Revert "Merge sc-d1-dev 6958804 into master."

This reverts commit c3baae9670c1bb9235c3d13ec47d9f77330e9b50, reversing
changes made to 1867a80b63eef8bfe8ed47e686473f4def898d89.

Bug: b/172824175
Test: launch cuttlefish locally and check boot
Change-Id: I05ef8d2c6a2f5fc781bc23b73df1cde68880994d
diff --git a/third_party/llvm-10.0/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/third_party/llvm-10.0/llvm/lib/CodeGen/MachineBlockPlacement.cpp
new file mode 100644
index 0000000..30b98ec
--- /dev/null
+++ b/third_party/llvm-10.0/llvm/lib/CodeGen/MachineBlockPlacement.cpp
@@ -0,0 +1,3229 @@
+//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements basic block placement transformations using the CFG
+// structure and branch probability estimates.
+//
+// The pass strives to preserve the structure of the CFG (that is, retain
+// a topological ordering of basic blocks) in the absence of a *strong* signal
+// to the contrary from probabilities. However, within the CFG structure, it
+// attempts to choose an ordering which favors placing more likely sequences of
+// blocks adjacent to each other.
+//
+// The algorithm works from the inner-most loop within a function outward, and
+// at each stage walks through the basic blocks, trying to coalesce them into
+// sequential chains where allowed by the CFG (or demanded by heavy
+// probabilities). Finally, it walks the blocks in topological order, and the
+// first time it reaches a chain of basic blocks, it schedules them in the
+// function in-order.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BranchFolding.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineSizeOpts.h"
+#include "llvm/CodeGen/TailDuplicator.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "block-placement"
+
+STATISTIC(NumCondBranches, "Number of conditional branches");
+STATISTIC(NumUncondBranches, "Number of unconditional branches");
+STATISTIC(CondBranchTakenFreq,
+          "Potential frequency of taking conditional branches");
+STATISTIC(UncondBranchTakenFreq,
+          "Potential frequency of taking unconditional branches");
+
+static cl::opt<unsigned> AlignAllBlock(
+    "align-all-blocks",
+    cl::desc("Force the alignment of all blocks in the function in log2 format "
+             "(e.g 4 means align on 16B boundaries)."),
+    cl::init(0), cl::Hidden);
+
+static cl::opt<unsigned> AlignAllNonFallThruBlocks(
+    "align-all-nofallthru-blocks",
+    cl::desc("Force the alignment of all blocks that have no fall-through "
+             "predecessors (i.e. don't add nops that are executed). In log2 "
+             "format (e.g 4 means align on 16B boundaries)."),
+    cl::init(0), cl::Hidden);
+
+// FIXME: Find a good default for this flag and remove the flag.
+static cl::opt<unsigned> ExitBlockBias(
+    "block-placement-exit-block-bias",
+    cl::desc("Block frequency percentage a loop exit block needs "
+             "over the original exit to be considered the new exit."),
+    cl::init(0), cl::Hidden);
+
+// Definition:
+// - Outlining: placement of a basic block outside the chain or hot path.
+
+static cl::opt<unsigned> LoopToColdBlockRatio(
+    "loop-to-cold-block-ratio",
+    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
+             "(frequency of block) is greater than this ratio"),
+    cl::init(5), cl::Hidden);
+
+static cl::opt<bool> ForceLoopColdBlock(
+    "force-loop-cold-block",
+    cl::desc("Force outlining cold blocks from loops."),
+    cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+    PreciseRotationCost("precise-rotation-cost",
+                        cl::desc("Model the cost of loop rotation more "
+                                 "precisely by using profile data."),
+                        cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+    ForcePreciseRotationCost("force-precise-rotation-cost",
+                             cl::desc("Force the use of precise cost "
+                                      "loop rotation strategy."),
+                             cl::init(false), cl::Hidden);
+
+static cl::opt<unsigned> MisfetchCost(
+    "misfetch-cost",
+    cl::desc("Cost that models the probabilistic risk of an instruction "
+             "misfetch due to a jump comparing to falling through, whose cost "
+             "is zero."),
+    cl::init(1), cl::Hidden);
+
+static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
+                                      cl::desc("Cost of jump instructions."),
+                                      cl::init(1), cl::Hidden);
+static cl::opt<bool>
+TailDupPlacement("tail-dup-placement",
+              cl::desc("Perform tail duplication during placement. "
+                       "Creates more fallthrough opportunites in "
+                       "outline branches."),
+              cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+BranchFoldPlacement("branch-fold-placement",
+              cl::desc("Perform branch folding during placement. "
+                       "Reduces code size."),
+              cl::init(true), cl::Hidden);
+
+// Heuristic for tail duplication.
+static cl::opt<unsigned> TailDupPlacementThreshold(
+    "tail-dup-placement-threshold",
+    cl::desc("Instruction cutoff for tail duplication during layout. "
+             "Tail merging during layout is forced to have a threshold "
+             "that won't conflict."), cl::init(2),
+    cl::Hidden);
+
+// Heuristic for aggressive tail duplication.
+static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
+    "tail-dup-placement-aggressive-threshold",
+    cl::desc("Instruction cutoff for aggressive tail duplication during "
+             "layout. Used at -O3. Tail merging during layout is forced to "
+             "have a threshold that won't conflict."), cl::init(4),
+    cl::Hidden);
+
+// Heuristic for tail duplication.
+static cl::opt<unsigned> TailDupPlacementPenalty(
+    "tail-dup-placement-penalty",
+    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
+             "Copying can increase fallthrough, but it also increases icache "
+             "pressure. This parameter controls the penalty to account for that. "
+             "Percent as integer."),
+    cl::init(2),
+    cl::Hidden);
+
+// Heuristic for triangle chains.
+static cl::opt<unsigned> TriangleChainCount(
+    "triangle-chain-count",
+    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
+             "triangle tail duplication heuristic to kick in. 0 to disable."),
+    cl::init(2),
+    cl::Hidden);
+
+extern cl::opt<unsigned> StaticLikelyProb;
+extern cl::opt<unsigned> ProfileLikelyProb;
+
+// Internal option used to control BFI display only after MBP pass.
+// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
+// -view-block-layout-with-bfi=
+extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
+
+// Command line option to specify the name of the function for CFG dump
+// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
+extern cl::opt<std::string> ViewBlockFreqFuncName;
+
+namespace {
+
+class BlockChain;
+
+/// Type for our function-wide basic block -> block chain mapping.
+using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
+
+/// A chain of blocks which will be laid out contiguously.
+///
+/// This is the datastructure representing a chain of consecutive blocks that
+/// are profitable to layout together in order to maximize fallthrough
+/// probabilities and code locality. We also can use a block chain to represent
+/// a sequence of basic blocks which have some external (correctness)
+/// requirement for sequential layout.
+///
+/// Chains can be built around a single basic block and can be merged to grow
+/// them. They participate in a block-to-chain mapping, which is updated
+/// automatically as chains are merged together.
+class BlockChain {
+  /// The sequence of blocks belonging to this chain.
+  ///
+  /// This is the sequence of blocks for a particular chain. These will be laid
+  /// out in-order within the function.
+  SmallVector<MachineBasicBlock *, 4> Blocks;
+
+  /// A handle to the function-wide basic block to block chain mapping.
+  ///
+  /// This is retained in each block chain to simplify the computation of child
+  /// block chains for SCC-formation and iteration. We store the edges to child
+  /// basic blocks, and map them back to their associated chains using this
+  /// structure.
+  BlockToChainMapType &BlockToChain;
+
+public:
+  /// Construct a new BlockChain.
+  ///
+  /// This builds a new block chain representing a single basic block in the
+  /// function. It also registers itself as the chain that block participates
+  /// in with the BlockToChain mapping.
+  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
+      : Blocks(1, BB), BlockToChain(BlockToChain) {
+    assert(BB && "Cannot create a chain with a null basic block");
+    BlockToChain[BB] = this;
+  }
+
+  /// Iterator over blocks within the chain.
+  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
+  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
+
+  /// Beginning of blocks within the chain.
+  iterator begin() { return Blocks.begin(); }
+  const_iterator begin() const { return Blocks.begin(); }
+
+  /// End of blocks within the chain.
+  iterator end() { return Blocks.end(); }
+  const_iterator end() const { return Blocks.end(); }
+
+  bool remove(MachineBasicBlock* BB) {
+    for(iterator i = begin(); i != end(); ++i) {
+      if (*i == BB) {
+        Blocks.erase(i);
+        return true;
+      }
+    }
+    return false;
+  }
+
+  /// Merge a block chain into this one.
+  ///
+  /// This routine merges a block chain into this one. It takes care of forming
+  /// a contiguous sequence of basic blocks, updating the edge list, and
+  /// updating the block -> chain mapping. It does not free or tear down the
+  /// old chain, but the old chain's block list is no longer valid.
+  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
+    assert(BB && "Can't merge a null block.");
+    assert(!Blocks.empty() && "Can't merge into an empty chain.");
+
+    // Fast path in case we don't have a chain already.
+    if (!Chain) {
+      assert(!BlockToChain[BB] &&
+             "Passed chain is null, but BB has entry in BlockToChain.");
+      Blocks.push_back(BB);
+      BlockToChain[BB] = this;
+      return;
+    }
+
+    assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
+    assert(Chain->begin() != Chain->end());
+
+    // Update the incoming blocks to point to this chain, and add them to the
+    // chain structure.
+    for (MachineBasicBlock *ChainBB : *Chain) {
+      Blocks.push_back(ChainBB);
+      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
+      BlockToChain[ChainBB] = this;
+    }
+  }
+
+#ifndef NDEBUG
+  /// Dump the blocks in this chain.
+  LLVM_DUMP_METHOD void dump() {
+    for (MachineBasicBlock *MBB : *this)
+      MBB->dump();
+  }
+#endif // NDEBUG
+
+  /// Count of predecessors of any block within the chain which have not
+  /// yet been scheduled.  In general, we will delay scheduling this chain
+  /// until those predecessors are scheduled (or we find a sufficiently good
+  /// reason to override this heuristic.)  Note that when forming loop chains,
+  /// blocks outside the loop are ignored and treated as if they were already
+  /// scheduled.
+  ///
+  /// Note: This field is reinitialized multiple times - once for each loop,
+  /// and then once for the function as a whole.
+  unsigned UnscheduledPredecessors = 0;
+};
+
+class MachineBlockPlacement : public MachineFunctionPass {
+  /// A type for a block filter set.
+  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
+
+  /// Pair struct containing basic block and taildup profitability
+  struct BlockAndTailDupResult {
+    MachineBasicBlock *BB;
+    bool ShouldTailDup;
+  };
+
+  /// Triple struct containing edge weight and the edge.
+  struct WeightedEdge {
+    BlockFrequency Weight;
+    MachineBasicBlock *Src;
+    MachineBasicBlock *Dest;
+  };
+
+  /// work lists of blocks that are ready to be laid out
+  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
+  SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
+
+  /// Edges that have already been computed as optimal.
+  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
+
+  /// Machine Function
+  MachineFunction *F;
+
+  /// A handle to the branch probability pass.
+  const MachineBranchProbabilityInfo *MBPI;
+
+  /// A handle to the function-wide block frequency pass.
+  std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
+
+  /// A handle to the loop info.
+  MachineLoopInfo *MLI;
+
+  /// Preferred loop exit.
+  /// Member variable for convenience. It may be removed by duplication deep
+  /// in the call stack.
+  MachineBasicBlock *PreferredLoopExit;
+
+  /// A handle to the target's instruction info.
+  const TargetInstrInfo *TII;
+
+  /// A handle to the target's lowering info.
+  const TargetLoweringBase *TLI;
+
+  /// A handle to the post dominator tree.
+  MachinePostDominatorTree *MPDT;
+
+  ProfileSummaryInfo *PSI;
+
+  /// Duplicator used to duplicate tails during placement.
+  ///
+  /// Placement decisions can open up new tail duplication opportunities, but
+  /// since tail duplication affects placement decisions of later blocks, it
+  /// must be done inline.
+  TailDuplicator TailDup;
+
+  /// Allocator and owner of BlockChain structures.
+  ///
+  /// We build BlockChains lazily while processing the loop structure of
+  /// a function. To reduce malloc traffic, we allocate them using this
+  /// slab-like allocator, and destroy them after the pass completes. An
+  /// important guarantee is that this allocator produces stable pointers to
+  /// the chains.
+  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
+
+  /// Function wide BasicBlock to BlockChain mapping.
+  ///
+  /// This mapping allows efficiently moving from any given basic block to the
+  /// BlockChain it participates in, if any. We use it to, among other things,
+  /// allow implicitly defining edges between chains as the existing edges
+  /// between basic blocks.
+  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
+
+#ifndef NDEBUG
+  /// The set of basic blocks that have terminators that cannot be fully
+  /// analyzed.  These basic blocks cannot be re-ordered safely by
+  /// MachineBlockPlacement, and we must preserve physical layout of these
+  /// blocks and their successors through the pass.
+  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
+#endif
+
+  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
+  /// if the count goes to 0, add them to the appropriate work list.
+  void markChainSuccessors(
+      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
+      const BlockFilterSet *BlockFilter = nullptr);
+
+  /// Decrease the UnscheduledPredecessors count for a single block, and
+  /// if the count goes to 0, add them to the appropriate work list.
+  void markBlockSuccessors(
+      const BlockChain &Chain, const MachineBasicBlock *BB,
+      const MachineBasicBlock *LoopHeaderBB,
+      const BlockFilterSet *BlockFilter = nullptr);
+
+  BranchProbability
+  collectViableSuccessors(
+      const MachineBasicBlock *BB, const BlockChain &Chain,
+      const BlockFilterSet *BlockFilter,
+      SmallVector<MachineBasicBlock *, 4> &Successors);
+  bool shouldPredBlockBeOutlined(
+      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+      const BlockChain &Chain, const BlockFilterSet *BlockFilter,
+      BranchProbability SuccProb, BranchProbability HotProb);
+  bool repeatedlyTailDuplicateBlock(
+      MachineBasicBlock *BB, MachineBasicBlock *&LPred,
+      const MachineBasicBlock *LoopHeaderBB,
+      BlockChain &Chain, BlockFilterSet *BlockFilter,
+      MachineFunction::iterator &PrevUnplacedBlockIt);
+  bool maybeTailDuplicateBlock(
+      MachineBasicBlock *BB, MachineBasicBlock *LPred,
+      BlockChain &Chain, BlockFilterSet *BlockFilter,
+      MachineFunction::iterator &PrevUnplacedBlockIt,
+      bool &DuplicatedToLPred);
+  bool hasBetterLayoutPredecessor(
+      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+      const BlockChain &SuccChain, BranchProbability SuccProb,
+      BranchProbability RealSuccProb, const BlockChain &Chain,
+      const BlockFilterSet *BlockFilter);
+  BlockAndTailDupResult selectBestSuccessor(
+      const MachineBasicBlock *BB, const BlockChain &Chain,
+      const BlockFilterSet *BlockFilter);
+  MachineBasicBlock *selectBestCandidateBlock(
+      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
+  MachineBasicBlock *getFirstUnplacedBlock(
+      const BlockChain &PlacedChain,
+      MachineFunction::iterator &PrevUnplacedBlockIt,
+      const BlockFilterSet *BlockFilter);
+
+  /// Add a basic block to the work list if it is appropriate.
+  ///
+  /// If the optional parameter BlockFilter is provided, only MBB
+  /// present in the set will be added to the worklist. If nullptr
+  /// is provided, no filtering occurs.
+  void fillWorkLists(const MachineBasicBlock *MBB,
+                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
+                     const BlockFilterSet *BlockFilter);
+
+  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
+                  BlockFilterSet *BlockFilter = nullptr);
+  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
+                               const MachineBasicBlock *OldTop);
+  bool hasViableTopFallthrough(const MachineBasicBlock *Top,
+                               const BlockFilterSet &LoopBlockSet);
+  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
+                                    const BlockFilterSet &LoopBlockSet);
+  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
+                                  const MachineBasicBlock *OldTop,
+                                  const MachineBasicBlock *ExitBB,
+                                  const BlockFilterSet &LoopBlockSet);
+  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
+      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
+  MachineBasicBlock *findBestLoopTop(
+      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
+  MachineBasicBlock *findBestLoopExit(
+      const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
+      BlockFrequency &ExitFreq);
+  BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
+  void buildLoopChains(const MachineLoop &L);
+  void rotateLoop(
+      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
+      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
+  void rotateLoopWithProfile(
+      BlockChain &LoopChain, const MachineLoop &L,
+      const BlockFilterSet &LoopBlockSet);
+  void buildCFGChains();
+  void optimizeBranches();
+  void alignBlocks();
+  /// Returns true if a block should be tail-duplicated to increase fallthrough
+  /// opportunities.
+  bool shouldTailDuplicate(MachineBasicBlock *BB);
+  /// Check the edge frequencies to see if tail duplication will increase
+  /// fallthroughs.
+  bool isProfitableToTailDup(
+    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+    BranchProbability QProb,
+    const BlockChain &Chain, const BlockFilterSet *BlockFilter);
+
+  /// Check for a trellis layout.
+  bool isTrellis(const MachineBasicBlock *BB,
+                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+                 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
+
+  /// Get the best successor given a trellis layout.
+  BlockAndTailDupResult getBestTrellisSuccessor(
+      const MachineBasicBlock *BB,
+      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+      BranchProbability AdjustedSumProb, const BlockChain &Chain,
+      const BlockFilterSet *BlockFilter);
+
+  /// Get the best pair of non-conflicting edges.
+  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
+      const MachineBasicBlock *BB,
+      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
+
+  /// Returns true if a block can tail duplicate into all unplaced
+  /// predecessors. Filters based on loop.
+  bool canTailDuplicateUnplacedPreds(
+      const MachineBasicBlock *BB, MachineBasicBlock *Succ,
+      const BlockChain &Chain, const BlockFilterSet *BlockFilter);
+
+  /// Find chains of triangles to tail-duplicate where a global analysis works,
+  /// but a local analysis would not find them.
+  void precomputeTriangleChains();
+
+public:
+  static char ID; // Pass identification, replacement for typeid
+
+  MachineBlockPlacement() : MachineFunctionPass(ID) {
+    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
+  }
+
+  bool runOnMachineFunction(MachineFunction &F) override;
+
+  bool allowTailDupPlacement() const {
+    assert(F);
+    return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
+  }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<MachineBranchProbabilityInfo>();
+    AU.addRequired<MachineBlockFrequencyInfo>();
+    if (TailDupPlacement)
+      AU.addRequired<MachinePostDominatorTree>();
+    AU.addRequired<MachineLoopInfo>();
+    AU.addRequired<ProfileSummaryInfoWrapperPass>();
+    AU.addRequired<TargetPassConfig>();
+    MachineFunctionPass::getAnalysisUsage(AU);
+  }
+};
+
+} // end anonymous namespace
+
+char MachineBlockPlacement::ID = 0;
+
+char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
+
+INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
+                      "Branch Probability Basic Block Placement", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
+                    "Branch Probability Basic Block Placement", false, false)
+
+#ifndef NDEBUG
+/// Helper to print the name of a MBB.
+///
+/// Only used by debug logging.
+static std::string getBlockName(const MachineBasicBlock *BB) {
+  std::string Result;
+  raw_string_ostream OS(Result);
+  OS << printMBBReference(*BB);
+  OS << " ('" << BB->getName() << "')";
+  OS.flush();
+  return Result;
+}
+#endif
+
+/// Mark a chain's successors as having one fewer preds.
+///
+/// When a chain is being merged into the "placed" chain, this routine will
+/// quickly walk the successors of each block in the chain and mark them as
+/// having one fewer active predecessor. It also adds any successors of this
+/// chain which reach the zero-predecessor state to the appropriate worklist.
+void MachineBlockPlacement::markChainSuccessors(
+    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
+    const BlockFilterSet *BlockFilter) {
+  // Walk all the blocks in this chain, marking their successors as having
+  // a predecessor placed.
+  for (MachineBasicBlock *MBB : Chain) {
+    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
+  }
+}
+
+/// Mark a single block's successors as having one fewer preds.
+///
+/// Under normal circumstances, this is only called by markChainSuccessors,
+/// but if a block that was to be placed is completely tail-duplicated away,
+/// and was duplicated into the chain end, we need to redo markBlockSuccessors
+/// for just that block.
+void MachineBlockPlacement::markBlockSuccessors(
+    const BlockChain &Chain, const MachineBasicBlock *MBB,
+    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
+  // Add any successors for which this is the only un-placed in-loop
+  // predecessor to the worklist as a viable candidate for CFG-neutral
+  // placement. No subsequent placement of this block will violate the CFG
+  // shape, so we get to use heuristics to choose a favorable placement.
+  for (MachineBasicBlock *Succ : MBB->successors()) {
+    if (BlockFilter && !BlockFilter->count(Succ))
+      continue;
+    BlockChain &SuccChain = *BlockToChain[Succ];
+    // Disregard edges within a fixed chain, or edges to the loop header.
+    if (&Chain == &SuccChain || Succ == LoopHeaderBB)
+      continue;
+
+    // This is a cross-chain edge that is within the loop, so decrement the
+    // loop predecessor count of the destination chain.
+    if (SuccChain.UnscheduledPredecessors == 0 ||
+        --SuccChain.UnscheduledPredecessors > 0)
+      continue;
+
+    auto *NewBB = *SuccChain.begin();
+    if (NewBB->isEHPad())
+      EHPadWorkList.push_back(NewBB);
+    else
+      BlockWorkList.push_back(NewBB);
+  }
+}
+
+/// This helper function collects the set of successors of block
+/// \p BB that are allowed to be its layout successors, and return
+/// the total branch probability of edges from \p BB to those
+/// blocks.
+BranchProbability MachineBlockPlacement::collectViableSuccessors(
+    const MachineBasicBlock *BB, const BlockChain &Chain,
+    const BlockFilterSet *BlockFilter,
+    SmallVector<MachineBasicBlock *, 4> &Successors) {
+  // Adjust edge probabilities by excluding edges pointing to blocks that is
+  // either not in BlockFilter or is already in the current chain. Consider the
+  // following CFG:
+  //
+  //     --->A
+  //     |  / \
+  //     | B   C
+  //     |  \ / \
+  //     ----D   E
+  //
+  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
+  // A->C is chosen as a fall-through, D won't be selected as a successor of C
+  // due to CFG constraint (the probability of C->D is not greater than
+  // HotProb to break topo-order). If we exclude E that is not in BlockFilter
+  // when calculating the probability of C->D, D will be selected and we
+  // will get A C D B as the layout of this loop.
+  auto AdjustedSumProb = BranchProbability::getOne();
+  for (MachineBasicBlock *Succ : BB->successors()) {
+    bool SkipSucc = false;
+    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
+      SkipSucc = true;
+    } else {
+      BlockChain *SuccChain = BlockToChain[Succ];
+      if (SuccChain == &Chain) {
+        SkipSucc = true;
+      } else if (Succ != *SuccChain->begin()) {
+        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
+                          << " -> Mid chain!\n");
+        continue;
+      }
+    }
+    if (SkipSucc)
+      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
+    else
+      Successors.push_back(Succ);
+  }
+
+  return AdjustedSumProb;
+}
+
+/// The helper function returns the branch probability that is adjusted
+/// or normalized over the new total \p AdjustedSumProb.
+static BranchProbability
+getAdjustedProbability(BranchProbability OrigProb,
+                       BranchProbability AdjustedSumProb) {
+  BranchProbability SuccProb;
+  uint32_t SuccProbN = OrigProb.getNumerator();
+  uint32_t SuccProbD = AdjustedSumProb.getNumerator();
+  if (SuccProbN >= SuccProbD)
+    SuccProb = BranchProbability::getOne();
+  else
+    SuccProb = BranchProbability(SuccProbN, SuccProbD);
+
+  return SuccProb;
+}
+
+/// Check if \p BB has exactly the successors in \p Successors.
+static bool
+hasSameSuccessors(MachineBasicBlock &BB,
+                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
+  if (BB.succ_size() != Successors.size())
+    return false;
+  // We don't want to count self-loops
+  if (Successors.count(&BB))
+    return false;
+  for (MachineBasicBlock *Succ : BB.successors())
+    if (!Successors.count(Succ))
+      return false;
+  return true;
+}
+
+/// Check if a block should be tail duplicated to increase fallthrough
+/// opportunities.
+/// \p BB Block to check.
+bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
+  // Blocks with single successors don't create additional fallthrough
+  // opportunities. Don't duplicate them. TODO: When conditional exits are
+  // analyzable, allow them to be duplicated.
+  bool IsSimple = TailDup.isSimpleBB(BB);
+
+  if (BB->succ_size() == 1)
+    return false;
+  return TailDup.shouldTailDuplicate(IsSimple, *BB);
+}
+
+/// Compare 2 BlockFrequency's with a small penalty for \p A.
+/// In order to be conservative, we apply a X% penalty to account for
+/// increased icache pressure and static heuristics. For small frequencies
+/// we use only the numerators to improve accuracy. For simplicity, we assume the
+/// penalty is less than 100%
+/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
+static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
+                            uint64_t EntryFreq) {
+  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
+  BlockFrequency Gain = A - B;
+  return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
+}
+
+/// Check the edge frequencies to see if tail duplication will increase
+/// fallthroughs. It only makes sense to call this function when
+/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
+/// always locally profitable if we would have picked \p Succ without
+/// considering duplication.
+bool MachineBlockPlacement::isProfitableToTailDup(
+    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+    BranchProbability QProb,
+    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
+  // We need to do a probability calculation to make sure this is profitable.
+  // First: does succ have a successor that post-dominates? This affects the
+  // calculation. The 2 relevant cases are:
+  //    BB         BB
+  //    | \Qout    | \Qout
+  //   P|  C       |P C
+  //    =   C'     =   C'
+  //    |  /Qin    |  /Qin
+  //    | /        | /
+  //    Succ       Succ
+  //    / \        | \  V
+  //  U/   =V      |U \
+  //  /     \      =   D
+  //  D      E     |  /
+  //               | /
+  //               |/
+  //               PDom
+  //  '=' : Branch taken for that CFG edge
+  // In the second case, Placing Succ while duplicating it into C prevents the
+  // fallthrough of Succ into either D or PDom, because they now have C as an
+  // unplaced predecessor
+
+  // Start by figuring out which case we fall into
+  MachineBasicBlock *PDom = nullptr;
+  SmallVector<MachineBasicBlock *, 4> SuccSuccs;
+  // Only scan the relevant successors
+  auto AdjustedSuccSumProb =
+      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
+  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
+  auto BBFreq = MBFI->getBlockFreq(BB);
+  auto SuccFreq = MBFI->getBlockFreq(Succ);
+  BlockFrequency P = BBFreq * PProb;
+  BlockFrequency Qout = BBFreq * QProb;
+  uint64_t EntryFreq = MBFI->getEntryFreq();
+  // If there are no more successors, it is profitable to copy, as it strictly
+  // increases fallthrough.
+  if (SuccSuccs.size() == 0)
+    return greaterWithBias(P, Qout, EntryFreq);
+
+  auto BestSuccSucc = BranchProbability::getZero();
+  // Find the PDom or the best Succ if no PDom exists.
+  for (MachineBasicBlock *SuccSucc : SuccSuccs) {
+    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
+    if (Prob > BestSuccSucc)
+      BestSuccSucc = Prob;
+    if (PDom == nullptr)
+      if (MPDT->dominates(SuccSucc, Succ)) {
+        PDom = SuccSucc;
+        break;
+      }
+  }
+  // For the comparisons, we need to know Succ's best incoming edge that isn't
+  // from BB.
+  auto SuccBestPred = BlockFrequency(0);
+  for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
+    if (SuccPred == Succ || SuccPred == BB
+        || BlockToChain[SuccPred] == &Chain
+        || (BlockFilter && !BlockFilter->count(SuccPred)))
+      continue;
+    auto Freq = MBFI->getBlockFreq(SuccPred)
+        * MBPI->getEdgeProbability(SuccPred, Succ);
+    if (Freq > SuccBestPred)
+      SuccBestPred = Freq;
+  }
+  // Qin is Succ's best unplaced incoming edge that isn't BB
+  BlockFrequency Qin = SuccBestPred;
+  // If it doesn't have a post-dominating successor, here is the calculation:
+  //    BB        BB
+  //    | \Qout   |  \
+  //   P|  C      |   =
+  //    =   C'    |    C
+  //    |  /Qin   |     |
+  //    | /       |     C' (+Succ)
+  //    Succ      Succ /|
+  //    / \       |  \/ |
+  //  U/   =V     |  == |
+  //  /     \     | /  \|
+  //  D      E    D     E
+  //  '=' : Branch taken for that CFG edge
+  //  Cost in the first case is: P + V
+  //  For this calculation, we always assume P > Qout. If Qout > P
+  //  The result of this function will be ignored at the caller.
+  //  Let F = SuccFreq - Qin
+  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
+
+  if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
+    BranchProbability UProb = BestSuccSucc;
+    BranchProbability VProb = AdjustedSuccSumProb - UProb;
+    BlockFrequency F = SuccFreq - Qin;
+    BlockFrequency V = SuccFreq * VProb;
+    BlockFrequency QinU = std::min(Qin, F) * UProb;
+    BlockFrequency BaseCost = P + V;
+    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
+    return greaterWithBias(BaseCost, DupCost, EntryFreq);
+  }
+  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
+  BranchProbability VProb = AdjustedSuccSumProb - UProb;
+  BlockFrequency U = SuccFreq * UProb;
+  BlockFrequency V = SuccFreq * VProb;
+  BlockFrequency F = SuccFreq - Qin;
+  // If there is a post-dominating successor, here is the calculation:
+  // BB         BB                 BB          BB
+  // | \Qout    |   \               | \Qout     |  \
+  // |P C       |    =              |P C        |   =
+  // =   C'     |P    C             =   C'      |P   C
+  // |  /Qin    |      |            |  /Qin     |     |
+  // | /        |      C' (+Succ)   | /         |     C' (+Succ)
+  // Succ       Succ  /|            Succ        Succ /|
+  // | \  V     |   \/ |            | \  V      |  \/ |
+  // |U \       |U  /\ =?           |U =        |U /\ |
+  // =   D      = =  =?|            |   D       | =  =|
+  // |  /       |/     D            |  /        |/    D
+  // | /        |     /             | =         |    /
+  // |/         |    /              |/          |   =
+  // Dom         Dom                Dom         Dom
+  //  '=' : Branch taken for that CFG edge
+  // The cost for taken branches in the first case is P + U
+  // Let F = SuccFreq - Qin
+  // The cost in the second case (assuming independence), given the layout:
+  // BB, Succ, (C+Succ), D, Dom or the layout:
+  // BB, Succ, D, Dom, (C+Succ)
+  // is Qout + max(F, Qin) * U + min(F, Qin)
+  // compare P + U vs Qout + P * U + Qin.
+  //
+  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
+  //
+  // For the 3rd case, the cost is P + 2 * V
+  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
+  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
+  if (UProb > AdjustedSuccSumProb / 2 &&
+      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
+                                  Chain, BlockFilter))
+    // Cases 3 & 4
+    return greaterWithBias(
+        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
+        EntryFreq);
+  // Cases 1 & 2
+  return greaterWithBias((P + U),
+                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
+                          std::max(Qin, F) * UProb),
+                         EntryFreq);
+}
+
+/// Check for a trellis layout. \p BB is the upper part of a trellis if its
+/// successors form the lower part of a trellis. A successor set S forms the
+/// lower part of a trellis if all of the predecessors of S are either in S or
+/// have all of S as successors. We ignore trellises where BB doesn't have 2
+/// successors because for fewer than 2, it's trivial, and for 3 or greater they
+/// are very uncommon and complex to compute optimally. Allowing edges within S
+/// is not strictly a trellis, but the same algorithm works, so we allow it.
+bool MachineBlockPlacement::isTrellis(
+    const MachineBasicBlock *BB,
+    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
+  // Technically BB could form a trellis with branching factor higher than 2.
+  // But that's extremely uncommon.
+  if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
+    return false;
+
+  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
+                                                       BB->succ_end());
+  // To avoid reviewing the same predecessors twice.
+  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
+
+  for (MachineBasicBlock *Succ : ViableSuccs) {
+    int PredCount = 0;
+    for (auto SuccPred : Succ->predecessors()) {
+      // Allow triangle successors, but don't count them.
+      if (Successors.count(SuccPred)) {
+        // Make sure that it is actually a triangle.
+        for (MachineBasicBlock *CheckSucc : SuccPred->successors())
+          if (!Successors.count(CheckSucc))
+            return false;
+        continue;
+      }
+      const BlockChain *PredChain = BlockToChain[SuccPred];
+      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
+          PredChain == &Chain || PredChain == BlockToChain[Succ])
+        continue;
+      ++PredCount;
+      // Perform the successor check only once.
+      if (!SeenPreds.insert(SuccPred).second)
+        continue;
+      if (!hasSameSuccessors(*SuccPred, Successors))
+        return false;
+    }
+    // If one of the successors has only BB as a predecessor, it is not a
+    // trellis.
+    if (PredCount < 1)
+      return false;
+  }
+  return true;
+}
+
+/// Pick the highest total weight pair of edges that can both be laid out.
+/// The edges in \p Edges[0] are assumed to have a different destination than
+/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
+/// the individual highest weight edges to the 2 different destinations, or in
+/// case of a conflict, one of them should be replaced with a 2nd best edge.
+std::pair<MachineBlockPlacement::WeightedEdge,
+          MachineBlockPlacement::WeightedEdge>
+MachineBlockPlacement::getBestNonConflictingEdges(
+    const MachineBasicBlock *BB,
+    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
+        Edges) {
+  // Sort the edges, and then for each successor, find the best incoming
+  // predecessor. If the best incoming predecessors aren't the same,
+  // then that is clearly the best layout. If there is a conflict, one of the
+  // successors will have to fallthrough from the second best predecessor. We
+  // compare which combination is better overall.
+
+  // Sort for highest frequency.
+  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
+
+  llvm::stable_sort(Edges[0], Cmp);
+  llvm::stable_sort(Edges[1], Cmp);
+  auto BestA = Edges[0].begin();
+  auto BestB = Edges[1].begin();
+  // Arrange for the correct answer to be in BestA and BestB
+  // If the 2 best edges don't conflict, the answer is already there.
+  if (BestA->Src == BestB->Src) {
+    // Compare the total fallthrough of (Best + Second Best) for both pairs
+    auto SecondBestA = std::next(BestA);
+    auto SecondBestB = std::next(BestB);
+    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
+    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
+    if (BestAScore < BestBScore)
+      BestA = SecondBestA;
+    else
+      BestB = SecondBestB;
+  }
+  // Arrange for the BB edge to be in BestA if it exists.
+  if (BestB->Src == BB)
+    std::swap(BestA, BestB);
+  return std::make_pair(*BestA, *BestB);
+}
+
+/// Get the best successor from \p BB based on \p BB being part of a trellis.
+/// We only handle trellises with 2 successors, so the algorithm is
+/// straightforward: Find the best pair of edges that don't conflict. We find
+/// the best incoming edge for each successor in the trellis. If those conflict,
+/// we consider which of them should be replaced with the second best.
+/// Upon return the two best edges will be in \p BestEdges. If one of the edges
+/// comes from \p BB, it will be in \p BestEdges[0]
+MachineBlockPlacement::BlockAndTailDupResult
+MachineBlockPlacement::getBestTrellisSuccessor(
+    const MachineBasicBlock *BB,
+    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+    BranchProbability AdjustedSumProb, const BlockChain &Chain,
+    const BlockFilterSet *BlockFilter) {
+
+  BlockAndTailDupResult Result = {nullptr, false};
+  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
+                                                       BB->succ_end());
+
+  // We assume size 2 because it's common. For general n, we would have to do
+  // the Hungarian algorithm, but it's not worth the complexity because more
+  // than 2 successors is fairly uncommon, and a trellis even more so.
+  if (Successors.size() != 2 || ViableSuccs.size() != 2)
+    return Result;
+
+  // Collect the edge frequencies of all edges that form the trellis.
+  SmallVector<WeightedEdge, 8> Edges[2];
+  int SuccIndex = 0;
+  for (auto Succ : ViableSuccs) {
+    for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
+      // Skip any placed predecessors that are not BB
+      if (SuccPred != BB)
+        if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
+            BlockToChain[SuccPred] == &Chain ||
+            BlockToChain[SuccPred] == BlockToChain[Succ])
+          continue;
+      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
+                                MBPI->getEdgeProbability(SuccPred, Succ);
+      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
+    }
+    ++SuccIndex;
+  }
+
+  // Pick the best combination of 2 edges from all the edges in the trellis.
+  WeightedEdge BestA, BestB;
+  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
+
+  if (BestA.Src != BB) {
+    // If we have a trellis, and BB doesn't have the best fallthrough edges,
+    // we shouldn't choose any successor. We've already looked and there's a
+    // better fallthrough edge for all the successors.
+    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
+    return Result;
+  }
+
+  // Did we pick the triangle edge? If tail-duplication is profitable, do
+  // that instead. Otherwise merge the triangle edge now while we know it is
+  // optimal.
+  if (BestA.Dest == BestB.Src) {
+    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
+    // would be better.
+    MachineBasicBlock *Succ1 = BestA.Dest;
+    MachineBasicBlock *Succ2 = BestB.Dest;
+    // Check to see if tail-duplication would be profitable.
+    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
+        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
+        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
+                              Chain, BlockFilter)) {
+      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
+                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
+                 dbgs() << "    Selected: " << getBlockName(Succ2)
+                        << ", probability: " << Succ2Prob
+                        << " (Tail Duplicate)\n");
+      Result.BB = Succ2;
+      Result.ShouldTailDup = true;
+      return Result;
+    }
+  }
+  // We have already computed the optimal edge for the other side of the
+  // trellis.
+  ComputedEdges[BestB.Src] = { BestB.Dest, false };
+
+  auto TrellisSucc = BestA.Dest;
+  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
+                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
+             dbgs() << "    Selected: " << getBlockName(TrellisSucc)
+                    << ", probability: " << SuccProb << " (Trellis)\n");
+  Result.BB = TrellisSucc;
+  return Result;
+}
+
+/// When the option allowTailDupPlacement() is on, this method checks if the
+/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
+/// into all of its unplaced, unfiltered predecessors, that are not BB.
+bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
+    const MachineBasicBlock *BB, MachineBasicBlock *Succ,
+    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
+  if (!shouldTailDuplicate(Succ))
+    return false;
+
+  // The result of canTailDuplicate.
+  bool Duplicate = true;
+  // Number of possible duplication.
+  unsigned int NumDup = 0;
+
+  // For CFG checking.
+  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
+                                                       BB->succ_end());
+  for (MachineBasicBlock *Pred : Succ->predecessors()) {
+    // Make sure all unplaced and unfiltered predecessors can be
+    // tail-duplicated into.
+    // Skip any blocks that are already placed or not in this loop.
+    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
+        || BlockToChain[Pred] == &Chain)
+      continue;
+    if (!TailDup.canTailDuplicate(Succ, Pred)) {
+      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
+        // This will result in a trellis after tail duplication, so we don't
+        // need to copy Succ into this predecessor. In the presence
+        // of a trellis tail duplication can continue to be profitable.
+        // For example:
+        // A            A
+        // |\           |\
+        // | \          | \
+        // |  C         |  C+BB
+        // | /          |  |
+        // |/           |  |
+        // BB    =>     BB |
+        // |\           |\/|
+        // | \          |/\|
+        // |  D         |  D
+        // | /          | /
+        // |/           |/
+        // Succ         Succ
+        //
+        // After BB was duplicated into C, the layout looks like the one on the
+        // right. BB and C now have the same successors. When considering
+        // whether Succ can be duplicated into all its unplaced predecessors, we
+        // ignore C.
+        // We can do this because C already has a profitable fallthrough, namely
+        // D. TODO(iteratee): ignore sufficiently cold predecessors for
+        // duplication and for this test.
+        //
+        // This allows trellises to be laid out in 2 separate chains
+        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
+        // because it allows the creation of 2 fallthrough paths with links
+        // between them, and we correctly identify the best layout for these
+        // CFGs. We want to extend trellises that the user created in addition
+        // to trellises created by tail-duplication, so we just look for the
+        // CFG.
+        continue;
+      Duplicate = false;
+      continue;
+    }
+    NumDup++;
+  }
+
+  // No possible duplication in current filter set.
+  if (NumDup == 0)
+    return false;
+
+  // This is mainly for function exit BB.
+  // The integrated tail duplication is really designed for increasing
+  // fallthrough from predecessors from Succ to its successors. We may need
+  // other machanism to handle different cases.
+  if (Succ->succ_size() == 0)
+    return true;
+
+  // Plus the already placed predecessor.
+  NumDup++;
+
+  // If the duplication candidate has more unplaced predecessors than
+  // successors, the extra duplication can't bring more fallthrough.
+  //
+  //     Pred1 Pred2 Pred3
+  //         \   |   /
+  //          \  |  /
+  //           \ | /
+  //            Dup
+  //            / \
+  //           /   \
+  //       Succ1  Succ2
+  //
+  // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
+  // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
+  // but the duplication into Pred3 can't increase fallthrough.
+  //
+  // A small number of extra duplication may not hurt too much. We need a better
+  // heuristic to handle it.
+  //
+  // FIXME: we should selectively tail duplicate a BB into part of its
+  // predecessors.
+  if ((NumDup > Succ->succ_size()) || !Duplicate)
+    return false;
+
+  return true;
+}
+
+/// Find chains of triangles where we believe it would be profitable to
+/// tail-duplicate them all, but a local analysis would not find them.
+/// There are 3 ways this can be profitable:
+/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
+///    longer chains)
+/// 2) The chains are statically correlated. Branch probabilities have a very
+///    U-shaped distribution.
+///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
+///    If the branches in a chain are likely to be from the same side of the
+///    distribution as their predecessor, but are independent at runtime, this
+///    transformation is profitable. (Because the cost of being wrong is a small
+///    fixed cost, unlike the standard triangle layout where the cost of being
+///    wrong scales with the # of triangles.)
+/// 3) The chains are dynamically correlated. If the probability that a previous
+///    branch was taken positively influences whether the next branch will be
+///    taken
+/// We believe that 2 and 3 are common enough to justify the small margin in 1.
+void MachineBlockPlacement::precomputeTriangleChains() {
+  struct TriangleChain {
+    std::vector<MachineBasicBlock *> Edges;
+
+    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
+        : Edges({src, dst}) {}
+
+    void append(MachineBasicBlock *dst) {
+      assert(getKey()->isSuccessor(dst) &&
+             "Attempting to append a block that is not a successor.");
+      Edges.push_back(dst);
+    }
+
+    unsigned count() const { return Edges.size() - 1; }
+
+    MachineBasicBlock *getKey() const {
+      return Edges.back();
+    }
+  };
+
+  if (TriangleChainCount == 0)
+    return;
+
+  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
+  // Map from last block to the chain that contains it. This allows us to extend
+  // chains as we find new triangles.
+  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
+  for (MachineBasicBlock &BB : *F) {
+    // If BB doesn't have 2 successors, it doesn't start a triangle.
+    if (BB.succ_size() != 2)
+      continue;
+    MachineBasicBlock *PDom = nullptr;
+    for (MachineBasicBlock *Succ : BB.successors()) {
+      if (!MPDT->dominates(Succ, &BB))
+        continue;
+      PDom = Succ;
+      break;
+    }
+    // If BB doesn't have a post-dominating successor, it doesn't form a
+    // triangle.
+    if (PDom == nullptr)
+      continue;
+    // If PDom has a hint that it is low probability, skip this triangle.
+    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
+      continue;
+    // If PDom isn't eligible for duplication, this isn't the kind of triangle
+    // we're looking for.
+    if (!shouldTailDuplicate(PDom))
+      continue;
+    bool CanTailDuplicate = true;
+    // If PDom can't tail-duplicate into it's non-BB predecessors, then this
+    // isn't the kind of triangle we're looking for.
+    for (MachineBasicBlock* Pred : PDom->predecessors()) {
+      if (Pred == &BB)
+        continue;
+      if (!TailDup.canTailDuplicate(PDom, Pred)) {
+        CanTailDuplicate = false;
+        break;
+      }
+    }
+    // If we can't tail-duplicate PDom to its predecessors, then skip this
+    // triangle.
+    if (!CanTailDuplicate)
+      continue;
+
+    // Now we have an interesting triangle. Insert it if it's not part of an
+    // existing chain.
+    // Note: This cannot be replaced with a call insert() or emplace() because
+    // the find key is BB, but the insert/emplace key is PDom.
+    auto Found = TriangleChainMap.find(&BB);
+    // If it is, remove the chain from the map, grow it, and put it back in the
+    // map with the end as the new key.
+    if (Found != TriangleChainMap.end()) {
+      TriangleChain Chain = std::move(Found->second);
+      TriangleChainMap.erase(Found);
+      Chain.append(PDom);
+      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
+    } else {
+      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
+      assert(InsertResult.second && "Block seen twice.");
+      (void)InsertResult;
+    }
+  }
+
+  // Iterating over a DenseMap is safe here, because the only thing in the body
+  // of the loop is inserting into another DenseMap (ComputedEdges).
+  // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
+  for (auto &ChainPair : TriangleChainMap) {
+    TriangleChain &Chain = ChainPair.second;
+    // Benchmarking has shown that due to branch correlation duplicating 2 or
+    // more triangles is profitable, despite the calculations assuming
+    // independence.
+    if (Chain.count() < TriangleChainCount)
+      continue;
+    MachineBasicBlock *dst = Chain.Edges.back();
+    Chain.Edges.pop_back();
+    for (MachineBasicBlock *src : reverse(Chain.Edges)) {
+      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
+                        << getBlockName(dst)
+                        << " as pre-computed based on triangles.\n");
+
+      auto InsertResult = ComputedEdges.insert({src, {dst, true}});
+      assert(InsertResult.second && "Block seen twice.");
+      (void)InsertResult;
+
+      dst = src;
+    }
+  }
+}
+
+// When profile is not present, return the StaticLikelyProb.
+// When profile is available, we need to handle the triangle-shape CFG.
+static BranchProbability getLayoutSuccessorProbThreshold(
+      const MachineBasicBlock *BB) {
+  if (!BB->getParent()->getFunction().hasProfileData())
+    return BranchProbability(StaticLikelyProb, 100);
+  if (BB->succ_size() == 2) {
+    const MachineBasicBlock *Succ1 = *BB->succ_begin();
+    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
+    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
+      /* See case 1 below for the cost analysis. For BB->Succ to
+       * be taken with smaller cost, the following needs to hold:
+       *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
+       *   So the threshold T in the calculation below
+       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
+       *   So T / (1 - T) = 2, Yielding T = 2/3
+       * Also adding user specified branch bias, we have
+       *   T = (2/3)*(ProfileLikelyProb/50)
+       *     = (2*ProfileLikelyProb)/150)
+       */
+      return BranchProbability(2 * ProfileLikelyProb, 150);
+    }
+  }
+  return BranchProbability(ProfileLikelyProb, 100);
+}
+
+/// Checks to see if the layout candidate block \p Succ has a better layout
+/// predecessor than \c BB. If yes, returns true.
+/// \p SuccProb: The probability adjusted for only remaining blocks.
+///   Only used for logging
+/// \p RealSuccProb: The un-adjusted probability.
+/// \p Chain: The chain that BB belongs to and Succ is being considered for.
+/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
+///    considered
+bool MachineBlockPlacement::hasBetterLayoutPredecessor(
+    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+    const BlockChain &SuccChain, BranchProbability SuccProb,
+    BranchProbability RealSuccProb, const BlockChain &Chain,
+    const BlockFilterSet *BlockFilter) {
+
+  // There isn't a better layout when there are no unscheduled predecessors.
+  if (SuccChain.UnscheduledPredecessors == 0)
+    return false;
+
+  // There are two basic scenarios here:
+  // -------------------------------------
+  // Case 1: triangular shape CFG (if-then):
+  //     BB
+  //     | \
+  //     |  \
+  //     |   Pred
+  //     |   /
+  //     Succ
+  // In this case, we are evaluating whether to select edge -> Succ, e.g.
+  // set Succ as the layout successor of BB. Picking Succ as BB's
+  // successor breaks the CFG constraints (FIXME: define these constraints).
+  // With this layout, Pred BB
+  // is forced to be outlined, so the overall cost will be cost of the
+  // branch taken from BB to Pred, plus the cost of back taken branch
+  // from Pred to Succ, as well as the additional cost associated
+  // with the needed unconditional jump instruction from Pred To Succ.
+
+  // The cost of the topological order layout is the taken branch cost
+  // from BB to Succ, so to make BB->Succ a viable candidate, the following
+  // must hold:
+  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
+  //      < freq(BB->Succ) *  taken_branch_cost.
+  // Ignoring unconditional jump cost, we get
+  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
+  //    prob(BB->Succ) > 2 * prob(BB->Pred)
+  //
+  // When real profile data is available, we can precisely compute the
+  // probability threshold that is needed for edge BB->Succ to be considered.
+  // Without profile data, the heuristic requires the branch bias to be
+  // a lot larger to make sure the signal is very strong (e.g. 80% default).
+  // -----------------------------------------------------------------
+  // Case 2: diamond like CFG (if-then-else):
+  //     S
+  //    / \
+  //   |   \
+  //  BB    Pred
+  //   \    /
+  //    Succ
+  //    ..
+  //
+  // The current block is BB and edge BB->Succ is now being evaluated.
+  // Note that edge S->BB was previously already selected because
+  // prob(S->BB) > prob(S->Pred).
+  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
+  // choose Pred, we will have a topological ordering as shown on the left
+  // in the picture below. If we choose Succ, we have the solution as shown
+  // on the right:
+  //
+  //   topo-order:
+  //
+  //       S-----                             ---S
+  //       |    |                             |  |
+  //    ---BB   |                             |  BB
+  //    |       |                             |  |
+  //    |  Pred--                             |  Succ--
+  //    |  |                                  |       |
+  //    ---Succ                               ---Pred--
+  //
+  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
+  //      = freq(S->Pred) + freq(S->BB)
+  //
+  // If we have profile data (i.e, branch probabilities can be trusted), the
+  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
+  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
+  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
+  // means the cost of topological order is greater.
+  // When profile data is not available, however, we need to be more
+  // conservative. If the branch prediction is wrong, breaking the topo-order
+  // will actually yield a layout with large cost. For this reason, we need
+  // strong biased branch at block S with Prob(S->BB) in order to select
+  // BB->Succ. This is equivalent to looking the CFG backward with backward
+  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
+  // profile data).
+  // --------------------------------------------------------------------------
+  // Case 3: forked diamond
+  //       S
+  //      / \
+  //     /   \
+  //   BB    Pred
+  //   | \   / |
+  //   |  \ /  |
+  //   |   X   |
+  //   |  / \  |
+  //   | /   \ |
+  //   S1     S2
+  //
+  // The current block is BB and edge BB->S1 is now being evaluated.
+  // As above S->BB was already selected because
+  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
+  //
+  // topo-order:
+  //
+  //     S-------|                     ---S
+  //     |       |                     |  |
+  //  ---BB      |                     |  BB
+  //  |          |                     |  |
+  //  |  Pred----|                     |  S1----
+  //  |  |                             |       |
+  //  --(S1 or S2)                     ---Pred--
+  //                                        |
+  //                                       S2
+  //
+  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
+  //    + min(freq(Pred->S1), freq(Pred->S2))
+  // Non-topo-order cost:
+  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
+  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
+  // is 0. Then the non topo layout is better when
+  // freq(S->Pred) < freq(BB->S1).
+  // This is exactly what is checked below.
+  // Note there are other shapes that apply (Pred may not be a single block,
+  // but they all fit this general pattern.)
+  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
+
+  // Make sure that a hot successor doesn't have a globally more
+  // important predecessor.
+  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
+  bool BadCFGConflict = false;
+
+  for (MachineBasicBlock *Pred : Succ->predecessors()) {
+    BlockChain *PredChain = BlockToChain[Pred];
+    if (Pred == Succ || PredChain == &SuccChain ||
+        (BlockFilter && !BlockFilter->count(Pred)) ||
+        PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
+        // This check is redundant except for look ahead. This function is
+        // called for lookahead by isProfitableToTailDup when BB hasn't been
+        // placed yet.
+        (Pred == BB))
+      continue;
+    // Do backward checking.
+    // For all cases above, we need a backward checking to filter out edges that
+    // are not 'strongly' biased.
+    // BB  Pred
+    //  \ /
+    //  Succ
+    // We select edge BB->Succ if
+    //      freq(BB->Succ) > freq(Succ) * HotProb
+    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
+    //      HotProb
+    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
+    // Case 1 is covered too, because the first equation reduces to:
+    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
+    BlockFrequency PredEdgeFreq =
+        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
+    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
+      BadCFGConflict = true;
+      break;
+    }
+  }
+
+  if (BadCFGConflict) {
+    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
+                      << SuccProb << " (prob) (non-cold CFG conflict)\n");
+    return true;
+  }
+
+  return false;
+}
+
+/// Select the best successor for a block.
+///
+/// This looks across all successors of a particular block and attempts to
+/// select the "best" one to be the layout successor. It only considers direct
+/// successors which also pass the block filter. It will attempt to avoid
+/// breaking CFG structure, but cave and break such structures in the case of
+/// very hot successor edges.
+///
+/// \returns The best successor block found, or null if none are viable, along
+/// with a boolean indicating if tail duplication is necessary.
+MachineBlockPlacement::BlockAndTailDupResult
+MachineBlockPlacement::selectBestSuccessor(
+    const MachineBasicBlock *BB, const BlockChain &Chain,
+    const BlockFilterSet *BlockFilter) {
+  const BranchProbability HotProb(StaticLikelyProb, 100);
+
+  BlockAndTailDupResult BestSucc = { nullptr, false };
+  auto BestProb = BranchProbability::getZero();
+
+  SmallVector<MachineBasicBlock *, 4> Successors;
+  auto AdjustedSumProb =
+      collectViableSuccessors(BB, Chain, BlockFilter, Successors);
+
+  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
+                    << "\n");
+
+  // if we already precomputed the best successor for BB, return that if still
+  // applicable.
+  auto FoundEdge = ComputedEdges.find(BB);
+  if (FoundEdge != ComputedEdges.end()) {
+    MachineBasicBlock *Succ = FoundEdge->second.BB;
+    ComputedEdges.erase(FoundEdge);
+    BlockChain *SuccChain = BlockToChain[Succ];
+    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
+        SuccChain != &Chain && Succ == *SuccChain->begin())
+      return FoundEdge->second;
+  }
+
+  // if BB is part of a trellis, Use the trellis to determine the optimal
+  // fallthrough edges
+  if (isTrellis(BB, Successors, Chain, BlockFilter))
+    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
+                                   BlockFilter);
+
+  // For blocks with CFG violations, we may be able to lay them out anyway with
+  // tail-duplication. We keep this vector so we can perform the probability
+  // calculations the minimum number of times.
+  SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
+      DupCandidates;
+  for (MachineBasicBlock *Succ : Successors) {
+    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
+    BranchProbability SuccProb =
+        getAdjustedProbability(RealSuccProb, AdjustedSumProb);
+
+    BlockChain &SuccChain = *BlockToChain[Succ];
+    // Skip the edge \c BB->Succ if block \c Succ has a better layout
+    // predecessor that yields lower global cost.
+    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
+                                   Chain, BlockFilter)) {
+      // If tail duplication would make Succ profitable, place it.
+      if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
+        DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
+      continue;
+    }
+
+    LLVM_DEBUG(
+        dbgs() << "    Candidate: " << getBlockName(Succ)
+               << ", probability: " << SuccProb
+               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
+               << "\n");
+
+    if (BestSucc.BB && BestProb >= SuccProb) {
+      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
+      continue;
+    }
+
+    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
+    BestSucc.BB = Succ;
+    BestProb = SuccProb;
+  }
+  // Handle the tail duplication candidates in order of decreasing probability.
+  // Stop at the first one that is profitable. Also stop if they are less
+  // profitable than BestSucc. Position is important because we preserve it and
+  // prefer first best match. Here we aren't comparing in order, so we capture
+  // the position instead.
+  llvm::stable_sort(DupCandidates,
+                    [](std::tuple<BranchProbability, MachineBasicBlock *> L,
+                       std::tuple<BranchProbability, MachineBasicBlock *> R) {
+                      return std::get<0>(L) > std::get<0>(R);
+                    });
+  for (auto &Tup : DupCandidates) {
+    BranchProbability DupProb;
+    MachineBasicBlock *Succ;
+    std::tie(DupProb, Succ) = Tup;
+    if (DupProb < BestProb)
+      break;
+    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
+        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
+      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
+                        << ", probability: " << DupProb
+                        << " (Tail Duplicate)\n");
+      BestSucc.BB = Succ;
+      BestSucc.ShouldTailDup = true;
+      break;
+    }
+  }
+
+  if (BestSucc.BB)
+    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
+
+  return BestSucc;
+}
+
+/// Select the best block from a worklist.
+///
+/// This looks through the provided worklist as a list of candidate basic
+/// blocks and select the most profitable one to place. The definition of
+/// profitable only really makes sense in the context of a loop. This returns
+/// the most frequently visited block in the worklist, which in the case of
+/// a loop, is the one most desirable to be physically close to the rest of the
+/// loop body in order to improve i-cache behavior.
+///
+/// \returns The best block found, or null if none are viable.
+MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
+    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
+  // Once we need to walk the worklist looking for a candidate, cleanup the
+  // worklist of already placed entries.
+  // FIXME: If this shows up on profiles, it could be folded (at the cost of
+  // some code complexity) into the loop below.
+  WorkList.erase(llvm::remove_if(WorkList,
+                                 [&](MachineBasicBlock *BB) {
+                                   return BlockToChain.lookup(BB) == &Chain;
+                                 }),
+                 WorkList.end());
+
+  if (WorkList.empty())
+    return nullptr;
+
+  bool IsEHPad = WorkList[0]->isEHPad();
+
+  MachineBasicBlock *BestBlock = nullptr;
+  BlockFrequency BestFreq;
+  for (MachineBasicBlock *MBB : WorkList) {
+    assert(MBB->isEHPad() == IsEHPad &&
+           "EHPad mismatch between block and work list.");
+
+    BlockChain &SuccChain = *BlockToChain[MBB];
+    if (&SuccChain == &Chain)
+      continue;
+
+    assert(SuccChain.UnscheduledPredecessors == 0 &&
+           "Found CFG-violating block");
+
+    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
+    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
+               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
+
+    // For ehpad, we layout the least probable first as to avoid jumping back
+    // from least probable landingpads to more probable ones.
+    //
+    // FIXME: Using probability is probably (!) not the best way to achieve
+    // this. We should probably have a more principled approach to layout
+    // cleanup code.
+    //
+    // The goal is to get:
+    //
+    //                 +--------------------------+
+    //                 |                          V
+    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
+    //
+    // Rather than:
+    //
+    //                 +-------------------------------------+
+    //                 V                                     |
+    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
+    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
+      continue;
+
+    BestBlock = MBB;
+    BestFreq = CandidateFreq;
+  }
+
+  return BestBlock;
+}
+
+/// Retrieve the first unplaced basic block.
+///
+/// This routine is called when we are unable to use the CFG to walk through
+/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
+/// We walk through the function's blocks in order, starting from the
+/// LastUnplacedBlockIt. We update this iterator on each call to avoid
+/// re-scanning the entire sequence on repeated calls to this routine.
+MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
+    const BlockChain &PlacedChain,
+    MachineFunction::iterator &PrevUnplacedBlockIt,
+    const BlockFilterSet *BlockFilter) {
+  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
+       ++I) {
+    if (BlockFilter && !BlockFilter->count(&*I))
+      continue;
+    if (BlockToChain[&*I] != &PlacedChain) {
+      PrevUnplacedBlockIt = I;
+      // Now select the head of the chain to which the unplaced block belongs
+      // as the block to place. This will force the entire chain to be placed,
+      // and satisfies the requirements of merging chains.
+      return *BlockToChain[&*I]->begin();
+    }
+  }
+  return nullptr;
+}
+
+void MachineBlockPlacement::fillWorkLists(
+    const MachineBasicBlock *MBB,
+    SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
+    const BlockFilterSet *BlockFilter = nullptr) {
+  BlockChain &Chain = *BlockToChain[MBB];
+  if (!UpdatedPreds.insert(&Chain).second)
+    return;
+
+  assert(
+      Chain.UnscheduledPredecessors == 0 &&
+      "Attempting to place block with unscheduled predecessors in worklist.");
+  for (MachineBasicBlock *ChainBB : Chain) {
+    assert(BlockToChain[ChainBB] == &Chain &&
+           "Block in chain doesn't match BlockToChain map.");
+    for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
+      if (BlockFilter && !BlockFilter->count(Pred))
+        continue;
+      if (BlockToChain[Pred] == &Chain)
+        continue;
+      ++Chain.UnscheduledPredecessors;
+    }
+  }
+
+  if (Chain.UnscheduledPredecessors != 0)
+    return;
+
+  MachineBasicBlock *BB = *Chain.begin();
+  if (BB->isEHPad())
+    EHPadWorkList.push_back(BB);
+  else
+    BlockWorkList.push_back(BB);
+}
+
+void MachineBlockPlacement::buildChain(
+    const MachineBasicBlock *HeadBB, BlockChain &Chain,
+    BlockFilterSet *BlockFilter) {
+  assert(HeadBB && "BB must not be null.\n");
+  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
+  MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
+
+  const MachineBasicBlock *LoopHeaderBB = HeadBB;
+  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
+  MachineBasicBlock *BB = *std::prev(Chain.end());
+  while (true) {
+    assert(BB && "null block found at end of chain in loop.");
+    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
+    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
+
+
+    // Look for the best viable successor if there is one to place immediately
+    // after this block.
+    auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
+    MachineBasicBlock* BestSucc = Result.BB;
+    bool ShouldTailDup = Result.ShouldTailDup;
+    if (allowTailDupPlacement())
+      ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
+                                                                  Chain,
+                                                                  BlockFilter));
+
+    // If an immediate successor isn't available, look for the best viable
+    // block among those we've identified as not violating the loop's CFG at
+    // this point. This won't be a fallthrough, but it will increase locality.
+    if (!BestSucc)
+      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
+    if (!BestSucc)
+      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
+
+    if (!BestSucc) {
+      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
+      if (!BestSucc)
+        break;
+
+      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
+                           "layout successor until the CFG reduces\n");
+    }
+
+    // Placement may have changed tail duplication opportunities.
+    // Check for that now.
+    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
+      // If the chosen successor was duplicated into all its predecessors,
+      // don't bother laying it out, just go round the loop again with BB as
+      // the chain end.
+      if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
+                                       BlockFilter, PrevUnplacedBlockIt))
+        continue;
+    }
+
+    // Place this block, updating the datastructures to reflect its placement.
+    BlockChain &SuccChain = *BlockToChain[BestSucc];
+    // Zero out UnscheduledPredecessors for the successor we're about to merge in case
+    // we selected a successor that didn't fit naturally into the CFG.
+    SuccChain.UnscheduledPredecessors = 0;
+    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
+                      << getBlockName(BestSucc) << "\n");
+    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
+    Chain.merge(BestSucc, &SuccChain);
+    BB = *std::prev(Chain.end());
+  }
+
+  LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
+                    << getBlockName(*Chain.begin()) << "\n");
+}
+
+// If bottom of block BB has only one successor OldTop, in most cases it is
+// profitable to move it before OldTop, except the following case:
+//
+//     -->OldTop<-
+//     |    .    |
+//     |    .    |
+//     |    .    |
+//     ---Pred   |
+//          |    |
+//         BB-----
+//
+// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
+// layout the other successor below it, so it can't reduce taken branch.
+// In this case we keep its original layout.
+bool
+MachineBlockPlacement::canMoveBottomBlockToTop(
+    const MachineBasicBlock *BottomBlock,
+    const MachineBasicBlock *OldTop) {
+  if (BottomBlock->pred_size() != 1)
+    return true;
+  MachineBasicBlock *Pred = *BottomBlock->pred_begin();
+  if (Pred->succ_size() != 2)
+    return true;
+
+  MachineBasicBlock *OtherBB = *Pred->succ_begin();
+  if (OtherBB == BottomBlock)
+    OtherBB = *Pred->succ_rbegin();
+  if (OtherBB == OldTop)
+    return false;
+
+  return true;
+}
+
+// Find out the possible fall through frequence to the top of a loop.
+BlockFrequency
+MachineBlockPlacement::TopFallThroughFreq(
+    const MachineBasicBlock *Top,
+    const BlockFilterSet &LoopBlockSet) {
+  BlockFrequency MaxFreq = 0;
+  for (MachineBasicBlock *Pred : Top->predecessors()) {
+    BlockChain *PredChain = BlockToChain[Pred];
+    if (!LoopBlockSet.count(Pred) &&
+        (!PredChain || Pred == *std::prev(PredChain->end()))) {
+      // Found a Pred block can be placed before Top.
+      // Check if Top is the best successor of Pred.
+      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
+      bool TopOK = true;
+      for (MachineBasicBlock *Succ : Pred->successors()) {
+        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
+        BlockChain *SuccChain = BlockToChain[Succ];
+        // Check if Succ can be placed after Pred.
+        // Succ should not be in any chain, or it is the head of some chain.
+        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
+            (!SuccChain || Succ == *SuccChain->begin())) {
+          TopOK = false;
+          break;
+        }
+      }
+      if (TopOK) {
+        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
+                                  MBPI->getEdgeProbability(Pred, Top);
+        if (EdgeFreq > MaxFreq)
+          MaxFreq = EdgeFreq;
+      }
+    }
+  }
+  return MaxFreq;
+}
+
+// Compute the fall through gains when move NewTop before OldTop.
+//
+// In following diagram, edges marked as "-" are reduced fallthrough, edges
+// marked as "+" are increased fallthrough, this function computes
+//
+//      SUM(increased fallthrough) - SUM(decreased fallthrough)
+//
+//              |
+//              | -
+//              V
+//        --->OldTop
+//        |     .
+//        |     .
+//       +|     .    +
+//        |   Pred --->
+//        |     |-
+//        |     V
+//        --- NewTop <---
+//              |-
+//              V
+//
+BlockFrequency
+MachineBlockPlacement::FallThroughGains(
+    const MachineBasicBlock *NewTop,
+    const MachineBasicBlock *OldTop,
+    const MachineBasicBlock *ExitBB,
+    const BlockFilterSet &LoopBlockSet) {
+  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
+  BlockFrequency FallThrough2Exit = 0;
+  if (ExitBB)
+    FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
+        MBPI->getEdgeProbability(NewTop, ExitBB);
+  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
+      MBPI->getEdgeProbability(NewTop, OldTop);
+
+  // Find the best Pred of NewTop.
+   MachineBasicBlock *BestPred = nullptr;
+   BlockFrequency FallThroughFromPred = 0;
+   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
+     if (!LoopBlockSet.count(Pred))
+       continue;
+     BlockChain *PredChain = BlockToChain[Pred];
+     if (!PredChain || Pred == *std::prev(PredChain->end())) {
+       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
+           MBPI->getEdgeProbability(Pred, NewTop);
+       if (EdgeFreq > FallThroughFromPred) {
+         FallThroughFromPred = EdgeFreq;
+         BestPred = Pred;
+       }
+     }
+   }
+
+   // If NewTop is not placed after Pred, another successor can be placed
+   // after Pred.
+   BlockFrequency NewFreq = 0;
+   if (BestPred) {
+     for (MachineBasicBlock *Succ : BestPred->successors()) {
+       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
+         continue;
+       if (ComputedEdges.find(Succ) != ComputedEdges.end())
+         continue;
+       BlockChain *SuccChain = BlockToChain[Succ];
+       if ((SuccChain && (Succ != *SuccChain->begin())) ||
+           (SuccChain == BlockToChain[BestPred]))
+         continue;
+       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
+           MBPI->getEdgeProbability(BestPred, Succ);
+       if (EdgeFreq > NewFreq)
+         NewFreq = EdgeFreq;
+     }
+     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
+         MBPI->getEdgeProbability(BestPred, NewTop);
+     if (NewFreq > OrigEdgeFreq) {
+       // If NewTop is not the best successor of Pred, then Pred doesn't
+       // fallthrough to NewTop. So there is no FallThroughFromPred and
+       // NewFreq.
+       NewFreq = 0;
+       FallThroughFromPred = 0;
+     }
+   }
+
+   BlockFrequency Result = 0;
+   BlockFrequency Gains = BackEdgeFreq + NewFreq;
+   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
+       FallThroughFromPred;
+   if (Gains > Lost)
+     Result = Gains - Lost;
+   return Result;
+}
+
+/// Helper function of findBestLoopTop. Find the best loop top block
+/// from predecessors of old top.
+///
+/// Look for a block which is strictly better than the old top for laying
+/// out before the old top of the loop. This looks for only two patterns:
+///
+///     1. a block has only one successor, the old loop top
+///
+///        Because such a block will always result in an unconditional jump,
+///        rotating it in front of the old top is always profitable.
+///
+///     2. a block has two successors, one is old top, another is exit
+///        and it has more than one predecessors
+///
+///        If it is below one of its predecessors P, only P can fall through to
+///        it, all other predecessors need a jump to it, and another conditional
+///        jump to loop header. If it is moved before loop header, all its
+///        predecessors jump to it, then fall through to loop header. So all its
+///        predecessors except P can reduce one taken branch.
+///        At the same time, move it before old top increases the taken branch
+///        to loop exit block, so the reduced taken branch will be compared with
+///        the increased taken branch to the loop exit block.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopTopHelper(
+    MachineBasicBlock *OldTop,
+    const MachineLoop &L,
+    const BlockFilterSet &LoopBlockSet) {
+  // Check that the header hasn't been fused with a preheader block due to
+  // crazy branches. If it has, we need to start with the header at the top to
+  // prevent pulling the preheader into the loop body.
+  BlockChain &HeaderChain = *BlockToChain[OldTop];
+  if (!LoopBlockSet.count(*HeaderChain.begin()))
+    return OldTop;
+
+  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
+                    << "\n");
+
+  BlockFrequency BestGains = 0;
+  MachineBasicBlock *BestPred = nullptr;
+  for (MachineBasicBlock *Pred : OldTop->predecessors()) {
+    if (!LoopBlockSet.count(Pred))
+      continue;
+    if (Pred == L.getHeader())
+      continue;
+    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
+                      << Pred->succ_size() << " successors, ";
+               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
+    if (Pred->succ_size() > 2)
+      continue;
+
+    MachineBasicBlock *OtherBB = nullptr;
+    if (Pred->succ_size() == 2) {
+      OtherBB = *Pred->succ_begin();
+      if (OtherBB == OldTop)
+        OtherBB = *Pred->succ_rbegin();
+    }
+
+    if (!canMoveBottomBlockToTop(Pred, OldTop))
+      continue;
+
+    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
+                                            LoopBlockSet);
+    if ((Gains > 0) && (Gains > BestGains ||
+        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
+      BestPred = Pred;
+      BestGains = Gains;
+    }
+  }
+
+  // If no direct predecessor is fine, just use the loop header.
+  if (!BestPred) {
+    LLVM_DEBUG(dbgs() << "    final top unchanged\n");
+    return OldTop;
+  }
+
+  // Walk backwards through any straight line of predecessors.
+  while (BestPred->pred_size() == 1 &&
+         (*BestPred->pred_begin())->succ_size() == 1 &&
+         *BestPred->pred_begin() != L.getHeader())
+    BestPred = *BestPred->pred_begin();
+
+  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
+  return BestPred;
+}
+
+/// Find the best loop top block for layout.
+///
+/// This function iteratively calls findBestLoopTopHelper, until no new better
+/// BB can be found.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
+                                       const BlockFilterSet &LoopBlockSet) {
+  // Placing the latch block before the header may introduce an extra branch
+  // that skips this block the first time the loop is executed, which we want
+  // to avoid when optimising for size.
+  // FIXME: in theory there is a case that does not introduce a new branch,
+  // i.e. when the layout predecessor does not fallthrough to the loop header.
+  // In practice this never happens though: there always seems to be a preheader
+  // that can fallthrough and that is also placed before the header.
+  bool OptForSize = F->getFunction().hasOptSize() ||
+                    llvm::shouldOptimizeForSize(L.getHeader(), PSI,
+                                                &MBFI->getMBFI());
+  if (OptForSize)
+    return L.getHeader();
+
+  MachineBasicBlock *OldTop = nullptr;
+  MachineBasicBlock *NewTop = L.getHeader();
+  while (NewTop != OldTop) {
+    OldTop = NewTop;
+    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
+    if (NewTop != OldTop)
+      ComputedEdges[NewTop] = { OldTop, false };
+  }
+  return NewTop;
+}
+
+/// Find the best loop exiting block for layout.
+///
+/// This routine implements the logic to analyze the loop looking for the best
+/// block to layout at the top of the loop. Typically this is done to maximize
+/// fallthrough opportunities.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
+                                        const BlockFilterSet &LoopBlockSet,
+                                        BlockFrequency &ExitFreq) {
+  // We don't want to layout the loop linearly in all cases. If the loop header
+  // is just a normal basic block in the loop, we want to look for what block
+  // within the loop is the best one to layout at the top. However, if the loop
+  // header has be pre-merged into a chain due to predecessors not having
+  // analyzable branches, *and* the predecessor it is merged with is *not* part
+  // of the loop, rotating the header into the middle of the loop will create
+  // a non-contiguous range of blocks which is Very Bad. So start with the
+  // header and only rotate if safe.
+  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
+  if (!LoopBlockSet.count(*HeaderChain.begin()))
+    return nullptr;
+
+  BlockFrequency BestExitEdgeFreq;
+  unsigned BestExitLoopDepth = 0;
+  MachineBasicBlock *ExitingBB = nullptr;
+  // If there are exits to outer loops, loop rotation can severely limit
+  // fallthrough opportunities unless it selects such an exit. Keep a set of
+  // blocks where rotating to exit with that block will reach an outer loop.
+  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
+
+  LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
+                    << getBlockName(L.getHeader()) << "\n");
+  for (MachineBasicBlock *MBB : L.getBlocks()) {
+    BlockChain &Chain = *BlockToChain[MBB];
+    // Ensure that this block is at the end of a chain; otherwise it could be
+    // mid-way through an inner loop or a successor of an unanalyzable branch.
+    if (MBB != *std::prev(Chain.end()))
+      continue;
+
+    // Now walk the successors. We need to establish whether this has a viable
+    // exiting successor and whether it has a viable non-exiting successor.
+    // We store the old exiting state and restore it if a viable looping
+    // successor isn't found.
+    MachineBasicBlock *OldExitingBB = ExitingBB;
+    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
+    bool HasLoopingSucc = false;
+    for (MachineBasicBlock *Succ : MBB->successors()) {
+      if (Succ->isEHPad())
+        continue;
+      if (Succ == MBB)
+        continue;
+      BlockChain &SuccChain = *BlockToChain[Succ];
+      // Don't split chains, either this chain or the successor's chain.
+      if (&Chain == &SuccChain) {
+        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
+                          << getBlockName(Succ) << " (chain conflict)\n");
+        continue;
+      }
+
+      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
+      if (LoopBlockSet.count(Succ)) {
+        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
+                          << getBlockName(Succ) << " (" << SuccProb << ")\n");
+        HasLoopingSucc = true;
+        continue;
+      }
+
+      unsigned SuccLoopDepth = 0;
+      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
+        SuccLoopDepth = ExitLoop->getLoopDepth();
+        if (ExitLoop->contains(&L))
+          BlocksExitingToOuterLoop.insert(MBB);
+      }
+
+      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
+      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
+                        << getBlockName(Succ) << " [L:" << SuccLoopDepth
+                        << "] (";
+                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
+      // Note that we bias this toward an existing layout successor to retain
+      // incoming order in the absence of better information. The exit must have
+      // a frequency higher than the current exit before we consider breaking
+      // the layout.
+      BranchProbability Bias(100 - ExitBlockBias, 100);
+      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
+          ExitEdgeFreq > BestExitEdgeFreq ||
+          (MBB->isLayoutSuccessor(Succ) &&
+           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
+        BestExitEdgeFreq = ExitEdgeFreq;
+        ExitingBB = MBB;
+      }
+    }
+
+    if (!HasLoopingSucc) {
+      // Restore the old exiting state, no viable looping successor was found.
+      ExitingBB = OldExitingBB;
+      BestExitEdgeFreq = OldBestExitEdgeFreq;
+    }
+  }
+  // Without a candidate exiting block or with only a single block in the
+  // loop, just use the loop header to layout the loop.
+  if (!ExitingBB) {
+    LLVM_DEBUG(
+        dbgs() << "    No other candidate exit blocks, using loop header\n");
+    return nullptr;
+  }
+  if (L.getNumBlocks() == 1) {
+    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
+    return nullptr;
+  }
+
+  // Also, if we have exit blocks which lead to outer loops but didn't select
+  // one of them as the exiting block we are rotating toward, disable loop
+  // rotation altogether.
+  if (!BlocksExitingToOuterLoop.empty() &&
+      !BlocksExitingToOuterLoop.count(ExitingBB))
+    return nullptr;
+
+  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
+                    << "\n");
+  ExitFreq = BestExitEdgeFreq;
+  return ExitingBB;
+}
+
+/// Check if there is a fallthrough to loop header Top.
+///
+///   1. Look for a Pred that can be layout before Top.
+///   2. Check if Top is the most possible successor of Pred.
+bool
+MachineBlockPlacement::hasViableTopFallthrough(
+    const MachineBasicBlock *Top,
+    const BlockFilterSet &LoopBlockSet) {
+  for (MachineBasicBlock *Pred : Top->predecessors()) {
+    BlockChain *PredChain = BlockToChain[Pred];
+    if (!LoopBlockSet.count(Pred) &&
+        (!PredChain || Pred == *std::prev(PredChain->end()))) {
+      // Found a Pred block can be placed before Top.
+      // Check if Top is the best successor of Pred.
+      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
+      bool TopOK = true;
+      for (MachineBasicBlock *Succ : Pred->successors()) {
+        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
+        BlockChain *SuccChain = BlockToChain[Succ];
+        // Check if Succ can be placed after Pred.
+        // Succ should not be in any chain, or it is the head of some chain.
+        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
+          TopOK = false;
+          break;
+        }
+      }
+      if (TopOK)
+        return true;
+    }
+  }
+  return false;
+}
+
+/// Attempt to rotate an exiting block to the bottom of the loop.
+///
+/// Once we have built a chain, try to rotate it to line up the hot exit block
+/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
+/// branches. For example, if the loop has fallthrough into its header and out
+/// of its bottom already, don't rotate it.
+void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
+                                       const MachineBasicBlock *ExitingBB,
+                                       BlockFrequency ExitFreq,
+                                       const BlockFilterSet &LoopBlockSet) {
+  if (!ExitingBB)
+    return;
+
+  MachineBasicBlock *Top = *LoopChain.begin();
+  MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
+
+  // If ExitingBB is already the last one in a chain then nothing to do.
+  if (Bottom == ExitingBB)
+    return;
+
+  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
+
+  // If the header has viable fallthrough, check whether the current loop
+  // bottom is a viable exiting block. If so, bail out as rotating will
+  // introduce an unnecessary branch.
+  if (ViableTopFallthrough) {
+    for (MachineBasicBlock *Succ : Bottom->successors()) {
+      BlockChain *SuccChain = BlockToChain[Succ];
+      if (!LoopBlockSet.count(Succ) &&
+          (!SuccChain || Succ == *SuccChain->begin()))
+        return;
+    }
+
+    // Rotate will destroy the top fallthrough, we need to ensure the new exit
+    // frequency is larger than top fallthrough.
+    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
+    if (FallThrough2Top >= ExitFreq)
+      return;
+  }
+
+  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
+  if (ExitIt == LoopChain.end())
+    return;
+
+  // Rotating a loop exit to the bottom when there is a fallthrough to top
+  // trades the entry fallthrough for an exit fallthrough.
+  // If there is no bottom->top edge, but the chosen exit block does have
+  // a fallthrough, we break that fallthrough for nothing in return.
+
+  // Let's consider an example. We have a built chain of basic blocks
+  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
+  // By doing a rotation we get
+  // Bk+1, ..., Bn, B1, ..., Bk
+  // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
+  // If we had a fallthrough Bk -> Bk+1 it is broken now.
+  // It might be compensated by fallthrough Bn -> B1.
+  // So we have a condition to avoid creation of extra branch by loop rotation.
+  // All below must be true to avoid loop rotation:
+  //   If there is a fallthrough to top (B1)
+  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
+  //   There is no fallthrough from bottom (Bn) to top (B1).
+  // Please note that there is no exit fallthrough from Bn because we checked it
+  // above.
+  if (ViableTopFallthrough) {
+    assert(std::next(ExitIt) != LoopChain.end() &&
+           "Exit should not be last BB");
+    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
+    if (ExitingBB->isSuccessor(NextBlockInChain))
+      if (!Bottom->isSuccessor(Top))
+        return;
+  }
+
+  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
+                    << " at bottom\n");
+  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
+}
+
+/// Attempt to rotate a loop based on profile data to reduce branch cost.
+///
+/// With profile data, we can determine the cost in terms of missed fall through
+/// opportunities when rotating a loop chain and select the best rotation.
+/// Basically, there are three kinds of cost to consider for each rotation:
+///    1. The possibly missed fall through edge (if it exists) from BB out of
+///    the loop to the loop header.
+///    2. The possibly missed fall through edges (if they exist) from the loop
+///    exits to BB out of the loop.
+///    3. The missed fall through edge (if it exists) from the last BB to the
+///    first BB in the loop chain.
+///  Therefore, the cost for a given rotation is the sum of costs listed above.
+///  We select the best rotation with the smallest cost.
+void MachineBlockPlacement::rotateLoopWithProfile(
+    BlockChain &LoopChain, const MachineLoop &L,
+    const BlockFilterSet &LoopBlockSet) {
+  auto RotationPos = LoopChain.end();
+
+  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
+
+  // A utility lambda that scales up a block frequency by dividing it by a
+  // branch probability which is the reciprocal of the scale.
+  auto ScaleBlockFrequency = [](BlockFrequency Freq,
+                                unsigned Scale) -> BlockFrequency {
+    if (Scale == 0)
+      return 0;
+    // Use operator / between BlockFrequency and BranchProbability to implement
+    // saturating multiplication.
+    return Freq / BranchProbability(1, Scale);
+  };
+
+  // Compute the cost of the missed fall-through edge to the loop header if the
+  // chain head is not the loop header. As we only consider natural loops with
+  // single header, this computation can be done only once.
+  BlockFrequency HeaderFallThroughCost(0);
+  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
+  for (auto *Pred : ChainHeaderBB->predecessors()) {
+    BlockChain *PredChain = BlockToChain[Pred];
+    if (!LoopBlockSet.count(Pred) &&
+        (!PredChain || Pred == *std::prev(PredChain->end()))) {
+      auto EdgeFreq = MBFI->getBlockFreq(Pred) *
+          MBPI->getEdgeProbability(Pred, ChainHeaderBB);
+      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
+      // If the predecessor has only an unconditional jump to the header, we
+      // need to consider the cost of this jump.
+      if (Pred->succ_size() == 1)
+        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
+      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
+    }
+  }
+
+  // Here we collect all exit blocks in the loop, and for each exit we find out
+  // its hottest exit edge. For each loop rotation, we define the loop exit cost
+  // as the sum of frequencies of exit edges we collect here, excluding the exit
+  // edge from the tail of the loop chain.
+  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
+  for (auto BB : LoopChain) {
+    auto LargestExitEdgeProb = BranchProbability::getZero();
+    for (auto *Succ : BB->successors()) {
+      BlockChain *SuccChain = BlockToChain[Succ];
+      if (!LoopBlockSet.count(Succ) &&
+          (!SuccChain || Succ == *SuccChain->begin())) {
+        auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
+        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
+      }
+    }
+    if (LargestExitEdgeProb > BranchProbability::getZero()) {
+      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
+      ExitsWithFreq.emplace_back(BB, ExitFreq);
+    }
+  }
+
+  // In this loop we iterate every block in the loop chain and calculate the
+  // cost assuming the block is the head of the loop chain. When the loop ends,
+  // we should have found the best candidate as the loop chain's head.
+  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
+            EndIter = LoopChain.end();
+       Iter != EndIter; Iter++, TailIter++) {
+    // TailIter is used to track the tail of the loop chain if the block we are
+    // checking (pointed by Iter) is the head of the chain.
+    if (TailIter == LoopChain.end())
+      TailIter = LoopChain.begin();
+
+    auto TailBB = *TailIter;
+
+    // Calculate the cost by putting this BB to the top.
+    BlockFrequency Cost = 0;
+
+    // If the current BB is the loop header, we need to take into account the
+    // cost of the missed fall through edge from outside of the loop to the
+    // header.
+    if (Iter != LoopChain.begin())
+      Cost += HeaderFallThroughCost;
+
+    // Collect the loop exit cost by summing up frequencies of all exit edges
+    // except the one from the chain tail.
+    for (auto &ExitWithFreq : ExitsWithFreq)
+      if (TailBB != ExitWithFreq.first)
+        Cost += ExitWithFreq.second;
+
+    // The cost of breaking the once fall-through edge from the tail to the top
+    // of the loop chain. Here we need to consider three cases:
+    // 1. If the tail node has only one successor, then we will get an
+    //    additional jmp instruction. So the cost here is (MisfetchCost +
+    //    JumpInstCost) * tail node frequency.
+    // 2. If the tail node has two successors, then we may still get an
+    //    additional jmp instruction if the layout successor after the loop
+    //    chain is not its CFG successor. Note that the more frequently executed
+    //    jmp instruction will be put ahead of the other one. Assume the
+    //    frequency of those two branches are x and y, where x is the frequency
+    //    of the edge to the chain head, then the cost will be
+    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
+    // 3. If the tail node has more than two successors (this rarely happens),
+    //    we won't consider any additional cost.
+    if (TailBB->isSuccessor(*Iter)) {
+      auto TailBBFreq = MBFI->getBlockFreq(TailBB);
+      if (TailBB->succ_size() == 1)
+        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
+                                    MisfetchCost + JumpInstCost);
+      else if (TailBB->succ_size() == 2) {
+        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
+        auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
+        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
+                                  ? TailBBFreq * TailToHeadProb.getCompl()
+                                  : TailToHeadFreq;
+        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
+                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
+      }
+    }
+
+    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
+                      << getBlockName(*Iter)
+                      << " to the top: " << Cost.getFrequency() << "\n");
+
+    if (Cost < SmallestRotationCost) {
+      SmallestRotationCost = Cost;
+      RotationPos = Iter;
+    }
+  }
+
+  if (RotationPos != LoopChain.end()) {
+    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
+                      << " to the top\n");
+    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
+  }
+}
+
+/// Collect blocks in the given loop that are to be placed.
+///
+/// When profile data is available, exclude cold blocks from the returned set;
+/// otherwise, collect all blocks in the loop.
+MachineBlockPlacement::BlockFilterSet
+MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
+  BlockFilterSet LoopBlockSet;
+
+  // Filter cold blocks off from LoopBlockSet when profile data is available.
+  // Collect the sum of frequencies of incoming edges to the loop header from
+  // outside. If we treat the loop as a super block, this is the frequency of
+  // the loop. Then for each block in the loop, we calculate the ratio between
+  // its frequency and the frequency of the loop block. When it is too small,
+  // don't add it to the loop chain. If there are outer loops, then this block
+  // will be merged into the first outer loop chain for which this block is not
+  // cold anymore. This needs precise profile data and we only do this when
+  // profile data is available.
+  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
+    BlockFrequency LoopFreq(0);
+    for (auto LoopPred : L.getHeader()->predecessors())
+      if (!L.contains(LoopPred))
+        LoopFreq += MBFI->getBlockFreq(LoopPred) *
+                    MBPI->getEdgeProbability(LoopPred, L.getHeader());
+
+    for (MachineBasicBlock *LoopBB : L.getBlocks()) {
+      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
+      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
+        continue;
+      LoopBlockSet.insert(LoopBB);
+    }
+  } else
+    LoopBlockSet.insert(L.block_begin(), L.block_end());
+
+  return LoopBlockSet;
+}
+
+/// Forms basic block chains from the natural loop structures.
+///
+/// These chains are designed to preserve the existing *structure* of the code
+/// as much as possible. We can then stitch the chains together in a way which
+/// both preserves the topological structure and minimizes taken conditional
+/// branches.
+void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
+  // First recurse through any nested loops, building chains for those inner
+  // loops.
+  for (const MachineLoop *InnerLoop : L)
+    buildLoopChains(*InnerLoop);
+
+  assert(BlockWorkList.empty() &&
+         "BlockWorkList not empty when starting to build loop chains.");
+  assert(EHPadWorkList.empty() &&
+         "EHPadWorkList not empty when starting to build loop chains.");
+  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
+
+  // Check if we have profile data for this function. If yes, we will rotate
+  // this loop by modeling costs more precisely which requires the profile data
+  // for better layout.
+  bool RotateLoopWithProfile =
+      ForcePreciseRotationCost ||
+      (PreciseRotationCost && F->getFunction().hasProfileData());
+
+  // First check to see if there is an obviously preferable top block for the
+  // loop. This will default to the header, but may end up as one of the
+  // predecessors to the header if there is one which will result in strictly
+  // fewer branches in the loop body.
+  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
+
+  // If we selected just the header for the loop top, look for a potentially
+  // profitable exit block in the event that rotating the loop can eliminate
+  // branches by placing an exit edge at the bottom.
+  //
+  // Loops are processed innermost to uttermost, make sure we clear
+  // PreferredLoopExit before processing a new loop.
+  PreferredLoopExit = nullptr;
+  BlockFrequency ExitFreq;
+  if (!RotateLoopWithProfile && LoopTop == L.getHeader())
+    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
+
+  BlockChain &LoopChain = *BlockToChain[LoopTop];
+
+  // FIXME: This is a really lame way of walking the chains in the loop: we
+  // walk the blocks, and use a set to prevent visiting a particular chain
+  // twice.
+  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
+  assert(LoopChain.UnscheduledPredecessors == 0 &&
+         "LoopChain should not have unscheduled predecessors.");
+  UpdatedPreds.insert(&LoopChain);
+
+  for (const MachineBasicBlock *LoopBB : LoopBlockSet)
+    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
+
+  buildChain(LoopTop, LoopChain, &LoopBlockSet);
+
+  if (RotateLoopWithProfile)
+    rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
+  else
+    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
+
+  LLVM_DEBUG({
+    // Crash at the end so we get all of the debugging output first.
+    bool BadLoop = false;
+    if (LoopChain.UnscheduledPredecessors) {
+      BadLoop = true;
+      dbgs() << "Loop chain contains a block without its preds placed!\n"
+             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
+             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
+    }
+    for (MachineBasicBlock *ChainBB : LoopChain) {
+      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
+      if (!LoopBlockSet.remove(ChainBB)) {
+        // We don't mark the loop as bad here because there are real situations
+        // where this can occur. For example, with an unanalyzable fallthrough
+        // from a loop block to a non-loop block or vice versa.
+        dbgs() << "Loop chain contains a block not contained by the loop!\n"
+               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
+               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
+               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
+      }
+    }
+
+    if (!LoopBlockSet.empty()) {
+      BadLoop = true;
+      for (const MachineBasicBlock *LoopBB : LoopBlockSet)
+        dbgs() << "Loop contains blocks never placed into a chain!\n"
+               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
+               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
+               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
+    }
+    assert(!BadLoop && "Detected problems with the placement of this loop.");
+  });
+
+  BlockWorkList.clear();
+  EHPadWorkList.clear();
+}
+
+void MachineBlockPlacement::buildCFGChains() {
+  // Ensure that every BB in the function has an associated chain to simplify
+  // the assumptions of the remaining algorithm.
+  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
+  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
+       ++FI) {
+    MachineBasicBlock *BB = &*FI;
+    BlockChain *Chain =
+        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
+    // Also, merge any blocks which we cannot reason about and must preserve
+    // the exact fallthrough behavior for.
+    while (true) {
+      Cond.clear();
+      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
+        break;
+
+      MachineFunction::iterator NextFI = std::next(FI);
+      MachineBasicBlock *NextBB = &*NextFI;
+      // Ensure that the layout successor is a viable block, as we know that
+      // fallthrough is a possibility.
+      assert(NextFI != FE && "Can't fallthrough past the last block.");
+      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
+                        << getBlockName(BB) << " -> " << getBlockName(NextBB)
+                        << "\n");
+      Chain->merge(NextBB, nullptr);
+#ifndef NDEBUG
+      BlocksWithUnanalyzableExits.insert(&*BB);
+#endif
+      FI = NextFI;
+      BB = NextBB;
+    }
+  }
+
+  // Build any loop-based chains.
+  PreferredLoopExit = nullptr;
+  for (MachineLoop *L : *MLI)
+    buildLoopChains(*L);
+
+  assert(BlockWorkList.empty() &&
+         "BlockWorkList should be empty before building final chain.");
+  assert(EHPadWorkList.empty() &&
+         "EHPadWorkList should be empty before building final chain.");
+
+  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
+  for (MachineBasicBlock &MBB : *F)
+    fillWorkLists(&MBB, UpdatedPreds);
+
+  BlockChain &FunctionChain = *BlockToChain[&F->front()];
+  buildChain(&F->front(), FunctionChain);
+
+#ifndef NDEBUG
+  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
+#endif
+  LLVM_DEBUG({
+    // Crash at the end so we get all of the debugging output first.
+    bool BadFunc = false;
+    FunctionBlockSetType FunctionBlockSet;
+    for (MachineBasicBlock &MBB : *F)
+      FunctionBlockSet.insert(&MBB);
+
+    for (MachineBasicBlock *ChainBB : FunctionChain)
+      if (!FunctionBlockSet.erase(ChainBB)) {
+        BadFunc = true;
+        dbgs() << "Function chain contains a block not in the function!\n"
+               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
+      }
+
+    if (!FunctionBlockSet.empty()) {
+      BadFunc = true;
+      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
+        dbgs() << "Function contains blocks never placed into a chain!\n"
+               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
+    }
+    assert(!BadFunc && "Detected problems with the block placement.");
+  });
+
+  // Splice the blocks into place.
+  MachineFunction::iterator InsertPos = F->begin();
+  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
+  for (MachineBasicBlock *ChainBB : FunctionChain) {
+    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
+                                                            : "          ... ")
+                      << getBlockName(ChainBB) << "\n");
+    if (InsertPos != MachineFunction::iterator(ChainBB))
+      F->splice(InsertPos, ChainBB);
+    else
+      ++InsertPos;
+
+    // Update the terminator of the previous block.
+    if (ChainBB == *FunctionChain.begin())
+      continue;
+    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
+
+    // FIXME: It would be awesome of updateTerminator would just return rather
+    // than assert when the branch cannot be analyzed in order to remove this
+    // boiler plate.
+    Cond.clear();
+    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+
+#ifndef NDEBUG
+    if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
+      // Given the exact block placement we chose, we may actually not _need_ to
+      // be able to edit PrevBB's terminator sequence, but not being _able_ to
+      // do that at this point is a bug.
+      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
+              !PrevBB->canFallThrough()) &&
+             "Unexpected block with un-analyzable fallthrough!");
+      Cond.clear();
+      TBB = FBB = nullptr;
+    }
+#endif
+
+    // The "PrevBB" is not yet updated to reflect current code layout, so,
+    //   o. it may fall-through to a block without explicit "goto" instruction
+    //      before layout, and no longer fall-through it after layout; or
+    //   o. just opposite.
+    //
+    // analyzeBranch() may return erroneous value for FBB when these two
+    // situations take place. For the first scenario FBB is mistakenly set NULL;
+    // for the 2nd scenario, the FBB, which is expected to be NULL, is
+    // mistakenly pointing to "*BI".
+    // Thus, if the future change needs to use FBB before the layout is set, it
+    // has to correct FBB first by using the code similar to the following:
+    //
+    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
+    //   PrevBB->updateTerminator();
+    //   Cond.clear();
+    //   TBB = FBB = nullptr;
+    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
+    //     // FIXME: This should never take place.
+    //     TBB = FBB = nullptr;
+    //   }
+    // }
+    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
+      PrevBB->updateTerminator();
+  }
+
+  // Fixup the last block.
+  Cond.clear();
+  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
+    F->back().updateTerminator();
+
+  BlockWorkList.clear();
+  EHPadWorkList.clear();
+}
+
+void MachineBlockPlacement::optimizeBranches() {
+  BlockChain &FunctionChain = *BlockToChain[&F->front()];
+  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
+
+  // Now that all the basic blocks in the chain have the proper layout,
+  // make a final call to AnalyzeBranch with AllowModify set.
+  // Indeed, the target may be able to optimize the branches in a way we
+  // cannot because all branches may not be analyzable.
+  // E.g., the target may be able to remove an unconditional branch to
+  // a fallthrough when it occurs after predicated terminators.
+  for (MachineBasicBlock *ChainBB : FunctionChain) {
+    Cond.clear();
+    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
+      // If PrevBB has a two-way branch, try to re-order the branches
+      // such that we branch to the successor with higher probability first.
+      if (TBB && !Cond.empty() && FBB &&
+          MBPI->getEdgeProbability(ChainBB, FBB) >
+              MBPI->getEdgeProbability(ChainBB, TBB) &&
+          !TII->reverseBranchCondition(Cond)) {
+        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
+                          << getBlockName(ChainBB) << "\n");
+        LLVM_DEBUG(dbgs() << "    Edge probability: "
+                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
+                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
+        DebugLoc dl; // FIXME: this is nowhere
+        TII->removeBranch(*ChainBB);
+        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
+        ChainBB->updateTerminator();
+      }
+    }
+  }
+}
+
+void MachineBlockPlacement::alignBlocks() {
+  // Walk through the backedges of the function now that we have fully laid out
+  // the basic blocks and align the destination of each backedge. We don't rely
+  // exclusively on the loop info here so that we can align backedges in
+  // unnatural CFGs and backedges that were introduced purely because of the
+  // loop rotations done during this layout pass.
+  if (F->getFunction().hasMinSize() ||
+      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
+    return;
+  BlockChain &FunctionChain = *BlockToChain[&F->front()];
+  if (FunctionChain.begin() == FunctionChain.end())
+    return; // Empty chain.
+
+  const BranchProbability ColdProb(1, 5); // 20%
+  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
+  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
+  for (MachineBasicBlock *ChainBB : FunctionChain) {
+    if (ChainBB == *FunctionChain.begin())
+      continue;
+
+    // Don't align non-looping basic blocks. These are unlikely to execute
+    // enough times to matter in practice. Note that we'll still handle
+    // unnatural CFGs inside of a natural outer loop (the common case) and
+    // rotated loops.
+    MachineLoop *L = MLI->getLoopFor(ChainBB);
+    if (!L)
+      continue;
+
+    const Align Align = TLI->getPrefLoopAlignment(L);
+    if (Align == 1)
+      continue; // Don't care about loop alignment.
+
+    // If the block is cold relative to the function entry don't waste space
+    // aligning it.
+    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
+    if (Freq < WeightedEntryFreq)
+      continue;
+
+    // If the block is cold relative to its loop header, don't align it
+    // regardless of what edges into the block exist.
+    MachineBasicBlock *LoopHeader = L->getHeader();
+    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
+    if (Freq < (LoopHeaderFreq * ColdProb))
+      continue;
+
+    // If the global profiles indicates so, don't align it.
+    if (llvm::shouldOptimizeForSize(ChainBB, PSI, &MBFI->getMBFI()) &&
+        !TLI->alignLoopsWithOptSize())
+      continue;
+
+    // Check for the existence of a non-layout predecessor which would benefit
+    // from aligning this block.
+    MachineBasicBlock *LayoutPred =
+        &*std::prev(MachineFunction::iterator(ChainBB));
+
+    // Force alignment if all the predecessors are jumps. We already checked
+    // that the block isn't cold above.
+    if (!LayoutPred->isSuccessor(ChainBB)) {
+      ChainBB->setAlignment(Align);
+      continue;
+    }
+
+    // Align this block if the layout predecessor's edge into this block is
+    // cold relative to the block. When this is true, other predecessors make up
+    // all of the hot entries into the block and thus alignment is likely to be
+    // important.
+    BranchProbability LayoutProb =
+        MBPI->getEdgeProbability(LayoutPred, ChainBB);
+    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
+    if (LayoutEdgeFreq <= (Freq * ColdProb))
+      ChainBB->setAlignment(Align);
+  }
+}
+
+/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
+/// it was duplicated into its chain predecessor and removed.
+/// \p BB    - Basic block that may be duplicated.
+///
+/// \p LPred - Chosen layout predecessor of \p BB.
+///            Updated to be the chain end if LPred is removed.
+/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
+/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
+///                  Used to identify which blocks to update predecessor
+///                  counts.
+/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
+///                          chosen in the given order due to unnatural CFG
+///                          only needed if \p BB is removed and
+///                          \p PrevUnplacedBlockIt pointed to \p BB.
+/// @return true if \p BB was removed.
+bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
+    MachineBasicBlock *BB, MachineBasicBlock *&LPred,
+    const MachineBasicBlock *LoopHeaderBB,
+    BlockChain &Chain, BlockFilterSet *BlockFilter,
+    MachineFunction::iterator &PrevUnplacedBlockIt) {
+  bool Removed, DuplicatedToLPred;
+  bool DuplicatedToOriginalLPred;
+  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
+                                    PrevUnplacedBlockIt,
+                                    DuplicatedToLPred);
+  if (!Removed)
+    return false;
+  DuplicatedToOriginalLPred = DuplicatedToLPred;
+  // Iteratively try to duplicate again. It can happen that a block that is
+  // duplicated into is still small enough to be duplicated again.
+  // No need to call markBlockSuccessors in this case, as the blocks being
+  // duplicated from here on are already scheduled.
+  // Note that DuplicatedToLPred always implies Removed.
+  while (DuplicatedToLPred) {
+    assert(Removed && "Block must have been removed to be duplicated into its "
+           "layout predecessor.");
+    MachineBasicBlock *DupBB, *DupPred;
+    // The removal callback causes Chain.end() to be updated when a block is
+    // removed. On the first pass through the loop, the chain end should be the
+    // same as it was on function entry. On subsequent passes, because we are
+    // duplicating the block at the end of the chain, if it is removed the
+    // chain will have shrunk by one block.
+    BlockChain::iterator ChainEnd = Chain.end();
+    DupBB = *(--ChainEnd);
+    // Now try to duplicate again.
+    if (ChainEnd == Chain.begin())
+      break;
+    DupPred = *std::prev(ChainEnd);
+    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
+                                      PrevUnplacedBlockIt,
+                                      DuplicatedToLPred);
+  }
+  // If BB was duplicated into LPred, it is now scheduled. But because it was
+  // removed, markChainSuccessors won't be called for its chain. Instead we
+  // call markBlockSuccessors for LPred to achieve the same effect. This must go
+  // at the end because repeating the tail duplication can increase the number
+  // of unscheduled predecessors.
+  LPred = *std::prev(Chain.end());
+  if (DuplicatedToOriginalLPred)
+    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
+  return true;
+}
+
+/// Tail duplicate \p BB into (some) predecessors if profitable.
+/// \p BB    - Basic block that may be duplicated
+/// \p LPred - Chosen layout predecessor of \p BB
+/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
+/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
+///                  Used to identify which blocks to update predecessor
+///                  counts.
+/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
+///                          chosen in the given order due to unnatural CFG
+///                          only needed if \p BB is removed and
+///                          \p PrevUnplacedBlockIt pointed to \p BB.
+/// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
+///                        only be true if the block was removed.
+/// \return  - True if the block was duplicated into all preds and removed.
+bool MachineBlockPlacement::maybeTailDuplicateBlock(
+    MachineBasicBlock *BB, MachineBasicBlock *LPred,
+    BlockChain &Chain, BlockFilterSet *BlockFilter,
+    MachineFunction::iterator &PrevUnplacedBlockIt,
+    bool &DuplicatedToLPred) {
+  DuplicatedToLPred = false;
+  if (!shouldTailDuplicate(BB))
+    return false;
+
+  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
+                    << "\n");
+
+  // This has to be a callback because none of it can be done after
+  // BB is deleted.
+  bool Removed = false;
+  auto RemovalCallback =
+      [&](MachineBasicBlock *RemBB) {
+        // Signal to outer function
+        Removed = true;
+
+        // Conservative default.
+        bool InWorkList = true;
+        // Remove from the Chain and Chain Map
+        if (BlockToChain.count(RemBB)) {
+          BlockChain *Chain = BlockToChain[RemBB];
+          InWorkList = Chain->UnscheduledPredecessors == 0;
+          Chain->remove(RemBB);
+          BlockToChain.erase(RemBB);
+        }
+
+        // Handle the unplaced block iterator
+        if (&(*PrevUnplacedBlockIt) == RemBB) {
+          PrevUnplacedBlockIt++;
+        }
+
+        // Handle the Work Lists
+        if (InWorkList) {
+          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
+          if (RemBB->isEHPad())
+            RemoveList = EHPadWorkList;
+          RemoveList.erase(
+              llvm::remove_if(RemoveList,
+                              [RemBB](MachineBasicBlock *BB) {
+                                return BB == RemBB;
+                              }),
+              RemoveList.end());
+        }
+
+        // Handle the filter set
+        if (BlockFilter) {
+          BlockFilter->remove(RemBB);
+        }
+
+        // Remove the block from loop info.
+        MLI->removeBlock(RemBB);
+        if (RemBB == PreferredLoopExit)
+          PreferredLoopExit = nullptr;
+
+        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
+                          << getBlockName(RemBB) << "\n");
+      };
+  auto RemovalCallbackRef =
+      function_ref<void(MachineBasicBlock*)>(RemovalCallback);
+
+  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
+  bool IsSimple = TailDup.isSimpleBB(BB);
+  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
+                                 &DuplicatedPreds, &RemovalCallbackRef);
+
+  // Update UnscheduledPredecessors to reflect tail-duplication.
+  DuplicatedToLPred = false;
+  for (MachineBasicBlock *Pred : DuplicatedPreds) {
+    // We're only looking for unscheduled predecessors that match the filter.
+    BlockChain* PredChain = BlockToChain[Pred];
+    if (Pred == LPred)
+      DuplicatedToLPred = true;
+    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
+        || PredChain == &Chain)
+      continue;
+    for (MachineBasicBlock *NewSucc : Pred->successors()) {
+      if (BlockFilter && !BlockFilter->count(NewSucc))
+        continue;
+      BlockChain *NewChain = BlockToChain[NewSucc];
+      if (NewChain != &Chain && NewChain != PredChain)
+        NewChain->UnscheduledPredecessors++;
+    }
+  }
+  return Removed;
+}
+
+bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
+  if (skipFunction(MF.getFunction()))
+    return false;
+
+  // Check for single-block functions and skip them.
+  if (std::next(MF.begin()) == MF.end())
+    return false;
+
+  F = &MF;
+  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+  MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
+      getAnalysis<MachineBlockFrequencyInfo>());
+  MLI = &getAnalysis<MachineLoopInfo>();
+  TII = MF.getSubtarget().getInstrInfo();
+  TLI = MF.getSubtarget().getTargetLowering();
+  MPDT = nullptr;
+  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+
+  // Initialize PreferredLoopExit to nullptr here since it may never be set if
+  // there are no MachineLoops.
+  PreferredLoopExit = nullptr;
+
+  assert(BlockToChain.empty() &&
+         "BlockToChain map should be empty before starting placement.");
+  assert(ComputedEdges.empty() &&
+         "Computed Edge map should be empty before starting placement.");
+
+  unsigned TailDupSize = TailDupPlacementThreshold;
+  // If only the aggressive threshold is explicitly set, use it.
+  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
+      TailDupPlacementThreshold.getNumOccurrences() == 0)
+    TailDupSize = TailDupPlacementAggressiveThreshold;
+
+  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
+  // For aggressive optimization, we can adjust some thresholds to be less
+  // conservative.
+  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
+    // At O3 we should be more willing to copy blocks for tail duplication. This
+    // increases size pressure, so we only do it at O3
+    // Do this unless only the regular threshold is explicitly set.
+    if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
+        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
+      TailDupSize = TailDupPlacementAggressiveThreshold;
+  }
+
+  if (allowTailDupPlacement()) {
+    MPDT = &getAnalysis<MachinePostDominatorTree>();
+    bool OptForSize = MF.getFunction().hasOptSize() ||
+                      llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
+    if (OptForSize)
+      TailDupSize = 1;
+    bool PreRegAlloc = false;
+    TailDup.initMF(MF, PreRegAlloc, MBPI, &MBFI->getMBFI(), PSI,
+                   /* LayoutMode */ true, TailDupSize);
+    precomputeTriangleChains();
+  }
+
+  buildCFGChains();
+
+  // Changing the layout can create new tail merging opportunities.
+  // TailMerge can create jump into if branches that make CFG irreducible for
+  // HW that requires structured CFG.
+  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
+                         PassConfig->getEnableTailMerge() &&
+                         BranchFoldPlacement;
+  // No tail merging opportunities if the block number is less than four.
+  if (MF.size() > 3 && EnableTailMerge) {
+    unsigned TailMergeSize = TailDupSize + 1;
+    BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
+                    *MBPI, PSI, TailMergeSize);
+
+    auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
+    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
+                            MMIWP ? &MMIWP->getMMI() : nullptr, MLI,
+                            /*AfterPlacement=*/true)) {
+      // Redo the layout if tail merging creates/removes/moves blocks.
+      BlockToChain.clear();
+      ComputedEdges.clear();
+      // Must redo the post-dominator tree if blocks were changed.
+      if (MPDT)
+        MPDT->runOnMachineFunction(MF);
+      ChainAllocator.DestroyAll();
+      buildCFGChains();
+    }
+  }
+
+  optimizeBranches();
+  alignBlocks();
+
+  BlockToChain.clear();
+  ComputedEdges.clear();
+  ChainAllocator.DestroyAll();
+
+  if (AlignAllBlock)
+    // Align all of the blocks in the function to a specific alignment.
+    for (MachineBasicBlock &MBB : MF)
+      MBB.setAlignment(Align(1ULL << AlignAllBlock));
+  else if (AlignAllNonFallThruBlocks) {
+    // Align all of the blocks that have no fall-through predecessors to a
+    // specific alignment.
+    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
+      auto LayoutPred = std::prev(MBI);
+      if (!LayoutPred->isSuccessor(&*MBI))
+        MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
+    }
+  }
+  if (ViewBlockLayoutWithBFI != GVDT_None &&
+      (ViewBlockFreqFuncName.empty() ||
+       F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
+    MBFI->view("MBP." + MF.getName(), false);
+  }
+
+
+  // We always return true as we have no way to track whether the final order
+  // differs from the original order.
+  return true;
+}
+
+namespace {
+
+/// A pass to compute block placement statistics.
+///
+/// A separate pass to compute interesting statistics for evaluating block
+/// placement. This is separate from the actual placement pass so that they can
+/// be computed in the absence of any placement transformations or when using
+/// alternative placement strategies.
+class MachineBlockPlacementStats : public MachineFunctionPass {
+  /// A handle to the branch probability pass.
+  const MachineBranchProbabilityInfo *MBPI;
+
+  /// A handle to the function-wide block frequency pass.
+  const MachineBlockFrequencyInfo *MBFI;
+
+public:
+  static char ID; // Pass identification, replacement for typeid
+
+  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
+    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
+  }
+
+  bool runOnMachineFunction(MachineFunction &F) override;
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<MachineBranchProbabilityInfo>();
+    AU.addRequired<MachineBlockFrequencyInfo>();
+    AU.setPreservesAll();
+    MachineFunctionPass::getAnalysisUsage(AU);
+  }
+};
+
+} // end anonymous namespace
+
+char MachineBlockPlacementStats::ID = 0;
+
+char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
+
+INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
+                      "Basic Block Placement Stats", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
+                    "Basic Block Placement Stats", false, false)
+
+bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
+  // Check for single-block functions and skip them.
+  if (std::next(F.begin()) == F.end())
+    return false;
+
+  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+
+  for (MachineBasicBlock &MBB : F) {
+    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
+    Statistic &NumBranches =
+        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
+    Statistic &BranchTakenFreq =
+        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
+    for (MachineBasicBlock *Succ : MBB.successors()) {
+      // Skip if this successor is a fallthrough.
+      if (MBB.isLayoutSuccessor(Succ))
+        continue;
+
+      BlockFrequency EdgeFreq =
+          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
+      ++NumBranches;
+      BranchTakenFreq += EdgeFreq.getFrequency();
+    }
+  }
+
+  return false;
+}