use num_enum::IntoPrimitive; #[derive(IntoPrimitive)] #[repr(u8)] enum Number { Zero, One, } fn main() { let zero: u8 = Number::Zero.into(); assert_eq!(zero, 0u8); }
num_enum
's IntoPrimitive
is more type-safe than using as
, because as
will silently truncate - num_enum
only derives From
for exactly the discriminant type of the enum.
use num_enum::TryFromPrimitive; use std::convert::TryFrom; #[derive(Debug, Eq, PartialEq, TryFromPrimitive)] #[repr(u8)] enum Number { Zero, One, } fn main() { let zero = Number::try_from(0u8); assert_eq!(zero, Ok(Number::Zero)); let three = Number::try_from(3u8); assert_eq!( three.unwrap_err().to_string(), "No discriminant in enum `Number` matches the value `3`", ); }
Sometimes a single enum variant might be representable by multiple numeric values.
The #[num_enum(alternatives = [..])]
attribute allows you to define additional value alternatives for individual variants.
(The behavior of IntoPrimitive
is unaffected by this attribute, it will always return the canonical value.)
use num_enum::TryFromPrimitive; use std::convert::TryFrom; #[derive(Debug, Eq, PartialEq, TryFromPrimitive)] #[repr(u8)] enum Number { Zero = 0, #[num_enum(alternatives = [2])] OneOrTwo = 1, } fn main() { let zero = Number::try_from(0u8); assert_eq!(zero, Ok(Number::Zero)); let one = Number::try_from(1u8); assert_eq!(one, Ok(Number::OneOrTwo)); let two = Number::try_from(2u8); assert_eq!(two, Ok(Number::OneOrTwo)); let three = Number::try_from(3u8); assert_eq!( three.unwrap_err().to_string(), "No discriminant in enum `Number` matches the value `3`", ); }
Range expressions are also supported for alternatives, but this requires enabling the complex-expressions
feature:
use num_enum::TryFromPrimitive; use std::convert::TryFrom; #[derive(Debug, Eq, PartialEq, TryFromPrimitive)] #[repr(u8)] enum Number { Zero = 0, #[num_enum(alternatives = [2..16])] Some = 1, #[num_enum(alternatives = [17, 18..=255])] Many = 16, } fn main() { let zero = Number::try_from(0u8); assert_eq!(zero, Ok(Number::Zero)); let some = Number::try_from(15u8); assert_eq!(some, Ok(Number::Some)); let many = Number::try_from(255u8); assert_eq!(many, Ok(Number::Many)); }
TryFromPrimitive
by default will use num_enum::TryFromPrimitiveError
as its Error
type.
If you want to use a different type, you can use an annotation for this:
use num_enum::TryFromPrimitive; #[derive(Debug, Eq, PartialEq, TryFromPrimitive)] #[num_enum(error_type(name = CustomError, constructor = CustomError::new))] #[repr(u8)] enum FirstNumber { Zero, One, Two, } struct CustomError {} impl CustomError { fn new(value: u8) -> CustomError { CustomError {} } }
If your enum has all possible primitive values covered, you can derive FromPrimitive
for it (which auto-implement stdlib's From
):
You can cover all possible values by:
#[num_enum(default)]
#[num_enum(catch_all)]
#[num_enum(alternatives = [...])
s covering values not covered by a variant.use num_enum::FromPrimitive; #[derive(Debug, Eq, PartialEq, FromPrimitive)] #[repr(u8)] enum Number { Zero, #[num_enum(default)] NonZero, } fn main() { assert_eq!( Number::Zero, Number::from(0_u8), ); assert_eq!( Number::NonZero, Number::from(1_u8), ); }
Sometimes it is desirable to have an Other
variant in an enum that acts as a kind of a wildcard matching all the value not yet covered by other variants.
The #[num_enum(default)]
attribute (or the stdlib #[default]
attribute) allows you to mark variant as the default.
(The behavior of IntoPrimitive
is unaffected by this attribute, it will always return the canonical value.)
use num_enum::FromPrimitive; use std::convert::TryFrom; #[derive(Debug, Eq, PartialEq, FromPrimitive)] #[repr(u8)] enum Number { Zero = 0, #[num_enum(default)] NonZero = 1, } fn main() { let zero = Number::from(0u8); assert_eq!(zero, Number::Zero); let one = Number::from(1u8); assert_eq!(one, Number::NonZero); let two = Number::from(2u8); assert_eq!(two, Number::NonZero); }
Only FromPrimitive
pays attention to default
attributes, TryFromPrimitive
ignores them.
Sometimes it is desirable to have an Other
variant which holds the otherwise un-matched value as a field.
The #[num_enum(catch_all)]
attribute allows you to mark at most one variant for this purpose. The variant it's applied to must be a tuple variant with exactly one field matching the repr
type.
use num_enum::FromPrimitive; use std::convert::TryFrom; #[derive(Debug, Eq, PartialEq, FromPrimitive)] #[repr(u8)] enum Number { Zero = 0, #[num_enum(catch_all)] NonZero(u8), } fn main() { let zero = Number::from(0u8); assert_eq!(zero, Number::Zero); let one = Number::from(1u8); assert_eq!(one, Number::NonZero(1_u8)); let two = Number::from(2u8); assert_eq!(two, Number::NonZero(2_u8)); }
As this is naturally exhaustive, this is only supported for FromPrimitive
, not also TryFromPrimitive
.
If you're really certain a conversion will succeed (and have not made use of #[num_enum(default)]
or #[num_enum(alternatives = [..])]
for any of its variants), and want to avoid a small amount of overhead, you can use unsafe code to do this conversion. Unless you have data showing that the match statement generated in the try_from
above is a bottleneck for you, you should avoid doing this, as the unsafe code has potential to cause serious memory issues in your program.
use num_enum::UnsafeFromPrimitive; #[derive(Debug, Eq, PartialEq, UnsafeFromPrimitive)] #[repr(u8)] enum Number { Zero, One, } fn main() { assert_eq!( unsafe { Number::unchecked_transmute_from(0_u8) }, Number::Zero, ); assert_eq!( unsafe { Number::unchecked_transmute_from(1_u8) }, Number::One, ); } unsafe fn undefined_behavior() { let _ = Number::unchecked_transmute_from(2); // 2 is not a valid discriminant! }
Note that this derive ignores any default
, catch_all
, and alternatives
attributes on the enum. If you need support for conversions from these values, you should use TryFromPrimitive
or FromPrimitive
.
This means, for instance, that the following is undefined behaviour:
use num_enum::UnsafeFromPrimitive; #[derive(UnsafeFromPrimitive)] #[repr(u8)] enum Number { Zero = 0, // Same for `#[num_enum(catch_all)]`, and `#[num_enum(alternatives = [2, ...])]` #[num_enum(default)] One = 1, } let _undefined_behavior = unsafe { Number::unchecked_transmute_from(2) };
Some enum values may be composed of complex expressions, for example:
enum Number { Zero = (0, 1).0, One = (0, 1).1, }
To cut down on compile time, these are not supported by default, but if you enable the complex-expressions
feature of your dependency on num_enum
, these should start working.
num_enum may be used under your choice of the BSD 3-clause, Apache 2, or MIT license.