Revert "Merge sc-d1-dev 6958804 into master."
This reverts commit c3baae9670c1bb9235c3d13ec47d9f77330e9b50, reversing
changes made to 1867a80b63eef8bfe8ed47e686473f4def898d89.
Bug: b/172824175
Test: launch cuttlefish locally and check boot
Change-Id: I05ef8d2c6a2f5fc781bc23b73df1cde68880994d
diff --git a/third_party/llvm-10.0/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/third_party/llvm-10.0/llvm/lib/CodeGen/MachineBlockPlacement.cpp
new file mode 100644
index 0000000..30b98ec
--- /dev/null
+++ b/third_party/llvm-10.0/llvm/lib/CodeGen/MachineBlockPlacement.cpp
@@ -0,0 +1,3229 @@
+//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements basic block placement transformations using the CFG
+// structure and branch probability estimates.
+//
+// The pass strives to preserve the structure of the CFG (that is, retain
+// a topological ordering of basic blocks) in the absence of a *strong* signal
+// to the contrary from probabilities. However, within the CFG structure, it
+// attempts to choose an ordering which favors placing more likely sequences of
+// blocks adjacent to each other.
+//
+// The algorithm works from the inner-most loop within a function outward, and
+// at each stage walks through the basic blocks, trying to coalesce them into
+// sequential chains where allowed by the CFG (or demanded by heavy
+// probabilities). Finally, it walks the blocks in topological order, and the
+// first time it reaches a chain of basic blocks, it schedules them in the
+// function in-order.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BranchFolding.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineSizeOpts.h"
+#include "llvm/CodeGen/TailDuplicator.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "block-placement"
+
+STATISTIC(NumCondBranches, "Number of conditional branches");
+STATISTIC(NumUncondBranches, "Number of unconditional branches");
+STATISTIC(CondBranchTakenFreq,
+ "Potential frequency of taking conditional branches");
+STATISTIC(UncondBranchTakenFreq,
+ "Potential frequency of taking unconditional branches");
+
+static cl::opt<unsigned> AlignAllBlock(
+ "align-all-blocks",
+ cl::desc("Force the alignment of all blocks in the function in log2 format "
+ "(e.g 4 means align on 16B boundaries)."),
+ cl::init(0), cl::Hidden);
+
+static cl::opt<unsigned> AlignAllNonFallThruBlocks(
+ "align-all-nofallthru-blocks",
+ cl::desc("Force the alignment of all blocks that have no fall-through "
+ "predecessors (i.e. don't add nops that are executed). In log2 "
+ "format (e.g 4 means align on 16B boundaries)."),
+ cl::init(0), cl::Hidden);
+
+// FIXME: Find a good default for this flag and remove the flag.
+static cl::opt<unsigned> ExitBlockBias(
+ "block-placement-exit-block-bias",
+ cl::desc("Block frequency percentage a loop exit block needs "
+ "over the original exit to be considered the new exit."),
+ cl::init(0), cl::Hidden);
+
+// Definition:
+// - Outlining: placement of a basic block outside the chain or hot path.
+
+static cl::opt<unsigned> LoopToColdBlockRatio(
+ "loop-to-cold-block-ratio",
+ cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
+ "(frequency of block) is greater than this ratio"),
+ cl::init(5), cl::Hidden);
+
+static cl::opt<bool> ForceLoopColdBlock(
+ "force-loop-cold-block",
+ cl::desc("Force outlining cold blocks from loops."),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+ PreciseRotationCost("precise-rotation-cost",
+ cl::desc("Model the cost of loop rotation more "
+ "precisely by using profile data."),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+ ForcePreciseRotationCost("force-precise-rotation-cost",
+ cl::desc("Force the use of precise cost "
+ "loop rotation strategy."),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<unsigned> MisfetchCost(
+ "misfetch-cost",
+ cl::desc("Cost that models the probabilistic risk of an instruction "
+ "misfetch due to a jump comparing to falling through, whose cost "
+ "is zero."),
+ cl::init(1), cl::Hidden);
+
+static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
+ cl::desc("Cost of jump instructions."),
+ cl::init(1), cl::Hidden);
+static cl::opt<bool>
+TailDupPlacement("tail-dup-placement",
+ cl::desc("Perform tail duplication during placement. "
+ "Creates more fallthrough opportunites in "
+ "outline branches."),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+BranchFoldPlacement("branch-fold-placement",
+ cl::desc("Perform branch folding during placement. "
+ "Reduces code size."),
+ cl::init(true), cl::Hidden);
+
+// Heuristic for tail duplication.
+static cl::opt<unsigned> TailDupPlacementThreshold(
+ "tail-dup-placement-threshold",
+ cl::desc("Instruction cutoff for tail duplication during layout. "
+ "Tail merging during layout is forced to have a threshold "
+ "that won't conflict."), cl::init(2),
+ cl::Hidden);
+
+// Heuristic for aggressive tail duplication.
+static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
+ "tail-dup-placement-aggressive-threshold",
+ cl::desc("Instruction cutoff for aggressive tail duplication during "
+ "layout. Used at -O3. Tail merging during layout is forced to "
+ "have a threshold that won't conflict."), cl::init(4),
+ cl::Hidden);
+
+// Heuristic for tail duplication.
+static cl::opt<unsigned> TailDupPlacementPenalty(
+ "tail-dup-placement-penalty",
+ cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
+ "Copying can increase fallthrough, but it also increases icache "
+ "pressure. This parameter controls the penalty to account for that. "
+ "Percent as integer."),
+ cl::init(2),
+ cl::Hidden);
+
+// Heuristic for triangle chains.
+static cl::opt<unsigned> TriangleChainCount(
+ "triangle-chain-count",
+ cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
+ "triangle tail duplication heuristic to kick in. 0 to disable."),
+ cl::init(2),
+ cl::Hidden);
+
+extern cl::opt<unsigned> StaticLikelyProb;
+extern cl::opt<unsigned> ProfileLikelyProb;
+
+// Internal option used to control BFI display only after MBP pass.
+// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
+// -view-block-layout-with-bfi=
+extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
+
+// Command line option to specify the name of the function for CFG dump
+// Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
+extern cl::opt<std::string> ViewBlockFreqFuncName;
+
+namespace {
+
+class BlockChain;
+
+/// Type for our function-wide basic block -> block chain mapping.
+using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
+
+/// A chain of blocks which will be laid out contiguously.
+///
+/// This is the datastructure representing a chain of consecutive blocks that
+/// are profitable to layout together in order to maximize fallthrough
+/// probabilities and code locality. We also can use a block chain to represent
+/// a sequence of basic blocks which have some external (correctness)
+/// requirement for sequential layout.
+///
+/// Chains can be built around a single basic block and can be merged to grow
+/// them. They participate in a block-to-chain mapping, which is updated
+/// automatically as chains are merged together.
+class BlockChain {
+ /// The sequence of blocks belonging to this chain.
+ ///
+ /// This is the sequence of blocks for a particular chain. These will be laid
+ /// out in-order within the function.
+ SmallVector<MachineBasicBlock *, 4> Blocks;
+
+ /// A handle to the function-wide basic block to block chain mapping.
+ ///
+ /// This is retained in each block chain to simplify the computation of child
+ /// block chains for SCC-formation and iteration. We store the edges to child
+ /// basic blocks, and map them back to their associated chains using this
+ /// structure.
+ BlockToChainMapType &BlockToChain;
+
+public:
+ /// Construct a new BlockChain.
+ ///
+ /// This builds a new block chain representing a single basic block in the
+ /// function. It also registers itself as the chain that block participates
+ /// in with the BlockToChain mapping.
+ BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
+ : Blocks(1, BB), BlockToChain(BlockToChain) {
+ assert(BB && "Cannot create a chain with a null basic block");
+ BlockToChain[BB] = this;
+ }
+
+ /// Iterator over blocks within the chain.
+ using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
+ using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
+
+ /// Beginning of blocks within the chain.
+ iterator begin() { return Blocks.begin(); }
+ const_iterator begin() const { return Blocks.begin(); }
+
+ /// End of blocks within the chain.
+ iterator end() { return Blocks.end(); }
+ const_iterator end() const { return Blocks.end(); }
+
+ bool remove(MachineBasicBlock* BB) {
+ for(iterator i = begin(); i != end(); ++i) {
+ if (*i == BB) {
+ Blocks.erase(i);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /// Merge a block chain into this one.
+ ///
+ /// This routine merges a block chain into this one. It takes care of forming
+ /// a contiguous sequence of basic blocks, updating the edge list, and
+ /// updating the block -> chain mapping. It does not free or tear down the
+ /// old chain, but the old chain's block list is no longer valid.
+ void merge(MachineBasicBlock *BB, BlockChain *Chain) {
+ assert(BB && "Can't merge a null block.");
+ assert(!Blocks.empty() && "Can't merge into an empty chain.");
+
+ // Fast path in case we don't have a chain already.
+ if (!Chain) {
+ assert(!BlockToChain[BB] &&
+ "Passed chain is null, but BB has entry in BlockToChain.");
+ Blocks.push_back(BB);
+ BlockToChain[BB] = this;
+ return;
+ }
+
+ assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
+ assert(Chain->begin() != Chain->end());
+
+ // Update the incoming blocks to point to this chain, and add them to the
+ // chain structure.
+ for (MachineBasicBlock *ChainBB : *Chain) {
+ Blocks.push_back(ChainBB);
+ assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
+ BlockToChain[ChainBB] = this;
+ }
+ }
+
+#ifndef NDEBUG
+ /// Dump the blocks in this chain.
+ LLVM_DUMP_METHOD void dump() {
+ for (MachineBasicBlock *MBB : *this)
+ MBB->dump();
+ }
+#endif // NDEBUG
+
+ /// Count of predecessors of any block within the chain which have not
+ /// yet been scheduled. In general, we will delay scheduling this chain
+ /// until those predecessors are scheduled (or we find a sufficiently good
+ /// reason to override this heuristic.) Note that when forming loop chains,
+ /// blocks outside the loop are ignored and treated as if they were already
+ /// scheduled.
+ ///
+ /// Note: This field is reinitialized multiple times - once for each loop,
+ /// and then once for the function as a whole.
+ unsigned UnscheduledPredecessors = 0;
+};
+
+class MachineBlockPlacement : public MachineFunctionPass {
+ /// A type for a block filter set.
+ using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
+
+ /// Pair struct containing basic block and taildup profitability
+ struct BlockAndTailDupResult {
+ MachineBasicBlock *BB;
+ bool ShouldTailDup;
+ };
+
+ /// Triple struct containing edge weight and the edge.
+ struct WeightedEdge {
+ BlockFrequency Weight;
+ MachineBasicBlock *Src;
+ MachineBasicBlock *Dest;
+ };
+
+ /// work lists of blocks that are ready to be laid out
+ SmallVector<MachineBasicBlock *, 16> BlockWorkList;
+ SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
+
+ /// Edges that have already been computed as optimal.
+ DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
+
+ /// Machine Function
+ MachineFunction *F;
+
+ /// A handle to the branch probability pass.
+ const MachineBranchProbabilityInfo *MBPI;
+
+ /// A handle to the function-wide block frequency pass.
+ std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
+
+ /// A handle to the loop info.
+ MachineLoopInfo *MLI;
+
+ /// Preferred loop exit.
+ /// Member variable for convenience. It may be removed by duplication deep
+ /// in the call stack.
+ MachineBasicBlock *PreferredLoopExit;
+
+ /// A handle to the target's instruction info.
+ const TargetInstrInfo *TII;
+
+ /// A handle to the target's lowering info.
+ const TargetLoweringBase *TLI;
+
+ /// A handle to the post dominator tree.
+ MachinePostDominatorTree *MPDT;
+
+ ProfileSummaryInfo *PSI;
+
+ /// Duplicator used to duplicate tails during placement.
+ ///
+ /// Placement decisions can open up new tail duplication opportunities, but
+ /// since tail duplication affects placement decisions of later blocks, it
+ /// must be done inline.
+ TailDuplicator TailDup;
+
+ /// Allocator and owner of BlockChain structures.
+ ///
+ /// We build BlockChains lazily while processing the loop structure of
+ /// a function. To reduce malloc traffic, we allocate them using this
+ /// slab-like allocator, and destroy them after the pass completes. An
+ /// important guarantee is that this allocator produces stable pointers to
+ /// the chains.
+ SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
+
+ /// Function wide BasicBlock to BlockChain mapping.
+ ///
+ /// This mapping allows efficiently moving from any given basic block to the
+ /// BlockChain it participates in, if any. We use it to, among other things,
+ /// allow implicitly defining edges between chains as the existing edges
+ /// between basic blocks.
+ DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
+
+#ifndef NDEBUG
+ /// The set of basic blocks that have terminators that cannot be fully
+ /// analyzed. These basic blocks cannot be re-ordered safely by
+ /// MachineBlockPlacement, and we must preserve physical layout of these
+ /// blocks and their successors through the pass.
+ SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
+#endif
+
+ /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
+ /// if the count goes to 0, add them to the appropriate work list.
+ void markChainSuccessors(
+ const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
+ const BlockFilterSet *BlockFilter = nullptr);
+
+ /// Decrease the UnscheduledPredecessors count for a single block, and
+ /// if the count goes to 0, add them to the appropriate work list.
+ void markBlockSuccessors(
+ const BlockChain &Chain, const MachineBasicBlock *BB,
+ const MachineBasicBlock *LoopHeaderBB,
+ const BlockFilterSet *BlockFilter = nullptr);
+
+ BranchProbability
+ collectViableSuccessors(
+ const MachineBasicBlock *BB, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter,
+ SmallVector<MachineBasicBlock *, 4> &Successors);
+ bool shouldPredBlockBeOutlined(
+ const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter,
+ BranchProbability SuccProb, BranchProbability HotProb);
+ bool repeatedlyTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *&LPred,
+ const MachineBasicBlock *LoopHeaderBB,
+ BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt);
+ bool maybeTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *LPred,
+ BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ bool &DuplicatedToLPred);
+ bool hasBetterLayoutPredecessor(
+ const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+ const BlockChain &SuccChain, BranchProbability SuccProb,
+ BranchProbability RealSuccProb, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter);
+ BlockAndTailDupResult selectBestSuccessor(
+ const MachineBasicBlock *BB, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter);
+ MachineBasicBlock *selectBestCandidateBlock(
+ const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
+ MachineBasicBlock *getFirstUnplacedBlock(
+ const BlockChain &PlacedChain,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ const BlockFilterSet *BlockFilter);
+
+ /// Add a basic block to the work list if it is appropriate.
+ ///
+ /// If the optional parameter BlockFilter is provided, only MBB
+ /// present in the set will be added to the worklist. If nullptr
+ /// is provided, no filtering occurs.
+ void fillWorkLists(const MachineBasicBlock *MBB,
+ SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
+ const BlockFilterSet *BlockFilter);
+
+ void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
+ BlockFilterSet *BlockFilter = nullptr);
+ bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
+ const MachineBasicBlock *OldTop);
+ bool hasViableTopFallthrough(const MachineBasicBlock *Top,
+ const BlockFilterSet &LoopBlockSet);
+ BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
+ const BlockFilterSet &LoopBlockSet);
+ BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
+ const MachineBasicBlock *OldTop,
+ const MachineBasicBlock *ExitBB,
+ const BlockFilterSet &LoopBlockSet);
+ MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
+ const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
+ MachineBasicBlock *findBestLoopTop(
+ const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
+ MachineBasicBlock *findBestLoopExit(
+ const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
+ BlockFrequency &ExitFreq);
+ BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
+ void buildLoopChains(const MachineLoop &L);
+ void rotateLoop(
+ BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
+ BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
+ void rotateLoopWithProfile(
+ BlockChain &LoopChain, const MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet);
+ void buildCFGChains();
+ void optimizeBranches();
+ void alignBlocks();
+ /// Returns true if a block should be tail-duplicated to increase fallthrough
+ /// opportunities.
+ bool shouldTailDuplicate(MachineBasicBlock *BB);
+ /// Check the edge frequencies to see if tail duplication will increase
+ /// fallthroughs.
+ bool isProfitableToTailDup(
+ const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+ BranchProbability QProb,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter);
+
+ /// Check for a trellis layout.
+ bool isTrellis(const MachineBasicBlock *BB,
+ const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter);
+
+ /// Get the best successor given a trellis layout.
+ BlockAndTailDupResult getBestTrellisSuccessor(
+ const MachineBasicBlock *BB,
+ const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+ BranchProbability AdjustedSumProb, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter);
+
+ /// Get the best pair of non-conflicting edges.
+ static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
+ const MachineBasicBlock *BB,
+ MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
+
+ /// Returns true if a block can tail duplicate into all unplaced
+ /// predecessors. Filters based on loop.
+ bool canTailDuplicateUnplacedPreds(
+ const MachineBasicBlock *BB, MachineBasicBlock *Succ,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter);
+
+ /// Find chains of triangles to tail-duplicate where a global analysis works,
+ /// but a local analysis would not find them.
+ void precomputeTriangleChains();
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ MachineBlockPlacement() : MachineFunctionPass(ID) {
+ initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ bool allowTailDupPlacement() const {
+ assert(F);
+ return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ if (TailDupPlacement)
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ AU.addRequired<TargetPassConfig>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char MachineBlockPlacement::ID = 0;
+
+char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
+
+INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
+ "Branch Probability Basic Block Placement", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
+ "Branch Probability Basic Block Placement", false, false)
+
+#ifndef NDEBUG
+/// Helper to print the name of a MBB.
+///
+/// Only used by debug logging.
+static std::string getBlockName(const MachineBasicBlock *BB) {
+ std::string Result;
+ raw_string_ostream OS(Result);
+ OS << printMBBReference(*BB);
+ OS << " ('" << BB->getName() << "')";
+ OS.flush();
+ return Result;
+}
+#endif
+
+/// Mark a chain's successors as having one fewer preds.
+///
+/// When a chain is being merged into the "placed" chain, this routine will
+/// quickly walk the successors of each block in the chain and mark them as
+/// having one fewer active predecessor. It also adds any successors of this
+/// chain which reach the zero-predecessor state to the appropriate worklist.
+void MachineBlockPlacement::markChainSuccessors(
+ const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
+ const BlockFilterSet *BlockFilter) {
+ // Walk all the blocks in this chain, marking their successors as having
+ // a predecessor placed.
+ for (MachineBasicBlock *MBB : Chain) {
+ markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
+ }
+}
+
+/// Mark a single block's successors as having one fewer preds.
+///
+/// Under normal circumstances, this is only called by markChainSuccessors,
+/// but if a block that was to be placed is completely tail-duplicated away,
+/// and was duplicated into the chain end, we need to redo markBlockSuccessors
+/// for just that block.
+void MachineBlockPlacement::markBlockSuccessors(
+ const BlockChain &Chain, const MachineBasicBlock *MBB,
+ const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
+ // Add any successors for which this is the only un-placed in-loop
+ // predecessor to the worklist as a viable candidate for CFG-neutral
+ // placement. No subsequent placement of this block will violate the CFG
+ // shape, so we get to use heuristics to choose a favorable placement.
+ for (MachineBasicBlock *Succ : MBB->successors()) {
+ if (BlockFilter && !BlockFilter->count(Succ))
+ continue;
+ BlockChain &SuccChain = *BlockToChain[Succ];
+ // Disregard edges within a fixed chain, or edges to the loop header.
+ if (&Chain == &SuccChain || Succ == LoopHeaderBB)
+ continue;
+
+ // This is a cross-chain edge that is within the loop, so decrement the
+ // loop predecessor count of the destination chain.
+ if (SuccChain.UnscheduledPredecessors == 0 ||
+ --SuccChain.UnscheduledPredecessors > 0)
+ continue;
+
+ auto *NewBB = *SuccChain.begin();
+ if (NewBB->isEHPad())
+ EHPadWorkList.push_back(NewBB);
+ else
+ BlockWorkList.push_back(NewBB);
+ }
+}
+
+/// This helper function collects the set of successors of block
+/// \p BB that are allowed to be its layout successors, and return
+/// the total branch probability of edges from \p BB to those
+/// blocks.
+BranchProbability MachineBlockPlacement::collectViableSuccessors(
+ const MachineBasicBlock *BB, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter,
+ SmallVector<MachineBasicBlock *, 4> &Successors) {
+ // Adjust edge probabilities by excluding edges pointing to blocks that is
+ // either not in BlockFilter or is already in the current chain. Consider the
+ // following CFG:
+ //
+ // --->A
+ // | / \
+ // | B C
+ // | \ / \
+ // ----D E
+ //
+ // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
+ // A->C is chosen as a fall-through, D won't be selected as a successor of C
+ // due to CFG constraint (the probability of C->D is not greater than
+ // HotProb to break topo-order). If we exclude E that is not in BlockFilter
+ // when calculating the probability of C->D, D will be selected and we
+ // will get A C D B as the layout of this loop.
+ auto AdjustedSumProb = BranchProbability::getOne();
+ for (MachineBasicBlock *Succ : BB->successors()) {
+ bool SkipSucc = false;
+ if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
+ SkipSucc = true;
+ } else {
+ BlockChain *SuccChain = BlockToChain[Succ];
+ if (SuccChain == &Chain) {
+ SkipSucc = true;
+ } else if (Succ != *SuccChain->begin()) {
+ LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
+ << " -> Mid chain!\n");
+ continue;
+ }
+ }
+ if (SkipSucc)
+ AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
+ else
+ Successors.push_back(Succ);
+ }
+
+ return AdjustedSumProb;
+}
+
+/// The helper function returns the branch probability that is adjusted
+/// or normalized over the new total \p AdjustedSumProb.
+static BranchProbability
+getAdjustedProbability(BranchProbability OrigProb,
+ BranchProbability AdjustedSumProb) {
+ BranchProbability SuccProb;
+ uint32_t SuccProbN = OrigProb.getNumerator();
+ uint32_t SuccProbD = AdjustedSumProb.getNumerator();
+ if (SuccProbN >= SuccProbD)
+ SuccProb = BranchProbability::getOne();
+ else
+ SuccProb = BranchProbability(SuccProbN, SuccProbD);
+
+ return SuccProb;
+}
+
+/// Check if \p BB has exactly the successors in \p Successors.
+static bool
+hasSameSuccessors(MachineBasicBlock &BB,
+ SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
+ if (BB.succ_size() != Successors.size())
+ return false;
+ // We don't want to count self-loops
+ if (Successors.count(&BB))
+ return false;
+ for (MachineBasicBlock *Succ : BB.successors())
+ if (!Successors.count(Succ))
+ return false;
+ return true;
+}
+
+/// Check if a block should be tail duplicated to increase fallthrough
+/// opportunities.
+/// \p BB Block to check.
+bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
+ // Blocks with single successors don't create additional fallthrough
+ // opportunities. Don't duplicate them. TODO: When conditional exits are
+ // analyzable, allow them to be duplicated.
+ bool IsSimple = TailDup.isSimpleBB(BB);
+
+ if (BB->succ_size() == 1)
+ return false;
+ return TailDup.shouldTailDuplicate(IsSimple, *BB);
+}
+
+/// Compare 2 BlockFrequency's with a small penalty for \p A.
+/// In order to be conservative, we apply a X% penalty to account for
+/// increased icache pressure and static heuristics. For small frequencies
+/// we use only the numerators to improve accuracy. For simplicity, we assume the
+/// penalty is less than 100%
+/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
+static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
+ uint64_t EntryFreq) {
+ BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
+ BlockFrequency Gain = A - B;
+ return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
+}
+
+/// Check the edge frequencies to see if tail duplication will increase
+/// fallthroughs. It only makes sense to call this function when
+/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
+/// always locally profitable if we would have picked \p Succ without
+/// considering duplication.
+bool MachineBlockPlacement::isProfitableToTailDup(
+ const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+ BranchProbability QProb,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
+ // We need to do a probability calculation to make sure this is profitable.
+ // First: does succ have a successor that post-dominates? This affects the
+ // calculation. The 2 relevant cases are:
+ // BB BB
+ // | \Qout | \Qout
+ // P| C |P C
+ // = C' = C'
+ // | /Qin | /Qin
+ // | / | /
+ // Succ Succ
+ // / \ | \ V
+ // U/ =V |U \
+ // / \ = D
+ // D E | /
+ // | /
+ // |/
+ // PDom
+ // '=' : Branch taken for that CFG edge
+ // In the second case, Placing Succ while duplicating it into C prevents the
+ // fallthrough of Succ into either D or PDom, because they now have C as an
+ // unplaced predecessor
+
+ // Start by figuring out which case we fall into
+ MachineBasicBlock *PDom = nullptr;
+ SmallVector<MachineBasicBlock *, 4> SuccSuccs;
+ // Only scan the relevant successors
+ auto AdjustedSuccSumProb =
+ collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
+ BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
+ auto BBFreq = MBFI->getBlockFreq(BB);
+ auto SuccFreq = MBFI->getBlockFreq(Succ);
+ BlockFrequency P = BBFreq * PProb;
+ BlockFrequency Qout = BBFreq * QProb;
+ uint64_t EntryFreq = MBFI->getEntryFreq();
+ // If there are no more successors, it is profitable to copy, as it strictly
+ // increases fallthrough.
+ if (SuccSuccs.size() == 0)
+ return greaterWithBias(P, Qout, EntryFreq);
+
+ auto BestSuccSucc = BranchProbability::getZero();
+ // Find the PDom or the best Succ if no PDom exists.
+ for (MachineBasicBlock *SuccSucc : SuccSuccs) {
+ auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
+ if (Prob > BestSuccSucc)
+ BestSuccSucc = Prob;
+ if (PDom == nullptr)
+ if (MPDT->dominates(SuccSucc, Succ)) {
+ PDom = SuccSucc;
+ break;
+ }
+ }
+ // For the comparisons, we need to know Succ's best incoming edge that isn't
+ // from BB.
+ auto SuccBestPred = BlockFrequency(0);
+ for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
+ if (SuccPred == Succ || SuccPred == BB
+ || BlockToChain[SuccPred] == &Chain
+ || (BlockFilter && !BlockFilter->count(SuccPred)))
+ continue;
+ auto Freq = MBFI->getBlockFreq(SuccPred)
+ * MBPI->getEdgeProbability(SuccPred, Succ);
+ if (Freq > SuccBestPred)
+ SuccBestPred = Freq;
+ }
+ // Qin is Succ's best unplaced incoming edge that isn't BB
+ BlockFrequency Qin = SuccBestPred;
+ // If it doesn't have a post-dominating successor, here is the calculation:
+ // BB BB
+ // | \Qout | \
+ // P| C | =
+ // = C' | C
+ // | /Qin | |
+ // | / | C' (+Succ)
+ // Succ Succ /|
+ // / \ | \/ |
+ // U/ =V | == |
+ // / \ | / \|
+ // D E D E
+ // '=' : Branch taken for that CFG edge
+ // Cost in the first case is: P + V
+ // For this calculation, we always assume P > Qout. If Qout > P
+ // The result of this function will be ignored at the caller.
+ // Let F = SuccFreq - Qin
+ // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
+
+ if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
+ BranchProbability UProb = BestSuccSucc;
+ BranchProbability VProb = AdjustedSuccSumProb - UProb;
+ BlockFrequency F = SuccFreq - Qin;
+ BlockFrequency V = SuccFreq * VProb;
+ BlockFrequency QinU = std::min(Qin, F) * UProb;
+ BlockFrequency BaseCost = P + V;
+ BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
+ return greaterWithBias(BaseCost, DupCost, EntryFreq);
+ }
+ BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
+ BranchProbability VProb = AdjustedSuccSumProb - UProb;
+ BlockFrequency U = SuccFreq * UProb;
+ BlockFrequency V = SuccFreq * VProb;
+ BlockFrequency F = SuccFreq - Qin;
+ // If there is a post-dominating successor, here is the calculation:
+ // BB BB BB BB
+ // | \Qout | \ | \Qout | \
+ // |P C | = |P C | =
+ // = C' |P C = C' |P C
+ // | /Qin | | | /Qin | |
+ // | / | C' (+Succ) | / | C' (+Succ)
+ // Succ Succ /| Succ Succ /|
+ // | \ V | \/ | | \ V | \/ |
+ // |U \ |U /\ =? |U = |U /\ |
+ // = D = = =?| | D | = =|
+ // | / |/ D | / |/ D
+ // | / | / | = | /
+ // |/ | / |/ | =
+ // Dom Dom Dom Dom
+ // '=' : Branch taken for that CFG edge
+ // The cost for taken branches in the first case is P + U
+ // Let F = SuccFreq - Qin
+ // The cost in the second case (assuming independence), given the layout:
+ // BB, Succ, (C+Succ), D, Dom or the layout:
+ // BB, Succ, D, Dom, (C+Succ)
+ // is Qout + max(F, Qin) * U + min(F, Qin)
+ // compare P + U vs Qout + P * U + Qin.
+ //
+ // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
+ //
+ // For the 3rd case, the cost is P + 2 * V
+ // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
+ // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
+ if (UProb > AdjustedSuccSumProb / 2 &&
+ !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
+ Chain, BlockFilter))
+ // Cases 3 & 4
+ return greaterWithBias(
+ (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
+ EntryFreq);
+ // Cases 1 & 2
+ return greaterWithBias((P + U),
+ (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
+ std::max(Qin, F) * UProb),
+ EntryFreq);
+}
+
+/// Check for a trellis layout. \p BB is the upper part of a trellis if its
+/// successors form the lower part of a trellis. A successor set S forms the
+/// lower part of a trellis if all of the predecessors of S are either in S or
+/// have all of S as successors. We ignore trellises where BB doesn't have 2
+/// successors because for fewer than 2, it's trivial, and for 3 or greater they
+/// are very uncommon and complex to compute optimally. Allowing edges within S
+/// is not strictly a trellis, but the same algorithm works, so we allow it.
+bool MachineBlockPlacement::isTrellis(
+ const MachineBasicBlock *BB,
+ const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
+ // Technically BB could form a trellis with branching factor higher than 2.
+ // But that's extremely uncommon.
+ if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
+ return false;
+
+ SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
+ BB->succ_end());
+ // To avoid reviewing the same predecessors twice.
+ SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
+
+ for (MachineBasicBlock *Succ : ViableSuccs) {
+ int PredCount = 0;
+ for (auto SuccPred : Succ->predecessors()) {
+ // Allow triangle successors, but don't count them.
+ if (Successors.count(SuccPred)) {
+ // Make sure that it is actually a triangle.
+ for (MachineBasicBlock *CheckSucc : SuccPred->successors())
+ if (!Successors.count(CheckSucc))
+ return false;
+ continue;
+ }
+ const BlockChain *PredChain = BlockToChain[SuccPred];
+ if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
+ PredChain == &Chain || PredChain == BlockToChain[Succ])
+ continue;
+ ++PredCount;
+ // Perform the successor check only once.
+ if (!SeenPreds.insert(SuccPred).second)
+ continue;
+ if (!hasSameSuccessors(*SuccPred, Successors))
+ return false;
+ }
+ // If one of the successors has only BB as a predecessor, it is not a
+ // trellis.
+ if (PredCount < 1)
+ return false;
+ }
+ return true;
+}
+
+/// Pick the highest total weight pair of edges that can both be laid out.
+/// The edges in \p Edges[0] are assumed to have a different destination than
+/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
+/// the individual highest weight edges to the 2 different destinations, or in
+/// case of a conflict, one of them should be replaced with a 2nd best edge.
+std::pair<MachineBlockPlacement::WeightedEdge,
+ MachineBlockPlacement::WeightedEdge>
+MachineBlockPlacement::getBestNonConflictingEdges(
+ const MachineBasicBlock *BB,
+ MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
+ Edges) {
+ // Sort the edges, and then for each successor, find the best incoming
+ // predecessor. If the best incoming predecessors aren't the same,
+ // then that is clearly the best layout. If there is a conflict, one of the
+ // successors will have to fallthrough from the second best predecessor. We
+ // compare which combination is better overall.
+
+ // Sort for highest frequency.
+ auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
+
+ llvm::stable_sort(Edges[0], Cmp);
+ llvm::stable_sort(Edges[1], Cmp);
+ auto BestA = Edges[0].begin();
+ auto BestB = Edges[1].begin();
+ // Arrange for the correct answer to be in BestA and BestB
+ // If the 2 best edges don't conflict, the answer is already there.
+ if (BestA->Src == BestB->Src) {
+ // Compare the total fallthrough of (Best + Second Best) for both pairs
+ auto SecondBestA = std::next(BestA);
+ auto SecondBestB = std::next(BestB);
+ BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
+ BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
+ if (BestAScore < BestBScore)
+ BestA = SecondBestA;
+ else
+ BestB = SecondBestB;
+ }
+ // Arrange for the BB edge to be in BestA if it exists.
+ if (BestB->Src == BB)
+ std::swap(BestA, BestB);
+ return std::make_pair(*BestA, *BestB);
+}
+
+/// Get the best successor from \p BB based on \p BB being part of a trellis.
+/// We only handle trellises with 2 successors, so the algorithm is
+/// straightforward: Find the best pair of edges that don't conflict. We find
+/// the best incoming edge for each successor in the trellis. If those conflict,
+/// we consider which of them should be replaced with the second best.
+/// Upon return the two best edges will be in \p BestEdges. If one of the edges
+/// comes from \p BB, it will be in \p BestEdges[0]
+MachineBlockPlacement::BlockAndTailDupResult
+MachineBlockPlacement::getBestTrellisSuccessor(
+ const MachineBasicBlock *BB,
+ const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
+ BranchProbability AdjustedSumProb, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter) {
+
+ BlockAndTailDupResult Result = {nullptr, false};
+ SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
+ BB->succ_end());
+
+ // We assume size 2 because it's common. For general n, we would have to do
+ // the Hungarian algorithm, but it's not worth the complexity because more
+ // than 2 successors is fairly uncommon, and a trellis even more so.
+ if (Successors.size() != 2 || ViableSuccs.size() != 2)
+ return Result;
+
+ // Collect the edge frequencies of all edges that form the trellis.
+ SmallVector<WeightedEdge, 8> Edges[2];
+ int SuccIndex = 0;
+ for (auto Succ : ViableSuccs) {
+ for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
+ // Skip any placed predecessors that are not BB
+ if (SuccPred != BB)
+ if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
+ BlockToChain[SuccPred] == &Chain ||
+ BlockToChain[SuccPred] == BlockToChain[Succ])
+ continue;
+ BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
+ MBPI->getEdgeProbability(SuccPred, Succ);
+ Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
+ }
+ ++SuccIndex;
+ }
+
+ // Pick the best combination of 2 edges from all the edges in the trellis.
+ WeightedEdge BestA, BestB;
+ std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
+
+ if (BestA.Src != BB) {
+ // If we have a trellis, and BB doesn't have the best fallthrough edges,
+ // we shouldn't choose any successor. We've already looked and there's a
+ // better fallthrough edge for all the successors.
+ LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
+ return Result;
+ }
+
+ // Did we pick the triangle edge? If tail-duplication is profitable, do
+ // that instead. Otherwise merge the triangle edge now while we know it is
+ // optimal.
+ if (BestA.Dest == BestB.Src) {
+ // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
+ // would be better.
+ MachineBasicBlock *Succ1 = BestA.Dest;
+ MachineBasicBlock *Succ2 = BestB.Dest;
+ // Check to see if tail-duplication would be profitable.
+ if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
+ canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
+ isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
+ Chain, BlockFilter)) {
+ LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
+ MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
+ dbgs() << " Selected: " << getBlockName(Succ2)
+ << ", probability: " << Succ2Prob
+ << " (Tail Duplicate)\n");
+ Result.BB = Succ2;
+ Result.ShouldTailDup = true;
+ return Result;
+ }
+ }
+ // We have already computed the optimal edge for the other side of the
+ // trellis.
+ ComputedEdges[BestB.Src] = { BestB.Dest, false };
+
+ auto TrellisSucc = BestA.Dest;
+ LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
+ MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
+ dbgs() << " Selected: " << getBlockName(TrellisSucc)
+ << ", probability: " << SuccProb << " (Trellis)\n");
+ Result.BB = TrellisSucc;
+ return Result;
+}
+
+/// When the option allowTailDupPlacement() is on, this method checks if the
+/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
+/// into all of its unplaced, unfiltered predecessors, that are not BB.
+bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
+ const MachineBasicBlock *BB, MachineBasicBlock *Succ,
+ const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
+ if (!shouldTailDuplicate(Succ))
+ return false;
+
+ // The result of canTailDuplicate.
+ bool Duplicate = true;
+ // Number of possible duplication.
+ unsigned int NumDup = 0;
+
+ // For CFG checking.
+ SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
+ BB->succ_end());
+ for (MachineBasicBlock *Pred : Succ->predecessors()) {
+ // Make sure all unplaced and unfiltered predecessors can be
+ // tail-duplicated into.
+ // Skip any blocks that are already placed or not in this loop.
+ if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
+ || BlockToChain[Pred] == &Chain)
+ continue;
+ if (!TailDup.canTailDuplicate(Succ, Pred)) {
+ if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
+ // This will result in a trellis after tail duplication, so we don't
+ // need to copy Succ into this predecessor. In the presence
+ // of a trellis tail duplication can continue to be profitable.
+ // For example:
+ // A A
+ // |\ |\
+ // | \ | \
+ // | C | C+BB
+ // | / | |
+ // |/ | |
+ // BB => BB |
+ // |\ |\/|
+ // | \ |/\|
+ // | D | D
+ // | / | /
+ // |/ |/
+ // Succ Succ
+ //
+ // After BB was duplicated into C, the layout looks like the one on the
+ // right. BB and C now have the same successors. When considering
+ // whether Succ can be duplicated into all its unplaced predecessors, we
+ // ignore C.
+ // We can do this because C already has a profitable fallthrough, namely
+ // D. TODO(iteratee): ignore sufficiently cold predecessors for
+ // duplication and for this test.
+ //
+ // This allows trellises to be laid out in 2 separate chains
+ // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
+ // because it allows the creation of 2 fallthrough paths with links
+ // between them, and we correctly identify the best layout for these
+ // CFGs. We want to extend trellises that the user created in addition
+ // to trellises created by tail-duplication, so we just look for the
+ // CFG.
+ continue;
+ Duplicate = false;
+ continue;
+ }
+ NumDup++;
+ }
+
+ // No possible duplication in current filter set.
+ if (NumDup == 0)
+ return false;
+
+ // This is mainly for function exit BB.
+ // The integrated tail duplication is really designed for increasing
+ // fallthrough from predecessors from Succ to its successors. We may need
+ // other machanism to handle different cases.
+ if (Succ->succ_size() == 0)
+ return true;
+
+ // Plus the already placed predecessor.
+ NumDup++;
+
+ // If the duplication candidate has more unplaced predecessors than
+ // successors, the extra duplication can't bring more fallthrough.
+ //
+ // Pred1 Pred2 Pred3
+ // \ | /
+ // \ | /
+ // \ | /
+ // Dup
+ // / \
+ // / \
+ // Succ1 Succ2
+ //
+ // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
+ // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
+ // but the duplication into Pred3 can't increase fallthrough.
+ //
+ // A small number of extra duplication may not hurt too much. We need a better
+ // heuristic to handle it.
+ //
+ // FIXME: we should selectively tail duplicate a BB into part of its
+ // predecessors.
+ if ((NumDup > Succ->succ_size()) || !Duplicate)
+ return false;
+
+ return true;
+}
+
+/// Find chains of triangles where we believe it would be profitable to
+/// tail-duplicate them all, but a local analysis would not find them.
+/// There are 3 ways this can be profitable:
+/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
+/// longer chains)
+/// 2) The chains are statically correlated. Branch probabilities have a very
+/// U-shaped distribution.
+/// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
+/// If the branches in a chain are likely to be from the same side of the
+/// distribution as their predecessor, but are independent at runtime, this
+/// transformation is profitable. (Because the cost of being wrong is a small
+/// fixed cost, unlike the standard triangle layout where the cost of being
+/// wrong scales with the # of triangles.)
+/// 3) The chains are dynamically correlated. If the probability that a previous
+/// branch was taken positively influences whether the next branch will be
+/// taken
+/// We believe that 2 and 3 are common enough to justify the small margin in 1.
+void MachineBlockPlacement::precomputeTriangleChains() {
+ struct TriangleChain {
+ std::vector<MachineBasicBlock *> Edges;
+
+ TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
+ : Edges({src, dst}) {}
+
+ void append(MachineBasicBlock *dst) {
+ assert(getKey()->isSuccessor(dst) &&
+ "Attempting to append a block that is not a successor.");
+ Edges.push_back(dst);
+ }
+
+ unsigned count() const { return Edges.size() - 1; }
+
+ MachineBasicBlock *getKey() const {
+ return Edges.back();
+ }
+ };
+
+ if (TriangleChainCount == 0)
+ return;
+
+ LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
+ // Map from last block to the chain that contains it. This allows us to extend
+ // chains as we find new triangles.
+ DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
+ for (MachineBasicBlock &BB : *F) {
+ // If BB doesn't have 2 successors, it doesn't start a triangle.
+ if (BB.succ_size() != 2)
+ continue;
+ MachineBasicBlock *PDom = nullptr;
+ for (MachineBasicBlock *Succ : BB.successors()) {
+ if (!MPDT->dominates(Succ, &BB))
+ continue;
+ PDom = Succ;
+ break;
+ }
+ // If BB doesn't have a post-dominating successor, it doesn't form a
+ // triangle.
+ if (PDom == nullptr)
+ continue;
+ // If PDom has a hint that it is low probability, skip this triangle.
+ if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
+ continue;
+ // If PDom isn't eligible for duplication, this isn't the kind of triangle
+ // we're looking for.
+ if (!shouldTailDuplicate(PDom))
+ continue;
+ bool CanTailDuplicate = true;
+ // If PDom can't tail-duplicate into it's non-BB predecessors, then this
+ // isn't the kind of triangle we're looking for.
+ for (MachineBasicBlock* Pred : PDom->predecessors()) {
+ if (Pred == &BB)
+ continue;
+ if (!TailDup.canTailDuplicate(PDom, Pred)) {
+ CanTailDuplicate = false;
+ break;
+ }
+ }
+ // If we can't tail-duplicate PDom to its predecessors, then skip this
+ // triangle.
+ if (!CanTailDuplicate)
+ continue;
+
+ // Now we have an interesting triangle. Insert it if it's not part of an
+ // existing chain.
+ // Note: This cannot be replaced with a call insert() or emplace() because
+ // the find key is BB, but the insert/emplace key is PDom.
+ auto Found = TriangleChainMap.find(&BB);
+ // If it is, remove the chain from the map, grow it, and put it back in the
+ // map with the end as the new key.
+ if (Found != TriangleChainMap.end()) {
+ TriangleChain Chain = std::move(Found->second);
+ TriangleChainMap.erase(Found);
+ Chain.append(PDom);
+ TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
+ } else {
+ auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
+ assert(InsertResult.second && "Block seen twice.");
+ (void)InsertResult;
+ }
+ }
+
+ // Iterating over a DenseMap is safe here, because the only thing in the body
+ // of the loop is inserting into another DenseMap (ComputedEdges).
+ // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
+ for (auto &ChainPair : TriangleChainMap) {
+ TriangleChain &Chain = ChainPair.second;
+ // Benchmarking has shown that due to branch correlation duplicating 2 or
+ // more triangles is profitable, despite the calculations assuming
+ // independence.
+ if (Chain.count() < TriangleChainCount)
+ continue;
+ MachineBasicBlock *dst = Chain.Edges.back();
+ Chain.Edges.pop_back();
+ for (MachineBasicBlock *src : reverse(Chain.Edges)) {
+ LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
+ << getBlockName(dst)
+ << " as pre-computed based on triangles.\n");
+
+ auto InsertResult = ComputedEdges.insert({src, {dst, true}});
+ assert(InsertResult.second && "Block seen twice.");
+ (void)InsertResult;
+
+ dst = src;
+ }
+ }
+}
+
+// When profile is not present, return the StaticLikelyProb.
+// When profile is available, we need to handle the triangle-shape CFG.
+static BranchProbability getLayoutSuccessorProbThreshold(
+ const MachineBasicBlock *BB) {
+ if (!BB->getParent()->getFunction().hasProfileData())
+ return BranchProbability(StaticLikelyProb, 100);
+ if (BB->succ_size() == 2) {
+ const MachineBasicBlock *Succ1 = *BB->succ_begin();
+ const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
+ if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
+ /* See case 1 below for the cost analysis. For BB->Succ to
+ * be taken with smaller cost, the following needs to hold:
+ * Prob(BB->Succ) > 2 * Prob(BB->Pred)
+ * So the threshold T in the calculation below
+ * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
+ * So T / (1 - T) = 2, Yielding T = 2/3
+ * Also adding user specified branch bias, we have
+ * T = (2/3)*(ProfileLikelyProb/50)
+ * = (2*ProfileLikelyProb)/150)
+ */
+ return BranchProbability(2 * ProfileLikelyProb, 150);
+ }
+ }
+ return BranchProbability(ProfileLikelyProb, 100);
+}
+
+/// Checks to see if the layout candidate block \p Succ has a better layout
+/// predecessor than \c BB. If yes, returns true.
+/// \p SuccProb: The probability adjusted for only remaining blocks.
+/// Only used for logging
+/// \p RealSuccProb: The un-adjusted probability.
+/// \p Chain: The chain that BB belongs to and Succ is being considered for.
+/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
+/// considered
+bool MachineBlockPlacement::hasBetterLayoutPredecessor(
+ const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
+ const BlockChain &SuccChain, BranchProbability SuccProb,
+ BranchProbability RealSuccProb, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter) {
+
+ // There isn't a better layout when there are no unscheduled predecessors.
+ if (SuccChain.UnscheduledPredecessors == 0)
+ return false;
+
+ // There are two basic scenarios here:
+ // -------------------------------------
+ // Case 1: triangular shape CFG (if-then):
+ // BB
+ // | \
+ // | \
+ // | Pred
+ // | /
+ // Succ
+ // In this case, we are evaluating whether to select edge -> Succ, e.g.
+ // set Succ as the layout successor of BB. Picking Succ as BB's
+ // successor breaks the CFG constraints (FIXME: define these constraints).
+ // With this layout, Pred BB
+ // is forced to be outlined, so the overall cost will be cost of the
+ // branch taken from BB to Pred, plus the cost of back taken branch
+ // from Pred to Succ, as well as the additional cost associated
+ // with the needed unconditional jump instruction from Pred To Succ.
+
+ // The cost of the topological order layout is the taken branch cost
+ // from BB to Succ, so to make BB->Succ a viable candidate, the following
+ // must hold:
+ // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
+ // < freq(BB->Succ) * taken_branch_cost.
+ // Ignoring unconditional jump cost, we get
+ // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
+ // prob(BB->Succ) > 2 * prob(BB->Pred)
+ //
+ // When real profile data is available, we can precisely compute the
+ // probability threshold that is needed for edge BB->Succ to be considered.
+ // Without profile data, the heuristic requires the branch bias to be
+ // a lot larger to make sure the signal is very strong (e.g. 80% default).
+ // -----------------------------------------------------------------
+ // Case 2: diamond like CFG (if-then-else):
+ // S
+ // / \
+ // | \
+ // BB Pred
+ // \ /
+ // Succ
+ // ..
+ //
+ // The current block is BB and edge BB->Succ is now being evaluated.
+ // Note that edge S->BB was previously already selected because
+ // prob(S->BB) > prob(S->Pred).
+ // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
+ // choose Pred, we will have a topological ordering as shown on the left
+ // in the picture below. If we choose Succ, we have the solution as shown
+ // on the right:
+ //
+ // topo-order:
+ //
+ // S----- ---S
+ // | | | |
+ // ---BB | | BB
+ // | | | |
+ // | Pred-- | Succ--
+ // | | | |
+ // ---Succ ---Pred--
+ //
+ // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
+ // = freq(S->Pred) + freq(S->BB)
+ //
+ // If we have profile data (i.e, branch probabilities can be trusted), the
+ // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
+ // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
+ // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
+ // means the cost of topological order is greater.
+ // When profile data is not available, however, we need to be more
+ // conservative. If the branch prediction is wrong, breaking the topo-order
+ // will actually yield a layout with large cost. For this reason, we need
+ // strong biased branch at block S with Prob(S->BB) in order to select
+ // BB->Succ. This is equivalent to looking the CFG backward with backward
+ // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
+ // profile data).
+ // --------------------------------------------------------------------------
+ // Case 3: forked diamond
+ // S
+ // / \
+ // / \
+ // BB Pred
+ // | \ / |
+ // | \ / |
+ // | X |
+ // | / \ |
+ // | / \ |
+ // S1 S2
+ //
+ // The current block is BB and edge BB->S1 is now being evaluated.
+ // As above S->BB was already selected because
+ // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
+ //
+ // topo-order:
+ //
+ // S-------| ---S
+ // | | | |
+ // ---BB | | BB
+ // | | | |
+ // | Pred----| | S1----
+ // | | | |
+ // --(S1 or S2) ---Pred--
+ // |
+ // S2
+ //
+ // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
+ // + min(freq(Pred->S1), freq(Pred->S2))
+ // Non-topo-order cost:
+ // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
+ // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
+ // is 0. Then the non topo layout is better when
+ // freq(S->Pred) < freq(BB->S1).
+ // This is exactly what is checked below.
+ // Note there are other shapes that apply (Pred may not be a single block,
+ // but they all fit this general pattern.)
+ BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
+
+ // Make sure that a hot successor doesn't have a globally more
+ // important predecessor.
+ BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
+ bool BadCFGConflict = false;
+
+ for (MachineBasicBlock *Pred : Succ->predecessors()) {
+ BlockChain *PredChain = BlockToChain[Pred];
+ if (Pred == Succ || PredChain == &SuccChain ||
+ (BlockFilter && !BlockFilter->count(Pred)) ||
+ PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
+ // This check is redundant except for look ahead. This function is
+ // called for lookahead by isProfitableToTailDup when BB hasn't been
+ // placed yet.
+ (Pred == BB))
+ continue;
+ // Do backward checking.
+ // For all cases above, we need a backward checking to filter out edges that
+ // are not 'strongly' biased.
+ // BB Pred
+ // \ /
+ // Succ
+ // We select edge BB->Succ if
+ // freq(BB->Succ) > freq(Succ) * HotProb
+ // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
+ // HotProb
+ // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
+ // Case 1 is covered too, because the first equation reduces to:
+ // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
+ BlockFrequency PredEdgeFreq =
+ MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
+ if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
+ BadCFGConflict = true;
+ break;
+ }
+ }
+
+ if (BadCFGConflict) {
+ LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
+ << SuccProb << " (prob) (non-cold CFG conflict)\n");
+ return true;
+ }
+
+ return false;
+}
+
+/// Select the best successor for a block.
+///
+/// This looks across all successors of a particular block and attempts to
+/// select the "best" one to be the layout successor. It only considers direct
+/// successors which also pass the block filter. It will attempt to avoid
+/// breaking CFG structure, but cave and break such structures in the case of
+/// very hot successor edges.
+///
+/// \returns The best successor block found, or null if none are viable, along
+/// with a boolean indicating if tail duplication is necessary.
+MachineBlockPlacement::BlockAndTailDupResult
+MachineBlockPlacement::selectBestSuccessor(
+ const MachineBasicBlock *BB, const BlockChain &Chain,
+ const BlockFilterSet *BlockFilter) {
+ const BranchProbability HotProb(StaticLikelyProb, 100);
+
+ BlockAndTailDupResult BestSucc = { nullptr, false };
+ auto BestProb = BranchProbability::getZero();
+
+ SmallVector<MachineBasicBlock *, 4> Successors;
+ auto AdjustedSumProb =
+ collectViableSuccessors(BB, Chain, BlockFilter, Successors);
+
+ LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
+ << "\n");
+
+ // if we already precomputed the best successor for BB, return that if still
+ // applicable.
+ auto FoundEdge = ComputedEdges.find(BB);
+ if (FoundEdge != ComputedEdges.end()) {
+ MachineBasicBlock *Succ = FoundEdge->second.BB;
+ ComputedEdges.erase(FoundEdge);
+ BlockChain *SuccChain = BlockToChain[Succ];
+ if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
+ SuccChain != &Chain && Succ == *SuccChain->begin())
+ return FoundEdge->second;
+ }
+
+ // if BB is part of a trellis, Use the trellis to determine the optimal
+ // fallthrough edges
+ if (isTrellis(BB, Successors, Chain, BlockFilter))
+ return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
+ BlockFilter);
+
+ // For blocks with CFG violations, we may be able to lay them out anyway with
+ // tail-duplication. We keep this vector so we can perform the probability
+ // calculations the minimum number of times.
+ SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
+ DupCandidates;
+ for (MachineBasicBlock *Succ : Successors) {
+ auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
+ BranchProbability SuccProb =
+ getAdjustedProbability(RealSuccProb, AdjustedSumProb);
+
+ BlockChain &SuccChain = *BlockToChain[Succ];
+ // Skip the edge \c BB->Succ if block \c Succ has a better layout
+ // predecessor that yields lower global cost.
+ if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
+ Chain, BlockFilter)) {
+ // If tail duplication would make Succ profitable, place it.
+ if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
+ DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
+ continue;
+ }
+
+ LLVM_DEBUG(
+ dbgs() << " Candidate: " << getBlockName(Succ)
+ << ", probability: " << SuccProb
+ << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
+ << "\n");
+
+ if (BestSucc.BB && BestProb >= SuccProb) {
+ LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
+ BestSucc.BB = Succ;
+ BestProb = SuccProb;
+ }
+ // Handle the tail duplication candidates in order of decreasing probability.
+ // Stop at the first one that is profitable. Also stop if they are less
+ // profitable than BestSucc. Position is important because we preserve it and
+ // prefer first best match. Here we aren't comparing in order, so we capture
+ // the position instead.
+ llvm::stable_sort(DupCandidates,
+ [](std::tuple<BranchProbability, MachineBasicBlock *> L,
+ std::tuple<BranchProbability, MachineBasicBlock *> R) {
+ return std::get<0>(L) > std::get<0>(R);
+ });
+ for (auto &Tup : DupCandidates) {
+ BranchProbability DupProb;
+ MachineBasicBlock *Succ;
+ std::tie(DupProb, Succ) = Tup;
+ if (DupProb < BestProb)
+ break;
+ if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
+ && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
+ LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
+ << ", probability: " << DupProb
+ << " (Tail Duplicate)\n");
+ BestSucc.BB = Succ;
+ BestSucc.ShouldTailDup = true;
+ break;
+ }
+ }
+
+ if (BestSucc.BB)
+ LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
+
+ return BestSucc;
+}
+
+/// Select the best block from a worklist.
+///
+/// This looks through the provided worklist as a list of candidate basic
+/// blocks and select the most profitable one to place. The definition of
+/// profitable only really makes sense in the context of a loop. This returns
+/// the most frequently visited block in the worklist, which in the case of
+/// a loop, is the one most desirable to be physically close to the rest of the
+/// loop body in order to improve i-cache behavior.
+///
+/// \returns The best block found, or null if none are viable.
+MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
+ const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
+ // Once we need to walk the worklist looking for a candidate, cleanup the
+ // worklist of already placed entries.
+ // FIXME: If this shows up on profiles, it could be folded (at the cost of
+ // some code complexity) into the loop below.
+ WorkList.erase(llvm::remove_if(WorkList,
+ [&](MachineBasicBlock *BB) {
+ return BlockToChain.lookup(BB) == &Chain;
+ }),
+ WorkList.end());
+
+ if (WorkList.empty())
+ return nullptr;
+
+ bool IsEHPad = WorkList[0]->isEHPad();
+
+ MachineBasicBlock *BestBlock = nullptr;
+ BlockFrequency BestFreq;
+ for (MachineBasicBlock *MBB : WorkList) {
+ assert(MBB->isEHPad() == IsEHPad &&
+ "EHPad mismatch between block and work list.");
+
+ BlockChain &SuccChain = *BlockToChain[MBB];
+ if (&SuccChain == &Chain)
+ continue;
+
+ assert(SuccChain.UnscheduledPredecessors == 0 &&
+ "Found CFG-violating block");
+
+ BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
+ LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
+ MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
+
+ // For ehpad, we layout the least probable first as to avoid jumping back
+ // from least probable landingpads to more probable ones.
+ //
+ // FIXME: Using probability is probably (!) not the best way to achieve
+ // this. We should probably have a more principled approach to layout
+ // cleanup code.
+ //
+ // The goal is to get:
+ //
+ // +--------------------------+
+ // | V
+ // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
+ //
+ // Rather than:
+ //
+ // +-------------------------------------+
+ // V |
+ // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
+ if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
+ continue;
+
+ BestBlock = MBB;
+ BestFreq = CandidateFreq;
+ }
+
+ return BestBlock;
+}
+
+/// Retrieve the first unplaced basic block.
+///
+/// This routine is called when we are unable to use the CFG to walk through
+/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
+/// We walk through the function's blocks in order, starting from the
+/// LastUnplacedBlockIt. We update this iterator on each call to avoid
+/// re-scanning the entire sequence on repeated calls to this routine.
+MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
+ const BlockChain &PlacedChain,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ const BlockFilterSet *BlockFilter) {
+ for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
+ ++I) {
+ if (BlockFilter && !BlockFilter->count(&*I))
+ continue;
+ if (BlockToChain[&*I] != &PlacedChain) {
+ PrevUnplacedBlockIt = I;
+ // Now select the head of the chain to which the unplaced block belongs
+ // as the block to place. This will force the entire chain to be placed,
+ // and satisfies the requirements of merging chains.
+ return *BlockToChain[&*I]->begin();
+ }
+ }
+ return nullptr;
+}
+
+void MachineBlockPlacement::fillWorkLists(
+ const MachineBasicBlock *MBB,
+ SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
+ const BlockFilterSet *BlockFilter = nullptr) {
+ BlockChain &Chain = *BlockToChain[MBB];
+ if (!UpdatedPreds.insert(&Chain).second)
+ return;
+
+ assert(
+ Chain.UnscheduledPredecessors == 0 &&
+ "Attempting to place block with unscheduled predecessors in worklist.");
+ for (MachineBasicBlock *ChainBB : Chain) {
+ assert(BlockToChain[ChainBB] == &Chain &&
+ "Block in chain doesn't match BlockToChain map.");
+ for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
+ if (BlockFilter && !BlockFilter->count(Pred))
+ continue;
+ if (BlockToChain[Pred] == &Chain)
+ continue;
+ ++Chain.UnscheduledPredecessors;
+ }
+ }
+
+ if (Chain.UnscheduledPredecessors != 0)
+ return;
+
+ MachineBasicBlock *BB = *Chain.begin();
+ if (BB->isEHPad())
+ EHPadWorkList.push_back(BB);
+ else
+ BlockWorkList.push_back(BB);
+}
+
+void MachineBlockPlacement::buildChain(
+ const MachineBasicBlock *HeadBB, BlockChain &Chain,
+ BlockFilterSet *BlockFilter) {
+ assert(HeadBB && "BB must not be null.\n");
+ assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
+ MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
+
+ const MachineBasicBlock *LoopHeaderBB = HeadBB;
+ markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
+ MachineBasicBlock *BB = *std::prev(Chain.end());
+ while (true) {
+ assert(BB && "null block found at end of chain in loop.");
+ assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
+ assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
+
+
+ // Look for the best viable successor if there is one to place immediately
+ // after this block.
+ auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
+ MachineBasicBlock* BestSucc = Result.BB;
+ bool ShouldTailDup = Result.ShouldTailDup;
+ if (allowTailDupPlacement())
+ ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
+ Chain,
+ BlockFilter));
+
+ // If an immediate successor isn't available, look for the best viable
+ // block among those we've identified as not violating the loop's CFG at
+ // this point. This won't be a fallthrough, but it will increase locality.
+ if (!BestSucc)
+ BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
+ if (!BestSucc)
+ BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
+
+ if (!BestSucc) {
+ BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
+ if (!BestSucc)
+ break;
+
+ LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
+ "layout successor until the CFG reduces\n");
+ }
+
+ // Placement may have changed tail duplication opportunities.
+ // Check for that now.
+ if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
+ // If the chosen successor was duplicated into all its predecessors,
+ // don't bother laying it out, just go round the loop again with BB as
+ // the chain end.
+ if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
+ BlockFilter, PrevUnplacedBlockIt))
+ continue;
+ }
+
+ // Place this block, updating the datastructures to reflect its placement.
+ BlockChain &SuccChain = *BlockToChain[BestSucc];
+ // Zero out UnscheduledPredecessors for the successor we're about to merge in case
+ // we selected a successor that didn't fit naturally into the CFG.
+ SuccChain.UnscheduledPredecessors = 0;
+ LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
+ << getBlockName(BestSucc) << "\n");
+ markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
+ Chain.merge(BestSucc, &SuccChain);
+ BB = *std::prev(Chain.end());
+ }
+
+ LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
+ << getBlockName(*Chain.begin()) << "\n");
+}
+
+// If bottom of block BB has only one successor OldTop, in most cases it is
+// profitable to move it before OldTop, except the following case:
+//
+// -->OldTop<-
+// | . |
+// | . |
+// | . |
+// ---Pred |
+// | |
+// BB-----
+//
+// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
+// layout the other successor below it, so it can't reduce taken branch.
+// In this case we keep its original layout.
+bool
+MachineBlockPlacement::canMoveBottomBlockToTop(
+ const MachineBasicBlock *BottomBlock,
+ const MachineBasicBlock *OldTop) {
+ if (BottomBlock->pred_size() != 1)
+ return true;
+ MachineBasicBlock *Pred = *BottomBlock->pred_begin();
+ if (Pred->succ_size() != 2)
+ return true;
+
+ MachineBasicBlock *OtherBB = *Pred->succ_begin();
+ if (OtherBB == BottomBlock)
+ OtherBB = *Pred->succ_rbegin();
+ if (OtherBB == OldTop)
+ return false;
+
+ return true;
+}
+
+// Find out the possible fall through frequence to the top of a loop.
+BlockFrequency
+MachineBlockPlacement::TopFallThroughFreq(
+ const MachineBasicBlock *Top,
+ const BlockFilterSet &LoopBlockSet) {
+ BlockFrequency MaxFreq = 0;
+ for (MachineBasicBlock *Pred : Top->predecessors()) {
+ BlockChain *PredChain = BlockToChain[Pred];
+ if (!LoopBlockSet.count(Pred) &&
+ (!PredChain || Pred == *std::prev(PredChain->end()))) {
+ // Found a Pred block can be placed before Top.
+ // Check if Top is the best successor of Pred.
+ auto TopProb = MBPI->getEdgeProbability(Pred, Top);
+ bool TopOK = true;
+ for (MachineBasicBlock *Succ : Pred->successors()) {
+ auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
+ BlockChain *SuccChain = BlockToChain[Succ];
+ // Check if Succ can be placed after Pred.
+ // Succ should not be in any chain, or it is the head of some chain.
+ if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
+ (!SuccChain || Succ == *SuccChain->begin())) {
+ TopOK = false;
+ break;
+ }
+ }
+ if (TopOK) {
+ BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
+ MBPI->getEdgeProbability(Pred, Top);
+ if (EdgeFreq > MaxFreq)
+ MaxFreq = EdgeFreq;
+ }
+ }
+ }
+ return MaxFreq;
+}
+
+// Compute the fall through gains when move NewTop before OldTop.
+//
+// In following diagram, edges marked as "-" are reduced fallthrough, edges
+// marked as "+" are increased fallthrough, this function computes
+//
+// SUM(increased fallthrough) - SUM(decreased fallthrough)
+//
+// |
+// | -
+// V
+// --->OldTop
+// | .
+// | .
+// +| . +
+// | Pred --->
+// | |-
+// | V
+// --- NewTop <---
+// |-
+// V
+//
+BlockFrequency
+MachineBlockPlacement::FallThroughGains(
+ const MachineBasicBlock *NewTop,
+ const MachineBasicBlock *OldTop,
+ const MachineBasicBlock *ExitBB,
+ const BlockFilterSet &LoopBlockSet) {
+ BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
+ BlockFrequency FallThrough2Exit = 0;
+ if (ExitBB)
+ FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
+ MBPI->getEdgeProbability(NewTop, ExitBB);
+ BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
+ MBPI->getEdgeProbability(NewTop, OldTop);
+
+ // Find the best Pred of NewTop.
+ MachineBasicBlock *BestPred = nullptr;
+ BlockFrequency FallThroughFromPred = 0;
+ for (MachineBasicBlock *Pred : NewTop->predecessors()) {
+ if (!LoopBlockSet.count(Pred))
+ continue;
+ BlockChain *PredChain = BlockToChain[Pred];
+ if (!PredChain || Pred == *std::prev(PredChain->end())) {
+ BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
+ MBPI->getEdgeProbability(Pred, NewTop);
+ if (EdgeFreq > FallThroughFromPred) {
+ FallThroughFromPred = EdgeFreq;
+ BestPred = Pred;
+ }
+ }
+ }
+
+ // If NewTop is not placed after Pred, another successor can be placed
+ // after Pred.
+ BlockFrequency NewFreq = 0;
+ if (BestPred) {
+ for (MachineBasicBlock *Succ : BestPred->successors()) {
+ if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
+ continue;
+ if (ComputedEdges.find(Succ) != ComputedEdges.end())
+ continue;
+ BlockChain *SuccChain = BlockToChain[Succ];
+ if ((SuccChain && (Succ != *SuccChain->begin())) ||
+ (SuccChain == BlockToChain[BestPred]))
+ continue;
+ BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
+ MBPI->getEdgeProbability(BestPred, Succ);
+ if (EdgeFreq > NewFreq)
+ NewFreq = EdgeFreq;
+ }
+ BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
+ MBPI->getEdgeProbability(BestPred, NewTop);
+ if (NewFreq > OrigEdgeFreq) {
+ // If NewTop is not the best successor of Pred, then Pred doesn't
+ // fallthrough to NewTop. So there is no FallThroughFromPred and
+ // NewFreq.
+ NewFreq = 0;
+ FallThroughFromPred = 0;
+ }
+ }
+
+ BlockFrequency Result = 0;
+ BlockFrequency Gains = BackEdgeFreq + NewFreq;
+ BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
+ FallThroughFromPred;
+ if (Gains > Lost)
+ Result = Gains - Lost;
+ return Result;
+}
+
+/// Helper function of findBestLoopTop. Find the best loop top block
+/// from predecessors of old top.
+///
+/// Look for a block which is strictly better than the old top for laying
+/// out before the old top of the loop. This looks for only two patterns:
+///
+/// 1. a block has only one successor, the old loop top
+///
+/// Because such a block will always result in an unconditional jump,
+/// rotating it in front of the old top is always profitable.
+///
+/// 2. a block has two successors, one is old top, another is exit
+/// and it has more than one predecessors
+///
+/// If it is below one of its predecessors P, only P can fall through to
+/// it, all other predecessors need a jump to it, and another conditional
+/// jump to loop header. If it is moved before loop header, all its
+/// predecessors jump to it, then fall through to loop header. So all its
+/// predecessors except P can reduce one taken branch.
+/// At the same time, move it before old top increases the taken branch
+/// to loop exit block, so the reduced taken branch will be compared with
+/// the increased taken branch to the loop exit block.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopTopHelper(
+ MachineBasicBlock *OldTop,
+ const MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet) {
+ // Check that the header hasn't been fused with a preheader block due to
+ // crazy branches. If it has, we need to start with the header at the top to
+ // prevent pulling the preheader into the loop body.
+ BlockChain &HeaderChain = *BlockToChain[OldTop];
+ if (!LoopBlockSet.count(*HeaderChain.begin()))
+ return OldTop;
+
+ LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
+ << "\n");
+
+ BlockFrequency BestGains = 0;
+ MachineBasicBlock *BestPred = nullptr;
+ for (MachineBasicBlock *Pred : OldTop->predecessors()) {
+ if (!LoopBlockSet.count(Pred))
+ continue;
+ if (Pred == L.getHeader())
+ continue;
+ LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
+ << Pred->succ_size() << " successors, ";
+ MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
+ if (Pred->succ_size() > 2)
+ continue;
+
+ MachineBasicBlock *OtherBB = nullptr;
+ if (Pred->succ_size() == 2) {
+ OtherBB = *Pred->succ_begin();
+ if (OtherBB == OldTop)
+ OtherBB = *Pred->succ_rbegin();
+ }
+
+ if (!canMoveBottomBlockToTop(Pred, OldTop))
+ continue;
+
+ BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
+ LoopBlockSet);
+ if ((Gains > 0) && (Gains > BestGains ||
+ ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
+ BestPred = Pred;
+ BestGains = Gains;
+ }
+ }
+
+ // If no direct predecessor is fine, just use the loop header.
+ if (!BestPred) {
+ LLVM_DEBUG(dbgs() << " final top unchanged\n");
+ return OldTop;
+ }
+
+ // Walk backwards through any straight line of predecessors.
+ while (BestPred->pred_size() == 1 &&
+ (*BestPred->pred_begin())->succ_size() == 1 &&
+ *BestPred->pred_begin() != L.getHeader())
+ BestPred = *BestPred->pred_begin();
+
+ LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
+ return BestPred;
+}
+
+/// Find the best loop top block for layout.
+///
+/// This function iteratively calls findBestLoopTopHelper, until no new better
+/// BB can be found.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet) {
+ // Placing the latch block before the header may introduce an extra branch
+ // that skips this block the first time the loop is executed, which we want
+ // to avoid when optimising for size.
+ // FIXME: in theory there is a case that does not introduce a new branch,
+ // i.e. when the layout predecessor does not fallthrough to the loop header.
+ // In practice this never happens though: there always seems to be a preheader
+ // that can fallthrough and that is also placed before the header.
+ bool OptForSize = F->getFunction().hasOptSize() ||
+ llvm::shouldOptimizeForSize(L.getHeader(), PSI,
+ &MBFI->getMBFI());
+ if (OptForSize)
+ return L.getHeader();
+
+ MachineBasicBlock *OldTop = nullptr;
+ MachineBasicBlock *NewTop = L.getHeader();
+ while (NewTop != OldTop) {
+ OldTop = NewTop;
+ NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
+ if (NewTop != OldTop)
+ ComputedEdges[NewTop] = { OldTop, false };
+ }
+ return NewTop;
+}
+
+/// Find the best loop exiting block for layout.
+///
+/// This routine implements the logic to analyze the loop looking for the best
+/// block to layout at the top of the loop. Typically this is done to maximize
+/// fallthrough opportunities.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet,
+ BlockFrequency &ExitFreq) {
+ // We don't want to layout the loop linearly in all cases. If the loop header
+ // is just a normal basic block in the loop, we want to look for what block
+ // within the loop is the best one to layout at the top. However, if the loop
+ // header has be pre-merged into a chain due to predecessors not having
+ // analyzable branches, *and* the predecessor it is merged with is *not* part
+ // of the loop, rotating the header into the middle of the loop will create
+ // a non-contiguous range of blocks which is Very Bad. So start with the
+ // header and only rotate if safe.
+ BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
+ if (!LoopBlockSet.count(*HeaderChain.begin()))
+ return nullptr;
+
+ BlockFrequency BestExitEdgeFreq;
+ unsigned BestExitLoopDepth = 0;
+ MachineBasicBlock *ExitingBB = nullptr;
+ // If there are exits to outer loops, loop rotation can severely limit
+ // fallthrough opportunities unless it selects such an exit. Keep a set of
+ // blocks where rotating to exit with that block will reach an outer loop.
+ SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
+
+ LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
+ << getBlockName(L.getHeader()) << "\n");
+ for (MachineBasicBlock *MBB : L.getBlocks()) {
+ BlockChain &Chain = *BlockToChain[MBB];
+ // Ensure that this block is at the end of a chain; otherwise it could be
+ // mid-way through an inner loop or a successor of an unanalyzable branch.
+ if (MBB != *std::prev(Chain.end()))
+ continue;
+
+ // Now walk the successors. We need to establish whether this has a viable
+ // exiting successor and whether it has a viable non-exiting successor.
+ // We store the old exiting state and restore it if a viable looping
+ // successor isn't found.
+ MachineBasicBlock *OldExitingBB = ExitingBB;
+ BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
+ bool HasLoopingSucc = false;
+ for (MachineBasicBlock *Succ : MBB->successors()) {
+ if (Succ->isEHPad())
+ continue;
+ if (Succ == MBB)
+ continue;
+ BlockChain &SuccChain = *BlockToChain[Succ];
+ // Don't split chains, either this chain or the successor's chain.
+ if (&Chain == &SuccChain) {
+ LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
+ << getBlockName(Succ) << " (chain conflict)\n");
+ continue;
+ }
+
+ auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
+ if (LoopBlockSet.count(Succ)) {
+ LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
+ << getBlockName(Succ) << " (" << SuccProb << ")\n");
+ HasLoopingSucc = true;
+ continue;
+ }
+
+ unsigned SuccLoopDepth = 0;
+ if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
+ SuccLoopDepth = ExitLoop->getLoopDepth();
+ if (ExitLoop->contains(&L))
+ BlocksExitingToOuterLoop.insert(MBB);
+ }
+
+ BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
+ LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
+ << getBlockName(Succ) << " [L:" << SuccLoopDepth
+ << "] (";
+ MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
+ // Note that we bias this toward an existing layout successor to retain
+ // incoming order in the absence of better information. The exit must have
+ // a frequency higher than the current exit before we consider breaking
+ // the layout.
+ BranchProbability Bias(100 - ExitBlockBias, 100);
+ if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
+ ExitEdgeFreq > BestExitEdgeFreq ||
+ (MBB->isLayoutSuccessor(Succ) &&
+ !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
+ BestExitEdgeFreq = ExitEdgeFreq;
+ ExitingBB = MBB;
+ }
+ }
+
+ if (!HasLoopingSucc) {
+ // Restore the old exiting state, no viable looping successor was found.
+ ExitingBB = OldExitingBB;
+ BestExitEdgeFreq = OldBestExitEdgeFreq;
+ }
+ }
+ // Without a candidate exiting block or with only a single block in the
+ // loop, just use the loop header to layout the loop.
+ if (!ExitingBB) {
+ LLVM_DEBUG(
+ dbgs() << " No other candidate exit blocks, using loop header\n");
+ return nullptr;
+ }
+ if (L.getNumBlocks() == 1) {
+ LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
+ return nullptr;
+ }
+
+ // Also, if we have exit blocks which lead to outer loops but didn't select
+ // one of them as the exiting block we are rotating toward, disable loop
+ // rotation altogether.
+ if (!BlocksExitingToOuterLoop.empty() &&
+ !BlocksExitingToOuterLoop.count(ExitingBB))
+ return nullptr;
+
+ LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
+ << "\n");
+ ExitFreq = BestExitEdgeFreq;
+ return ExitingBB;
+}
+
+/// Check if there is a fallthrough to loop header Top.
+///
+/// 1. Look for a Pred that can be layout before Top.
+/// 2. Check if Top is the most possible successor of Pred.
+bool
+MachineBlockPlacement::hasViableTopFallthrough(
+ const MachineBasicBlock *Top,
+ const BlockFilterSet &LoopBlockSet) {
+ for (MachineBasicBlock *Pred : Top->predecessors()) {
+ BlockChain *PredChain = BlockToChain[Pred];
+ if (!LoopBlockSet.count(Pred) &&
+ (!PredChain || Pred == *std::prev(PredChain->end()))) {
+ // Found a Pred block can be placed before Top.
+ // Check if Top is the best successor of Pred.
+ auto TopProb = MBPI->getEdgeProbability(Pred, Top);
+ bool TopOK = true;
+ for (MachineBasicBlock *Succ : Pred->successors()) {
+ auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
+ BlockChain *SuccChain = BlockToChain[Succ];
+ // Check if Succ can be placed after Pred.
+ // Succ should not be in any chain, or it is the head of some chain.
+ if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
+ TopOK = false;
+ break;
+ }
+ }
+ if (TopOK)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Attempt to rotate an exiting block to the bottom of the loop.
+///
+/// Once we have built a chain, try to rotate it to line up the hot exit block
+/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
+/// branches. For example, if the loop has fallthrough into its header and out
+/// of its bottom already, don't rotate it.
+void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
+ const MachineBasicBlock *ExitingBB,
+ BlockFrequency ExitFreq,
+ const BlockFilterSet &LoopBlockSet) {
+ if (!ExitingBB)
+ return;
+
+ MachineBasicBlock *Top = *LoopChain.begin();
+ MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
+
+ // If ExitingBB is already the last one in a chain then nothing to do.
+ if (Bottom == ExitingBB)
+ return;
+
+ bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
+
+ // If the header has viable fallthrough, check whether the current loop
+ // bottom is a viable exiting block. If so, bail out as rotating will
+ // introduce an unnecessary branch.
+ if (ViableTopFallthrough) {
+ for (MachineBasicBlock *Succ : Bottom->successors()) {
+ BlockChain *SuccChain = BlockToChain[Succ];
+ if (!LoopBlockSet.count(Succ) &&
+ (!SuccChain || Succ == *SuccChain->begin()))
+ return;
+ }
+
+ // Rotate will destroy the top fallthrough, we need to ensure the new exit
+ // frequency is larger than top fallthrough.
+ BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
+ if (FallThrough2Top >= ExitFreq)
+ return;
+ }
+
+ BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
+ if (ExitIt == LoopChain.end())
+ return;
+
+ // Rotating a loop exit to the bottom when there is a fallthrough to top
+ // trades the entry fallthrough for an exit fallthrough.
+ // If there is no bottom->top edge, but the chosen exit block does have
+ // a fallthrough, we break that fallthrough for nothing in return.
+
+ // Let's consider an example. We have a built chain of basic blocks
+ // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
+ // By doing a rotation we get
+ // Bk+1, ..., Bn, B1, ..., Bk
+ // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
+ // If we had a fallthrough Bk -> Bk+1 it is broken now.
+ // It might be compensated by fallthrough Bn -> B1.
+ // So we have a condition to avoid creation of extra branch by loop rotation.
+ // All below must be true to avoid loop rotation:
+ // If there is a fallthrough to top (B1)
+ // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
+ // There is no fallthrough from bottom (Bn) to top (B1).
+ // Please note that there is no exit fallthrough from Bn because we checked it
+ // above.
+ if (ViableTopFallthrough) {
+ assert(std::next(ExitIt) != LoopChain.end() &&
+ "Exit should not be last BB");
+ MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
+ if (ExitingBB->isSuccessor(NextBlockInChain))
+ if (!Bottom->isSuccessor(Top))
+ return;
+ }
+
+ LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
+ << " at bottom\n");
+ std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
+}
+
+/// Attempt to rotate a loop based on profile data to reduce branch cost.
+///
+/// With profile data, we can determine the cost in terms of missed fall through
+/// opportunities when rotating a loop chain and select the best rotation.
+/// Basically, there are three kinds of cost to consider for each rotation:
+/// 1. The possibly missed fall through edge (if it exists) from BB out of
+/// the loop to the loop header.
+/// 2. The possibly missed fall through edges (if they exist) from the loop
+/// exits to BB out of the loop.
+/// 3. The missed fall through edge (if it exists) from the last BB to the
+/// first BB in the loop chain.
+/// Therefore, the cost for a given rotation is the sum of costs listed above.
+/// We select the best rotation with the smallest cost.
+void MachineBlockPlacement::rotateLoopWithProfile(
+ BlockChain &LoopChain, const MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet) {
+ auto RotationPos = LoopChain.end();
+
+ BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
+
+ // A utility lambda that scales up a block frequency by dividing it by a
+ // branch probability which is the reciprocal of the scale.
+ auto ScaleBlockFrequency = [](BlockFrequency Freq,
+ unsigned Scale) -> BlockFrequency {
+ if (Scale == 0)
+ return 0;
+ // Use operator / between BlockFrequency and BranchProbability to implement
+ // saturating multiplication.
+ return Freq / BranchProbability(1, Scale);
+ };
+
+ // Compute the cost of the missed fall-through edge to the loop header if the
+ // chain head is not the loop header. As we only consider natural loops with
+ // single header, this computation can be done only once.
+ BlockFrequency HeaderFallThroughCost(0);
+ MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
+ for (auto *Pred : ChainHeaderBB->predecessors()) {
+ BlockChain *PredChain = BlockToChain[Pred];
+ if (!LoopBlockSet.count(Pred) &&
+ (!PredChain || Pred == *std::prev(PredChain->end()))) {
+ auto EdgeFreq = MBFI->getBlockFreq(Pred) *
+ MBPI->getEdgeProbability(Pred, ChainHeaderBB);
+ auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
+ // If the predecessor has only an unconditional jump to the header, we
+ // need to consider the cost of this jump.
+ if (Pred->succ_size() == 1)
+ FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
+ HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
+ }
+ }
+
+ // Here we collect all exit blocks in the loop, and for each exit we find out
+ // its hottest exit edge. For each loop rotation, we define the loop exit cost
+ // as the sum of frequencies of exit edges we collect here, excluding the exit
+ // edge from the tail of the loop chain.
+ SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
+ for (auto BB : LoopChain) {
+ auto LargestExitEdgeProb = BranchProbability::getZero();
+ for (auto *Succ : BB->successors()) {
+ BlockChain *SuccChain = BlockToChain[Succ];
+ if (!LoopBlockSet.count(Succ) &&
+ (!SuccChain || Succ == *SuccChain->begin())) {
+ auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
+ LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
+ }
+ }
+ if (LargestExitEdgeProb > BranchProbability::getZero()) {
+ auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
+ ExitsWithFreq.emplace_back(BB, ExitFreq);
+ }
+ }
+
+ // In this loop we iterate every block in the loop chain and calculate the
+ // cost assuming the block is the head of the loop chain. When the loop ends,
+ // we should have found the best candidate as the loop chain's head.
+ for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
+ EndIter = LoopChain.end();
+ Iter != EndIter; Iter++, TailIter++) {
+ // TailIter is used to track the tail of the loop chain if the block we are
+ // checking (pointed by Iter) is the head of the chain.
+ if (TailIter == LoopChain.end())
+ TailIter = LoopChain.begin();
+
+ auto TailBB = *TailIter;
+
+ // Calculate the cost by putting this BB to the top.
+ BlockFrequency Cost = 0;
+
+ // If the current BB is the loop header, we need to take into account the
+ // cost of the missed fall through edge from outside of the loop to the
+ // header.
+ if (Iter != LoopChain.begin())
+ Cost += HeaderFallThroughCost;
+
+ // Collect the loop exit cost by summing up frequencies of all exit edges
+ // except the one from the chain tail.
+ for (auto &ExitWithFreq : ExitsWithFreq)
+ if (TailBB != ExitWithFreq.first)
+ Cost += ExitWithFreq.second;
+
+ // The cost of breaking the once fall-through edge from the tail to the top
+ // of the loop chain. Here we need to consider three cases:
+ // 1. If the tail node has only one successor, then we will get an
+ // additional jmp instruction. So the cost here is (MisfetchCost +
+ // JumpInstCost) * tail node frequency.
+ // 2. If the tail node has two successors, then we may still get an
+ // additional jmp instruction if the layout successor after the loop
+ // chain is not its CFG successor. Note that the more frequently executed
+ // jmp instruction will be put ahead of the other one. Assume the
+ // frequency of those two branches are x and y, where x is the frequency
+ // of the edge to the chain head, then the cost will be
+ // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
+ // 3. If the tail node has more than two successors (this rarely happens),
+ // we won't consider any additional cost.
+ if (TailBB->isSuccessor(*Iter)) {
+ auto TailBBFreq = MBFI->getBlockFreq(TailBB);
+ if (TailBB->succ_size() == 1)
+ Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
+ MisfetchCost + JumpInstCost);
+ else if (TailBB->succ_size() == 2) {
+ auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
+ auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
+ auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
+ ? TailBBFreq * TailToHeadProb.getCompl()
+ : TailToHeadFreq;
+ Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
+ ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
+ << getBlockName(*Iter)
+ << " to the top: " << Cost.getFrequency() << "\n");
+
+ if (Cost < SmallestRotationCost) {
+ SmallestRotationCost = Cost;
+ RotationPos = Iter;
+ }
+ }
+
+ if (RotationPos != LoopChain.end()) {
+ LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
+ << " to the top\n");
+ std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
+ }
+}
+
+/// Collect blocks in the given loop that are to be placed.
+///
+/// When profile data is available, exclude cold blocks from the returned set;
+/// otherwise, collect all blocks in the loop.
+MachineBlockPlacement::BlockFilterSet
+MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
+ BlockFilterSet LoopBlockSet;
+
+ // Filter cold blocks off from LoopBlockSet when profile data is available.
+ // Collect the sum of frequencies of incoming edges to the loop header from
+ // outside. If we treat the loop as a super block, this is the frequency of
+ // the loop. Then for each block in the loop, we calculate the ratio between
+ // its frequency and the frequency of the loop block. When it is too small,
+ // don't add it to the loop chain. If there are outer loops, then this block
+ // will be merged into the first outer loop chain for which this block is not
+ // cold anymore. This needs precise profile data and we only do this when
+ // profile data is available.
+ if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
+ BlockFrequency LoopFreq(0);
+ for (auto LoopPred : L.getHeader()->predecessors())
+ if (!L.contains(LoopPred))
+ LoopFreq += MBFI->getBlockFreq(LoopPred) *
+ MBPI->getEdgeProbability(LoopPred, L.getHeader());
+
+ for (MachineBasicBlock *LoopBB : L.getBlocks()) {
+ auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
+ if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
+ continue;
+ LoopBlockSet.insert(LoopBB);
+ }
+ } else
+ LoopBlockSet.insert(L.block_begin(), L.block_end());
+
+ return LoopBlockSet;
+}
+
+/// Forms basic block chains from the natural loop structures.
+///
+/// These chains are designed to preserve the existing *structure* of the code
+/// as much as possible. We can then stitch the chains together in a way which
+/// both preserves the topological structure and minimizes taken conditional
+/// branches.
+void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
+ // First recurse through any nested loops, building chains for those inner
+ // loops.
+ for (const MachineLoop *InnerLoop : L)
+ buildLoopChains(*InnerLoop);
+
+ assert(BlockWorkList.empty() &&
+ "BlockWorkList not empty when starting to build loop chains.");
+ assert(EHPadWorkList.empty() &&
+ "EHPadWorkList not empty when starting to build loop chains.");
+ BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
+
+ // Check if we have profile data for this function. If yes, we will rotate
+ // this loop by modeling costs more precisely which requires the profile data
+ // for better layout.
+ bool RotateLoopWithProfile =
+ ForcePreciseRotationCost ||
+ (PreciseRotationCost && F->getFunction().hasProfileData());
+
+ // First check to see if there is an obviously preferable top block for the
+ // loop. This will default to the header, but may end up as one of the
+ // predecessors to the header if there is one which will result in strictly
+ // fewer branches in the loop body.
+ MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
+
+ // If we selected just the header for the loop top, look for a potentially
+ // profitable exit block in the event that rotating the loop can eliminate
+ // branches by placing an exit edge at the bottom.
+ //
+ // Loops are processed innermost to uttermost, make sure we clear
+ // PreferredLoopExit before processing a new loop.
+ PreferredLoopExit = nullptr;
+ BlockFrequency ExitFreq;
+ if (!RotateLoopWithProfile && LoopTop == L.getHeader())
+ PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
+
+ BlockChain &LoopChain = *BlockToChain[LoopTop];
+
+ // FIXME: This is a really lame way of walking the chains in the loop: we
+ // walk the blocks, and use a set to prevent visiting a particular chain
+ // twice.
+ SmallPtrSet<BlockChain *, 4> UpdatedPreds;
+ assert(LoopChain.UnscheduledPredecessors == 0 &&
+ "LoopChain should not have unscheduled predecessors.");
+ UpdatedPreds.insert(&LoopChain);
+
+ for (const MachineBasicBlock *LoopBB : LoopBlockSet)
+ fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
+
+ buildChain(LoopTop, LoopChain, &LoopBlockSet);
+
+ if (RotateLoopWithProfile)
+ rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
+ else
+ rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
+
+ LLVM_DEBUG({
+ // Crash at the end so we get all of the debugging output first.
+ bool BadLoop = false;
+ if (LoopChain.UnscheduledPredecessors) {
+ BadLoop = true;
+ dbgs() << "Loop chain contains a block without its preds placed!\n"
+ << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
+ << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
+ }
+ for (MachineBasicBlock *ChainBB : LoopChain) {
+ dbgs() << " ... " << getBlockName(ChainBB) << "\n";
+ if (!LoopBlockSet.remove(ChainBB)) {
+ // We don't mark the loop as bad here because there are real situations
+ // where this can occur. For example, with an unanalyzable fallthrough
+ // from a loop block to a non-loop block or vice versa.
+ dbgs() << "Loop chain contains a block not contained by the loop!\n"
+ << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
+ << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
+ << " Bad block: " << getBlockName(ChainBB) << "\n";
+ }
+ }
+
+ if (!LoopBlockSet.empty()) {
+ BadLoop = true;
+ for (const MachineBasicBlock *LoopBB : LoopBlockSet)
+ dbgs() << "Loop contains blocks never placed into a chain!\n"
+ << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
+ << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
+ << " Bad block: " << getBlockName(LoopBB) << "\n";
+ }
+ assert(!BadLoop && "Detected problems with the placement of this loop.");
+ });
+
+ BlockWorkList.clear();
+ EHPadWorkList.clear();
+}
+
+void MachineBlockPlacement::buildCFGChains() {
+ // Ensure that every BB in the function has an associated chain to simplify
+ // the assumptions of the remaining algorithm.
+ SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
+ for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
+ ++FI) {
+ MachineBasicBlock *BB = &*FI;
+ BlockChain *Chain =
+ new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
+ // Also, merge any blocks which we cannot reason about and must preserve
+ // the exact fallthrough behavior for.
+ while (true) {
+ Cond.clear();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+ if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
+ break;
+
+ MachineFunction::iterator NextFI = std::next(FI);
+ MachineBasicBlock *NextBB = &*NextFI;
+ // Ensure that the layout successor is a viable block, as we know that
+ // fallthrough is a possibility.
+ assert(NextFI != FE && "Can't fallthrough past the last block.");
+ LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
+ << getBlockName(BB) << " -> " << getBlockName(NextBB)
+ << "\n");
+ Chain->merge(NextBB, nullptr);
+#ifndef NDEBUG
+ BlocksWithUnanalyzableExits.insert(&*BB);
+#endif
+ FI = NextFI;
+ BB = NextBB;
+ }
+ }
+
+ // Build any loop-based chains.
+ PreferredLoopExit = nullptr;
+ for (MachineLoop *L : *MLI)
+ buildLoopChains(*L);
+
+ assert(BlockWorkList.empty() &&
+ "BlockWorkList should be empty before building final chain.");
+ assert(EHPadWorkList.empty() &&
+ "EHPadWorkList should be empty before building final chain.");
+
+ SmallPtrSet<BlockChain *, 4> UpdatedPreds;
+ for (MachineBasicBlock &MBB : *F)
+ fillWorkLists(&MBB, UpdatedPreds);
+
+ BlockChain &FunctionChain = *BlockToChain[&F->front()];
+ buildChain(&F->front(), FunctionChain);
+
+#ifndef NDEBUG
+ using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
+#endif
+ LLVM_DEBUG({
+ // Crash at the end so we get all of the debugging output first.
+ bool BadFunc = false;
+ FunctionBlockSetType FunctionBlockSet;
+ for (MachineBasicBlock &MBB : *F)
+ FunctionBlockSet.insert(&MBB);
+
+ for (MachineBasicBlock *ChainBB : FunctionChain)
+ if (!FunctionBlockSet.erase(ChainBB)) {
+ BadFunc = true;
+ dbgs() << "Function chain contains a block not in the function!\n"
+ << " Bad block: " << getBlockName(ChainBB) << "\n";
+ }
+
+ if (!FunctionBlockSet.empty()) {
+ BadFunc = true;
+ for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
+ dbgs() << "Function contains blocks never placed into a chain!\n"
+ << " Bad block: " << getBlockName(RemainingBB) << "\n";
+ }
+ assert(!BadFunc && "Detected problems with the block placement.");
+ });
+
+ // Splice the blocks into place.
+ MachineFunction::iterator InsertPos = F->begin();
+ LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
+ for (MachineBasicBlock *ChainBB : FunctionChain) {
+ LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
+ : " ... ")
+ << getBlockName(ChainBB) << "\n");
+ if (InsertPos != MachineFunction::iterator(ChainBB))
+ F->splice(InsertPos, ChainBB);
+ else
+ ++InsertPos;
+
+ // Update the terminator of the previous block.
+ if (ChainBB == *FunctionChain.begin())
+ continue;
+ MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
+
+ // FIXME: It would be awesome of updateTerminator would just return rather
+ // than assert when the branch cannot be analyzed in order to remove this
+ // boiler plate.
+ Cond.clear();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+
+#ifndef NDEBUG
+ if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
+ // Given the exact block placement we chose, we may actually not _need_ to
+ // be able to edit PrevBB's terminator sequence, but not being _able_ to
+ // do that at this point is a bug.
+ assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
+ !PrevBB->canFallThrough()) &&
+ "Unexpected block with un-analyzable fallthrough!");
+ Cond.clear();
+ TBB = FBB = nullptr;
+ }
+#endif
+
+ // The "PrevBB" is not yet updated to reflect current code layout, so,
+ // o. it may fall-through to a block without explicit "goto" instruction
+ // before layout, and no longer fall-through it after layout; or
+ // o. just opposite.
+ //
+ // analyzeBranch() may return erroneous value for FBB when these two
+ // situations take place. For the first scenario FBB is mistakenly set NULL;
+ // for the 2nd scenario, the FBB, which is expected to be NULL, is
+ // mistakenly pointing to "*BI".
+ // Thus, if the future change needs to use FBB before the layout is set, it
+ // has to correct FBB first by using the code similar to the following:
+ //
+ // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
+ // PrevBB->updateTerminator();
+ // Cond.clear();
+ // TBB = FBB = nullptr;
+ // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
+ // // FIXME: This should never take place.
+ // TBB = FBB = nullptr;
+ // }
+ // }
+ if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
+ PrevBB->updateTerminator();
+ }
+
+ // Fixup the last block.
+ Cond.clear();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+ if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
+ F->back().updateTerminator();
+
+ BlockWorkList.clear();
+ EHPadWorkList.clear();
+}
+
+void MachineBlockPlacement::optimizeBranches() {
+ BlockChain &FunctionChain = *BlockToChain[&F->front()];
+ SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
+
+ // Now that all the basic blocks in the chain have the proper layout,
+ // make a final call to AnalyzeBranch with AllowModify set.
+ // Indeed, the target may be able to optimize the branches in a way we
+ // cannot because all branches may not be analyzable.
+ // E.g., the target may be able to remove an unconditional branch to
+ // a fallthrough when it occurs after predicated terminators.
+ for (MachineBasicBlock *ChainBB : FunctionChain) {
+ Cond.clear();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+ if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
+ // If PrevBB has a two-way branch, try to re-order the branches
+ // such that we branch to the successor with higher probability first.
+ if (TBB && !Cond.empty() && FBB &&
+ MBPI->getEdgeProbability(ChainBB, FBB) >
+ MBPI->getEdgeProbability(ChainBB, TBB) &&
+ !TII->reverseBranchCondition(Cond)) {
+ LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
+ << getBlockName(ChainBB) << "\n");
+ LLVM_DEBUG(dbgs() << " Edge probability: "
+ << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
+ << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
+ DebugLoc dl; // FIXME: this is nowhere
+ TII->removeBranch(*ChainBB);
+ TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
+ ChainBB->updateTerminator();
+ }
+ }
+ }
+}
+
+void MachineBlockPlacement::alignBlocks() {
+ // Walk through the backedges of the function now that we have fully laid out
+ // the basic blocks and align the destination of each backedge. We don't rely
+ // exclusively on the loop info here so that we can align backedges in
+ // unnatural CFGs and backedges that were introduced purely because of the
+ // loop rotations done during this layout pass.
+ if (F->getFunction().hasMinSize() ||
+ (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
+ return;
+ BlockChain &FunctionChain = *BlockToChain[&F->front()];
+ if (FunctionChain.begin() == FunctionChain.end())
+ return; // Empty chain.
+
+ const BranchProbability ColdProb(1, 5); // 20%
+ BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
+ BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
+ for (MachineBasicBlock *ChainBB : FunctionChain) {
+ if (ChainBB == *FunctionChain.begin())
+ continue;
+
+ // Don't align non-looping basic blocks. These are unlikely to execute
+ // enough times to matter in practice. Note that we'll still handle
+ // unnatural CFGs inside of a natural outer loop (the common case) and
+ // rotated loops.
+ MachineLoop *L = MLI->getLoopFor(ChainBB);
+ if (!L)
+ continue;
+
+ const Align Align = TLI->getPrefLoopAlignment(L);
+ if (Align == 1)
+ continue; // Don't care about loop alignment.
+
+ // If the block is cold relative to the function entry don't waste space
+ // aligning it.
+ BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
+ if (Freq < WeightedEntryFreq)
+ continue;
+
+ // If the block is cold relative to its loop header, don't align it
+ // regardless of what edges into the block exist.
+ MachineBasicBlock *LoopHeader = L->getHeader();
+ BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
+ if (Freq < (LoopHeaderFreq * ColdProb))
+ continue;
+
+ // If the global profiles indicates so, don't align it.
+ if (llvm::shouldOptimizeForSize(ChainBB, PSI, &MBFI->getMBFI()) &&
+ !TLI->alignLoopsWithOptSize())
+ continue;
+
+ // Check for the existence of a non-layout predecessor which would benefit
+ // from aligning this block.
+ MachineBasicBlock *LayoutPred =
+ &*std::prev(MachineFunction::iterator(ChainBB));
+
+ // Force alignment if all the predecessors are jumps. We already checked
+ // that the block isn't cold above.
+ if (!LayoutPred->isSuccessor(ChainBB)) {
+ ChainBB->setAlignment(Align);
+ continue;
+ }
+
+ // Align this block if the layout predecessor's edge into this block is
+ // cold relative to the block. When this is true, other predecessors make up
+ // all of the hot entries into the block and thus alignment is likely to be
+ // important.
+ BranchProbability LayoutProb =
+ MBPI->getEdgeProbability(LayoutPred, ChainBB);
+ BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
+ if (LayoutEdgeFreq <= (Freq * ColdProb))
+ ChainBB->setAlignment(Align);
+ }
+}
+
+/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
+/// it was duplicated into its chain predecessor and removed.
+/// \p BB - Basic block that may be duplicated.
+///
+/// \p LPred - Chosen layout predecessor of \p BB.
+/// Updated to be the chain end if LPred is removed.
+/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
+/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
+/// Used to identify which blocks to update predecessor
+/// counts.
+/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
+/// chosen in the given order due to unnatural CFG
+/// only needed if \p BB is removed and
+/// \p PrevUnplacedBlockIt pointed to \p BB.
+/// @return true if \p BB was removed.
+bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *&LPred,
+ const MachineBasicBlock *LoopHeaderBB,
+ BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt) {
+ bool Removed, DuplicatedToLPred;
+ bool DuplicatedToOriginalLPred;
+ Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
+ PrevUnplacedBlockIt,
+ DuplicatedToLPred);
+ if (!Removed)
+ return false;
+ DuplicatedToOriginalLPred = DuplicatedToLPred;
+ // Iteratively try to duplicate again. It can happen that a block that is
+ // duplicated into is still small enough to be duplicated again.
+ // No need to call markBlockSuccessors in this case, as the blocks being
+ // duplicated from here on are already scheduled.
+ // Note that DuplicatedToLPred always implies Removed.
+ while (DuplicatedToLPred) {
+ assert(Removed && "Block must have been removed to be duplicated into its "
+ "layout predecessor.");
+ MachineBasicBlock *DupBB, *DupPred;
+ // The removal callback causes Chain.end() to be updated when a block is
+ // removed. On the first pass through the loop, the chain end should be the
+ // same as it was on function entry. On subsequent passes, because we are
+ // duplicating the block at the end of the chain, if it is removed the
+ // chain will have shrunk by one block.
+ BlockChain::iterator ChainEnd = Chain.end();
+ DupBB = *(--ChainEnd);
+ // Now try to duplicate again.
+ if (ChainEnd == Chain.begin())
+ break;
+ DupPred = *std::prev(ChainEnd);
+ Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
+ PrevUnplacedBlockIt,
+ DuplicatedToLPred);
+ }
+ // If BB was duplicated into LPred, it is now scheduled. But because it was
+ // removed, markChainSuccessors won't be called for its chain. Instead we
+ // call markBlockSuccessors for LPred to achieve the same effect. This must go
+ // at the end because repeating the tail duplication can increase the number
+ // of unscheduled predecessors.
+ LPred = *std::prev(Chain.end());
+ if (DuplicatedToOriginalLPred)
+ markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
+ return true;
+}
+
+/// Tail duplicate \p BB into (some) predecessors if profitable.
+/// \p BB - Basic block that may be duplicated
+/// \p LPred - Chosen layout predecessor of \p BB
+/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
+/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
+/// Used to identify which blocks to update predecessor
+/// counts.
+/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
+/// chosen in the given order due to unnatural CFG
+/// only needed if \p BB is removed and
+/// \p PrevUnplacedBlockIt pointed to \p BB.
+/// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
+/// only be true if the block was removed.
+/// \return - True if the block was duplicated into all preds and removed.
+bool MachineBlockPlacement::maybeTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *LPred,
+ BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ bool &DuplicatedToLPred) {
+ DuplicatedToLPred = false;
+ if (!shouldTailDuplicate(BB))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
+ << "\n");
+
+ // This has to be a callback because none of it can be done after
+ // BB is deleted.
+ bool Removed = false;
+ auto RemovalCallback =
+ [&](MachineBasicBlock *RemBB) {
+ // Signal to outer function
+ Removed = true;
+
+ // Conservative default.
+ bool InWorkList = true;
+ // Remove from the Chain and Chain Map
+ if (BlockToChain.count(RemBB)) {
+ BlockChain *Chain = BlockToChain[RemBB];
+ InWorkList = Chain->UnscheduledPredecessors == 0;
+ Chain->remove(RemBB);
+ BlockToChain.erase(RemBB);
+ }
+
+ // Handle the unplaced block iterator
+ if (&(*PrevUnplacedBlockIt) == RemBB) {
+ PrevUnplacedBlockIt++;
+ }
+
+ // Handle the Work Lists
+ if (InWorkList) {
+ SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
+ if (RemBB->isEHPad())
+ RemoveList = EHPadWorkList;
+ RemoveList.erase(
+ llvm::remove_if(RemoveList,
+ [RemBB](MachineBasicBlock *BB) {
+ return BB == RemBB;
+ }),
+ RemoveList.end());
+ }
+
+ // Handle the filter set
+ if (BlockFilter) {
+ BlockFilter->remove(RemBB);
+ }
+
+ // Remove the block from loop info.
+ MLI->removeBlock(RemBB);
+ if (RemBB == PreferredLoopExit)
+ PreferredLoopExit = nullptr;
+
+ LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
+ << getBlockName(RemBB) << "\n");
+ };
+ auto RemovalCallbackRef =
+ function_ref<void(MachineBasicBlock*)>(RemovalCallback);
+
+ SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
+ bool IsSimple = TailDup.isSimpleBB(BB);
+ TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
+ &DuplicatedPreds, &RemovalCallbackRef);
+
+ // Update UnscheduledPredecessors to reflect tail-duplication.
+ DuplicatedToLPred = false;
+ for (MachineBasicBlock *Pred : DuplicatedPreds) {
+ // We're only looking for unscheduled predecessors that match the filter.
+ BlockChain* PredChain = BlockToChain[Pred];
+ if (Pred == LPred)
+ DuplicatedToLPred = true;
+ if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
+ || PredChain == &Chain)
+ continue;
+ for (MachineBasicBlock *NewSucc : Pred->successors()) {
+ if (BlockFilter && !BlockFilter->count(NewSucc))
+ continue;
+ BlockChain *NewChain = BlockToChain[NewSucc];
+ if (NewChain != &Chain && NewChain != PredChain)
+ NewChain->UnscheduledPredecessors++;
+ }
+ }
+ return Removed;
+}
+
+bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ // Check for single-block functions and skip them.
+ if (std::next(MF.begin()) == MF.end())
+ return false;
+
+ F = &MF;
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
+ getAnalysis<MachineBlockFrequencyInfo>());
+ MLI = &getAnalysis<MachineLoopInfo>();
+ TII = MF.getSubtarget().getInstrInfo();
+ TLI = MF.getSubtarget().getTargetLowering();
+ MPDT = nullptr;
+ PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+
+ // Initialize PreferredLoopExit to nullptr here since it may never be set if
+ // there are no MachineLoops.
+ PreferredLoopExit = nullptr;
+
+ assert(BlockToChain.empty() &&
+ "BlockToChain map should be empty before starting placement.");
+ assert(ComputedEdges.empty() &&
+ "Computed Edge map should be empty before starting placement.");
+
+ unsigned TailDupSize = TailDupPlacementThreshold;
+ // If only the aggressive threshold is explicitly set, use it.
+ if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
+ TailDupPlacementThreshold.getNumOccurrences() == 0)
+ TailDupSize = TailDupPlacementAggressiveThreshold;
+
+ TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
+ // For aggressive optimization, we can adjust some thresholds to be less
+ // conservative.
+ if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
+ // At O3 we should be more willing to copy blocks for tail duplication. This
+ // increases size pressure, so we only do it at O3
+ // Do this unless only the regular threshold is explicitly set.
+ if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
+ TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
+ TailDupSize = TailDupPlacementAggressiveThreshold;
+ }
+
+ if (allowTailDupPlacement()) {
+ MPDT = &getAnalysis<MachinePostDominatorTree>();
+ bool OptForSize = MF.getFunction().hasOptSize() ||
+ llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
+ if (OptForSize)
+ TailDupSize = 1;
+ bool PreRegAlloc = false;
+ TailDup.initMF(MF, PreRegAlloc, MBPI, &MBFI->getMBFI(), PSI,
+ /* LayoutMode */ true, TailDupSize);
+ precomputeTriangleChains();
+ }
+
+ buildCFGChains();
+
+ // Changing the layout can create new tail merging opportunities.
+ // TailMerge can create jump into if branches that make CFG irreducible for
+ // HW that requires structured CFG.
+ bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
+ PassConfig->getEnableTailMerge() &&
+ BranchFoldPlacement;
+ // No tail merging opportunities if the block number is less than four.
+ if (MF.size() > 3 && EnableTailMerge) {
+ unsigned TailMergeSize = TailDupSize + 1;
+ BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
+ *MBPI, PSI, TailMergeSize);
+
+ auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
+ if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
+ MMIWP ? &MMIWP->getMMI() : nullptr, MLI,
+ /*AfterPlacement=*/true)) {
+ // Redo the layout if tail merging creates/removes/moves blocks.
+ BlockToChain.clear();
+ ComputedEdges.clear();
+ // Must redo the post-dominator tree if blocks were changed.
+ if (MPDT)
+ MPDT->runOnMachineFunction(MF);
+ ChainAllocator.DestroyAll();
+ buildCFGChains();
+ }
+ }
+
+ optimizeBranches();
+ alignBlocks();
+
+ BlockToChain.clear();
+ ComputedEdges.clear();
+ ChainAllocator.DestroyAll();
+
+ if (AlignAllBlock)
+ // Align all of the blocks in the function to a specific alignment.
+ for (MachineBasicBlock &MBB : MF)
+ MBB.setAlignment(Align(1ULL << AlignAllBlock));
+ else if (AlignAllNonFallThruBlocks) {
+ // Align all of the blocks that have no fall-through predecessors to a
+ // specific alignment.
+ for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
+ auto LayoutPred = std::prev(MBI);
+ if (!LayoutPred->isSuccessor(&*MBI))
+ MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
+ }
+ }
+ if (ViewBlockLayoutWithBFI != GVDT_None &&
+ (ViewBlockFreqFuncName.empty() ||
+ F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
+ MBFI->view("MBP." + MF.getName(), false);
+ }
+
+
+ // We always return true as we have no way to track whether the final order
+ // differs from the original order.
+ return true;
+}
+
+namespace {
+
+/// A pass to compute block placement statistics.
+///
+/// A separate pass to compute interesting statistics for evaluating block
+/// placement. This is separate from the actual placement pass so that they can
+/// be computed in the absence of any placement transformations or when using
+/// alternative placement strategies.
+class MachineBlockPlacementStats : public MachineFunctionPass {
+ /// A handle to the branch probability pass.
+ const MachineBranchProbabilityInfo *MBPI;
+
+ /// A handle to the function-wide block frequency pass.
+ const MachineBlockFrequencyInfo *MBFI;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ MachineBlockPlacementStats() : MachineFunctionPass(ID) {
+ initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char MachineBlockPlacementStats::ID = 0;
+
+char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
+
+INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
+ "Basic Block Placement Stats", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
+ "Basic Block Placement Stats", false, false)
+
+bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
+ // Check for single-block functions and skip them.
+ if (std::next(F.begin()) == F.end())
+ return false;
+
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+
+ for (MachineBasicBlock &MBB : F) {
+ BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
+ Statistic &NumBranches =
+ (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
+ Statistic &BranchTakenFreq =
+ (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
+ for (MachineBasicBlock *Succ : MBB.successors()) {
+ // Skip if this successor is a fallthrough.
+ if (MBB.isLayoutSuccessor(Succ))
+ continue;
+
+ BlockFrequency EdgeFreq =
+ BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
+ ++NumBranches;
+ BranchTakenFreq += EdgeFreq.getFrequency();
+ }
+ }
+
+ return false;
+}