Merge remote-tracking branch 'origin/upstream'
diff --git a/Android.bp b/Android.bp
new file mode 100644
index 0000000..7e859b3
--- /dev/null
+++ b/Android.bp
@@ -0,0 +1,64 @@
+// This file is generated by cargo_embargo.
+// Do not modify this file after the first "rust_*" or "genrule" module
+// because the changes will be overridden on upgrade.
+// Content before the first "rust_*" or "genrule" module is preserved.
+
+package {
+ default_applicable_licenses: ["external_rust_crates_num_complex_license"],
+}
+
+// See: http://go/android-license-faq
+license {
+ name: "external_rust_crates_num_complex_license",
+ visibility: [":__subpackages__"],
+ license_kinds: [
+ "SPDX-license-identifier-Apache-2.0",
+ "SPDX-license-identifier-MIT",
+ ],
+ license_text: [
+ "LICENSE",
+ "LICENSE-APACHE",
+ "LICENSE-MIT",
+ ],
+}
+
+rust_library {
+ name: "libnum_complex",
+ host_supported: true,
+ crate_name: "num_complex",
+ cargo_env_compat: true,
+ cargo_pkg_version: "0.4.5",
+ srcs: ["src/lib.rs"],
+ edition: "2018",
+ features: [
+ "default",
+ "std",
+ ],
+ rustlibs: ["libnum_traits"],
+ apex_available: [
+ "//apex_available:platform",
+ "//apex_available:anyapex",
+ ],
+ product_available: true,
+ vendor_available: true,
+}
+
+rust_test {
+ name: "num-complex_test_src_lib",
+ host_supported: true,
+ crate_name: "num_complex",
+ cargo_env_compat: true,
+ cargo_pkg_version: "0.4.5",
+ srcs: ["src/lib.rs"],
+ test_suites: ["general-tests"],
+ auto_gen_config: true,
+ test_options: {
+ unit_test: true,
+ },
+ edition: "2018",
+ features: [
+ "default",
+ "std",
+ ],
+ rustlibs: ["libnum_traits"],
+}
diff --git a/Cargo.toml b/Cargo.toml
new file mode 100644
index 0000000..0f3fa9c
--- /dev/null
+++ b/Cargo.toml
@@ -0,0 +1,80 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+edition = "2018"
+name = "num-complex"
+version = "0.4.5"
+authors = ["The Rust Project Developers"]
+exclude = [
+ "/ci/*",
+ "/.github/*",
+]
+description = "Complex numbers implementation for Rust"
+homepage = "https://github.com/rust-num/num-complex"
+documentation = "https://docs.rs/num-complex"
+readme = "README.md"
+keywords = [
+ "mathematics",
+ "numerics",
+]
+categories = [
+ "algorithms",
+ "data-structures",
+ "science",
+ "no-std",
+]
+license = "MIT OR Apache-2.0"
+repository = "https://github.com/rust-num/num-complex"
+
+[package.metadata.docs.rs]
+features = [
+ "bytemuck",
+ "std",
+ "serde",
+ "rkyv/size_64",
+ "bytecheck",
+ "rand",
+]
+
+[dependencies.bytecheck]
+version = "0.6"
+optional = true
+default-features = false
+
+[dependencies.bytemuck]
+version = "1"
+optional = true
+
+[dependencies.num-traits]
+version = "0.2.11"
+features = ["i128"]
+default-features = false
+
+[dependencies.rand]
+version = "0.8"
+optional = true
+default-features = false
+
+[dependencies.rkyv]
+version = "0.7"
+optional = true
+default-features = false
+
+[dependencies.serde]
+version = "1.0"
+optional = true
+default-features = false
+
+[features]
+default = ["std"]
+libm = ["num-traits/libm"]
+std = ["num-traits/std"]
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000..6dcce6d
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,229 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+---
+
+Copyright (c) 2014 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/LICENSE-APACHE b/LICENSE-APACHE
new file mode 100644
index 0000000..16fe87b
--- /dev/null
+++ b/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/LICENSE-MIT b/LICENSE-MIT
new file mode 100644
index 0000000..39d4bdb
--- /dev/null
+++ b/LICENSE-MIT
@@ -0,0 +1,25 @@
+Copyright (c) 2014 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/METADATA b/METADATA
new file mode 100644
index 0000000..72c846f
--- /dev/null
+++ b/METADATA
@@ -0,0 +1,21 @@
+name: "num-complex"
+description: "Complex numbers implementation for Rust"
+third_party {
+ identifier {
+ type: "crates.io"
+ value: "num-complex"
+ }
+ identifier {
+ type: "Archive"
+ value: "https://static.crates.io/crates/num-complex/num-complex-0.4.5.crate"
+ primary_source: true
+ }
+ version: "0.4.5"
+ # Dual-licensed, using the least restrictive per go/thirdpartylicenses#same.
+ license_type: NOTICE
+ last_upgrade_date {
+ year: 2024
+ month: 5
+ day: 7
+ }
+}
diff --git a/MODULE_LICENSE_APACHE2 b/MODULE_LICENSE_APACHE2
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/MODULE_LICENSE_APACHE2
diff --git a/OWNERS b/OWNERS
new file mode 100644
index 0000000..5a2b844
--- /dev/null
+++ b/OWNERS
@@ -0,0 +1 @@
+include platform/prebuilts/rust:main:/OWNERS
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..fdb1d38
--- /dev/null
+++ b/README.md
@@ -0,0 +1,55 @@
+# num-complex
+
+[](https://crates.io/crates/num-complex)
+[](https://docs.rs/num-complex)
+[](https://rust-lang.github.io/rfcs/2495-min-rust-version.html)
+[](https://github.com/rust-num/num-complex/actions)
+
+`Complex` numbers for Rust.
+
+## Usage
+
+Add this to your `Cargo.toml`:
+
+```toml
+[dependencies]
+num-complex = "0.4"
+```
+
+## Features
+
+This crate can be used without the standard library (`#![no_std]`) by disabling
+the default `std` feature. Use this in `Cargo.toml`:
+
+```toml
+[dependencies.num-complex]
+version = "0.4"
+default-features = false
+```
+
+Features based on `Float` types are only available when `std` or `libm` is
+enabled. Where possible, `FloatCore` is used instead. Formatting complex
+numbers only supports format width when `std` is enabled.
+
+## Releases
+
+Release notes are available in [RELEASES.md](RELEASES.md).
+
+## Compatibility
+
+The `num-complex` crate is tested for rustc 1.31 and greater.
+
+## License
+
+Licensed under either of
+
+ * [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
+ * [MIT license](http://opensource.org/licenses/MIT)
+
+at your option.
+
+### Contribution
+
+Unless you explicitly state otherwise, any contribution intentionally submitted
+for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
+dual licensed as above, without any additional terms or conditions.
diff --git a/RELEASES.md b/RELEASES.md
new file mode 100644
index 0000000..dbd18d2
--- /dev/null
+++ b/RELEASES.md
@@ -0,0 +1,185 @@
+# Release 0.4.5 (2024-02-06)
+
+- [Relaxed `T` bounds on `serde::Deserialize` for `Complex<T>`.][119]
+
+**Contributors**: @cuviper, @WalterSmuts
+
+[119]: https://github.com/rust-num/num-complex/pull/119
+
+# Release 0.4.4 (2023-08-13)
+
+- [Fixes NaN value for `powc` of zero][116]
+
+**Contributors**: @cuviper, @domna
+
+[116]: https://github.com/rust-num/num-complex/pull/116
+
+# Release 0.4.3 (2023-01-19)
+
+- [`Complex` now optionally supports `bytecheck` 0.6 and `rkyv` 0.7][110].
+
+**Contributors**: @cuviper, @zyansheep
+
+[110]: https://github.com/rust-num/num-complex/pull/110
+
+# Release 0.4.2 (2022-06-17)
+
+- [The new `ComplexFloat` trait][95] provides a generic abstraction between
+ floating-point `T` and `Complex<T>`.
+- [`Complex::exp` now handles edge cases with NaN and infinite parts][104].
+
+**Contributors**: @cuviper, @JorisDeRidder, @obsgolem, @YakoYakoYokuYoku
+
+[95]: https://github.com/rust-num/num-complex/pull/95
+[104]: https://github.com/rust-num/num-complex/pull/104
+
+# Release 0.4.1 (2022-04-29)
+
+- [`Complex::from_str_radix` now returns an error for radix > 18][90], because
+ 'i' and 'j' as digits are ambiguous with _i_ or _j_ imaginary parts.
+- [`Complex<T>` now implements `bytemuck` traits when `T` does][100].
+- [`Complex::cis` creates a complex with the given phase][101], _e_<sup>_i_ θ</sup>.
+
+**Contributors**: @bluss, @bradleyharden, @cuviper, @rayhem
+
+[90]: https://github.com/rust-num/num-complex/pull/90
+[100]: https://github.com/rust-num/num-complex/pull/100
+[101]: https://github.com/rust-num/num-complex/pull/101
+
+# Release 0.4.0 (2021-03-05)
+
+- `rand` support has been updated to 0.8, requiring Rust 1.36.
+
+**Contributors**: @cuviper
+
+# Release 0.3.1 (2020-10-29)
+
+- Clarify the license specification as "MIT OR Apache-2.0".
+
+**Contributors**: @cuviper
+
+# Release 0.3.0 (2020-06-13)
+
+### Enhancements
+
+- [The new "libm" feature passes through to `num-traits`][73], enabling `Float`
+ features on no-`std` builds.
+
+### Breaking Changes
+
+- `num-complex` now requires Rust 1.31 or greater.
+ - The "i128" opt-in feature was removed, now always available.
+- [Updated public dependences][65]:
+ - `rand` support has been updated to 0.7, requiring Rust 1.32.
+- [Methods for `T: Float` now take values instead of references][82], most
+ notably affecting the constructor `from_polar`.
+
+**Contributors**: @cuviper, @SOF3, @vks
+
+[65]: https://github.com/rust-num/num-complex/pull/65
+[73]: https://github.com/rust-num/num-complex/pull/73
+[82]: https://github.com/rust-num/num-complex/pull/82
+
+# Release 0.2.4 (2020-01-09)
+
+- [`Complex::new` is now a `const fn` for Rust 1.31 and later][63].
+- [Updated the `autocfg` build dependency to 1.0][68].
+
+**Contributors**: @burrbull, @cuviper, @dingelish
+
+[63]: https://github.com/rust-num/num-complex/pull/63
+[68]: https://github.com/rust-num/num-complex/pull/68
+
+# Release 0.2.3 (2019-06-11)
+
+- [`Complex::sqrt()` is now more accurate for negative reals][60].
+- [`Complex::cbrt()` computes the principal cube root][61].
+
+**Contributors**: @cuviper
+
+[60]: https://github.com/rust-num/num-complex/pull/60
+[61]: https://github.com/rust-num/num-complex/pull/61
+
+# Release 0.2.2 (2019-06-10)
+
+- [`Complex::l1_norm()` computes the Manhattan distance from the origin][43].
+- [`Complex::fdiv()` and `finv()` use floating-point for inversion][41], which
+ may avoid overflows for some inputs, at the cost of trigonometric rounding.
+- [`Complex` now implements `num_traits::MulAdd` and `MulAddAssign`][44].
+- [`Complex` now implements `Zero::set_zero` and `One::set_one`][57].
+- [`Complex` now implements `num_traits::Pow` and adds `powi` and `powu`][56].
+
+**Contributors**: @adamnemecek, @cuviper, @ignatenkobrain, @Schultzer
+
+[41]: https://github.com/rust-num/num-complex/pull/41
+[43]: https://github.com/rust-num/num-complex/pull/43
+[44]: https://github.com/rust-num/num-complex/pull/44
+[56]: https://github.com/rust-num/num-complex/pull/56
+[57]: https://github.com/rust-num/num-complex/pull/57
+
+# Release 0.2.1 (2018-10-08)
+
+- [`Complex` now implements `ToPrimitive`, `FromPrimitive`, `AsPrimitive`, and `NumCast`][33].
+
+**Contributors**: @cuviper, @termoshtt
+
+[33]: https://github.com/rust-num/num-complex/pull/33
+
+# Release 0.2.0 (2018-05-24)
+
+### Enhancements
+
+- [`Complex` now implements `num_traits::Inv` and `One::is_one`][17].
+- [`Complex` now implements `Sum` and `Product`][11].
+- [`Complex` now supports `i128` and `u128` components][27] with Rust 1.26+.
+- [`Complex` now optionally supports `rand` 0.5][28], implementing the
+ `Standard` distribution and [a generic `ComplexDistribution`][30].
+- [`Rem` with a scalar divisor now avoids `norm_sqr` overflow][25].
+
+### Breaking Changes
+
+- [`num-complex` now requires rustc 1.15 or greater][16].
+- [There is now a `std` feature][22], enabled by default, along with the
+ implication that building *without* this feature makes this a `#![no_std]`
+ crate. A few methods now require `FloatCore`, and the remaining methods
+ based on `Float` are only supported with `std`.
+- [The `serde` dependency has been updated to 1.0][7], and `rustc-serialize`
+ is no longer supported by `num-complex`.
+
+**Contributors**: @clarcharr, @cuviper, @shingtaklam1324, @termoshtt
+
+[7]: https://github.com/rust-num/num-complex/pull/7
+[11]: https://github.com/rust-num/num-complex/pull/11
+[16]: https://github.com/rust-num/num-complex/pull/16
+[17]: https://github.com/rust-num/num-complex/pull/17
+[22]: https://github.com/rust-num/num-complex/pull/22
+[25]: https://github.com/rust-num/num-complex/pull/25
+[27]: https://github.com/rust-num/num-complex/pull/27
+[28]: https://github.com/rust-num/num-complex/pull/28
+[30]: https://github.com/rust-num/num-complex/pull/30
+
+
+# Release 0.1.43 (2018-03-08)
+
+- [Fix a usage typo in README.md][20].
+
+**Contributors**: @shingtaklam1324
+
+[20]: https://github.com/rust-num/num-complex/pull/20
+
+
+# Release 0.1.42 (2018-02-07)
+
+- [num-complex now has its own source repository][num-356] at [rust-num/num-complex][home].
+
+**Contributors**: @cuviper
+
+[home]: https://github.com/rust-num/num-complex
+[num-356]: https://github.com/rust-num/num/pull/356
+
+
+# Prior releases
+
+No prior release notes were kept. Thanks all the same to the many
+contributors that have made this crate what it is!
+
diff --git a/cargo_embargo.json b/cargo_embargo.json
new file mode 100644
index 0000000..c8842d1
--- /dev/null
+++ b/cargo_embargo.json
@@ -0,0 +1,4 @@
+{
+ "run_cargo": false,
+ "tests": true
+}
diff --git a/src/cast.rs b/src/cast.rs
new file mode 100644
index 0000000..e12f5cd
--- /dev/null
+++ b/src/cast.rs
@@ -0,0 +1,119 @@
+use super::Complex;
+use num_traits::{AsPrimitive, FromPrimitive, Num, NumCast, ToPrimitive};
+
+macro_rules! impl_to_primitive {
+ ($ty:ty, $to:ident) => {
+ #[inline]
+ fn $to(&self) -> Option<$ty> {
+ if self.im.is_zero() {
+ self.re.$to()
+ } else {
+ None
+ }
+ }
+ };
+} // impl_to_primitive
+
+// Returns None if Complex part is non-zero
+impl<T: ToPrimitive + Num> ToPrimitive for Complex<T> {
+ impl_to_primitive!(usize, to_usize);
+ impl_to_primitive!(isize, to_isize);
+ impl_to_primitive!(u8, to_u8);
+ impl_to_primitive!(u16, to_u16);
+ impl_to_primitive!(u32, to_u32);
+ impl_to_primitive!(u64, to_u64);
+ impl_to_primitive!(i8, to_i8);
+ impl_to_primitive!(i16, to_i16);
+ impl_to_primitive!(i32, to_i32);
+ impl_to_primitive!(i64, to_i64);
+ impl_to_primitive!(u128, to_u128);
+ impl_to_primitive!(i128, to_i128);
+ impl_to_primitive!(f32, to_f32);
+ impl_to_primitive!(f64, to_f64);
+}
+
+macro_rules! impl_from_primitive {
+ ($ty:ty, $from_xx:ident) => {
+ #[inline]
+ fn $from_xx(n: $ty) -> Option<Self> {
+ Some(Complex {
+ re: T::$from_xx(n)?,
+ im: T::zero(),
+ })
+ }
+ };
+} // impl_from_primitive
+
+impl<T: FromPrimitive + Num> FromPrimitive for Complex<T> {
+ impl_from_primitive!(usize, from_usize);
+ impl_from_primitive!(isize, from_isize);
+ impl_from_primitive!(u8, from_u8);
+ impl_from_primitive!(u16, from_u16);
+ impl_from_primitive!(u32, from_u32);
+ impl_from_primitive!(u64, from_u64);
+ impl_from_primitive!(i8, from_i8);
+ impl_from_primitive!(i16, from_i16);
+ impl_from_primitive!(i32, from_i32);
+ impl_from_primitive!(i64, from_i64);
+ impl_from_primitive!(u128, from_u128);
+ impl_from_primitive!(i128, from_i128);
+ impl_from_primitive!(f32, from_f32);
+ impl_from_primitive!(f64, from_f64);
+}
+
+impl<T: NumCast + Num> NumCast for Complex<T> {
+ fn from<U: ToPrimitive>(n: U) -> Option<Self> {
+ Some(Complex {
+ re: T::from(n)?,
+ im: T::zero(),
+ })
+ }
+}
+
+impl<T, U> AsPrimitive<U> for Complex<T>
+where
+ T: AsPrimitive<U>,
+ U: 'static + Copy,
+{
+ fn as_(self) -> U {
+ self.re.as_()
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_to_primitive() {
+ let a: Complex<u32> = Complex { re: 3, im: 0 };
+ assert_eq!(a.to_i32(), Some(3_i32));
+ let b: Complex<u32> = Complex { re: 3, im: 1 };
+ assert_eq!(b.to_i32(), None);
+ let x: Complex<f32> = Complex { re: 1.0, im: 0.1 };
+ assert_eq!(x.to_f32(), None);
+ let y: Complex<f32> = Complex { re: 1.0, im: 0.0 };
+ assert_eq!(y.to_f32(), Some(1.0));
+ let z: Complex<f32> = Complex { re: 1.0, im: 0.0 };
+ assert_eq!(z.to_i32(), Some(1));
+ }
+
+ #[test]
+ fn test_from_primitive() {
+ let a: Complex<f32> = FromPrimitive::from_i32(2).unwrap();
+ assert_eq!(a, Complex { re: 2.0, im: 0.0 });
+ }
+
+ #[test]
+ fn test_num_cast() {
+ let a: Complex<f32> = NumCast::from(2_i32).unwrap();
+ assert_eq!(a, Complex { re: 2.0, im: 0.0 });
+ }
+
+ #[test]
+ fn test_as_primitive() {
+ let a: Complex<f32> = Complex { re: 2.0, im: 0.2 };
+ let a_: i32 = a.as_();
+ assert_eq!(a_, 2_i32);
+ }
+}
diff --git a/src/complex_float.rs b/src/complex_float.rs
new file mode 100644
index 0000000..873fe73
--- /dev/null
+++ b/src/complex_float.rs
@@ -0,0 +1,439 @@
+// Keeps us from accidentally creating a recursive impl rather than a real one.
+#![deny(unconditional_recursion)]
+
+use core::ops::Neg;
+
+use num_traits::{Float, FloatConst, Num, NumCast};
+
+use crate::Complex;
+
+mod private {
+ use num_traits::{Float, FloatConst};
+
+ use crate::Complex;
+
+ pub trait Seal {}
+
+ impl<T> Seal for T where T: Float + FloatConst {}
+ impl<T: Float + FloatConst> Seal for Complex<T> {}
+}
+
+/// Generic trait for floating point complex numbers.
+///
+/// This trait defines methods which are common to complex floating point
+/// numbers and regular floating point numbers.
+///
+/// This trait is sealed to prevent it from being implemented by anything other
+/// than floating point scalars and [Complex] floats.
+pub trait ComplexFloat: Num + NumCast + Copy + Neg<Output = Self> + private::Seal {
+ /// The type used to represent the real coefficients of this complex number.
+ type Real: Float + FloatConst;
+
+ /// Returns `true` if this value is `NaN` and false otherwise.
+ fn is_nan(self) -> bool;
+
+ /// Returns `true` if this value is positive infinity or negative infinity and
+ /// false otherwise.
+ fn is_infinite(self) -> bool;
+
+ /// Returns `true` if this number is neither infinite nor `NaN`.
+ fn is_finite(self) -> bool;
+
+ /// Returns `true` if the number is neither zero, infinite,
+ /// [subnormal](http://en.wikipedia.org/wiki/Denormal_number), or `NaN`.
+ fn is_normal(self) -> bool;
+
+ /// Take the reciprocal (inverse) of a number, `1/x`. See also [Complex::finv].
+ fn recip(self) -> Self;
+
+ /// Raises `self` to a signed integer power.
+ fn powi(self, exp: i32) -> Self;
+
+ /// Raises `self` to a real power.
+ fn powf(self, exp: Self::Real) -> Self;
+
+ /// Raises `self` to a complex power.
+ fn powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real>;
+
+ /// Take the square root of a number.
+ fn sqrt(self) -> Self;
+
+ /// Returns `e^(self)`, (the exponential function).
+ fn exp(self) -> Self;
+
+ /// Returns `2^(self)`.
+ fn exp2(self) -> Self;
+
+ /// Returns `base^(self)`.
+ fn expf(self, base: Self::Real) -> Self;
+
+ /// Returns the natural logarithm of the number.
+ fn ln(self) -> Self;
+
+ /// Returns the logarithm of the number with respect to an arbitrary base.
+ fn log(self, base: Self::Real) -> Self;
+
+ /// Returns the base 2 logarithm of the number.
+ fn log2(self) -> Self;
+
+ /// Returns the base 10 logarithm of the number.
+ fn log10(self) -> Self;
+
+ /// Take the cubic root of a number.
+ fn cbrt(self) -> Self;
+
+ /// Computes the sine of a number (in radians).
+ fn sin(self) -> Self;
+
+ /// Computes the cosine of a number (in radians).
+ fn cos(self) -> Self;
+
+ /// Computes the tangent of a number (in radians).
+ fn tan(self) -> Self;
+
+ /// Computes the arcsine of a number. Return value is in radians in
+ /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+ /// [-1, 1].
+ fn asin(self) -> Self;
+
+ /// Computes the arccosine of a number. Return value is in radians in
+ /// the range [0, pi] or NaN if the number is outside the range
+ /// [-1, 1].
+ fn acos(self) -> Self;
+
+ /// Computes the arctangent of a number. Return value is in radians in the
+ /// range [-pi/2, pi/2];
+ fn atan(self) -> Self;
+
+ /// Hyperbolic sine function.
+ fn sinh(self) -> Self;
+
+ /// Hyperbolic cosine function.
+ fn cosh(self) -> Self;
+
+ /// Hyperbolic tangent function.
+ fn tanh(self) -> Self;
+
+ /// Inverse hyperbolic sine function.
+ fn asinh(self) -> Self;
+
+ /// Inverse hyperbolic cosine function.
+ fn acosh(self) -> Self;
+
+ /// Inverse hyperbolic tangent function.
+ fn atanh(self) -> Self;
+
+ /// Returns the real part of the number.
+ fn re(self) -> Self::Real;
+
+ /// Returns the imaginary part of the number.
+ fn im(self) -> Self::Real;
+
+ /// Returns the absolute value of the number. See also [Complex::norm]
+ fn abs(self) -> Self::Real;
+
+ /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
+ ///
+ /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
+ fn l1_norm(&self) -> Self::Real;
+
+ /// Computes the argument of the number.
+ fn arg(self) -> Self::Real;
+
+ /// Computes the complex conjugate of the number.
+ ///
+ /// Formula: `a+bi -> a-bi`
+ fn conj(self) -> Self;
+}
+
+macro_rules! forward {
+ ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
+ => {$(
+ #[inline]
+ fn $method(self $( , $arg : $ty )* ) -> $ret {
+ $base::$method(self $( , $arg )* )
+ }
+ )*};
+}
+
+macro_rules! forward_ref {
+ ($( Self :: $method:ident ( & self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
+ => {$(
+ #[inline]
+ fn $method(self $( , $arg : $ty )* ) -> $ret {
+ Self::$method(&self $( , $arg )* )
+ }
+ )*};
+}
+
+impl<T> ComplexFloat for T
+where
+ T: Float + FloatConst,
+{
+ type Real = T;
+
+ fn re(self) -> Self::Real {
+ self
+ }
+
+ fn im(self) -> Self::Real {
+ T::zero()
+ }
+
+ fn l1_norm(&self) -> Self::Real {
+ self.abs()
+ }
+
+ fn arg(self) -> Self::Real {
+ if self.is_nan() {
+ self
+ } else if self.is_sign_negative() {
+ T::PI()
+ } else {
+ T::zero()
+ }
+ }
+
+ fn powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real> {
+ Complex::new(self, T::zero()).powc(exp)
+ }
+
+ fn conj(self) -> Self {
+ self
+ }
+
+ fn expf(self, base: Self::Real) -> Self {
+ base.powf(self)
+ }
+
+ forward! {
+ Float::is_normal(self) -> bool;
+ Float::is_infinite(self) -> bool;
+ Float::is_finite(self) -> bool;
+ Float::is_nan(self) -> bool;
+ Float::recip(self) -> Self;
+ Float::powi(self, n: i32) -> Self;
+ Float::powf(self, f: Self) -> Self;
+ Float::sqrt(self) -> Self;
+ Float::cbrt(self) -> Self;
+ Float::exp(self) -> Self;
+ Float::exp2(self) -> Self;
+ Float::ln(self) -> Self;
+ Float::log(self, base: Self) -> Self;
+ Float::log2(self) -> Self;
+ Float::log10(self) -> Self;
+ Float::sin(self) -> Self;
+ Float::cos(self) -> Self;
+ Float::tan(self) -> Self;
+ Float::asin(self) -> Self;
+ Float::acos(self) -> Self;
+ Float::atan(self) -> Self;
+ Float::sinh(self) -> Self;
+ Float::cosh(self) -> Self;
+ Float::tanh(self) -> Self;
+ Float::asinh(self) -> Self;
+ Float::acosh(self) -> Self;
+ Float::atanh(self) -> Self;
+ Float::abs(self) -> Self;
+ }
+}
+
+impl<T: Float + FloatConst> ComplexFloat for Complex<T> {
+ type Real = T;
+
+ fn re(self) -> Self::Real {
+ self.re
+ }
+
+ fn im(self) -> Self::Real {
+ self.im
+ }
+
+ fn abs(self) -> Self::Real {
+ self.norm()
+ }
+
+ fn recip(self) -> Self {
+ self.finv()
+ }
+
+ // `Complex::l1_norm` uses `Signed::abs` to let it work
+ // for integers too, but we can just use `Float::abs`.
+ fn l1_norm(&self) -> Self::Real {
+ self.re.abs() + self.im.abs()
+ }
+
+ // `Complex::is_*` methods use `T: FloatCore`, but we
+ // have `T: Float` that can do them as well.
+ fn is_nan(self) -> bool {
+ self.re.is_nan() || self.im.is_nan()
+ }
+
+ fn is_infinite(self) -> bool {
+ !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
+ }
+
+ fn is_finite(self) -> bool {
+ self.re.is_finite() && self.im.is_finite()
+ }
+
+ fn is_normal(self) -> bool {
+ self.re.is_normal() && self.im.is_normal()
+ }
+
+ forward! {
+ Complex::arg(self) -> Self::Real;
+ Complex::powc(self, exp: Complex<Self::Real>) -> Complex<Self::Real>;
+ Complex::exp2(self) -> Self;
+ Complex::log(self, base: Self::Real) -> Self;
+ Complex::log2(self) -> Self;
+ Complex::log10(self) -> Self;
+ Complex::powf(self, f: Self::Real) -> Self;
+ Complex::sqrt(self) -> Self;
+ Complex::cbrt(self) -> Self;
+ Complex::exp(self) -> Self;
+ Complex::expf(self, base: Self::Real) -> Self;
+ Complex::ln(self) -> Self;
+ Complex::sin(self) -> Self;
+ Complex::cos(self) -> Self;
+ Complex::tan(self) -> Self;
+ Complex::asin(self) -> Self;
+ Complex::acos(self) -> Self;
+ Complex::atan(self) -> Self;
+ Complex::sinh(self) -> Self;
+ Complex::cosh(self) -> Self;
+ Complex::tanh(self) -> Self;
+ Complex::asinh(self) -> Self;
+ Complex::acosh(self) -> Self;
+ Complex::atanh(self) -> Self;
+ }
+
+ forward_ref! {
+ Self::powi(&self, n: i32) -> Self;
+ Self::conj(&self) -> Self;
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use crate::{
+ complex_float::ComplexFloat,
+ test::{_0_0i, _0_1i, _1_0i, _1_1i, float::close},
+ Complex,
+ };
+ use std::f64; // for constants before Rust 1.43.
+
+ fn closef(a: f64, b: f64) -> bool {
+ close_to_tolf(a, b, 1e-10)
+ }
+
+ fn close_to_tolf(a: f64, b: f64, tol: f64) -> bool {
+ // returns true if a and b are reasonably close
+ let close = (a == b) || (a - b).abs() < tol;
+ if !close {
+ println!("{:?} != {:?}", a, b);
+ }
+ close
+ }
+
+ #[test]
+ fn test_exp2() {
+ assert!(close(ComplexFloat::exp2(_0_0i), _1_0i));
+ assert!(closef(<f64 as ComplexFloat>::exp2(0.), 1.));
+ }
+
+ #[test]
+ fn test_exp() {
+ assert!(close(ComplexFloat::exp(_0_0i), _1_0i));
+ assert!(closef(ComplexFloat::exp(0.), 1.));
+ }
+
+ #[test]
+ fn test_powi() {
+ assert!(close(ComplexFloat::powi(_0_1i, 4), _1_0i));
+ assert!(closef(ComplexFloat::powi(-1., 4), 1.));
+ }
+
+ #[test]
+ fn test_powz() {
+ assert!(close(ComplexFloat::powc(_1_0i, _0_1i), _1_0i));
+ assert!(close(ComplexFloat::powc(1., _0_1i), _1_0i));
+ }
+
+ #[test]
+ fn test_log2() {
+ assert!(close(ComplexFloat::log2(_1_0i), _0_0i));
+ assert!(closef(ComplexFloat::log2(1.), 0.));
+ }
+
+ #[test]
+ fn test_log10() {
+ assert!(close(ComplexFloat::log10(_1_0i), _0_0i));
+ assert!(closef(ComplexFloat::log10(1.), 0.));
+ }
+
+ #[test]
+ fn test_conj() {
+ assert_eq!(ComplexFloat::conj(_0_1i), Complex::new(0., -1.));
+ assert_eq!(ComplexFloat::conj(1.), 1.);
+ }
+
+ #[test]
+ fn test_is_nan() {
+ assert!(!ComplexFloat::is_nan(_1_0i));
+ assert!(!ComplexFloat::is_nan(1.));
+
+ assert!(ComplexFloat::is_nan(Complex::new(f64::NAN, f64::NAN)));
+ assert!(ComplexFloat::is_nan(f64::NAN));
+ }
+
+ #[test]
+ fn test_is_infinite() {
+ assert!(!ComplexFloat::is_infinite(_1_0i));
+ assert!(!ComplexFloat::is_infinite(1.));
+
+ assert!(ComplexFloat::is_infinite(Complex::new(
+ f64::INFINITY,
+ f64::INFINITY
+ )));
+ assert!(ComplexFloat::is_infinite(f64::INFINITY));
+ }
+
+ #[test]
+ fn test_is_finite() {
+ assert!(ComplexFloat::is_finite(_1_0i));
+ assert!(ComplexFloat::is_finite(1.));
+
+ assert!(!ComplexFloat::is_finite(Complex::new(
+ f64::INFINITY,
+ f64::INFINITY
+ )));
+ assert!(!ComplexFloat::is_finite(f64::INFINITY));
+ }
+
+ #[test]
+ fn test_is_normal() {
+ assert!(ComplexFloat::is_normal(_1_1i));
+ assert!(ComplexFloat::is_normal(1.));
+
+ assert!(!ComplexFloat::is_normal(Complex::new(
+ f64::INFINITY,
+ f64::INFINITY
+ )));
+ assert!(!ComplexFloat::is_normal(f64::INFINITY));
+ }
+
+ #[test]
+ fn test_arg() {
+ assert!(closef(
+ ComplexFloat::arg(_0_1i),
+ core::f64::consts::FRAC_PI_2
+ ));
+
+ assert!(closef(ComplexFloat::arg(-1.), core::f64::consts::PI));
+ assert!(closef(ComplexFloat::arg(-0.), core::f64::consts::PI));
+ assert!(closef(ComplexFloat::arg(0.), 0.));
+ assert!(closef(ComplexFloat::arg(1.), 0.));
+ assert!(ComplexFloat::arg(f64::NAN).is_nan());
+ }
+}
diff --git a/src/crand.rs b/src/crand.rs
new file mode 100644
index 0000000..5edf8a7
--- /dev/null
+++ b/src/crand.rs
@@ -0,0 +1,148 @@
+//! Rand implementations for complex numbers
+
+use crate::Complex;
+use num_traits::Num;
+use rand::distributions::Standard;
+use rand::prelude::*;
+
+impl<T> Distribution<Complex<T>> for Standard
+where
+ T: Num + Clone,
+ Standard: Distribution<T>,
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
+ Complex::new(self.sample(rng), self.sample(rng))
+ }
+}
+
+/// A generic random value distribution for complex numbers.
+#[derive(Clone, Copy, Debug)]
+pub struct ComplexDistribution<Re, Im = Re> {
+ re: Re,
+ im: Im,
+}
+
+impl<Re, Im> ComplexDistribution<Re, Im> {
+ /// Creates a complex distribution from independent
+ /// distributions of the real and imaginary parts.
+ pub fn new(re: Re, im: Im) -> Self {
+ ComplexDistribution { re, im }
+ }
+}
+
+impl<T, Re, Im> Distribution<Complex<T>> for ComplexDistribution<Re, Im>
+where
+ T: Num + Clone,
+ Re: Distribution<T>,
+ Im: Distribution<T>,
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
+ Complex::new(self.re.sample(rng), self.im.sample(rng))
+ }
+}
+
+#[cfg(test)]
+fn test_rng() -> impl RngCore {
+ /// Simple `Rng` for testing without additional dependencies
+ struct XorShiftStar {
+ a: u64,
+ }
+
+ impl RngCore for XorShiftStar {
+ fn next_u32(&mut self) -> u32 {
+ self.next_u64() as u32
+ }
+
+ fn next_u64(&mut self) -> u64 {
+ // https://en.wikipedia.org/wiki/Xorshift#xorshift*
+ self.a ^= self.a >> 12;
+ self.a ^= self.a << 25;
+ self.a ^= self.a >> 27;
+ self.a.wrapping_mul(0x2545_F491_4F6C_DD1D)
+ }
+
+ fn fill_bytes(&mut self, dest: &mut [u8]) {
+ for chunk in dest.chunks_mut(8) {
+ let bytes = self.next_u64().to_le_bytes();
+ let slice = &bytes[..chunk.len()];
+ chunk.copy_from_slice(slice)
+ }
+ }
+
+ fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
+ Ok(self.fill_bytes(dest))
+ }
+ }
+
+ XorShiftStar {
+ a: 0x0123_4567_89AB_CDEF,
+ }
+}
+
+#[test]
+fn standard_f64() {
+ let mut rng = test_rng();
+ for _ in 0..100 {
+ let c: Complex<f64> = rng.gen();
+ assert!(c.re >= 0.0 && c.re < 1.0);
+ assert!(c.im >= 0.0 && c.im < 1.0);
+ }
+}
+
+#[test]
+fn generic_standard_f64() {
+ let mut rng = test_rng();
+ let dist = ComplexDistribution::new(Standard, Standard);
+ for _ in 0..100 {
+ let c: Complex<f64> = rng.sample(&dist);
+ assert!(c.re >= 0.0 && c.re < 1.0);
+ assert!(c.im >= 0.0 && c.im < 1.0);
+ }
+}
+
+#[test]
+fn generic_uniform_f64() {
+ use rand::distributions::Uniform;
+
+ let mut rng = test_rng();
+ let re = Uniform::new(-100.0, 0.0);
+ let im = Uniform::new(0.0, 100.0);
+ let dist = ComplexDistribution::new(re, im);
+ for _ in 0..100 {
+ // no type annotation required, since `Uniform` only produces one type.
+ let c = rng.sample(&dist);
+ assert!(c.re >= -100.0 && c.re < 0.0);
+ assert!(c.im >= 0.0 && c.im < 100.0);
+ }
+}
+
+#[test]
+fn generic_mixed_f64() {
+ use rand::distributions::Uniform;
+
+ let mut rng = test_rng();
+ let re = Uniform::new(-100.0, 0.0);
+ let dist = ComplexDistribution::new(re, Standard);
+ for _ in 0..100 {
+ // no type annotation required, since `Uniform` only produces one type.
+ let c = rng.sample(&dist);
+ assert!(c.re >= -100.0 && c.re < 0.0);
+ assert!(c.im >= 0.0 && c.im < 1.0);
+ }
+}
+
+#[test]
+fn generic_uniform_i32() {
+ use rand::distributions::Uniform;
+
+ let mut rng = test_rng();
+ let re = Uniform::new(-100, 0);
+ let im = Uniform::new(0, 100);
+ let dist = ComplexDistribution::new(re, im);
+ for _ in 0..100 {
+ // no type annotation required, since `Uniform` only produces one type.
+ let c = rng.sample(&dist);
+ assert!(c.re >= -100 && c.re < 0);
+ assert!(c.im >= 0 && c.im < 100);
+ }
+}
diff --git a/src/lib.rs b/src/lib.rs
new file mode 100644
index 0000000..13a884b
--- /dev/null
+++ b/src/lib.rs
@@ -0,0 +1,2900 @@
+// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Complex numbers.
+//!
+//! ## Compatibility
+//!
+//! The `num-complex` crate is tested for rustc 1.31 and greater.
+
+#![doc(html_root_url = "https://docs.rs/num-complex/0.4")]
+#![no_std]
+
+#[cfg(any(test, feature = "std"))]
+#[cfg_attr(test, macro_use)]
+extern crate std;
+
+use core::fmt;
+#[cfg(test)]
+use core::hash;
+use core::iter::{Product, Sum};
+use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
+use core::str::FromStr;
+#[cfg(feature = "std")]
+use std::error::Error;
+
+use num_traits::{Inv, MulAdd, Num, One, Pow, Signed, Zero};
+
+use num_traits::float::FloatCore;
+#[cfg(any(feature = "std", feature = "libm"))]
+use num_traits::float::{Float, FloatConst};
+
+mod cast;
+mod pow;
+
+#[cfg(any(feature = "std", feature = "libm"))]
+mod complex_float;
+#[cfg(any(feature = "std", feature = "libm"))]
+pub use crate::complex_float::ComplexFloat;
+
+#[cfg(feature = "rand")]
+mod crand;
+#[cfg(feature = "rand")]
+pub use crate::crand::ComplexDistribution;
+
+// FIXME #1284: handle complex NaN & infinity etc. This
+// probably doesn't map to C's _Complex correctly.
+
+/// A complex number in Cartesian form.
+///
+/// ## Representation and Foreign Function Interface Compatibility
+///
+/// `Complex<T>` is memory layout compatible with an array `[T; 2]`.
+///
+/// Note that `Complex<F>` where F is a floating point type is **only** memory
+/// layout compatible with C's complex types, **not** necessarily calling
+/// convention compatible. This means that for FFI you can only pass
+/// `Complex<F>` behind a pointer, not as a value.
+///
+/// ## Examples
+///
+/// Example of extern function declaration.
+///
+/// ```
+/// use num_complex::Complex;
+/// use std::os::raw::c_int;
+///
+/// extern "C" {
+/// fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
+/// x: *const Complex<f64>, incx: *const c_int,
+/// y: *mut Complex<f64>, incy: *const c_int);
+/// }
+/// ```
+#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)]
+#[repr(C)]
+#[cfg_attr(
+ feature = "rkyv",
+ derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
+)]
+#[cfg_attr(feature = "rkyv", archive(as = "Complex<T::Archived>"))]
+#[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))]
+pub struct Complex<T> {
+ /// Real portion of the complex number
+ pub re: T,
+ /// Imaginary portion of the complex number
+ pub im: T,
+}
+
+pub type Complex32 = Complex<f32>;
+pub type Complex64 = Complex<f64>;
+
+impl<T> Complex<T> {
+ /// Create a new Complex
+ #[inline]
+ pub const fn new(re: T, im: T) -> Self {
+ Complex { re, im }
+ }
+}
+
+impl<T: Clone + Num> Complex<T> {
+ /// Returns imaginary unit
+ #[inline]
+ pub fn i() -> Self {
+ Self::new(T::zero(), T::one())
+ }
+
+ /// Returns the square of the norm (since `T` doesn't necessarily
+ /// have a sqrt function), i.e. `re^2 + im^2`.
+ #[inline]
+ pub fn norm_sqr(&self) -> T {
+ self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
+ }
+
+ /// Multiplies `self` by the scalar `t`.
+ #[inline]
+ pub fn scale(&self, t: T) -> Self {
+ Self::new(self.re.clone() * t.clone(), self.im.clone() * t)
+ }
+
+ /// Divides `self` by the scalar `t`.
+ #[inline]
+ pub fn unscale(&self, t: T) -> Self {
+ Self::new(self.re.clone() / t.clone(), self.im.clone() / t)
+ }
+
+ /// Raises `self` to an unsigned integer power.
+ #[inline]
+ pub fn powu(&self, exp: u32) -> Self {
+ Pow::pow(self, exp)
+ }
+}
+
+impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
+ /// Returns the complex conjugate. i.e. `re - i im`
+ #[inline]
+ pub fn conj(&self) -> Self {
+ Self::new(self.re.clone(), -self.im.clone())
+ }
+
+ /// Returns `1/self`
+ #[inline]
+ pub fn inv(&self) -> Self {
+ let norm_sqr = self.norm_sqr();
+ Self::new(
+ self.re.clone() / norm_sqr.clone(),
+ -self.im.clone() / norm_sqr,
+ )
+ }
+
+ /// Raises `self` to a signed integer power.
+ #[inline]
+ pub fn powi(&self, exp: i32) -> Self {
+ Pow::pow(self, exp)
+ }
+}
+
+impl<T: Clone + Signed> Complex<T> {
+ /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
+ ///
+ /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
+ #[inline]
+ pub fn l1_norm(&self) -> T {
+ self.re.abs() + self.im.abs()
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl<T: Float> Complex<T> {
+ /// Create a new Complex with a given phase: `exp(i * phase)`.
+ /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)).
+ #[inline]
+ pub fn cis(phase: T) -> Self {
+ Self::new(phase.cos(), phase.sin())
+ }
+
+ /// Calculate |self|
+ #[inline]
+ pub fn norm(self) -> T {
+ self.re.hypot(self.im)
+ }
+ /// Calculate the principal Arg of self.
+ #[inline]
+ pub fn arg(self) -> T {
+ self.im.atan2(self.re)
+ }
+ /// Convert to polar form (r, theta), such that
+ /// `self = r * exp(i * theta)`
+ #[inline]
+ pub fn to_polar(self) -> (T, T) {
+ (self.norm(), self.arg())
+ }
+ /// Convert a polar representation into a complex number.
+ #[inline]
+ pub fn from_polar(r: T, theta: T) -> Self {
+ Self::new(r * theta.cos(), r * theta.sin())
+ }
+
+ /// Computes `e^(self)`, where `e` is the base of the natural logarithm.
+ #[inline]
+ pub fn exp(self) -> Self {
+ // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b)
+
+ let Complex { re, mut im } = self;
+ // Treat the corner cases +∞, -∞, and NaN
+ if re.is_infinite() {
+ if re < T::zero() {
+ if !im.is_finite() {
+ return Self::new(T::zero(), T::zero());
+ }
+ } else {
+ if im == T::zero() || !im.is_finite() {
+ if im.is_infinite() {
+ im = T::nan();
+ }
+ return Self::new(re, im);
+ }
+ }
+ } else if re.is_nan() && im == T::zero() {
+ return self;
+ }
+
+ Self::from_polar(re.exp(), im)
+ }
+
+ /// Computes the principal value of natural logarithm of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 0]`, continuous from above.
+ ///
+ /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`.
+ #[inline]
+ pub fn ln(self) -> Self {
+ // formula: ln(z) = ln|z| + i*arg(z)
+ let (r, theta) = self.to_polar();
+ Self::new(r.ln(), theta)
+ }
+
+ /// Computes the principal value of the square root of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 0)`, continuous from above.
+ ///
+ /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`.
+ #[inline]
+ pub fn sqrt(self) -> Self {
+ if self.im.is_zero() {
+ if self.re.is_sign_positive() {
+ // simple positive real √r, and copy `im` for its sign
+ Self::new(self.re.sqrt(), self.im)
+ } else {
+ // √(r e^(iπ)) = √r e^(iπ/2) = i√r
+ // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r
+ let re = T::zero();
+ let im = (-self.re).sqrt();
+ if self.im.is_sign_positive() {
+ Self::new(re, im)
+ } else {
+ Self::new(re, -im)
+ }
+ }
+ } else if self.re.is_zero() {
+ // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2)
+ // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2)
+ let one = T::one();
+ let two = one + one;
+ let x = (self.im.abs() / two).sqrt();
+ if self.im.is_sign_positive() {
+ Self::new(x, x)
+ } else {
+ Self::new(x, -x)
+ }
+ } else {
+ // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2)
+ let one = T::one();
+ let two = one + one;
+ let (r, theta) = self.to_polar();
+ Self::from_polar(r.sqrt(), theta / two)
+ }
+ }
+
+ /// Computes the principal value of the cube root of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 0)`, continuous from above.
+ ///
+ /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`.
+ ///
+ /// Note that this does not match the usual result for the cube root of
+ /// negative real numbers. For example, the real cube root of `-8` is `-2`,
+ /// but the principal complex cube root of `-8` is `1 + i√3`.
+ #[inline]
+ pub fn cbrt(self) -> Self {
+ if self.im.is_zero() {
+ if self.re.is_sign_positive() {
+ // simple positive real ∛r, and copy `im` for its sign
+ Self::new(self.re.cbrt(), self.im)
+ } else {
+ // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2
+ // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2
+ let one = T::one();
+ let two = one + one;
+ let three = two + one;
+ let re = (-self.re).cbrt() / two;
+ let im = three.sqrt() * re;
+ if self.im.is_sign_positive() {
+ Self::new(re, im)
+ } else {
+ Self::new(re, -im)
+ }
+ }
+ } else if self.re.is_zero() {
+ // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2
+ // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2
+ let one = T::one();
+ let two = one + one;
+ let three = two + one;
+ let im = self.im.abs().cbrt() / two;
+ let re = three.sqrt() * im;
+ if self.im.is_sign_positive() {
+ Self::new(re, im)
+ } else {
+ Self::new(re, -im)
+ }
+ } else {
+ // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3)
+ let one = T::one();
+ let three = one + one + one;
+ let (r, theta) = self.to_polar();
+ Self::from_polar(r.cbrt(), theta / three)
+ }
+ }
+
+ /// Raises `self` to a floating point power.
+ #[inline]
+ pub fn powf(self, exp: T) -> Self {
+ if exp.is_zero() {
+ return Self::one();
+ }
+ // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
+ // = from_polar(ρ^y, θ y)
+ let (r, theta) = self.to_polar();
+ Self::from_polar(r.powf(exp), theta * exp)
+ }
+
+ /// Returns the logarithm of `self` with respect to an arbitrary base.
+ #[inline]
+ pub fn log(self, base: T) -> Self {
+ // formula: log_y(x) = log_y(ρ e^(i θ))
+ // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
+ // = log_y(ρ) + i θ / ln(y)
+ let (r, theta) = self.to_polar();
+ Self::new(r.log(base), theta / base.ln())
+ }
+
+ /// Raises `self` to a complex power.
+ #[inline]
+ pub fn powc(self, exp: Self) -> Self {
+ if exp.is_zero() {
+ return Self::one();
+ }
+ // formula: x^y = exp(y * ln(x))
+ (exp * self.ln()).exp()
+ }
+
+ /// Raises a floating point number to the complex power `self`.
+ #[inline]
+ pub fn expf(self, base: T) -> Self {
+ // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
+ // = from_polar(x^a, b ln(x))
+ Self::from_polar(base.powf(self.re), self.im * base.ln())
+ }
+
+ /// Computes the sine of `self`.
+ #[inline]
+ pub fn sin(self) -> Self {
+ // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b)
+ Self::new(
+ self.re.sin() * self.im.cosh(),
+ self.re.cos() * self.im.sinh(),
+ )
+ }
+
+ /// Computes the cosine of `self`.
+ #[inline]
+ pub fn cos(self) -> Self {
+ // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b)
+ Self::new(
+ self.re.cos() * self.im.cosh(),
+ -self.re.sin() * self.im.sinh(),
+ )
+ }
+
+ /// Computes the tangent of `self`.
+ #[inline]
+ pub fn tan(self) -> Self {
+ // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b))
+ let (two_re, two_im) = (self.re + self.re, self.im + self.im);
+ Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh())
+ }
+
+ /// Computes the principal value of the inverse sine of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞, -1)`, continuous from above.
+ /// * `(1, ∞)`, continuous from below.
+ ///
+ /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`.
+ #[inline]
+ pub fn asin(self) -> Self {
+ // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
+ let i = Self::i();
+ -i * ((Self::one() - self * self).sqrt() + i * self).ln()
+ }
+
+ /// Computes the principal value of the inverse cosine of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞, -1)`, continuous from above.
+ /// * `(1, ∞)`, continuous from below.
+ ///
+ /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`.
+ #[inline]
+ pub fn acos(self) -> Self {
+ // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
+ let i = Self::i();
+ -i * (i * (Self::one() - self * self).sqrt() + self).ln()
+ }
+
+ /// Computes the principal value of the inverse tangent of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞i, -i]`, continuous from the left.
+ /// * `[i, ∞i)`, continuous from the right.
+ ///
+ /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`.
+ #[inline]
+ pub fn atan(self) -> Self {
+ // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
+ let i = Self::i();
+ let one = Self::one();
+ let two = one + one;
+ if self == i {
+ return Self::new(T::zero(), T::infinity());
+ } else if self == -i {
+ return Self::new(T::zero(), -T::infinity());
+ }
+ ((one + i * self).ln() - (one - i * self).ln()) / (two * i)
+ }
+
+ /// Computes the hyperbolic sine of `self`.
+ #[inline]
+ pub fn sinh(self) -> Self {
+ // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b)
+ Self::new(
+ self.re.sinh() * self.im.cos(),
+ self.re.cosh() * self.im.sin(),
+ )
+ }
+
+ /// Computes the hyperbolic cosine of `self`.
+ #[inline]
+ pub fn cosh(self) -> Self {
+ // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b)
+ Self::new(
+ self.re.cosh() * self.im.cos(),
+ self.re.sinh() * self.im.sin(),
+ )
+ }
+
+ /// Computes the hyperbolic tangent of `self`.
+ #[inline]
+ pub fn tanh(self) -> Self {
+ // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b))
+ let (two_re, two_im) = (self.re + self.re, self.im + self.im);
+ Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos())
+ }
+
+ /// Computes the principal value of inverse hyperbolic sine of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞i, -i)`, continuous from the left.
+ /// * `(i, ∞i)`, continuous from the right.
+ ///
+ /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`.
+ #[inline]
+ pub fn asinh(self) -> Self {
+ // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
+ let one = Self::one();
+ (self + (one + self * self).sqrt()).ln()
+ }
+
+ /// Computes the principal value of inverse hyperbolic cosine of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 1)`, continuous from above.
+ ///
+ /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`.
+ #[inline]
+ pub fn acosh(self) -> Self {
+ // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2))
+ let one = Self::one();
+ let two = one + one;
+ two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln()
+ }
+
+ /// Computes the principal value of inverse hyperbolic tangent of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞, -1]`, continuous from above.
+ /// * `[1, ∞)`, continuous from below.
+ ///
+ /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`.
+ #[inline]
+ pub fn atanh(self) -> Self {
+ // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2
+ let one = Self::one();
+ let two = one + one;
+ if self == one {
+ return Self::new(T::infinity(), T::zero());
+ } else if self == -one {
+ return Self::new(-T::infinity(), T::zero());
+ }
+ ((one + self).ln() - (one - self).ln()) / two
+ }
+
+ /// Returns `1/self` using floating-point operations.
+ ///
+ /// This may be more accurate than the generic `self.inv()` in cases
+ /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_complex::Complex64;
+ /// let c = Complex64::new(1e300, 1e300);
+ ///
+ /// // The generic `inv()` will overflow.
+ /// assert!(!c.inv().is_normal());
+ ///
+ /// // But we can do better for `Float` types.
+ /// let inv = c.finv();
+ /// assert!(inv.is_normal());
+ /// println!("{:e}", inv);
+ ///
+ /// let expected = Complex64::new(5e-301, -5e-301);
+ /// assert!((inv - expected).norm() < 1e-315);
+ /// ```
+ #[inline]
+ pub fn finv(self) -> Complex<T> {
+ let norm = self.norm();
+ self.conj() / norm / norm
+ }
+
+ /// Returns `self/other` using floating-point operations.
+ ///
+ /// This may be more accurate than the generic `Div` implementation in cases
+ /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_complex::Complex64;
+ /// let a = Complex64::new(2.0, 3.0);
+ /// let b = Complex64::new(1e300, 1e300);
+ ///
+ /// // Generic division will overflow.
+ /// assert!(!(a / b).is_normal());
+ ///
+ /// // But we can do better for `Float` types.
+ /// let quotient = a.fdiv(b);
+ /// assert!(quotient.is_normal());
+ /// println!("{:e}", quotient);
+ ///
+ /// let expected = Complex64::new(2.5e-300, 5e-301);
+ /// assert!((quotient - expected).norm() < 1e-315);
+ /// ```
+ #[inline]
+ pub fn fdiv(self, other: Complex<T>) -> Complex<T> {
+ self * other.finv()
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl<T: Float + FloatConst> Complex<T> {
+ /// Computes `2^(self)`.
+ #[inline]
+ pub fn exp2(self) -> Self {
+ // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2))
+ // = from_polar(2^a, b*log2)
+ Self::from_polar(self.re.exp2(), self.im * T::LN_2())
+ }
+
+ /// Computes the principal value of log base 2 of `self`.
+ #[inline]
+ pub fn log2(self) -> Self {
+ Self::ln(self) / T::LN_2()
+ }
+
+ /// Computes the principal value of log base 10 of `self`.
+ #[inline]
+ pub fn log10(self) -> Self {
+ Self::ln(self) / T::LN_10()
+ }
+}
+
+impl<T: FloatCore> Complex<T> {
+ /// Checks if the given complex number is NaN
+ #[inline]
+ pub fn is_nan(self) -> bool {
+ self.re.is_nan() || self.im.is_nan()
+ }
+
+ /// Checks if the given complex number is infinite
+ #[inline]
+ pub fn is_infinite(self) -> bool {
+ !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
+ }
+
+ /// Checks if the given complex number is finite
+ #[inline]
+ pub fn is_finite(self) -> bool {
+ self.re.is_finite() && self.im.is_finite()
+ }
+
+ /// Checks if the given complex number is normal
+ #[inline]
+ pub fn is_normal(self) -> bool {
+ self.re.is_normal() && self.im.is_normal()
+ }
+}
+
+// Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
+// can guarantee it contains no *added* padding. Thus, if `T: Zeroable`,
+// `Complex<T>` is also `Zeroable`
+#[cfg(feature = "bytemuck")]
+unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {}
+
+// Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
+// can guarantee it contains no *added* padding. Thus, if `T: Pod`,
+// `Complex<T>` is also `Pod`
+#[cfg(feature = "bytemuck")]
+unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {}
+
+impl<T: Clone + Num> From<T> for Complex<T> {
+ #[inline]
+ fn from(re: T) -> Self {
+ Self::new(re, T::zero())
+ }
+}
+
+impl<'a, T: Clone + Num> From<&'a T> for Complex<T> {
+ #[inline]
+ fn from(re: &T) -> Self {
+ From::from(re.clone())
+ }
+}
+
+macro_rules! forward_ref_ref_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &Complex<T>) -> Self::Output {
+ self.clone().$method(other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_val_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: Complex<T>) -> Self::Output {
+ self.clone().$method(other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_ref_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &Complex<T>) -> Self::Output {
+ self.$method(other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_all_binop {
+ (impl $imp:ident, $method:ident) => {
+ forward_ref_ref_binop!(impl $imp, $method);
+ forward_ref_val_binop!(impl $imp, $method);
+ forward_val_ref_binop!(impl $imp, $method);
+ };
+}
+
+// arithmetic
+forward_all_binop!(impl Add, add);
+
+// (a + i b) + (c + i d) == (a + c) + i (b + d)
+impl<T: Clone + Num> Add<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn add(self, other: Self) -> Self::Output {
+ Self::Output::new(self.re + other.re, self.im + other.im)
+ }
+}
+
+forward_all_binop!(impl Sub, sub);
+
+// (a + i b) - (c + i d) == (a - c) + i (b - d)
+impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn sub(self, other: Self) -> Self::Output {
+ Self::Output::new(self.re - other.re, self.im - other.im)
+ }
+}
+
+forward_all_binop!(impl Mul, mul);
+
+// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
+impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn mul(self, other: Self) -> Self::Output {
+ let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone();
+ let im = self.re * other.im + self.im * other.re;
+ Self::Output::new(re, im)
+ }
+}
+
+// (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f))
+impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> {
+ let re = self.re.clone().mul_add(other.re.clone(), add.re)
+ - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust
+ let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im));
+ Complex::new(re, im)
+ }
+}
+impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> {
+ self.clone().mul_add(other.clone(), add.clone())
+ }
+}
+
+forward_all_binop!(impl Div, div);
+
+// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
+// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
+impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn div(self, other: Self) -> Self::Output {
+ let norm_sqr = other.norm_sqr();
+ let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone();
+ let im = self.im * other.re - self.re * other.im;
+ Self::Output::new(re / norm_sqr.clone(), im / norm_sqr)
+ }
+}
+
+forward_all_binop!(impl Rem, rem);
+
+impl<T: Clone + Num> Complex<T> {
+ /// Find the gaussian integer corresponding to the true ratio rounded towards zero.
+ fn div_trunc(&self, divisor: &Self) -> Self {
+ let Complex { re, im } = self / divisor;
+ Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one())
+ }
+}
+
+impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn rem(self, modulus: Self) -> Self::Output {
+ let gaussian = self.div_trunc(&modulus);
+ self - modulus * gaussian
+ }
+}
+
+// Op Assign
+
+mod opassign {
+ use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
+
+ use num_traits::{MulAddAssign, NumAssign};
+
+ use crate::Complex;
+
+ impl<T: Clone + NumAssign> AddAssign for Complex<T> {
+ fn add_assign(&mut self, other: Self) {
+ self.re += other.re;
+ self.im += other.im;
+ }
+ }
+
+ impl<T: Clone + NumAssign> SubAssign for Complex<T> {
+ fn sub_assign(&mut self, other: Self) {
+ self.re -= other.re;
+ self.im -= other.im;
+ }
+ }
+
+ // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
+ impl<T: Clone + NumAssign> MulAssign for Complex<T> {
+ fn mul_assign(&mut self, other: Self) {
+ let a = self.re.clone();
+
+ self.re *= other.re.clone();
+ self.re -= self.im.clone() * other.im.clone();
+
+ self.im *= other.re;
+ self.im += a * other.im;
+ }
+ }
+
+ // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f))
+ impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> {
+ fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) {
+ let a = self.re.clone();
+
+ self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e)
+ self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d)
+
+ let mut adf = a;
+ adf.mul_add_assign(other.im, add.im); // (a*d + f)
+ self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f))
+ }
+ }
+
+ impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>>
+ for Complex<T>
+ {
+ fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) {
+ self.mul_add_assign(other.clone(), add.clone());
+ }
+ }
+
+ // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
+ // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
+ impl<T: Clone + NumAssign> DivAssign for Complex<T> {
+ fn div_assign(&mut self, other: Self) {
+ let a = self.re.clone();
+ let norm_sqr = other.norm_sqr();
+
+ self.re *= other.re.clone();
+ self.re += self.im.clone() * other.im.clone();
+ self.re /= norm_sqr.clone();
+
+ self.im *= other.re;
+ self.im -= a * other.im;
+ self.im /= norm_sqr;
+ }
+ }
+
+ impl<T: Clone + NumAssign> RemAssign for Complex<T> {
+ fn rem_assign(&mut self, modulus: Self) {
+ let gaussian = self.div_trunc(&modulus);
+ *self -= modulus * gaussian;
+ }
+ }
+
+ impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
+ fn add_assign(&mut self, other: T) {
+ self.re += other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> {
+ fn sub_assign(&mut self, other: T) {
+ self.re -= other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> {
+ fn mul_assign(&mut self, other: T) {
+ self.re *= other.clone();
+ self.im *= other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> {
+ fn div_assign(&mut self, other: T) {
+ self.re /= other.clone();
+ self.im /= other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
+ fn rem_assign(&mut self, other: T) {
+ self.re %= other.clone();
+ self.im %= other;
+ }
+ }
+
+ macro_rules! forward_op_assign {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
+ #[inline]
+ fn $method(&mut self, other: &Self) {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> {
+ #[inline]
+ fn $method(&mut self, other: &T) {
+ self.$method(other.clone())
+ }
+ }
+ };
+ }
+
+ forward_op_assign!(impl AddAssign, add_assign);
+ forward_op_assign!(impl SubAssign, sub_assign);
+ forward_op_assign!(impl MulAssign, mul_assign);
+ forward_op_assign!(impl DivAssign, div_assign);
+ forward_op_assign!(impl RemAssign, rem_assign);
+}
+
+impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn neg(self) -> Self::Output {
+ Self::Output::new(-self.re, -self.im)
+ }
+}
+
+impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn neg(self) -> Self::Output {
+ -self.clone()
+ }
+}
+
+impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn inv(self) -> Self::Output {
+ (&self).inv()
+ }
+}
+
+impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn inv(self) -> Self::Output {
+ self.inv()
+ }
+}
+
+macro_rules! real_arithmetic {
+ (@forward $imp:ident::$method:ident for $($real:ident),*) => (
+ impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &T) -> Self::Output {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: T) -> Self::Output {
+ self.clone().$method(other)
+ }
+ }
+ impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &T) -> Self::Output {
+ self.clone().$method(other.clone())
+ }
+ }
+ $(
+ impl<'a> $imp<&'a Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn $method(self, other: &Complex<$real>) -> Complex<$real> {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a> $imp<Complex<$real>> for &'a $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn $method(self, other: Complex<$real>) -> Complex<$real> {
+ self.clone().$method(other)
+ }
+ }
+ impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn $method(self, other: &Complex<$real>) -> Complex<$real> {
+ self.clone().$method(other.clone())
+ }
+ }
+ )*
+ );
+ ($($real:ident),*) => (
+ real_arithmetic!(@forward Add::add for $($real),*);
+ real_arithmetic!(@forward Sub::sub for $($real),*);
+ real_arithmetic!(@forward Mul::mul for $($real),*);
+ real_arithmetic!(@forward Div::div for $($real),*);
+ real_arithmetic!(@forward Rem::rem for $($real),*);
+
+ $(
+ impl Add<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn add(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self + other.re, other.im)
+ }
+ }
+
+ impl Sub<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn sub(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self - other.re, $real::zero() - other.im)
+ }
+ }
+
+ impl Mul<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn mul(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self * other.re, self * other.im)
+ }
+ }
+
+ impl Div<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn div(self, other: Complex<$real>) -> Self::Output {
+ // a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
+ let norm_sqr = other.norm_sqr();
+ Self::Output::new(self * other.re / norm_sqr.clone(),
+ $real::zero() - self * other.im / norm_sqr)
+ }
+ }
+
+ impl Rem<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn rem(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self, Self::zero()) % other
+ }
+ }
+ )*
+ );
+}
+
+impl<T: Clone + Num> Add<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn add(self, other: T) -> Self::Output {
+ Self::Output::new(self.re + other, self.im)
+ }
+}
+
+impl<T: Clone + Num> Sub<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn sub(self, other: T) -> Self::Output {
+ Self::Output::new(self.re - other, self.im)
+ }
+}
+
+impl<T: Clone + Num> Mul<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn mul(self, other: T) -> Self::Output {
+ Self::Output::new(self.re * other.clone(), self.im * other)
+ }
+}
+
+impl<T: Clone + Num> Div<T> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn div(self, other: T) -> Self::Output {
+ Self::Output::new(self.re / other.clone(), self.im / other)
+ }
+}
+
+impl<T: Clone + Num> Rem<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn rem(self, other: T) -> Self::Output {
+ Self::Output::new(self.re % other.clone(), self.im % other)
+ }
+}
+
+real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64);
+
+// constants
+impl<T: Clone + Num> Zero for Complex<T> {
+ #[inline]
+ fn zero() -> Self {
+ Self::new(Zero::zero(), Zero::zero())
+ }
+
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.re.is_zero() && self.im.is_zero()
+ }
+
+ #[inline]
+ fn set_zero(&mut self) {
+ self.re.set_zero();
+ self.im.set_zero();
+ }
+}
+
+impl<T: Clone + Num> One for Complex<T> {
+ #[inline]
+ fn one() -> Self {
+ Self::new(One::one(), Zero::zero())
+ }
+
+ #[inline]
+ fn is_one(&self) -> bool {
+ self.re.is_one() && self.im.is_zero()
+ }
+
+ #[inline]
+ fn set_one(&mut self) {
+ self.re.set_one();
+ self.im.set_zero();
+ }
+}
+
+macro_rules! write_complex {
+ ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{
+ let abs_re = if $re < Zero::zero() {
+ $T::zero() - $re.clone()
+ } else {
+ $re.clone()
+ };
+ let abs_im = if $im < Zero::zero() {
+ $T::zero() - $im.clone()
+ } else {
+ $im.clone()
+ };
+
+ return if let Some(prec) = $f.precision() {
+ fmt_re_im(
+ $f,
+ $re < $T::zero(),
+ $im < $T::zero(),
+ format_args!(concat!("{:.1$", $t, "}"), abs_re, prec),
+ format_args!(concat!("{:.1$", $t, "}"), abs_im, prec),
+ )
+ } else {
+ fmt_re_im(
+ $f,
+ $re < $T::zero(),
+ $im < $T::zero(),
+ format_args!(concat!("{:", $t, "}"), abs_re),
+ format_args!(concat!("{:", $t, "}"), abs_im),
+ )
+ };
+
+ fn fmt_re_im(
+ f: &mut fmt::Formatter<'_>,
+ re_neg: bool,
+ im_neg: bool,
+ real: fmt::Arguments<'_>,
+ imag: fmt::Arguments<'_>,
+ ) -> fmt::Result {
+ let prefix = if f.alternate() { $prefix } else { "" };
+ let sign = if re_neg {
+ "-"
+ } else if f.sign_plus() {
+ "+"
+ } else {
+ ""
+ };
+
+ if im_neg {
+ fmt_complex(
+ f,
+ format_args!(
+ "{}{pre}{re}-{pre}{im}i",
+ sign,
+ re = real,
+ im = imag,
+ pre = prefix
+ ),
+ )
+ } else {
+ fmt_complex(
+ f,
+ format_args!(
+ "{}{pre}{re}+{pre}{im}i",
+ sign,
+ re = real,
+ im = imag,
+ pre = prefix
+ ),
+ )
+ }
+ }
+
+ #[cfg(feature = "std")]
+ // Currently, we can only apply width using an intermediate `String` (and thus `std`)
+ fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
+ use std::string::ToString;
+ if let Some(width) = f.width() {
+ write!(f, "{0: >1$}", complex.to_string(), width)
+ } else {
+ write!(f, "{}", complex)
+ }
+ }
+
+ #[cfg(not(feature = "std"))]
+ fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
+ write!(f, "{}", complex)
+ }
+ }};
+}
+
+// string conversions
+impl<T> fmt::Display for Complex<T>
+where
+ T: fmt::Display + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "", "", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::LowerExp for Complex<T>
+where
+ T: fmt::LowerExp + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "e", "", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::UpperExp for Complex<T>
+where
+ T: fmt::UpperExp + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "E", "", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::LowerHex for Complex<T>
+where
+ T: fmt::LowerHex + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "x", "0x", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::UpperHex for Complex<T>
+where
+ T: fmt::UpperHex + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "X", "0x", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::Octal for Complex<T>
+where
+ T: fmt::Octal + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "o", "0o", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::Binary for Complex<T>
+where
+ T: fmt::Binary + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write_complex!(f, "b", "0b", self.re, self.im, T)
+ }
+}
+
+#[allow(deprecated)] // `trim_left_matches` and `trim_right_matches` since 1.33
+fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
+where
+ F: Fn(&str) -> Result<T, E>,
+ T: Clone + Num,
+{
+ let imag = match s.rfind('j') {
+ None => 'i',
+ _ => 'j',
+ };
+
+ let mut neg_b = false;
+ let mut a = s;
+ let mut b = "";
+
+ for (i, w) in s.as_bytes().windows(2).enumerate() {
+ let p = w[0];
+ let c = w[1];
+
+ // ignore '+'/'-' if part of an exponent
+ if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') {
+ // trim whitespace around the separator
+ a = &s[..=i].trim_right_matches(char::is_whitespace);
+ b = &s[i + 2..].trim_left_matches(char::is_whitespace);
+ neg_b = c == b'-';
+
+ if b.is_empty() || (neg_b && b.starts_with('-')) {
+ return Err(ParseComplexError::expr_error());
+ }
+ break;
+ }
+ }
+
+ // split off real and imaginary parts
+ if b.is_empty() {
+ // input was either pure real or pure imaginary
+ b = if a.ends_with(imag) { "0" } else { "0i" };
+ }
+
+ let re;
+ let neg_re;
+ let im;
+ let neg_im;
+ if a.ends_with(imag) {
+ im = a;
+ neg_im = false;
+ re = b;
+ neg_re = neg_b;
+ } else if b.ends_with(imag) {
+ re = a;
+ neg_re = false;
+ im = b;
+ neg_im = neg_b;
+ } else {
+ return Err(ParseComplexError::expr_error());
+ }
+
+ // parse re
+ let re = from(re).map_err(ParseComplexError::from_error)?;
+ let re = if neg_re { T::zero() - re } else { re };
+
+ // pop imaginary unit off
+ let mut im = &im[..im.len() - 1];
+ // handle im == "i" or im == "-i"
+ if im.is_empty() || im == "+" {
+ im = "1";
+ } else if im == "-" {
+ im = "-1";
+ }
+
+ // parse im
+ let im = from(im).map_err(ParseComplexError::from_error)?;
+ let im = if neg_im { T::zero() - im } else { im };
+
+ Ok(Complex::new(re, im))
+}
+
+impl<T> FromStr for Complex<T>
+where
+ T: FromStr + Num + Clone,
+{
+ type Err = ParseComplexError<T::Err>;
+
+ /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
+ fn from_str(s: &str) -> Result<Self, Self::Err> {
+ from_str_generic(s, T::from_str)
+ }
+}
+
+impl<T: Num + Clone> Num for Complex<T> {
+ type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
+
+ /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
+ ///
+ /// `radix` must be <= 18; larger radix would include *i* and *j* as digits,
+ /// which cannot be supported.
+ ///
+ /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.
+ ///
+ /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors
+ /// (or panics) from that are reflected here as well.
+ fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
+ assert!(
+ radix <= 36,
+ "from_str_radix: radix is too high (maximum 36)"
+ );
+
+ // larger radix would include 'i' and 'j' as digits, which cannot be supported
+ if radix > 18 {
+ return Err(ParseComplexError::unsupported_radix());
+ }
+
+ from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
+ T::from_str_radix(x, radix)
+ })
+ }
+}
+
+impl<T: Num + Clone> Sum for Complex<T> {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = Self>,
+ {
+ iter.fold(Self::zero(), |acc, c| acc + c)
+ }
+}
+
+impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = &'a Complex<T>>,
+ {
+ iter.fold(Self::zero(), |acc, c| acc + c)
+ }
+}
+
+impl<T: Num + Clone> Product for Complex<T> {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = Self>,
+ {
+ iter.fold(Self::one(), |acc, c| acc * c)
+ }
+}
+
+impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = &'a Complex<T>>,
+ {
+ iter.fold(Self::one(), |acc, c| acc * c)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<T> serde::Serialize for Complex<T>
+where
+ T: serde::Serialize,
+{
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: serde::Serializer,
+ {
+ (&self.re, &self.im).serialize(serializer)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de, T> serde::Deserialize<'de> for Complex<T>
+where
+ T: serde::Deserialize<'de>,
+{
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: serde::Deserializer<'de>,
+ {
+ let (re, im) = serde::Deserialize::deserialize(deserializer)?;
+ Ok(Self::new(re, im))
+ }
+}
+
+#[derive(Debug, PartialEq)]
+pub struct ParseComplexError<E> {
+ kind: ComplexErrorKind<E>,
+}
+
+#[derive(Debug, PartialEq)]
+enum ComplexErrorKind<E> {
+ ParseError(E),
+ ExprError,
+ UnsupportedRadix,
+}
+
+impl<E> ParseComplexError<E> {
+ fn expr_error() -> Self {
+ ParseComplexError {
+ kind: ComplexErrorKind::ExprError,
+ }
+ }
+
+ fn unsupported_radix() -> Self {
+ ParseComplexError {
+ kind: ComplexErrorKind::UnsupportedRadix,
+ }
+ }
+
+ fn from_error(error: E) -> Self {
+ ParseComplexError {
+ kind: ComplexErrorKind::ParseError(error),
+ }
+ }
+}
+
+#[cfg(feature = "std")]
+impl<E: Error> Error for ParseComplexError<E> {
+ #[allow(deprecated)]
+ fn description(&self) -> &str {
+ match self.kind {
+ ComplexErrorKind::ParseError(ref e) => e.description(),
+ ComplexErrorKind::ExprError => "invalid or unsupported complex expression",
+ ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion",
+ }
+ }
+}
+
+impl<E: fmt::Display> fmt::Display for ParseComplexError<E> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self.kind {
+ ComplexErrorKind::ParseError(ref e) => e.fmt(f),
+ ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f),
+ ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f),
+ }
+ }
+}
+
+#[cfg(test)]
+fn hash<T: hash::Hash>(x: &T) -> u64 {
+ use std::collections::hash_map::RandomState;
+ use std::hash::{BuildHasher, Hasher};
+ let mut hasher = <RandomState as BuildHasher>::Hasher::new();
+ x.hash(&mut hasher);
+ hasher.finish()
+}
+
+#[cfg(test)]
+pub(crate) mod test {
+ #![allow(non_upper_case_globals)]
+
+ use super::{Complex, Complex64};
+ use super::{ComplexErrorKind, ParseComplexError};
+ use core::f64;
+ use core::str::FromStr;
+
+ use std::string::{String, ToString};
+
+ use num_traits::{Num, One, Zero};
+
+ pub const _0_0i: Complex64 = Complex::new(0.0, 0.0);
+ pub const _1_0i: Complex64 = Complex::new(1.0, 0.0);
+ pub const _1_1i: Complex64 = Complex::new(1.0, 1.0);
+ pub const _0_1i: Complex64 = Complex::new(0.0, 1.0);
+ pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0);
+ pub const _05_05i: Complex64 = Complex::new(0.5, 0.5);
+ pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
+ pub const _4_2i: Complex64 = Complex::new(4.0, 2.0);
+ pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY);
+ pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY);
+ pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN);
+ pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN);
+ pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0);
+ pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0);
+ pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0);
+ pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0);
+ pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0);
+ pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY);
+ pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY);
+ pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN);
+ pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN);
+ pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0);
+ pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0);
+ pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0);
+ pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN);
+
+ #[test]
+ fn test_consts() {
+ // check our constants are what Complex::new creates
+ fn test(c: Complex64, r: f64, i: f64) {
+ assert_eq!(c, Complex::new(r, i));
+ }
+ test(_0_0i, 0.0, 0.0);
+ test(_1_0i, 1.0, 0.0);
+ test(_1_1i, 1.0, 1.0);
+ test(_neg1_1i, -1.0, 1.0);
+ test(_05_05i, 0.5, 0.5);
+
+ assert_eq!(_0_0i, Zero::zero());
+ assert_eq!(_1_0i, One::one());
+ }
+
+ #[test]
+ fn test_scale_unscale() {
+ assert_eq!(_05_05i.scale(2.0), _1_1i);
+ assert_eq!(_1_1i.unscale(2.0), _05_05i);
+ for &c in all_consts.iter() {
+ assert_eq!(c.scale(2.0).unscale(2.0), c);
+ }
+ }
+
+ #[test]
+ fn test_conj() {
+ for &c in all_consts.iter() {
+ assert_eq!(c.conj(), Complex::new(c.re, -c.im));
+ assert_eq!(c.conj().conj(), c);
+ }
+ }
+
+ #[test]
+ fn test_inv() {
+ assert_eq!(_1_1i.inv(), _05_05i.conj());
+ assert_eq!(_1_0i.inv(), _1_0i.inv());
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_divide_by_zero_natural() {
+ let n = Complex::new(2, 3);
+ let d = Complex::new(0, 0);
+ let _x = n / d;
+ }
+
+ #[test]
+ fn test_inv_zero() {
+ // FIXME #20: should this really fail, or just NaN?
+ assert!(_0_0i.inv().is_nan());
+ }
+
+ #[test]
+ #[allow(clippy::float_cmp)]
+ fn test_l1_norm() {
+ assert_eq!(_0_0i.l1_norm(), 0.0);
+ assert_eq!(_1_0i.l1_norm(), 1.0);
+ assert_eq!(_1_1i.l1_norm(), 2.0);
+ assert_eq!(_0_1i.l1_norm(), 1.0);
+ assert_eq!(_neg1_1i.l1_norm(), 2.0);
+ assert_eq!(_05_05i.l1_norm(), 1.0);
+ assert_eq!(_4_2i.l1_norm(), 6.0);
+ }
+
+ #[test]
+ fn test_pow() {
+ for c in all_consts.iter() {
+ assert_eq!(c.powi(0), _1_0i);
+ let mut pos = _1_0i;
+ let mut neg = _1_0i;
+ for i in 1i32..20 {
+ pos *= c;
+ assert_eq!(pos, c.powi(i));
+ if c.is_zero() {
+ assert!(c.powi(-i).is_nan());
+ } else {
+ neg /= c;
+ assert_eq!(neg, c.powi(-i));
+ }
+ }
+ }
+ }
+
+ #[cfg(any(feature = "std", feature = "libm"))]
+ pub(crate) mod float {
+
+ use core::f64::INFINITY;
+
+ use super::*;
+ use num_traits::{Float, Pow};
+
+ #[test]
+ fn test_cis() {
+ assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i));
+ assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i));
+ assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i));
+ assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i));
+ assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i));
+ }
+
+ #[test]
+ #[cfg_attr(target_arch = "x86", ignore)]
+ // FIXME #7158: (maybe?) currently failing on x86.
+ #[allow(clippy::float_cmp)]
+ fn test_norm() {
+ fn test(c: Complex64, ns: f64) {
+ assert_eq!(c.norm_sqr(), ns);
+ assert_eq!(c.norm(), ns.sqrt())
+ }
+ test(_0_0i, 0.0);
+ test(_1_0i, 1.0);
+ test(_1_1i, 2.0);
+ test(_neg1_1i, 2.0);
+ test(_05_05i, 0.5);
+ }
+
+ #[test]
+ fn test_arg() {
+ fn test(c: Complex64, arg: f64) {
+ assert!((c.arg() - arg).abs() < 1.0e-6)
+ }
+ test(_1_0i, 0.0);
+ test(_1_1i, 0.25 * f64::consts::PI);
+ test(_neg1_1i, 0.75 * f64::consts::PI);
+ test(_05_05i, 0.25 * f64::consts::PI);
+ }
+
+ #[test]
+ fn test_polar_conv() {
+ fn test(c: Complex64) {
+ let (r, theta) = c.to_polar();
+ assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6);
+ }
+ for &c in all_consts.iter() {
+ test(c);
+ }
+ }
+
+ pub(crate) fn close(a: Complex64, b: Complex64) -> bool {
+ close_to_tol(a, b, 1e-10)
+ }
+
+ fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
+ // returns true if a and b are reasonably close
+ let close = (a == b) || (a - b).norm() < tol;
+ if !close {
+ println!("{:?} != {:?}", a, b);
+ }
+ close
+ }
+
+ // Version that also works if re or im are +inf, -inf, or nan
+ fn close_naninf(a: Complex64, b: Complex64) -> bool {
+ close_naninf_to_tol(a, b, 1.0e-10)
+ }
+
+ fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
+ let mut close = true;
+
+ // Compare the real parts
+ if a.re.is_finite() {
+ if b.re.is_finite() {
+ close = (a.re == b.re) || (a.re - b.re).abs() < tol;
+ } else {
+ close = false;
+ }
+ } else if (a.re.is_nan() && !b.re.is_nan())
+ || (a.re.is_infinite()
+ && a.re.is_sign_positive()
+ && !(b.re.is_infinite() && b.re.is_sign_positive()))
+ || (a.re.is_infinite()
+ && a.re.is_sign_negative()
+ && !(b.re.is_infinite() && b.re.is_sign_negative()))
+ {
+ close = false;
+ }
+
+ // Compare the imaginary parts
+ if a.im.is_finite() {
+ if b.im.is_finite() {
+ close &= (a.im == b.im) || (a.im - b.im).abs() < tol;
+ } else {
+ close = false;
+ }
+ } else if (a.im.is_nan() && !b.im.is_nan())
+ || (a.im.is_infinite()
+ && a.im.is_sign_positive()
+ && !(b.im.is_infinite() && b.im.is_sign_positive()))
+ || (a.im.is_infinite()
+ && a.im.is_sign_negative()
+ && !(b.im.is_infinite() && b.im.is_sign_negative()))
+ {
+ close = false;
+ }
+
+ if close == false {
+ println!("{:?} != {:?}", a, b);
+ }
+ close
+ }
+
+ #[test]
+ fn test_exp2() {
+ assert!(close(_0_0i.exp2(), _1_0i));
+ }
+
+ #[test]
+ fn test_exp() {
+ assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E)));
+ assert!(close(_0_0i.exp(), _1_0i));
+ assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin())));
+ assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp()));
+ assert!(close(
+ _0_1i.scale(-f64::consts::PI).exp(),
+ _1_0i.scale(-1.0)
+ ));
+ for &c in all_consts.iter() {
+ // e^conj(z) = conj(e^z)
+ assert!(close(c.conj().exp(), c.exp().conj()));
+ // e^(z + 2 pi i) = e^z
+ assert!(close(
+ c.exp(),
+ (c + _0_1i.scale(f64::consts::PI * 2.0)).exp()
+ ));
+ }
+
+ // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp
+ assert!(close_naninf(_1_infi.exp(), _nan_nani));
+ assert!(close_naninf(_neg1_infi.exp(), _nan_nani));
+ assert!(close_naninf(_1_nani.exp(), _nan_nani));
+ assert!(close_naninf(_neg1_nani.exp(), _nan_nani));
+ assert!(close_naninf(_inf_0i.exp(), _inf_0i));
+ assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0)));
+ assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0)));
+ assert!(close_naninf(
+ _inf_1i.exp(),
+ f64::INFINITY * Complex::cis(1.0)
+ ));
+ assert!(close_naninf(
+ _inf_neg1i.exp(),
+ f64::INFINITY * Complex::cis(-1.0)
+ ));
+ assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
+ assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
+ assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
+ assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
+ assert!(close_naninf(_nan_0i.exp(), _nan_0i));
+ assert!(close_naninf(_nan_1i.exp(), _nan_nani));
+ assert!(close_naninf(_nan_neg1i.exp(), _nan_nani));
+ assert!(close_naninf(_nan_nani.exp(), _nan_nani));
+ }
+
+ #[test]
+ fn test_ln() {
+ assert!(close(_1_0i.ln(), _0_0i));
+ assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0)));
+ assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0)));
+ assert!(close(
+ (_neg1_1i * _05_05i).ln(),
+ _neg1_1i.ln() + _05_05i.ln()
+ ));
+ for &c in all_consts.iter() {
+ // ln(conj(z() = conj(ln(z))
+ assert!(close(c.conj().ln(), c.ln().conj()));
+ // for this branch, -pi <= arg(ln(z)) <= pi
+ assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
+ }
+ }
+
+ #[test]
+ fn test_powc() {
+ let a = Complex::new(2.0, -3.0);
+ let b = Complex::new(3.0, 0.0);
+ assert!(close(a.powc(b), a.powf(b.re)));
+ assert!(close(b.powc(a), a.expf(b.re)));
+ let c = Complex::new(1.0 / 3.0, 0.1);
+ assert!(close_to_tol(
+ a.powc(c),
+ Complex::new(1.65826, -0.33502),
+ 1e-5
+ ));
+ let z = Complex::new(0.0, 0.0);
+ assert!(close(z.powc(b), z));
+ assert!(z.powc(Complex64::new(0., INFINITY)).is_nan());
+ assert!(z.powc(Complex64::new(10., INFINITY)).is_nan());
+ assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan());
+ assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z));
+ assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite());
+ assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan());
+
+ for c in all_consts.iter() {
+ assert_eq!(c.powc(_0_0i), _1_0i);
+ }
+ assert_eq!(_nan_nani.powc(_0_0i), _1_0i);
+ }
+
+ #[test]
+ fn test_powf() {
+ let c = Complex64::new(2.0, -1.0);
+ let expected = Complex64::new(-0.8684746, -16.695934);
+ assert!(close_to_tol(c.powf(3.5), expected, 1e-5));
+ assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5));
+ assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5));
+
+ for c in all_consts.iter() {
+ assert_eq!(c.powf(0.0), _1_0i);
+ }
+ assert_eq!(_nan_nani.powf(0.0), _1_0i);
+ }
+
+ #[test]
+ fn test_log() {
+ let c = Complex::new(2.0, -1.0);
+ let r = c.log(10.0);
+ assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
+ }
+
+ #[test]
+ fn test_log2() {
+ assert!(close(_1_0i.log2(), _0_0i));
+ }
+
+ #[test]
+ fn test_log10() {
+ assert!(close(_1_0i.log10(), _0_0i));
+ }
+
+ #[test]
+ fn test_some_expf_cases() {
+ let c = Complex::new(2.0, -1.0);
+ let r = c.expf(10.0);
+ assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
+
+ let c = Complex::new(5.0, -2.0);
+ let r = c.expf(3.4);
+ assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
+
+ let c = Complex::new(-1.5, 2.0 / 3.0);
+ let r = c.expf(1.0 / 3.0);
+ assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
+ }
+
+ #[test]
+ fn test_sqrt() {
+ assert!(close(_0_0i.sqrt(), _0_0i));
+ assert!(close(_1_0i.sqrt(), _1_0i));
+ assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i));
+ assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0)));
+ assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt())));
+ for &c in all_consts.iter() {
+ // sqrt(conj(z() = conj(sqrt(z))
+ assert!(close(c.conj().sqrt(), c.sqrt().conj()));
+ // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2
+ assert!(
+ -f64::consts::FRAC_PI_2 <= c.sqrt().arg()
+ && c.sqrt().arg() <= f64::consts::FRAC_PI_2
+ );
+ // sqrt(z) * sqrt(z) = z
+ assert!(close(c.sqrt() * c.sqrt(), c));
+ }
+ }
+
+ #[test]
+ fn test_sqrt_real() {
+ for n in (0..100).map(f64::from) {
+ // √(n² + 0i) = n + 0i
+ let n2 = n * n;
+ assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0));
+ // √(-n² + 0i) = 0 + ni
+ assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n));
+ // √(-n² - 0i) = 0 - ni
+ assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n));
+ }
+ }
+
+ #[test]
+ fn test_sqrt_imag() {
+ for n in (0..100).map(f64::from) {
+ // √(0 + n²i) = n e^(iπ/4)
+ let n2 = n * n;
+ assert!(close(
+ Complex64::new(0.0, n2).sqrt(),
+ Complex64::from_polar(n, f64::consts::FRAC_PI_4)
+ ));
+ // √(0 - n²i) = n e^(-iπ/4)
+ assert!(close(
+ Complex64::new(0.0, -n2).sqrt(),
+ Complex64::from_polar(n, -f64::consts::FRAC_PI_4)
+ ));
+ }
+ }
+
+ #[test]
+ fn test_cbrt() {
+ assert!(close(_0_0i.cbrt(), _0_0i));
+ assert!(close(_1_0i.cbrt(), _1_0i));
+ assert!(close(
+ Complex::new(-1.0, 0.0).cbrt(),
+ Complex::new(0.5, 0.75.sqrt())
+ ));
+ assert!(close(
+ Complex::new(-1.0, -0.0).cbrt(),
+ Complex::new(0.5, -(0.75.sqrt()))
+ ));
+ assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5)));
+ assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5)));
+ for &c in all_consts.iter() {
+ // cbrt(conj(z() = conj(cbrt(z))
+ assert!(close(c.conj().cbrt(), c.cbrt().conj()));
+ // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3
+ assert!(
+ -f64::consts::FRAC_PI_3 <= c.cbrt().arg()
+ && c.cbrt().arg() <= f64::consts::FRAC_PI_3
+ );
+ // cbrt(z) * cbrt(z) cbrt(z) = z
+ assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c));
+ }
+ }
+
+ #[test]
+ fn test_cbrt_real() {
+ for n in (0..100).map(f64::from) {
+ // ∛(n³ + 0i) = n + 0i
+ let n3 = n * n * n;
+ assert!(close(
+ Complex64::new(n3, 0.0).cbrt(),
+ Complex64::new(n, 0.0)
+ ));
+ // ∛(-n³ + 0i) = n e^(iπ/3)
+ assert!(close(
+ Complex64::new(-n3, 0.0).cbrt(),
+ Complex64::from_polar(n, f64::consts::FRAC_PI_3)
+ ));
+ // ∛(-n³ - 0i) = n e^(-iπ/3)
+ assert!(close(
+ Complex64::new(-n3, -0.0).cbrt(),
+ Complex64::from_polar(n, -f64::consts::FRAC_PI_3)
+ ));
+ }
+ }
+
+ #[test]
+ fn test_cbrt_imag() {
+ for n in (0..100).map(f64::from) {
+ // ∛(0 + n³i) = n e^(iπ/6)
+ let n3 = n * n * n;
+ assert!(close(
+ Complex64::new(0.0, n3).cbrt(),
+ Complex64::from_polar(n, f64::consts::FRAC_PI_6)
+ ));
+ // ∛(0 - n³i) = n e^(-iπ/6)
+ assert!(close(
+ Complex64::new(0.0, -n3).cbrt(),
+ Complex64::from_polar(n, -f64::consts::FRAC_PI_6)
+ ));
+ }
+ }
+
+ #[test]
+ fn test_sin() {
+ assert!(close(_0_0i.sin(), _0_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i));
+ assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh())));
+ for &c in all_consts.iter() {
+ // sin(conj(z)) = conj(sin(z))
+ assert!(close(c.conj().sin(), c.sin().conj()));
+ // sin(-z) = -sin(z)
+ assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_cos() {
+ assert!(close(_0_0i.cos(), _1_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i));
+ assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh())));
+ for &c in all_consts.iter() {
+ // cos(conj(z)) = conj(cos(z))
+ assert!(close(c.conj().cos(), c.cos().conj()));
+ // cos(-z) = cos(z)
+ assert!(close(c.scale(-1.0).cos(), c.cos()));
+ }
+ }
+
+ #[test]
+ fn test_tan() {
+ assert!(close(_0_0i.tan(), _0_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
+ for &c in all_consts.iter() {
+ // tan(conj(z)) = conj(tan(z))
+ assert!(close(c.conj().tan(), c.tan().conj()));
+ // tan(-z) = -tan(z)
+ assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_asin() {
+ assert!(close(_0_0i.asin(), _0_0i));
+ assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0)));
+ assert!(close(
+ _1_0i.scale(-1.0).asin(),
+ _1_0i.scale(-f64::consts::PI / 2.0)
+ ));
+ assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln())));
+ for &c in all_consts.iter() {
+ // asin(conj(z)) = conj(asin(z))
+ assert!(close(c.conj().asin(), c.asin().conj()));
+ // asin(-z) = -asin(z)
+ assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0)));
+ // for this branch, -pi/2 <= asin(z).re <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_acos() {
+ assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0)));
+ assert!(close(_1_0i.acos(), _0_0i));
+ assert!(close(
+ _1_0i.scale(-1.0).acos(),
+ _1_0i.scale(f64::consts::PI)
+ ));
+ assert!(close(
+ _0_1i.acos(),
+ Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln())
+ ));
+ for &c in all_consts.iter() {
+ // acos(conj(z)) = conj(acos(z))
+ assert!(close(c.conj().acos(), c.acos().conj()));
+ // for this branch, 0 <= acos(z).re <= pi
+ assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI);
+ }
+ }
+
+ #[test]
+ fn test_atan() {
+ assert!(close(_0_0i.atan(), _0_0i));
+ assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0)));
+ assert!(close(
+ _1_0i.scale(-1.0).atan(),
+ _1_0i.scale(-f64::consts::PI / 4.0)
+ ));
+ assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity())));
+ for &c in all_consts.iter() {
+ // atan(conj(z)) = conj(atan(z))
+ assert!(close(c.conj().atan(), c.atan().conj()));
+ // atan(-z) = -atan(z)
+ assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0)));
+ // for this branch, -pi/2 <= atan(z).re <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_sinh() {
+ assert!(close(_0_0i.sinh(), _0_0i));
+ assert!(close(
+ _1_0i.sinh(),
+ _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0)
+ ));
+ assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin())));
+ for &c in all_consts.iter() {
+ // sinh(conj(z)) = conj(sinh(z))
+ assert!(close(c.conj().sinh(), c.sinh().conj()));
+ // sinh(-z) = -sinh(z)
+ assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_cosh() {
+ assert!(close(_0_0i.cosh(), _1_0i));
+ assert!(close(
+ _1_0i.cosh(),
+ _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0)
+ ));
+ assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos())));
+ for &c in all_consts.iter() {
+ // cosh(conj(z)) = conj(cosh(z))
+ assert!(close(c.conj().cosh(), c.cosh().conj()));
+ // cosh(-z) = cosh(z)
+ assert!(close(c.scale(-1.0).cosh(), c.cosh()));
+ }
+ }
+
+ #[test]
+ fn test_tanh() {
+ assert!(close(_0_0i.tanh(), _0_0i));
+ assert!(close(
+ _1_0i.tanh(),
+ _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0))
+ ));
+ assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
+ for &c in all_consts.iter() {
+ // tanh(conj(z)) = conj(tanh(z))
+ assert!(close(c.conj().tanh(), c.conj().tanh()));
+ // tanh(-z) = -tanh(z)
+ assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_asinh() {
+ assert!(close(_0_0i.asinh(), _0_0i));
+ assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln()));
+ assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0)));
+ assert!(close(
+ _0_1i.asinh().scale(-1.0),
+ _0_1i.scale(-f64::consts::PI / 2.0)
+ ));
+ for &c in all_consts.iter() {
+ // asinh(conj(z)) = conj(asinh(z))
+ assert!(close(c.conj().asinh(), c.conj().asinh()));
+ // asinh(-z) = -asinh(z)
+ assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0)));
+ // for this branch, -pi/2 <= asinh(z).im <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_acosh() {
+ assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0)));
+ assert!(close(_1_0i.acosh(), _0_0i));
+ assert!(close(
+ _1_0i.scale(-1.0).acosh(),
+ _0_1i.scale(f64::consts::PI)
+ ));
+ for &c in all_consts.iter() {
+ // acosh(conj(z)) = conj(acosh(z))
+ assert!(close(c.conj().acosh(), c.conj().acosh()));
+ // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re
+ assert!(
+ -f64::consts::PI <= c.acosh().im
+ && c.acosh().im <= f64::consts::PI
+ && 0.0 <= c.cosh().re
+ );
+ }
+ }
+
+ #[test]
+ fn test_atanh() {
+ assert!(close(_0_0i.atanh(), _0_0i));
+ assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0)));
+ assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0)));
+ for &c in all_consts.iter() {
+ // atanh(conj(z)) = conj(atanh(z))
+ assert!(close(c.conj().atanh(), c.conj().atanh()));
+ // atanh(-z) = -atanh(z)
+ assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0)));
+ // for this branch, -pi/2 <= atanh(z).im <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_exp_ln() {
+ for &c in all_consts.iter() {
+ // e^ln(z) = z
+ assert!(close(c.ln().exp(), c));
+ }
+ }
+
+ #[test]
+ fn test_exp2_log() {
+ for &c in all_consts.iter() {
+ // 2^log2(z) = z
+ assert!(close(c.log2().exp2(), c));
+ }
+ }
+
+ #[test]
+ fn test_trig_to_hyperbolic() {
+ for &c in all_consts.iter() {
+ // sin(iz) = i sinh(z)
+ assert!(close((_0_1i * c).sin(), _0_1i * c.sinh()));
+ // cos(iz) = cosh(z)
+ assert!(close((_0_1i * c).cos(), c.cosh()));
+ // tan(iz) = i tanh(z)
+ assert!(close((_0_1i * c).tan(), _0_1i * c.tanh()));
+ }
+ }
+
+ #[test]
+ fn test_trig_identities() {
+ for &c in all_consts.iter() {
+ // tan(z) = sin(z)/cos(z)
+ assert!(close(c.tan(), c.sin() / c.cos()));
+ // sin(z)^2 + cos(z)^2 = 1
+ assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i));
+
+ // sin(asin(z)) = z
+ assert!(close(c.asin().sin(), c));
+ // cos(acos(z)) = z
+ assert!(close(c.acos().cos(), c));
+ // tan(atan(z)) = z
+ // i and -i are branch points
+ if c != _0_1i && c != _0_1i.scale(-1.0) {
+ assert!(close(c.atan().tan(), c));
+ }
+
+ // sin(z) = (e^(iz) - e^(-iz))/(2i)
+ assert!(close(
+ ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0),
+ c.sin()
+ ));
+ // cos(z) = (e^(iz) + e^(-iz))/2
+ assert!(close(
+ ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0),
+ c.cos()
+ ));
+ // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz))
+ assert!(close(
+ _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp())
+ / (_1_0i + (_0_1i * c).scale(2.0).exp()),
+ c.tan()
+ ));
+ }
+ }
+
+ #[test]
+ fn test_hyperbolic_identites() {
+ for &c in all_consts.iter() {
+ // tanh(z) = sinh(z)/cosh(z)
+ assert!(close(c.tanh(), c.sinh() / c.cosh()));
+ // cosh(z)^2 - sinh(z)^2 = 1
+ assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i));
+
+ // sinh(asinh(z)) = z
+ assert!(close(c.asinh().sinh(), c));
+ // cosh(acosh(z)) = z
+ assert!(close(c.acosh().cosh(), c));
+ // tanh(atanh(z)) = z
+ // 1 and -1 are branch points
+ if c != _1_0i && c != _1_0i.scale(-1.0) {
+ assert!(close(c.atanh().tanh(), c));
+ }
+
+ // sinh(z) = (e^z - e^(-z))/2
+ assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh()));
+ // cosh(z) = (e^z + e^(-z))/2
+ assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh()));
+ // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1)
+ assert!(close(
+ (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i),
+ c.tanh()
+ ));
+ }
+ }
+ }
+
+ // Test both a + b and a += b
+ macro_rules! test_a_op_b {
+ ($a:ident + $b:expr, $answer:expr) => {
+ assert_eq!($a + $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x += $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident - $b:expr, $answer:expr) => {
+ assert_eq!($a - $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x -= $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident * $b:expr, $answer:expr) => {
+ assert_eq!($a * $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x *= $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident / $b:expr, $answer:expr) => {
+ assert_eq!($a / $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x /= $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident % $b:expr, $answer:expr) => {
+ assert_eq!($a % $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x %= $b;
+ x
+ },
+ $answer
+ );
+ };
+ }
+
+ // Test both a + b and a + &b
+ macro_rules! test_op {
+ ($a:ident $op:tt $b:expr, $answer:expr) => {
+ test_a_op_b!($a $op $b, $answer);
+ test_a_op_b!($a $op &$b, $answer);
+ };
+ }
+
+ mod complex_arithmetic {
+ use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts};
+ use num_traits::{MulAdd, MulAddAssign, Zero};
+
+ #[test]
+ fn test_add() {
+ test_op!(_05_05i + _05_05i, _1_1i);
+ test_op!(_0_1i + _1_0i, _1_1i);
+ test_op!(_1_0i + _neg1_1i, _0_1i);
+
+ for &c in all_consts.iter() {
+ test_op!(_0_0i + c, c);
+ test_op!(c + _0_0i, c);
+ }
+ }
+
+ #[test]
+ fn test_sub() {
+ test_op!(_05_05i - _05_05i, _0_0i);
+ test_op!(_0_1i - _1_0i, _neg1_1i);
+ test_op!(_0_1i - _neg1_1i, _1_0i);
+
+ for &c in all_consts.iter() {
+ test_op!(c - _0_0i, c);
+ test_op!(c - c, _0_0i);
+ }
+ }
+
+ #[test]
+ fn test_mul() {
+ test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0));
+ test_op!(_1_1i * _0_1i, _neg1_1i);
+
+ // i^2 & i^4
+ test_op!(_0_1i * _0_1i, -_1_0i);
+ assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
+
+ for &c in all_consts.iter() {
+ test_op!(c * _1_0i, c);
+ test_op!(_1_0i * c, c);
+ }
+ }
+
+ #[test]
+ #[cfg(any(feature = "std", feature = "libm"))]
+ fn test_mul_add_float() {
+ assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i);
+ assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i));
+ assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
+ assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
+ assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
+
+ let mut x = _1_0i;
+ x.mul_add_assign(_1_0i, _1_0i);
+ assert_eq!(x, _1_0i * _1_0i + _1_0i);
+
+ for &a in &all_consts {
+ for &b in &all_consts {
+ for &c in &all_consts {
+ let abc = a * b + c;
+ assert_eq!(a.mul_add(b, c), abc);
+ let mut x = a;
+ x.mul_add_assign(b, c);
+ assert_eq!(x, abc);
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_mul_add() {
+ use super::Complex;
+ const _0_0i: Complex<i32> = Complex { re: 0, im: 0 };
+ const _1_0i: Complex<i32> = Complex { re: 1, im: 0 };
+ const _1_1i: Complex<i32> = Complex { re: 1, im: 1 };
+ const _0_1i: Complex<i32> = Complex { re: 0, im: 1 };
+ const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 };
+ const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i];
+
+ assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i);
+ assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i));
+ assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
+ assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
+ assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
+
+ let mut x = _1_0i;
+ x.mul_add_assign(_1_0i, _1_0i);
+ assert_eq!(x, _1_0i * _1_0i + _1_0i);
+
+ for &a in &all_consts {
+ for &b in &all_consts {
+ for &c in &all_consts {
+ let abc = a * b + c;
+ assert_eq!(a.mul_add(b, c), abc);
+ let mut x = a;
+ x.mul_add_assign(b, c);
+ assert_eq!(x, abc);
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_div() {
+ test_op!(_neg1_1i / _0_1i, _1_1i);
+ for &c in all_consts.iter() {
+ if c != Zero::zero() {
+ test_op!(c / c, _1_0i);
+ }
+ }
+ }
+
+ #[test]
+ fn test_rem() {
+ test_op!(_neg1_1i % _0_1i, _0_0i);
+ test_op!(_4_2i % _0_1i, _0_0i);
+ test_op!(_05_05i % _0_1i, _05_05i);
+ test_op!(_05_05i % _1_1i, _05_05i);
+ assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
+ assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
+ }
+
+ #[test]
+ fn test_neg() {
+ assert_eq!(-_1_0i + _0_1i, _neg1_1i);
+ assert_eq!((-_0_1i) * _0_1i, _1_0i);
+ for &c in all_consts.iter() {
+ assert_eq!(-(-c), c);
+ }
+ }
+ }
+
+ mod real_arithmetic {
+ use super::super::Complex;
+ use super::{_4_2i, _neg1_1i};
+
+ #[test]
+ fn test_add() {
+ test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0));
+ assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0));
+ }
+
+ #[test]
+ fn test_sub() {
+ test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0));
+ assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0));
+ }
+
+ #[test]
+ fn test_mul() {
+ assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0));
+ assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0));
+ }
+
+ #[test]
+ fn test_div() {
+ assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
+ assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
+ }
+
+ #[test]
+ fn test_rem() {
+ assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
+ assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
+ assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
+ assert_eq!(_neg1_1i % 2.0, _neg1_1i);
+ assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
+ }
+
+ #[test]
+ fn test_div_rem_gaussian() {
+ // These would overflow with `norm_sqr` division.
+ let max = Complex::new(255u8, 255u8);
+ assert_eq!(max / 200, Complex::new(1, 1));
+ assert_eq!(max % 200, Complex::new(55, 55));
+ }
+ }
+
+ #[test]
+ fn test_to_string() {
+ fn test(c: Complex64, s: String) {
+ assert_eq!(c.to_string(), s);
+ }
+ test(_0_0i, "0+0i".to_string());
+ test(_1_0i, "1+0i".to_string());
+ test(_0_1i, "0+1i".to_string());
+ test(_1_1i, "1+1i".to_string());
+ test(_neg1_1i, "-1+1i".to_string());
+ test(-_neg1_1i, "1-1i".to_string());
+ test(_05_05i, "0.5+0.5i".to_string());
+ }
+
+ #[test]
+ fn test_string_formatting() {
+ let a = Complex::new(1.23456, 123.456);
+ assert_eq!(format!("{}", a), "1.23456+123.456i");
+ assert_eq!(format!("{:.2}", a), "1.23+123.46i");
+ assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i");
+ assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i");
+
+ let b = Complex::new(0x80, 0xff);
+ assert_eq!(format!("{:X}", b), "80+FFi");
+ assert_eq!(format!("{:#x}", b), "0x80+0xffi");
+ assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i");
+ assert_eq!(format!("{:+#o}", b), "+0o200+0o377i");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i");
+
+ let c = Complex::new(-10, -10000);
+ assert_eq!(format!("{}", c), "-10-10000i");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:16}", c), " -10-10000i");
+ }
+
+ #[test]
+ fn test_hash() {
+ let a = Complex::new(0i32, 0i32);
+ let b = Complex::new(1i32, 0i32);
+ let c = Complex::new(0i32, 1i32);
+ assert!(crate::hash(&a) != crate::hash(&b));
+ assert!(crate::hash(&b) != crate::hash(&c));
+ assert!(crate::hash(&c) != crate::hash(&a));
+ }
+
+ #[test]
+ fn test_hashset() {
+ use std::collections::HashSet;
+ let a = Complex::new(0i32, 0i32);
+ let b = Complex::new(1i32, 0i32);
+ let c = Complex::new(0i32, 1i32);
+
+ let set: HashSet<_> = [a, b, c].iter().cloned().collect();
+ assert!(set.contains(&a));
+ assert!(set.contains(&b));
+ assert!(set.contains(&c));
+ assert!(!set.contains(&(a + b + c)));
+ }
+
+ #[test]
+ fn test_is_nan() {
+ assert!(!_1_1i.is_nan());
+ let a = Complex::new(f64::NAN, f64::NAN);
+ assert!(a.is_nan());
+ }
+
+ #[test]
+ fn test_is_nan_special_cases() {
+ let a = Complex::new(0f64, f64::NAN);
+ let b = Complex::new(f64::NAN, 0f64);
+ assert!(a.is_nan());
+ assert!(b.is_nan());
+ }
+
+ #[test]
+ fn test_is_infinite() {
+ let a = Complex::new(2f64, f64::INFINITY);
+ assert!(a.is_infinite());
+ }
+
+ #[test]
+ fn test_is_finite() {
+ assert!(_1_1i.is_finite())
+ }
+
+ #[test]
+ fn test_is_normal() {
+ let a = Complex::new(0f64, f64::NAN);
+ let b = Complex::new(2f64, f64::INFINITY);
+ assert!(!a.is_normal());
+ assert!(!b.is_normal());
+ assert!(_1_1i.is_normal());
+ }
+
+ #[test]
+ fn test_from_str() {
+ fn test(z: Complex64, s: &str) {
+ assert_eq!(FromStr::from_str(s), Ok(z));
+ }
+ test(_0_0i, "0 + 0i");
+ test(_0_0i, "0+0j");
+ test(_0_0i, "0 - 0j");
+ test(_0_0i, "0-0i");
+ test(_0_0i, "0i + 0");
+ test(_0_0i, "0");
+ test(_0_0i, "-0");
+ test(_0_0i, "0i");
+ test(_0_0i, "0j");
+ test(_0_0i, "+0j");
+ test(_0_0i, "-0i");
+
+ test(_1_0i, "1 + 0i");
+ test(_1_0i, "1+0j");
+ test(_1_0i, "1 - 0j");
+ test(_1_0i, "+1-0i");
+ test(_1_0i, "-0j+1");
+ test(_1_0i, "1");
+
+ test(_1_1i, "1 + i");
+ test(_1_1i, "1+j");
+ test(_1_1i, "1 + 1j");
+ test(_1_1i, "1+1i");
+ test(_1_1i, "i + 1");
+ test(_1_1i, "1i+1");
+ test(_1_1i, "+j+1");
+
+ test(_0_1i, "0 + i");
+ test(_0_1i, "0+j");
+ test(_0_1i, "-0 + j");
+ test(_0_1i, "-0+i");
+ test(_0_1i, "0 + 1i");
+ test(_0_1i, "0+1j");
+ test(_0_1i, "-0 + 1j");
+ test(_0_1i, "-0+1i");
+ test(_0_1i, "j + 0");
+ test(_0_1i, "i");
+ test(_0_1i, "j");
+ test(_0_1i, "1j");
+
+ test(_neg1_1i, "-1 + i");
+ test(_neg1_1i, "-1+j");
+ test(_neg1_1i, "-1 + 1j");
+ test(_neg1_1i, "-1+1i");
+ test(_neg1_1i, "1i-1");
+ test(_neg1_1i, "j + -1");
+
+ test(_05_05i, "0.5 + 0.5i");
+ test(_05_05i, "0.5+0.5j");
+ test(_05_05i, "5e-1+0.5j");
+ test(_05_05i, "5E-1 + 0.5j");
+ test(_05_05i, "5E-1i + 0.5");
+ test(_05_05i, "0.05e+1j + 50E-2");
+ }
+
+ #[test]
+ fn test_from_str_radix() {
+ fn test(z: Complex64, s: &str, radix: u32) {
+ let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> =
+ Num::from_str_radix(s, radix);
+ assert_eq!(res.unwrap(), z)
+ }
+ test(_4_2i, "4+2i", 10);
+ test(Complex::new(15.0, 32.0), "F+20i", 16);
+ test(Complex::new(15.0, 32.0), "1111+100000i", 2);
+ test(Complex::new(-15.0, -32.0), "-F-20i", 16);
+ test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
+
+ fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> {
+ let res = Complex64::from_str_radix(s, radix);
+
+ res.expect_err(&format!("Expected failure on input {:?}", s))
+ }
+
+ let err = test_error("1ii", 19);
+ if let ComplexErrorKind::UnsupportedRadix = err.kind {
+ /* pass */
+ } else {
+ panic!("Expected failure on invalid radix, got {:?}", err);
+ }
+
+ let err = test_error("1 + 0", 16);
+ if let ComplexErrorKind::ExprError = err.kind {
+ /* pass */
+ } else {
+ panic!("Expected failure on expr error, got {:?}", err);
+ }
+ }
+
+ #[test]
+ #[should_panic(expected = "radix is too high")]
+ fn test_from_str_radix_fail() {
+ // ensure we preserve the underlying panic on radix > 36
+ let _complex = Complex64::from_str_radix("1", 37);
+ }
+
+ #[test]
+ fn test_from_str_fail() {
+ fn test(s: &str) {
+ let complex: Result<Complex64, _> = FromStr::from_str(s);
+ assert!(
+ complex.is_err(),
+ "complex {:?} -> {:?} should be an error",
+ s,
+ complex
+ );
+ }
+ test("foo");
+ test("6E");
+ test("0 + 2.718");
+ test("1 - -2i");
+ test("314e-2ij");
+ test("4.3j - i");
+ test("1i - 2i");
+ test("+ 1 - 3.0i");
+ }
+
+ #[test]
+ fn test_sum() {
+ let v = vec![_0_1i, _1_0i];
+ assert_eq!(v.iter().sum::<Complex64>(), _1_1i);
+ assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i);
+ }
+
+ #[test]
+ fn test_prod() {
+ let v = vec![_0_1i, _1_0i];
+ assert_eq!(v.iter().product::<Complex64>(), _0_1i);
+ assert_eq!(v.into_iter().product::<Complex64>(), _0_1i);
+ }
+
+ #[test]
+ fn test_zero() {
+ let zero = Complex64::zero();
+ assert!(zero.is_zero());
+
+ let mut c = Complex::new(1.23, 4.56);
+ assert!(!c.is_zero());
+ assert_eq!(c + zero, c);
+
+ c.set_zero();
+ assert!(c.is_zero());
+ }
+
+ #[test]
+ fn test_one() {
+ let one = Complex64::one();
+ assert!(one.is_one());
+
+ let mut c = Complex::new(1.23, 4.56);
+ assert!(!c.is_one());
+ assert_eq!(c * one, c);
+
+ c.set_one();
+ assert!(c.is_one());
+ }
+
+ #[test]
+ #[allow(clippy::float_cmp)]
+ fn test_const() {
+ const R: f64 = 12.3;
+ const I: f64 = -4.5;
+ const C: Complex64 = Complex::new(R, I);
+
+ assert_eq!(C.re, 12.3);
+ assert_eq!(C.im, -4.5);
+ }
+}
diff --git a/src/pow.rs b/src/pow.rs
new file mode 100644
index 0000000..569f01d
--- /dev/null
+++ b/src/pow.rs
@@ -0,0 +1,186 @@
+use super::Complex;
+
+use core::ops::Neg;
+#[cfg(any(feature = "std", feature = "libm"))]
+use num_traits::Float;
+use num_traits::{Num, One, Pow};
+
+macro_rules! pow_impl {
+ ($U:ty, $S:ty) => {
+ impl<'a, T: Clone + Num> Pow<$U> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, mut exp: $U) -> Self::Output {
+ if exp == 0 {
+ return Complex::one();
+ }
+ let mut base = self.clone();
+
+ while exp & 1 == 0 {
+ base = base.clone() * base;
+ exp >>= 1;
+ }
+
+ if exp == 1 {
+ return base;
+ }
+
+ let mut acc = base.clone();
+ while exp > 1 {
+ exp >>= 1;
+ base = base.clone() * base;
+ if exp & 1 == 1 {
+ acc = acc * base.clone();
+ }
+ }
+ acc
+ }
+ }
+
+ impl<'a, 'b, T: Clone + Num> Pow<&'b $U> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: &$U) -> Self::Output {
+ self.pow(*exp)
+ }
+ }
+
+ impl<'a, T: Clone + Num + Neg<Output = T>> Pow<$S> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: $S) -> Self::Output {
+ if exp < 0 {
+ Pow::pow(&self.inv(), exp.wrapping_neg() as $U)
+ } else {
+ Pow::pow(self, exp as $U)
+ }
+ }
+ }
+
+ impl<'a, 'b, T: Clone + Num + Neg<Output = T>> Pow<&'b $S> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: &$S) -> Self::Output {
+ self.pow(*exp)
+ }
+ }
+ };
+}
+
+pow_impl!(u8, i8);
+pow_impl!(u16, i16);
+pow_impl!(u32, i32);
+pow_impl!(u64, i64);
+pow_impl!(usize, isize);
+pow_impl!(u128, i128);
+
+// Note: we can't add `impl<T: Float> Pow<T> for Complex<T>` because new blanket impls are a
+// breaking change. Someone could already have their own `F` and `impl Pow<F> for Complex<F>`
+// which would conflict. We can't even do this in a new semantic version, because we have to
+// gate it on the "std" feature, and features can't add breaking changes either.
+
+macro_rules! powf_impl {
+ ($F:ty) => {
+ #[cfg(any(feature = "std", feature = "libm"))]
+ impl<'a, T: Float> Pow<$F> for &'a Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: $F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+
+ #[cfg(any(feature = "std", feature = "libm"))]
+ impl<'a, 'b, T: Float> Pow<&'b $F> for &'a Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &$F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+
+ #[cfg(any(feature = "std", feature = "libm"))]
+ impl<T: Float> Pow<$F> for Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: $F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+
+ #[cfg(any(feature = "std", feature = "libm"))]
+ impl<'b, T: Float> Pow<&'b $F> for Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &$F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+ };
+}
+
+powf_impl!(f32);
+powf_impl!(f64);
+
+// These blanket impls are OK, because both the target type and the trait parameter would be
+// foreign to anyone else trying to implement something that would overlap, raising E0117.
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl<'a, T: Float> Pow<Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl<'a, 'b, T: Float> Pow<&'b Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &'b Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl<T: Float> Pow<Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl<'b, T: Float> Pow<&'b Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &'b Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}