blob: d4ce8fbb5704f5d181367c6030f379f56078002e [file] [log] [blame] [view]
# Tink for Python HOW-TO
This document presents instructions and Python code snippets for common tasks in
[Tink](https://github.com/google/tink).
## Setup instructions
Tink requires Python 3.7 or above.
The simplest way is to install a binary release from
[PyPi](https://pypi.org/project/tink/):
```shell
pip3 install tink
```
Currently, the following set of binary wheels are published:
* Linux
* Python 3.7
* Python 3.8
* Python 3.9
* macOS
* Python 3.7
* Python 3.8
* Python 3.9
In addition to the binary wheels, a source distribution is also published. If
`pip` does not find a suitable binary wheel for your environment, it will fall
back to building the project using the source distribution. This process has the
same requirements as building from source instructions below.
### Common setup issues
* If you get an error regarding the root certs when using the GCP KMS
integration, you will have to install the
[root certs](https://github.com/googleapis/google-cloud-cpp/blob/master/google/cloud/bigtable/examples/README.md#configure-grpc-root-certificates).
## Building from source
Tink currently supports two build systems for use with Python:
* [Bazel](https://bazel.build/)
* Setuptools to create a Python package
Note that in both cases [Bazel](https://bazel.build/) is required, as it is
needed to compile the wrapper around the C++ implementation which uses
[pybind11](https://github.com/pybind/pybind11).
### Build with Bazel
To build the Python implementation:
```shell
cd python
bazel build ...
```
### Build a Python package using pip
A setup script is provided which allows building a Python package using pip.
The setup script requires:
* Bazel
* [protobuf compiler](https://github.com/protocolbuffers/protobuf#protocol-compiler-installation).
To build and install the Python package:
```shell
cd python
pip3 install .
```
### Running tests
To run all tests, you can:
```shell
cd python
bazel test ...
```
## Initializing Tink
Tink provides customizable initialization, which allows for choosing specific
implementations (identified by _key types_) of desired primitives. This
initialization happens via _registration_ of the implementations.
For example, if you want to use all standard implementations of all primitives
in the current release of Tink, the initialization would look as follows:
```python
import tink
from tink import tink_config
tink_config.register()
```
To use standard implementations of only one primitive, say AEAD:
```python
import tink
from tink import aead
aead.register()
```
The registration of custom key managers can proceed directly via
the `core.Registry` class:
```python
import tink
from tink import core
core.Registry.register_key_manager(CustomAeadKeyManager())
```
## Generating new keys and keysets
Each `KeyManager` implementation provides a `new_key_data(key_template)` method
that generates new keys of the corresponding key type. However, to avoid
accidental leakage of sensitive key material you should avoid mixing key(set)
generation with key(set) usage in code.
To support the separation between these activities Tink package provides a
command-line tool called [Tinkey](TINKEY.md), which can be used for common key
management tasks.
Still, if there is a need to generate a KeysetHandle with fresh key material
directly in Python code, you can use `tink.new_keyset_handle`:
```python
import tink
from tink import aead
key_template = aead.aead_key_templates.AES128_EAX
keyset_handle = tink.new_keyset_handle(key_template)
# use the keyset...
```
where `key_template` can be obtained from util classes corresponding to Tink
primitives, e.g.
[mac_key_templates](https://github.com/google/tink/blob/master/python/tink/mac/_mac_key_templates.py),
[aead_key_templates](https://github.com/google/tink/blob/master/python/tink/aead/_aead_key_templates.py),
or
[hybrid_key_templates](https://github.com/google/tink/blob/master/python/tink/hybrid/_hybrid_key_templates.py).
## Loading existing keysets
To load encrypted keysets, use `tink.read_keyset_handle`
and an appropriate [`KeysetReader`](https://github.com/google/tink/blob/master/python/tink/_keyset_reader.py),
depending on the wire format of the stored keyset, for example a
`tink.BinaryKeysetReader` or a `tink.JsonKeysetReader`.
```python
import tink
json_encrypted_keyset = ...
reader = tink.JsonKeysetReader(json_encrypted_keyset)
keyset_handle = tink.read_keyset_handle(reader, master_key_aead)
```
To load cleartext keysets, use [`cleartext_keyset_handle`](https://github.com/google/tink/blob/master/python/tink/cleartext_keyset_handle.py)
and an appropriate `KeysetReader`.
```python
import tink
from tink import cleartext_keyset_handle
json_keyset = ...
reader = tink.JsonKeysetReader(json_keyset)
keyset_handle = cleartext_keyset_handle.read(reader)
```
## Obtaining and using primitives
[_Primitives_](PRIMITIVES.md) represent cryptographic operations offered by
Tink, hence they form the core of the Tink API. A primitive is just an interface
that specifies what operations are offered by the primitive. A primitive can
have multiple implementations, and you choose a desired implementation by using
a key of corresponding type (see [this
section](KEY-MANAGEMENT.md#key-keyset-and-keysethandle) for further details).
Tink for Python supports the same primitives as Tink for C++. A list of
primitives and their implementations currently supported by Tink in C++ can be
found [here](PRIMITIVES.md#c).
You obtain a primitive by calling the method `primitive` of the `KeysetHandle`.
### Symmetric key encryption
You can obtain and use an [AEAD (Authenticated Encryption with Associated
Data)](PRIMITIVES.md#authenticated-encryption-with-associated-data) primitive to
encrypt or decrypt data:
```python
import tink
from tink import aead
plaintext = b'your data...'
associated_data = b'context'
# Register all AEAD primitives
aead.register()
# 1. Get a handle to the key material.
keyset_handle = tink.new_keyset_handle(aead.aead_key_templates.AES256_GCM)
# 2. Get the primitive.
aead_primitive = keyset_handle.primitive(aead.Aead)
# 3. Use the primitive.
ciphertext = aead_primitive.encrypt(plaintext, associated_data)
```
### Deterministic symmetric key encryption
You can obtain and use a
[DeterministicAEAD (Deterministic Authenticated Encryption with Associated Data](PRIMITIVES.md#deterministic-authenticated-encryption-with-associated-data)
primitive to encrypt or decrypt data:
```python
import tink
from tink import daead
plaintext = b'your data...'
associated_data = b'context'
# Register all deterministic AEAD primitives
daead.register()
# 1. Get a handle to the key material.
keyset_handle = tink.new_keyset_handle(daead.deterministic_aead_key_templates.AES256_SIV)
# 2. Get the primitive.
daead_primitive = keyset_handle.primitive(daead.DeterministicAead)
# 3. Use the primitive.
ciphertext = daead_primitive.encrypt_deterministically(plaintext, associated_data)
```
### Symmetric key encryption of streaming data
You can obtain and use a
[Streaming AEAD (Streaming Authenticated Encryption with Associated Data)](PRIMITIVES.md#streaming-authenticated-encryption-with-associated-data)
primitive to encrypt or decrypt data streams:
```python
import tink
from tink import streaming_aead
long_plaintext = b'your data...'
associated_data = b'context'
# Register all streaming AEAD primitives
streaming_aead.register()
# 1. Get a handle to the key material
keyset_handle = tink.new_keyset_handle(streaming_aead.streaming_aead_key_templates.AES256_CTR_HMAC_SHA256_4KB)
# 2. Get the primitive.
streaming_aead_primitive = keyset_handle.primitive(streaming_aead.StreamingAead)
# 3. Use the primitive.
output_file = open("ciphertext.out", 'wb')
with streaming_aead_primitive.new_encrypting_stream(output_file, associated_data) as enc_stream:
bytes_written = enc_stream.write(long_plaintext)
```
### Message Authentication Code
You can compute or verify a
[MAC (Message Authentication Code)](PRIMITIVES.md#message-authentication-code):
```python
import tink
from tink import mac
data = b'your data...'
# Register all MAC primitives
mac.register()
# 1. Get a handle to the key material.
keyset_handle = tink.new_keyset_handle(mac.mac_key_templates.HMAC_SHA256_128BITTAG)
# 2. Get the primitive.
mac_primitive = keyset_handle.primitive(mac.Mac)
# 3. Use the primitive to compute a tag,
tag = mac_primitive.compute_mac(data)
# ... or to verify a tag.
mac_primitive.verify_mac(tag, data)
```
### Hybrid Encryption
To encrypt or decrypt using
[a combination of public key encryption and symmetric key encryption](PRIMITIVES.md#hybrid-encryption)
one can use the following:
```python
import tink
from tink import hybrid
plaintext = b'your data...'
context = b'context'
# Register all Hybrid primitives
hybrid.register()
# 1. Generate the private key material.
private_keyset_handle = tink.new_keyset_handle(hybrid.hybrid_key_templates.ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM)
# Obtain the public key material.
public_keyset_handle = private_keyset_handle.public_keyset_handle()
# Encryption
# 2. Get the primitive.
hybrid_encrypt = public_keyset_handle.primitive(hybrid.HybridEncrypt)
# 3. Use the primitive.
ciphertext = hybrid_encrypt.encrypt(plaintext, context)
# Decryption
# 2. Get the primitive.
hybrid_decrypt = private_keyset_handle.primitive(hybrid.HybridDecrypt)
# 3. Use the primitive.
plaintext = hybrid_decrypt.decrypt(ciphertext, context)
```
### Digital Signatures
You can sign or verify using a
[digital signature](PRIMITIVES.md#digital-signatures):
```python
import tink
from tink import signature
# Register key manager for signatures
signature.register()
# Signing
# 1. Generate the private key material.
keyset_handle = tink.new_keyset_handle(signature.signature_key_templates.ED25519)
# 2. Get the primitive.
signer = keyset_handle.primitive(signature.PublicKeySign)
# 3. Use the primitive to sign.
signature_data = signer.sign(b'your data')
# Verifying
# 1. Obtain the public key material.
public_keyset_handle = keyset_handle.public_keyset_handle()
# 2. Get the primitive.
verifier = public_keyset_handle.primitive(signature.PublicKeyVerify)
# 3. Use the primitive to verify.
verifier.verify(signature_data, b'your data')
```
### Envelope encryption
Via the AEAD interface, Tink supports
[envelope encryption](KEY-MANAGEMENT.md#envelope-encryption).
For example, you can perform envelope encryption with a Google Cloud KMS key at
`gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar`
using the credentials in `credentials.json` as follows:
```python
import tink
from tink import aead
from tink.integration import gcpkms
key_uri = 'gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar'
gcp_credentials = 'credentials.json'
plaintext = b'your data...'
associated_data = b'context'
# Read the GCP credentials and setup client
try:
gcp_client = gcpkms.GcpKmsClient(key_uri, gcp_credentials)
gcp_aead = gcp_client.get_aead(key_uri)
except tink.TinkError as e:
logging.error('Error initializing GCP client: %s', e)
return 1
# Create envelope AEAD primitive using AES256 GCM for encrypting the data
try:
key_template = aead.aead_key_templates.AES256_GCM
env_aead = aead.KmsEnvelopeAead(key_template, gcp_aead)
except tink.TinkError as e:
logging.error('Error creating primitive: %s', e)
return 1
# Use env_aead to encrypt data
ciphertext = env_aead.encrypt(plaintext, associated_data)
```