not(feature = "std"))]
+mod nostd {
+    use crate::memmem::NeedleInfo;
+
+    #[derive(Clone, Copy, Debug)]
+    pub(crate) struct Forward(());
+
+    impl Forward {
+        pub(crate) fn new(
+            ninfo: &NeedleInfo,
+            needle: &[u8],
+        ) -> Option<Forward> {
+            None
+        }
+
+        pub(crate) fn min_haystack_len(&self) -> usize {
+            unreachable!()
+        }
+
+        pub(crate) fn find(
+            &self,
+            haystack: &[u8],
+            needle: &[u8],
+        ) -> Option<usize> {
+            unreachable!()
+        }
+    }
+}
+
+#[cfg(all(test, feature = "std", not(miri)))]
+mod tests {
+    use crate::memmem::{prefilter::PrefilterState, NeedleInfo};
+
+    fn find(
+        _: &mut PrefilterState,
+        ninfo: &NeedleInfo,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        super::Forward::new(ninfo, needle).unwrap().find(haystack, needle)
+    }
+
+    #[test]
+    fn prefilter_permutations() {
+        use crate::memmem::prefilter::tests::PrefilterTest;
+
+        if !is_x86_feature_detected!("avx2") {
+            return;
+        }
+        // SAFETY: The safety of find only requires that the current CPU
+        // support AVX2, which we checked above.
+        unsafe {
+            PrefilterTest::run_all_tests_filter(find, |t| {
+                // This substring searcher only works on certain configs, so
+                // filter our tests such that Forward::new will be guaranteed
+                // to succeed. (And also remove tests with a haystack that is
+                // too small.)
+                let fwd = match super::Forward::new(&t.ninfo, &t.needle) {
+                    None => return false,
+                    Some(fwd) => fwd,
+                };
+                t.haystack.len() >= fwd.min_haystack_len()
+            })
+        }
+    }
+}
diff --git a/src/memmem/x86/mod.rs b/src/memmem/x86/mod.rs
new file mode 100644
index 0000000..c1cc73f
--- /dev/null
+++ b/src/memmem/x86/mod.rs
@@ -0,0 +1,2 @@
+pub(crate) mod avx;
+pub(crate) mod sse;
diff --git a/src/memmem/x86/sse.rs b/src/memmem/x86/sse.rs
new file mode 100644
index 0000000..22e7d99
--- /dev/null
+++ b/src/memmem/x86/sse.rs
@@ -0,0 +1,89 @@
+use core::arch::x86_64::__m128i;
+
+use crate::memmem::{genericsimd, NeedleInfo};
+
+/// An SSE accelerated vectorized substring search routine that only works on
+/// small needles.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct Forward(genericsimd::Forward);
+
+impl Forward {
+    /// Create a new "generic simd" forward searcher. If one could not be
+    /// created from the given inputs, then None is returned.
+    pub(crate) fn new(ninfo: &NeedleInfo, needle: &[u8]) -> Option<Forward> {
+        if !cfg!(memchr_runtime_sse2) {
+            return None;
+        }
+        genericsimd::Forward::new(ninfo, needle).map(Forward)
+    }
+
+    /// Returns the minimum length of haystack that is needed for this searcher
+    /// to work. Passing a haystack with a length smaller than this will cause
+    /// `find` to panic.
+    #[inline(always)]
+    pub(crate) fn min_haystack_len(&self) -> usize {
+        self.0.min_haystack_len::<__m128i>()
+    }
+
+    #[inline(always)]
+    pub(crate) fn find(
+        &self,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        // SAFETY: sse2 is enabled on all x86_64 targets, so this is always
+        // safe to call.
+        unsafe { self.find_impl(haystack, needle) }
+    }
+
+    /// The implementation of find marked with the appropriate target feature.
+    ///
+    /// # Safety
+    ///
+    /// This is safe to call in all cases since sse2 is guaranteed to be part
+    /// of x86_64. It is marked as unsafe because of the target feature
+    /// attribute.
+    #[target_feature(enable = "sse2")]
+    unsafe fn find_impl(
+        &self,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        genericsimd::fwd_find::<__m128i>(&self.0, haystack, needle)
+    }
+}
+
+#[cfg(all(test, feature = "std", not(miri)))]
+mod tests {
+    use crate::memmem::{prefilter::PrefilterState, NeedleInfo};
+
+    fn find(
+        _: &mut PrefilterState,
+        ninfo: &NeedleInfo,
+        haystack: &[u8],
+        needle: &[u8],
+    ) -> Option<usize> {
+        super::Forward::new(ninfo, needle).unwrap().find(haystack, needle)
+    }
+
+    #[test]
+    fn prefilter_permutations() {
+        use crate::memmem::prefilter::tests::PrefilterTest;
+
+        // SAFETY: sse2 is enabled on all x86_64 targets, so this is always
+        // safe to call.
+        unsafe {
+            PrefilterTest::run_all_tests_filter(find, |t| {
+                // This substring searcher only works on certain configs, so
+                // filter our tests such that Forward::new will be guaranteed
+                // to succeed. (And also remove tests with a haystack that is
+                // too small.)
+                let fwd = match super::Forward::new(&t.ninfo, &t.needle) {
+                    None => return false,
+                    Some(fwd) => fwd,
+                };
+                t.haystack.len() >= fwd.min_haystack_len()
+            })
+        }
+    }
+}
diff --git a/src/tests/iter.rs b/src/tests/memchr/iter.rs
similarity index 97%
rename from src/tests/iter.rs
rename to src/tests/memchr/iter.rs
index 8f33500..80ea5c2 100644
--- a/src/tests/iter.rs
+++ b/src/tests/memchr/iter.rs
@@ -1,5 +1,6 @@
-use tests::memchr_tests;
-use {Memchr, Memchr2, Memchr3};
+use quickcheck::quickcheck;
+
+use crate::{tests::memchr::testdata::memchr_tests, Memchr, Memchr2, Memchr3};
 
 #[test]
 fn memchr1_iter() {
diff --git a/src/tests/memchr.rs b/src/tests/memchr/memchr.rs
similarity index 92%
rename from src/tests/memchr.rs
rename to src/tests/memchr/memchr.rs
index 87d3d14..ac955ed 100644
--- a/src/tests/memchr.rs
+++ b/src/tests/memchr/memchr.rs
@@ -1,8 +1,11 @@
-use fallback;
-use naive;
-use {memchr, memchr2, memchr3, memrchr, memrchr2, memrchr3};
+use quickcheck::quickcheck;
 
-use tests::memchr_tests;
+use crate::{
+    memchr,
+    memchr::{fallback, naive},
+    memchr2, memchr3, memrchr, memrchr2, memrchr3,
+    tests::memchr::testdata::memchr_tests,
+};
 
 #[test]
 fn memchr1_find() {
diff --git a/src/tests/memchr/mod.rs b/src/tests/memchr/mod.rs
new file mode 100644
index 0000000..79f94ab
--- /dev/null
+++ b/src/tests/memchr/mod.rs
@@ -0,0 +1,7 @@
+#[cfg(all(feature = "std", not(miri)))]
+mod iter;
+#[cfg(all(feature = "std", not(miri)))]
+mod memchr;
+mod simple;
+#[cfg(all(feature = "std", not(miri)))]
+mod testdata;
diff --git a/src/tests/miri.rs b/src/tests/memchr/simple.rs
similarity index 69%
rename from src/tests/miri.rs
rename to src/tests/memchr/simple.rs
index 879ef93..bed5b48 100644
--- a/src/tests/miri.rs
+++ b/src/tests/memchr/simple.rs
@@ -1,9 +1,13 @@
-// Simple tests using MIRI
+// Simple tests using MIRI. These are intended only to be a simple exercise of
+// memchr when tests are run under miri. These are mostly necessary because the
+// other tests are far more extensive and take too long to run under miri.
+//
+// These tests are also run when the 'std' feature is not enabled.
 
 use crate::{memchr, memchr2, memchr3, memrchr, memrchr2, memrchr3};
 
 #[test]
-fn test_with_miri() {
+fn simple() {
     assert_eq!(memchr(b'a', b"abcda"), Some(0));
     assert_eq!(memchr(b'z', b"abcda"), None);
     assert_eq!(memchr2(b'a', b'z', b"abcda"), Some(0));
diff --git a/src/tests/memchr/testdata.rs b/src/tests/memchr/testdata.rs
new file mode 100644
index 0000000..6dda524
--- /dev/null
+++ b/src/tests/memchr/testdata.rs
@@ -0,0 +1,351 @@
+use std::iter::repeat;
+
+/// Create a sequence of tests that should be run by memchr implementations.
+pub fn memchr_tests() -> Vec<MemchrTest> {
+    let mut tests = Vec::new();
+    for statict in MEMCHR_TESTS {
+        assert!(!statict.corpus.contains("%"), "% is not allowed in corpora");
+        assert!(!statict.corpus.contains("#"), "# is not allowed in corpora");
+        assert!(!statict.needles.contains(&b'%'), "% is an invalid needle");
+        assert!(!statict.needles.contains(&b'#'), "# is an invalid needle");
+
+        let t = MemchrTest {
+            corpus: statict.corpus.to_string(),
+            needles: statict.needles.to_vec(),
+            positions: statict.positions.to_vec(),
+        };
+        tests.push(t.clone());
+        tests.extend(t.expand());
+    }
+    tests
+}
+
+/// A set of tests for memchr-like functions.
+///
+/// These tests mostly try to cover the short string cases. We cover the longer
+/// string cases via the benchmarks (which are tests themselves), via
+/// quickcheck tests and via automatic expansion of each test case (by
+/// increasing the corpus size). Finally, we cover different alignment cases
+/// in the tests by varying the starting point of the slice.
+const MEMCHR_TESTS: &[MemchrTestStatic] = &[
+    // one needle (applied to memchr + memchr2 + memchr3)
+    MemchrTestStatic { corpus: "a", needles: &[b'a'], positions: &[0] },
+    MemchrTestStatic { corpus: "aa", needles: &[b'a'], positions: &[0, 1] },
+    MemchrTestStatic {
+        corpus: "aaa",
+        needles: &[b'a'],
+        positions: &[0, 1, 2],
+    },
+    MemchrTestStatic { corpus: "", needles: &[b'a'], positions: &[] },
+    MemchrTestStatic { corpus: "z", needles: &[b'a'], positions: &[] },
+    MemchrTestStatic { corpus: "zz", needles: &[b'a'], positions: &[] },
+    MemchrTestStatic { corpus: "zza", needles: &[b'a'], positions: &[2] },
+    MemchrTestStatic { corpus: "zaza", needles: &[b'a'], positions: &[1, 3] },
+    MemchrTestStatic { corpus: "zzza", needles: &[b'a'], positions: &[3] },
+    MemchrTestStatic { corpus: "\x00a", needles: &[b'a'], positions: &[1] },
+    MemchrTestStatic { corpus: "\x00", needles: &[b'\x00'], positions: &[0] },
+    MemchrTestStatic {
+        corpus: "\x00\x00",
+        needles: &[b'\x00'],
+        positions: &[0, 1],
+    },
+    MemchrTestStatic {
+        corpus: "\x00a\x00",
+        needles: &[b'\x00'],
+        positions: &[0, 2],
+    },
+    MemchrTestStatic {
+        corpus: "zzzzzzzzzzzzzzzza",
+        needles: &[b'a'],
+        positions: &[16],
+    },
+    MemchrTestStatic {
+        corpus: "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzza",
+        needles: &[b'a'],
+        positions: &[32],
+    },
+    // two needles (applied to memchr2 + memchr3)
+    MemchrTestStatic {
+        corpus: "az",
+        needles: &[b'a', b'z'],
+        positions: &[0, 1],
+    },
+    MemchrTestStatic {
+        corpus: "az",
+        needles: &[b'a', b'z'],
+        positions: &[0, 1],
+    },
+    MemchrTestStatic { corpus: "az", needles: &[b'x', b'y'], positions: &[] },
+    MemchrTestStatic { corpus: "az", needles: &[b'a', b'y'], positions: &[0] },
+    MemchrTestStatic { corpus: "az", needles: &[b'x', b'z'], positions: &[1] },
+    MemchrTestStatic {
+        corpus: "yyyyaz",
+        needles: &[b'a', b'z'],
+        positions: &[4, 5],
+    },
+    MemchrTestStatic {
+        corpus: "yyyyaz",
+        needles: &[b'z', b'a'],
+        positions: &[4, 5],
+    },
+    // three needles (applied to memchr3)
+    MemchrTestStatic {
+        corpus: "xyz",
+        needles: &[b'x', b'y', b'z'],
+        positions: &[0, 1, 2],
+    },
+    MemchrTestStatic {
+        corpus: "zxy",
+        needles: &[b'x', b'y', b'z'],
+        positions: &[0, 1, 2],
+    },
+    MemchrTestStatic {
+        corpus: "zxy",
+        needles: &[b'x', b'a', b'z'],
+        positions: &[0, 1],
+    },
+    MemchrTestStatic {
+        corpus: "zxy",
+        needles: &[b't', b'a', b'z'],
+        positions: &[0],
+    },
+    MemchrTestStatic {
+        corpus: "yxz",
+        needles: &[b't', b'a', b'z'],
+        positions: &[2],
+    },
+];
+
+/// A description of a test on a memchr like function.
+#[derive(Clone, Debug)]
+pub struct MemchrTest {
+    /// The thing to search. We use `&str` instead of `&[u8]` because they
+    /// are nicer to write in tests, and we don't miss much since memchr
+    /// doesn't care about UTF-8.
+    ///
+    /// Corpora cannot contain either '%' or '#'. We use these bytes when
+    /// expanding test cases into many test cases, and we assume they are not
+    /// used. If they are used, `memchr_tests` will panic.
+    corpus: String,
+    /// The needles to search for. This is intended to be an "alternation" of
+    /// needles. The number of needles may cause this test to be skipped for
+    /// some memchr variants. For example, a test with 2 needles cannot be used
+    /// to test `memchr`, but can be used to test `memchr2` and `memchr3`.
+    /// However, a test with only 1 needle can be used to test all of `memchr`,
+    /// `memchr2` and `memchr3`. We achieve this by filling in the needles with
+    /// bytes that we never used in the corpus (such as '#').
+    needles: Vec<u8>,
+    /// The positions expected to match for all of the needles.
+    positions: Vec<usize>,
+}
+
+/// Like MemchrTest, but easier to define as a constant.
+#[derive(Clone, Debug)]
+pub struct MemchrTestStatic {
+    corpus: &'static str,
+    needles: &'static [u8],
+    positions: &'static [usize],
+}
+
+impl MemchrTest {
+    pub fn one<F: Fn(u8, &[u8]) -> Option<usize>>(&self, reverse: bool, f: F) {
+        let needles = match self.needles(1) {
+            None => return,
+            Some(needles) => needles,
+        };
+        // We test different alignments here. Since some implementations use
+        // AVX2, which can read 32 bytes at a time, we test at least that.
+        // Moreover, with loop unrolling, we sometimes process 64 (sse2) or 128
+        // (avx) bytes at a time, so we include that in our offsets as well.
+        //
+        // You might think this would cause most needles to not be found, but
+        // we actually expand our tests to include corpus sizes all the way up
+        // to >500 bytes, so we should exercise most branches.
+        for align in 0..130 {
+            let corpus = self.corpus(align);
+            assert_eq!(
+                self.positions(align, reverse).get(0).cloned(),
+                f(needles[0], corpus.as_bytes()),
+                "search for {:?} failed in: {:?} (len: {}, alignment: {})",
+                needles[0] as char,
+                corpus,
+                corpus.len(),
+                align
+            );
+        }
+    }
+
+    pub fn two<F: Fn(u8, u8, &[u8]) -> Option<usize>>(
+        &self,
+        reverse: bool,
+        f: F,
+    ) {
+        let needles = match self.needles(2) {
+            None => return,
+            Some(needles) => needles,
+        };
+        for align in 0..130 {
+            let corpus = self.corpus(align);
+            assert_eq!(
+                self.positions(align, reverse).get(0).cloned(),
+                f(needles[0], needles[1], corpus.as_bytes()),
+                "search for {:?}|{:?} failed in: {:?} \
+                 (len: {}, alignment: {})",
+                needles[0] as char,
+                needles[1] as char,
+                corpus,
+                corpus.len(),
+                align
+            );
+        }
+    }
+
+    pub fn three<F: Fn(u8, u8, u8, &[u8]) -> Option<usize>>(
+        &self,
+        reverse: bool,
+        f: F,
+    ) {
+        let needles = match self.needles(3) {
+            None => return,
+            Some(needles) => needles,
+        };
+        for align in 0..130 {
+            let corpus = self.corpus(align);
+            assert_eq!(
+                self.positions(align, reverse).get(0).cloned(),
+                f(needles[0], needles[1], needles[2], corpus.as_bytes()),
+                "search for {:?}|{:?}|{:?} failed in: {:?} \
+                 (len: {}, alignment: {})",
+                needles[0] as char,
+                needles[1] as char,
+                needles[2] as char,
+                corpus,
+                corpus.len(),
+                align
+            );
+        }
+    }
+
+    pub fn iter_one<'a, I, F>(&'a self, reverse: bool, f: F)
+    where
+        F: FnOnce(u8, &'a [u8]) -> I,
+        I: Iterator<Item = usize>,
+    {
+        if let Some(ns) = self.needles(1) {
+            self.iter(reverse, f(ns[0], self.corpus.as_bytes()));
+        }
+    }
+
+    pub fn iter_two<'a, I, F>(&'a self, reverse: bool, f: F)
+    where
+        F: FnOnce(u8, u8, &'a [u8]) -> I,
+        I: Iterator<Item = usize>,
+    {
+        if let Some(ns) = self.needles(2) {
+            self.iter(reverse, f(ns[0], ns[1], self.corpus.as_bytes()));
+        }
+    }
+
+    pub fn iter_three<'a, I, F>(&'a self, reverse: bool, f: F)
+    where
+        F: FnOnce(u8, u8, u8, &'a [u8]) -> I,
+        I: Iterator<Item = usize>,
+    {
+        if let Some(ns) = self.needles(3) {
+            self.iter(reverse, f(ns[0], ns[1], ns[2], self.corpus.as_bytes()));
+        }
+    }
+
+    /// Test that the positions yielded by the given iterator match the
+    /// positions in this test. If reverse is true, then reverse the positions
+    /// before comparing them.
+    fn iter<I: Iterator<Item = usize>>(&self, reverse: bool, it: I) {
+        assert_eq!(
+            self.positions(0, reverse),
+            it.collect::<Vec<usize>>(),
+            r"search for {:?} failed in: {:?}",
+            self.needles.iter().map(|&b| b as char).collect::<Vec<char>>(),
+            self.corpus
+        );
+    }
+
+    /// Expand this test into many variations of the same test.
+    ///
+    /// In particular, this will generate more tests with larger corpus sizes.
+    /// The expected positions are updated to maintain the integrity of the
+    /// test.
+    ///
+    /// This is important in testing a memchr implementation, because there are
+    /// often different cases depending on the length of the corpus.
+    ///
+    /// Note that we extend the corpus by adding `%` bytes, which we
+    /// don't otherwise use as a needle.
+    fn expand(&self) -> Vec<MemchrTest> {
+        let mut more = Vec::new();
+
+        // Add bytes to the start of the corpus.
+        for i in 1..515 {
+            let mut t = self.clone();
+            let mut new_corpus: String = repeat('%').take(i).collect();
+            new_corpus.push_str(&t.corpus);
+            t.corpus = new_corpus;
+            t.positions = t.positions.into_iter().map(|p| p + i).collect();
+            more.push(t);
+        }
+        // Add bytes to the end of the corpus.
+        for i in 1..515 {
+            let mut t = self.clone();
+            let padding: String = repeat('%').take(i).collect();
+            t.corpus.push_str(&padding);
+            more.push(t);
+        }
+
+        more
+    }
+
+    /// Return the corpus at the given alignment.
+    ///
+    /// If the alignment exceeds the length of the corpus, then this returns
+    /// an empty slice.
+    fn corpus(&self, align: usize) -> &str {
+        self.corpus.get(align..).unwrap_or("")
+    }
+
+    /// Return exactly `count` needles from this test. If this test has less
+    /// than `count` needles, then add `#` until the number of needles
+    /// matches `count`. If this test has more than `count` needles, then
+    /// return `None` (because there is no way to use this test data for a
+    /// search using fewer needles).
+    fn needles(&self, count: usize) -> Option<Vec<u8>> {
+        if self.needles.len() > count {
+            return None;
+        }
+
+        let mut needles = self.needles.to_vec();
+        for _ in needles.len()..count {
+            // we assume # is never used in tests.
+            needles.push(b'#');
+        }
+        Some(needles)
+    }
+
+    /// Return the positions in this test, reversed if `reverse` is true.
+    ///
+    /// If alignment is given, then all positions greater than or equal to that
+    /// alignment are offset by the alignment. Positions less than the
+    /// alignment are dropped.
+    fn positions(&self, align: usize, reverse: bool) -> Vec<usize> {
+        let positions = if reverse {
+            let mut positions = self.positions.to_vec();
+            positions.reverse();
+            positions
+        } else {
+            self.positions.to_vec()
+        };
+        positions
+            .into_iter()
+            .filter(|&p| p >= align)
+            .map(|p| p - align)
+            .collect()
+    }
+}
diff --git a/src/tests/mod.rs b/src/tests/mod.rs
index 82c1a24..f4d406c 100644
--- a/src/tests/mod.rs
+++ b/src/tests/mod.rs
@@ -1,362 +1,15 @@
-use std::iter::repeat;
-
-mod iter;
 mod memchr;
 
-#[cfg(target_endian = "little")]
+// For debugging, particularly in CI, print out the byte order of the current
+// target.
+#[cfg(all(feature = "std", target_endian = "little"))]
 #[test]
 fn byte_order() {
     eprintln!("LITTLE ENDIAN");
 }
 
-#[cfg(target_endian = "big")]
+#[cfg(all(feature = "std", target_endian = "big"))]
 #[test]
 fn byte_order() {
     eprintln!("BIG ENDIAN");
 }
-
-/// Create a sequence of tests that should be run by memchr implementations.
-fn memchr_tests() -> Vec<MemchrTest> {
-    let mut tests = Vec::new();
-    for statict in MEMCHR_TESTS {
-        assert!(!statict.corpus.contains("%"), "% is not allowed in corpora");
-        assert!(!statict.corpus.contains("#"), "# is not allowed in corpora");
-        assert!(!statict.needles.contains(&b'%'), "% is an invalid needle");
-        assert!(!statict.needles.contains(&b'#'), "# is an invalid needle");
-
-        let t = MemchrTest {
-            corpus: statict.corpus.to_string(),
-            needles: statict.needles.to_vec(),
-            positions: statict.positions.to_vec(),
-        };
-        tests.push(t.clone());
-        tests.extend(t.expand());
-    }
-    tests
-}
-
-/// A set of tests for memchr-like functions.
-///
-/// These tests mostly try to cover the short string cases. We cover the longer
-/// string cases via the benchmarks (which are tests themselves), via
-/// quickcheck tests and via automatic expansion of each test case (by
-/// increasing the corpus size). Finally, we cover different alignment cases
-/// in the tests by varying the starting point of the slice.
-const MEMCHR_TESTS: &[MemchrTestStatic] = &[
-    // one needle (applied to memchr + memchr2 + memchr3)
-    MemchrTestStatic { corpus: "a", needles: &[b'a'], positions: &[0] },
-    MemchrTestStatic { corpus: "aa", needles: &[b'a'], positions: &[0, 1] },
-    MemchrTestStatic {
-        corpus: "aaa",
-        needles: &[b'a'],
-        positions: &[0, 1, 2],
-    },
-    MemchrTestStatic { corpus: "", needles: &[b'a'], positions: &[] },
-    MemchrTestStatic { corpus: "z", needles: &[b'a'], positions: &[] },
-    MemchrTestStatic { corpus: "zz", needles: &[b'a'], positions: &[] },
-    MemchrTestStatic { corpus: "zza", needles: &[b'a'], positions: &[2] },
-    MemchrTestStatic { corpus: "zaza", needles: &[b'a'], positions: &[1, 3] },
-    MemchrTestStatic { corpus: "zzza", needles: &[b'a'], positions: &[3] },
-    MemchrTestStatic { corpus: "\x00a", needles: &[b'a'], positions: &[1] },
-    MemchrTestStatic { corpus: "\x00", needles: &[b'\x00'], positions: &[0] },
-    MemchrTestStatic {
-        corpus: "\x00\x00",
-        needles: &[b'\x00'],
-        positions: &[0, 1],
-    },
-    MemchrTestStatic {
-        corpus: "\x00a\x00",
-        needles: &[b'\x00'],
-        positions: &[0, 2],
-    },
-    MemchrTestStatic {
-        corpus: "zzzzzzzzzzzzzzzza",
-        needles: &[b'a'],
-        positions: &[16],
-    },
-    MemchrTestStatic {
-        corpus: "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzza",
-        needles: &[b'a'],
-        positions: &[32],
-    },
-    // two needles (applied to memchr2 + memchr3)
-    MemchrTestStatic {
-        corpus: "az",
-        needles: &[b'a', b'z'],
-        positions: &[0, 1],
-    },
-    MemchrTestStatic {
-        corpus: "az",
-        needles: &[b'a', b'z'],
-        positions: &[0, 1],
-    },
-    MemchrTestStatic { corpus: "az", needles: &[b'x', b'y'], positions: &[] },
-    MemchrTestStatic { corpus: "az", needles: &[b'a', b'y'], positions: &[0] },
-    MemchrTestStatic { corpus: "az", needles: &[b'x', b'z'], positions: &[1] },
-    MemchrTestStatic {
-        corpus: "yyyyaz",
-        needles: &[b'a', b'z'],
-        positions: &[4, 5],
-    },
-    MemchrTestStatic {
-        corpus: "yyyyaz",
-        needles: &[b'z', b'a'],
-        positions: &[4, 5],
-    },
-    // three needles (applied to memchr3)
-    MemchrTestStatic {
-        corpus: "xyz",
-        needles: &[b'x', b'y', b'z'],
-        positions: &[0, 1, 2],
-    },
-    MemchrTestStatic {
-        corpus: "zxy",
-        needles: &[b'x', b'y', b'z'],
-        positions: &[0, 1, 2],
-    },
-    MemchrTestStatic {
-        corpus: "zxy",
-        needles: &[b'x', b'a', b'z'],
-        positions: &[0, 1],
-    },
-    MemchrTestStatic {
-        corpus: "zxy",
-        needles: &[b't', b'a', b'z'],
-        positions: &[0],
-    },
-    MemchrTestStatic {
-        corpus: "yxz",
-        needles: &[b't', b'a', b'z'],
-        positions: &[2],
-    },
-];
-
-/// A description of a test on a memchr like function.
-#[derive(Clone, Debug)]
-struct MemchrTest {
-    /// The thing to search. We use `&str` instead of `&[u8]` because they
-    /// are nicer to write in tests, and we don't miss much since memchr
-    /// doesn't care about UTF-8.
-    ///
-    /// Corpora cannot contain either '%' or '#'. We use these bytes when
-    /// expanding test cases into many test cases, and we assume they are not
-    /// used. If they are used, `memchr_tests` will panic.
-    corpus: String,
-    /// The needles to search for. This is intended to be an "alternation" of
-    /// needles. The number of needles may cause this test to be skipped for
-    /// some memchr variants. For example, a test with 2 needles cannot be used
-    /// to test `memchr`, but can be used to test `memchr2` and `memchr3`.
-    /// However, a test with only 1 needle can be used to test all of `memchr`,
-    /// `memchr2` and `memchr3`. We achieve this by filling in the needles with
-    /// bytes that we never used in the corpus (such as '#').
-    needles: Vec<u8>,
-    /// The positions expected to match for all of the needles.
-    positions: Vec<usize>,
-}
-
-/// Like MemchrTest, but easier to define as a constant.
-#[derive(Clone, Debug)]
-struct MemchrTestStatic {
-    corpus: &'static str,
-    needles: &'static [u8],
-    positions: &'static [usize],
-}
-
-impl MemchrTest {
-    fn one<F: Fn(u8, &[u8]) -> Option<usize>>(&self, reverse: bool, f: F) {
-        let needles = match self.needles(1) {
-            None => return,
-            Some(needles) => needles,
-        };
-        // We test different alignments here. Since some implementations use
-        // AVX2, which can read 32 bytes at a time, we test at least that.
-        // Moreover, with loop unrolling, we sometimes process 64 (sse2) or 128
-        // (avx) bytes at a time, so we include that in our offsets as well.
-        //
-        // You might think this would cause most needles to not be found, but
-        // we actually expand our tests to include corpus sizes all the way up
-        // to >500 bytes, so we should exericse most branches.
-        for align in 0..130 {
-            let corpus = self.corpus(align);
-            assert_eq!(
-                self.positions(align, reverse).get(0).cloned(),
-                f(needles[0], corpus.as_bytes()),
-                "search for {:?} failed in: {:?} (len: {}, alignment: {})",
-                needles[0] as char,
-                corpus,
-                corpus.len(),
-                align
-            );
-        }
-    }
-
-    fn two<F: Fn(u8, u8, &[u8]) -> Option<usize>>(&self, reverse: bool, f: F) {
-        let needles = match self.needles(2) {
-            None => return,
-            Some(needles) => needles,
-        };
-        for align in 0..130 {
-            let corpus = self.corpus(align);
-            assert_eq!(
-                self.positions(align, reverse).get(0).cloned(),
-                f(needles[0], needles[1], corpus.as_bytes()),
-                "search for {:?}|{:?} failed in: {:?} \
-                 (len: {}, alignment: {})",
-                needles[0] as char,
-                needles[1] as char,
-                corpus,
-                corpus.len(),
-                align
-            );
-        }
-    }
-
-    fn three<F: Fn(u8, u8, u8, &[u8]) -> Option<usize>>(
-        &self,
-        reverse: bool,
-        f: F,
-    ) {
-        let needles = match self.needles(3) {
-            None => return,
-            Some(needles) => needles,
-        };
-        for align in 0..130 {
-            let corpus = self.corpus(align);
-            assert_eq!(
-                self.positions(align, reverse).get(0).cloned(),
-                f(needles[0], needles[1], needles[2], corpus.as_bytes()),
-                "search for {:?}|{:?}|{:?} failed in: {:?} \
-                 (len: {}, alignment: {})",
-                needles[0] as char,
-                needles[1] as char,
-                needles[2] as char,
-                corpus,
-                corpus.len(),
-                align
-            );
-        }
-    }
-
-    fn iter_one<'a, I, F>(&'a self, reverse: bool, f: F)
-    where
-        F: FnOnce(u8, &'a [u8]) -> I,
-        I: Iterator<Item = usize>,
-    {
-        if let Some(ns) = self.needles(1) {
-            self.iter(reverse, f(ns[0], self.corpus.as_bytes()));
-        }
-    }
-
-    fn iter_two<'a, I, F>(&'a self, reverse: bool, f: F)
-    where
-        F: FnOnce(u8, u8, &'a [u8]) -> I,
-        I: Iterator<Item = usize>,
-    {
-        if let Some(ns) = self.needles(2) {
-            self.iter(reverse, f(ns[0], ns[1], self.corpus.as_bytes()));
-        }
-    }
-
-    fn iter_three<'a, I, F>(&'a self, reverse: bool, f: F)
-    where
-        F: FnOnce(u8, u8, u8, &'a [u8]) -> I,
-        I: Iterator<Item = usize>,
-    {
-        if let Some(ns) = self.needles(3) {
-            self.iter(reverse, f(ns[0], ns[1], ns[2], self.corpus.as_bytes()));
-        }
-    }
-
-    /// Test that the positions yielded by the given iterator match the
-    /// positions in this test. If reverse is true, then reverse the positions
-    /// before comparing them.
-    fn iter<I: Iterator<Item = usize>>(&self, reverse: bool, it: I) {
-        assert_eq!(
-            self.positions(0, reverse),
-            it.collect::<Vec<usize>>(),
-            r"search for {:?} failed in: {:?}",
-            self.needles.iter().map(|&b| b as char).collect::<Vec<char>>(),
-            self.corpus
-        );
-    }
-
-    /// Expand this test into many variations of the same test.
-    ///
-    /// In particular, this will generate more tests with larger corpus sizes.
-    /// The expected positions are updated to maintain the integrity of the
-    /// test.
-    ///
-    /// This is important in testing a memchr implementation, because there are
-    /// often different cases depending on the length of the corpus.
-    ///
-    /// Note that we extend the corpus by adding `%` bytes, which we
-    /// don't otherwise use as a needle.
-    fn expand(&self) -> Vec<MemchrTest> {
-        let mut more = Vec::new();
-
-        // Add bytes to the start of the corpus.
-        for i in 1..515 {
-            let mut t = self.clone();
-            let mut new_corpus: String = repeat('%').take(i).collect();
-            new_corpus.push_str(&t.corpus);
-            t.corpus = new_corpus;
-            t.positions = t.positions.into_iter().map(|p| p + i).collect();
-            more.push(t);
-        }
-        // Add bytes to the end of the corpus.
-        for i in 1..515 {
-            let mut t = self.clone();
-            let padding: String = repeat('%').take(i).collect();
-            t.corpus.push_str(&padding);
-            more.push(t);
-        }
-
-        more
-    }
-
-    /// Return the corpus at the given alignment.
-    ///
-    /// If the alignment exceeds the length of the corpus, then this returns
-    /// an empty slice.
-    fn corpus(&self, align: usize) -> &str {
-        self.corpus.get(align..).unwrap_or("")
-    }
-
-    /// Return exactly `count` needles from this test. If this test has less
-    /// than `count` needles, then add `#` until the number of needles
-    /// matches `count`. If this test has more than `count` needles, then
-    /// return `None` (because there is no way to use this test data for a
-    /// search using fewer needles).
-    fn needles(&self, count: usize) -> Option<Vec<u8>> {
-        if self.needles.len() > count {
-            return None;
-        }
-
-        let mut needles = self.needles.to_vec();
-        for _ in needles.len()..count {
-            // we assume # is never used in tests.
-            needles.push(b'#');
-        }
-        Some(needles)
-    }
-
-    /// Return the positions in this test, reversed if `reverse` is true.
-    ///
-    /// If alignment is given, then all positions greater than or equal to that
-    /// alignment are offset by the alignment. Positions less than the
-    /// alignment are dropped.
-    fn positions(&self, align: usize, reverse: bool) -> Vec<usize> {
-        let positions = if reverse {
-            let mut positions = self.positions.to_vec();
-            positions.reverse();
-            positions
-        } else {
-            self.positions.to_vec()
-        };
-        positions
-            .into_iter()
-            .filter(|&p| p >= align)
-            .map(|p| p - align)
-            .collect()
-    }
-}
diff --git a/src/x86/mod.rs b/src/x86/mod.rs
deleted file mode 100644
index 855dc8b..0000000
--- a/src/x86/mod.rs
+++ /dev/null
@@ -1,119 +0,0 @@
-use fallback;
-
-// We only use AVX when we can detect at runtime whether it's available, which
-// requires std.
-#[cfg(feature = "std")]
-mod avx;
-mod sse2;
-
-// This macro employs a gcc-like "ifunc" trick where by upon first calling
-// `memchr` (for example), CPU feature detection will be performed at runtime
-// to determine the best implementation to use. After CPU feature detection
-// is done, we replace `memchr`'s function pointer with the selection. Upon
-// subsequent invocations, the CPU-specific routine is invoked directly, which
-// skips the CPU feature detection and subsequent branch that's required.
-//
-// While this typically doesn't matter for rare occurrences or when used on
-// larger haystacks, `memchr` can be called in tight loops where the overhead
-// of this branch can actually add up *and is measurable*. This trick was
-// necessary to bring this implementation up to glibc's speeds for the 'tiny'
-// benchmarks, for example.
-//
-// At some point, I expect the Rust ecosystem will get a nice macro for doing
-// exactly this, at which point, we can replace our hand-jammed version of it.
-//
-// N.B. The ifunc strategy does prevent function inlining of course, but on
-// modern CPUs, you'll probably end up with the AVX2 implementation, which
-// probably can't be inlined anyway---unless you've compiled your entire
-// program with AVX2 enabled. However, even then, the various memchr
-// implementations aren't exactly small, so inlining might not help anyway!
-#[cfg(feature = "std")]
-macro_rules! ifunc {
-    ($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
-        use std::mem;
-        use std::sync::atomic::{AtomicPtr, Ordering};
-
-        type FnRaw = *mut ();
-
-        static FN: AtomicPtr<()> = AtomicPtr::new(detect as FnRaw);
-
-        fn detect($($needle: u8),+, haystack: &[u8]) -> Option<usize> {
-            let fun =
-                if cfg!(memchr_runtime_avx) && is_x86_feature_detected!("avx2") {
-                    avx::$name as FnRaw
-                } else if cfg!(memchr_runtime_sse2) {
-                    sse2::$name as FnRaw
-                } else {
-                    fallback::$name as FnRaw
-                };
-            FN.store(fun as FnRaw, Ordering::Relaxed);
-            unsafe {
-                mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, haystack)
-            }
-        }
-
-        unsafe {
-            let fun = FN.load(Ordering::Relaxed);
-            mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, $haystack)
-        }
-    }}
-}
-
-// When std isn't available to provide runtime CPU feature detection, or if
-// runtime CPU feature detection has been explicitly disabled, then just call
-// our optimized SSE2 routine directly. SSE2 is avalbale on all x86_64 targets,
-// so no CPU feature detection is necessary.
-#[cfg(not(feature = "std"))]
-macro_rules! ifunc {
-    ($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
-        if cfg!(memchr_runtime_sse2) {
-            unsafe { sse2::$name($($needle),+, $haystack) }
-        } else {
-            fallback::$name($($needle),+, $haystack)
-        }
-    }}
-}
-
-#[inline(always)]
-pub fn memchr(n1: u8, haystack: &[u8]) -> Option<usize> {
-    ifunc!(fn(u8, &[u8]) -> Option<usize>, memchr, haystack, n1)
-}
-
-#[inline(always)]
-pub fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-    ifunc!(fn(u8, u8, &[u8]) -> Option<usize>, memchr2, haystack, n1, n2)
-}
-
-#[inline(always)]
-pub fn memchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-    ifunc!(
-        fn(u8, u8, u8, &[u8]) -> Option<usize>,
-        memchr3,
-        haystack,
-        n1,
-        n2,
-        n3
-    )
-}
-
-#[inline(always)]
-pub fn memrchr(n1: u8, haystack: &[u8]) -> Option<usize> {
-    ifunc!(fn(u8, &[u8]) -> Option<usize>, memrchr, haystack, n1)
-}
-
-#[inline(always)]
-pub fn memrchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
-    ifunc!(fn(u8, u8, &[u8]) -> Option<usize>, memrchr2, haystack, n1, n2)
-}
-
-#[inline(always)]
-pub fn memrchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
-    ifunc!(
-        fn(u8, u8, u8, &[u8]) -> Option<usize>,
-        memrchr3,
-        haystack,
-        n1,
-        n2,
-        n3
-    )
-}