| // |
| // Copyright 2010 The Android Open Source Project |
| // |
| // The input reader. |
| // |
| #define LOG_TAG "InputDevice" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log debug messages for each raw event received from the EventHub. |
| #define DEBUG_RAW_EVENTS 0 |
| |
| // Log debug messages about touch screen filtering hacks. |
| #define DEBUG_HACKS 0 |
| |
| // Log debug messages about virtual key processing. |
| #define DEBUG_VIRTUAL_KEYS 0 |
| |
| // Log debug messages about pointers. |
| #define DEBUG_POINTERS 0 |
| |
| // Log debug messages about pointer assignment calculations. |
| #define DEBUG_POINTER_ASSIGNMENT 0 |
| |
| #include <cutils/log.h> |
| #include <ui/InputDevice.h> |
| |
| #include <stddef.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <limits.h> |
| |
| /* Slop distance for jumpy pointer detection. |
| * The vertical range of the screen divided by this is our epsilon value. */ |
| #define JUMPY_EPSILON_DIVISOR 212 |
| |
| /* Number of jumpy points to drop for touchscreens that need it. */ |
| #define JUMPY_TRANSITION_DROPS 3 |
| #define JUMPY_DROP_LIMIT 3 |
| |
| /* Maximum squared distance for averaging. |
| * If moving farther than this, turn of averaging to avoid lag in response. */ |
| #define AVERAGING_DISTANCE_LIMIT (75 * 75) |
| |
| |
| namespace android { |
| |
| // --- Static Functions --- |
| |
| template<typename T> |
| inline static T abs(const T& value) { |
| return value < 0 ? - value : value; |
| } |
| |
| template<typename T> |
| inline static T min(const T& a, const T& b) { |
| return a < b ? a : b; |
| } |
| |
| template<typename T> |
| inline static void swap(T& a, T& b) { |
| T temp = a; |
| a = b; |
| b = temp; |
| } |
| |
| |
| // --- InputDevice --- |
| |
| InputDevice::InputDevice(int32_t id, uint32_t classes, String8 name) : |
| id(id), classes(classes), name(name), ignored(false) { |
| } |
| |
| void InputDevice::reset() { |
| if (isKeyboard()) { |
| keyboard.reset(); |
| } |
| |
| if (isTrackball()) { |
| trackball.reset(); |
| } |
| |
| if (isMultiTouchScreen()) { |
| multiTouchScreen.reset(); |
| } else if (isSingleTouchScreen()) { |
| singleTouchScreen.reset(); |
| } |
| |
| if (isTouchScreen()) { |
| touchScreen.reset(); |
| } |
| } |
| |
| |
| // --- InputDevice::TouchData --- |
| |
| void InputDevice::TouchData::copyFrom(const TouchData& other) { |
| pointerCount = other.pointerCount; |
| idBits = other.idBits; |
| |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| pointers[i] = other.pointers[i]; |
| idToIndex[i] = other.idToIndex[i]; |
| } |
| } |
| |
| |
| // --- InputDevice::KeyboardState --- |
| |
| void InputDevice::KeyboardState::reset() { |
| current.metaState = AMETA_NONE; |
| current.downTime = 0; |
| } |
| |
| |
| // --- InputDevice::TrackballState --- |
| |
| void InputDevice::TrackballState::reset() { |
| accumulator.clear(); |
| current.down = false; |
| current.downTime = 0; |
| } |
| |
| |
| // --- InputDevice::TouchScreenState --- |
| |
| void InputDevice::TouchScreenState::reset() { |
| lastTouch.clear(); |
| downTime = 0; |
| currentVirtualKey.status = CurrentVirtualKeyState::STATUS_UP; |
| |
| for (uint32_t i = 0; i < MAX_POINTERS; i++) { |
| averagingTouchFilter.historyStart[i] = 0; |
| averagingTouchFilter.historyEnd[i] = 0; |
| } |
| |
| jumpyTouchFilter.jumpyPointsDropped = 0; |
| } |
| |
| struct PointerDistanceHeapElement { |
| uint32_t currentPointerIndex : 8; |
| uint32_t lastPointerIndex : 8; |
| uint64_t distance : 48; // squared distance |
| }; |
| |
| void InputDevice::TouchScreenState::calculatePointerIds() { |
| uint32_t currentPointerCount = currentTouch.pointerCount; |
| uint32_t lastPointerCount = lastTouch.pointerCount; |
| |
| if (currentPointerCount == 0) { |
| // No pointers to assign. |
| currentTouch.idBits.clear(); |
| } else if (lastPointerCount == 0) { |
| // All pointers are new. |
| currentTouch.idBits.clear(); |
| for (uint32_t i = 0; i < currentPointerCount; i++) { |
| currentTouch.pointers[i].id = i; |
| currentTouch.idToIndex[i] = i; |
| currentTouch.idBits.markBit(i); |
| } |
| } else if (currentPointerCount == 1 && lastPointerCount == 1) { |
| // Only one pointer and no change in count so it must have the same id as before. |
| uint32_t id = lastTouch.pointers[0].id; |
| currentTouch.pointers[0].id = id; |
| currentTouch.idToIndex[id] = 0; |
| currentTouch.idBits.value = BitSet32::valueForBit(id); |
| } else { |
| // General case. |
| // We build a heap of squared euclidean distances between current and last pointers |
| // associated with the current and last pointer indices. Then, we find the best |
| // match (by distance) for each current pointer. |
| PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; |
| |
| uint32_t heapSize = 0; |
| for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; |
| currentPointerIndex++) { |
| for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; |
| lastPointerIndex++) { |
| int64_t deltaX = currentTouch.pointers[currentPointerIndex].x |
| - lastTouch.pointers[lastPointerIndex].x; |
| int64_t deltaY = currentTouch.pointers[currentPointerIndex].y |
| - lastTouch.pointers[lastPointerIndex].y; |
| |
| uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); |
| |
| // Insert new element into the heap (sift up). |
| heap[heapSize].currentPointerIndex = currentPointerIndex; |
| heap[heapSize].lastPointerIndex = lastPointerIndex; |
| heap[heapSize].distance = distance; |
| heapSize += 1; |
| } |
| } |
| |
| // Heapify |
| for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { |
| startIndex -= 1; |
| for (uint32_t parentIndex = startIndex; ;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize |
| && heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| } |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", |
| i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, |
| heap[i].distance); |
| } |
| #endif |
| |
| // Pull matches out by increasing order of distance. |
| // To avoid reassigning pointers that have already been matched, the loop keeps track |
| // of which last and current pointers have been matched using the matchedXXXBits variables. |
| // It also tracks the used pointer id bits. |
| BitSet32 matchedLastBits(0); |
| BitSet32 matchedCurrentBits(0); |
| BitSet32 usedIdBits(0); |
| bool first = true; |
| for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) { |
| for (;;) { |
| if (first) { |
| // The first time through the loop, we just consume the root element of |
| // the heap (the one with smallest distance). |
| first = false; |
| } else { |
| // Previous iterations consumed the root element of the heap. |
| // Pop root element off of the heap (sift down). |
| heapSize -= 1; |
| assert(heapSize > 0); |
| |
| // Sift down. |
| heap[0] = heap[heapSize]; |
| for (uint32_t parentIndex = 0; ;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize |
| && heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", |
| i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, |
| heap[i].distance); |
| } |
| #endif |
| } |
| |
| uint32_t currentPointerIndex = heap[0].currentPointerIndex; |
| if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched |
| |
| uint32_t lastPointerIndex = heap[0].lastPointerIndex; |
| if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched |
| |
| matchedCurrentBits.markBit(currentPointerIndex); |
| matchedLastBits.markBit(lastPointerIndex); |
| |
| uint32_t id = lastTouch.pointers[lastPointerIndex].id; |
| currentTouch.pointers[currentPointerIndex].id = id; |
| currentTouch.idToIndex[id] = currentPointerIndex; |
| usedIdBits.markBit(id); |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", |
| lastPointerIndex, currentPointerIndex, id, heap[0].distance); |
| #endif |
| break; |
| } |
| } |
| |
| // Assign fresh ids to new pointers. |
| if (currentPointerCount > lastPointerCount) { |
| for (uint32_t i = currentPointerCount - lastPointerCount; ;) { |
| uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit(); |
| uint32_t id = usedIdBits.firstUnmarkedBit(); |
| |
| currentTouch.pointers[currentPointerIndex].id = id; |
| currentTouch.idToIndex[id] = currentPointerIndex; |
| usedIdBits.markBit(id); |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - assigned: cur=%d, id=%d", |
| currentPointerIndex, id); |
| #endif |
| |
| if (--i == 0) break; // done |
| matchedCurrentBits.markBit(currentPointerIndex); |
| } |
| } |
| |
| // Fix id bits. |
| currentTouch.idBits = usedIdBits; |
| } |
| } |
| |
| /* Special hack for devices that have bad screen data: if one of the |
| * points has moved more than a screen height from the last position, |
| * then drop it. */ |
| bool InputDevice::TouchScreenState::applyBadTouchFilter() { |
| // This hack requires valid axis parameters. |
| if (! parameters.yAxis.valid) { |
| return false; |
| } |
| |
| uint32_t pointerCount = currentTouch.pointerCount; |
| |
| // Nothing to do if there are no points. |
| if (pointerCount == 0) { |
| return false; |
| } |
| |
| // Don't do anything if a finger is going down or up. We run |
| // here before assigning pointer IDs, so there isn't a good |
| // way to do per-finger matching. |
| if (pointerCount != lastTouch.pointerCount) { |
| return false; |
| } |
| |
| // We consider a single movement across more than a 7/16 of |
| // the long size of the screen to be bad. This was a magic value |
| // determined by looking at the maximum distance it is feasible |
| // to actually move in one sample. |
| int32_t maxDeltaY = parameters.yAxis.range * 7 / 16; |
| |
| // XXX The original code in InputDevice.java included commented out |
| // code for testing the X axis. Note that when we drop a point |
| // we don't actually restore the old X either. Strange. |
| // The old code also tries to track when bad points were previously |
| // detected but it turns out that due to the placement of a "break" |
| // at the end of the loop, we never set mDroppedBadPoint to true |
| // so it is effectively dead code. |
| // Need to figure out if the old code is busted or just overcomplicated |
| // but working as intended. |
| |
| // Look through all new points and see if any are farther than |
| // acceptable from all previous points. |
| for (uint32_t i = pointerCount; i-- > 0; ) { |
| int32_t y = currentTouch.pointers[i].y; |
| int32_t closestY = INT_MAX; |
| int32_t closestDeltaY = 0; |
| |
| #if DEBUG_HACKS |
| LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y); |
| #endif |
| |
| for (uint32_t j = pointerCount; j-- > 0; ) { |
| int32_t lastY = lastTouch.pointers[j].y; |
| int32_t deltaY = abs(y - lastY); |
| |
| #if DEBUG_HACKS |
| LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d", |
| j, lastY, deltaY); |
| #endif |
| |
| if (deltaY < maxDeltaY) { |
| goto SkipSufficientlyClosePoint; |
| } |
| if (deltaY < closestDeltaY) { |
| closestDeltaY = deltaY; |
| closestY = lastY; |
| } |
| } |
| |
| // Must not have found a close enough match. |
| #if DEBUG_HACKS |
| LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d", |
| i, y, closestY, closestDeltaY, maxDeltaY); |
| #endif |
| |
| currentTouch.pointers[i].y = closestY; |
| return true; // XXX original code only corrects one point |
| |
| SkipSufficientlyClosePoint: ; |
| } |
| |
| // No change. |
| return false; |
| } |
| |
| /* Special hack for devices that have bad screen data: drop points where |
| * the coordinate value for one axis has jumped to the other pointer's location. |
| */ |
| bool InputDevice::TouchScreenState::applyJumpyTouchFilter() { |
| // This hack requires valid axis parameters. |
| if (! parameters.yAxis.valid) { |
| return false; |
| } |
| |
| uint32_t pointerCount = currentTouch.pointerCount; |
| if (lastTouch.pointerCount != pointerCount) { |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Different pointer count %d -> %d", |
| lastTouch.pointerCount, pointerCount); |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| LOGD(" Pointer %d (%d, %d)", i, |
| currentTouch.pointers[i].x, currentTouch.pointers[i].y); |
| } |
| #endif |
| |
| if (jumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) { |
| if (lastTouch.pointerCount == 1 && pointerCount == 2) { |
| // Just drop the first few events going from 1 to 2 pointers. |
| // They're bad often enough that they're not worth considering. |
| currentTouch.pointerCount = 1; |
| jumpyTouchFilter.jumpyPointsDropped += 1; |
| |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Pointer 2 dropped"); |
| #endif |
| return true; |
| } else if (lastTouch.pointerCount == 2 && pointerCount == 1) { |
| // The event when we go from 2 -> 1 tends to be messed up too |
| currentTouch.pointerCount = 2; |
| currentTouch.pointers[0] = lastTouch.pointers[0]; |
| currentTouch.pointers[1] = lastTouch.pointers[1]; |
| jumpyTouchFilter.jumpyPointsDropped += 1; |
| |
| #if DEBUG_HACKS |
| for (int32_t i = 0; i < 2; i++) { |
| LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i, |
| currentTouch.pointers[i].x, currentTouch.pointers[i].y); |
| } |
| #endif |
| return true; |
| } |
| } |
| // Reset jumpy points dropped on other transitions or if limit exceeded. |
| jumpyTouchFilter.jumpyPointsDropped = 0; |
| |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Transition - drop limit reset"); |
| #endif |
| return false; |
| } |
| |
| // We have the same number of pointers as last time. |
| // A 'jumpy' point is one where the coordinate value for one axis |
| // has jumped to the other pointer's location. No need to do anything |
| // else if we only have one pointer. |
| if (pointerCount < 2) { |
| return false; |
| } |
| |
| if (jumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) { |
| int jumpyEpsilon = parameters.yAxis.range / JUMPY_EPSILON_DIVISOR; |
| |
| // We only replace the single worst jumpy point as characterized by pointer distance |
| // in a single axis. |
| int32_t badPointerIndex = -1; |
| int32_t badPointerReplacementIndex = -1; |
| int32_t badPointerDistance = INT_MIN; // distance to be corrected |
| |
| for (uint32_t i = pointerCount; i-- > 0; ) { |
| int32_t x = currentTouch.pointers[i].x; |
| int32_t y = currentTouch.pointers[i].y; |
| |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y); |
| #endif |
| |
| // Check if a touch point is too close to another's coordinates |
| bool dropX = false, dropY = false; |
| for (uint32_t j = 0; j < pointerCount; j++) { |
| if (i == j) { |
| continue; |
| } |
| |
| if (abs(x - currentTouch.pointers[j].x) <= jumpyEpsilon) { |
| dropX = true; |
| break; |
| } |
| |
| if (abs(y - currentTouch.pointers[j].y) <= jumpyEpsilon) { |
| dropY = true; |
| break; |
| } |
| } |
| if (! dropX && ! dropY) { |
| continue; // not jumpy |
| } |
| |
| // Find a replacement candidate by comparing with older points on the |
| // complementary (non-jumpy) axis. |
| int32_t distance = INT_MIN; // distance to be corrected |
| int32_t replacementIndex = -1; |
| |
| if (dropX) { |
| // X looks too close. Find an older replacement point with a close Y. |
| int32_t smallestDeltaY = INT_MAX; |
| for (uint32_t j = 0; j < pointerCount; j++) { |
| int32_t deltaY = abs(y - lastTouch.pointers[j].y); |
| if (deltaY < smallestDeltaY) { |
| smallestDeltaY = deltaY; |
| replacementIndex = j; |
| } |
| } |
| distance = abs(x - lastTouch.pointers[replacementIndex].x); |
| } else { |
| // Y looks too close. Find an older replacement point with a close X. |
| int32_t smallestDeltaX = INT_MAX; |
| for (uint32_t j = 0; j < pointerCount; j++) { |
| int32_t deltaX = abs(x - lastTouch.pointers[j].x); |
| if (deltaX < smallestDeltaX) { |
| smallestDeltaX = deltaX; |
| replacementIndex = j; |
| } |
| } |
| distance = abs(y - lastTouch.pointers[replacementIndex].y); |
| } |
| |
| // If replacing this pointer would correct a worse error than the previous ones |
| // considered, then use this replacement instead. |
| if (distance > badPointerDistance) { |
| badPointerIndex = i; |
| badPointerReplacementIndex = replacementIndex; |
| badPointerDistance = distance; |
| } |
| } |
| |
| // Correct the jumpy pointer if one was found. |
| if (badPointerIndex >= 0) { |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)", |
| badPointerIndex, |
| lastTouch.pointers[badPointerReplacementIndex].x, |
| lastTouch.pointers[badPointerReplacementIndex].y); |
| #endif |
| |
| currentTouch.pointers[badPointerIndex].x = |
| lastTouch.pointers[badPointerReplacementIndex].x; |
| currentTouch.pointers[badPointerIndex].y = |
| lastTouch.pointers[badPointerReplacementIndex].y; |
| jumpyTouchFilter.jumpyPointsDropped += 1; |
| return true; |
| } |
| } |
| |
| jumpyTouchFilter.jumpyPointsDropped = 0; |
| return false; |
| } |
| |
| /* Special hack for devices that have bad screen data: aggregate and |
| * compute averages of the coordinate data, to reduce the amount of |
| * jitter seen by applications. */ |
| void InputDevice::TouchScreenState::applyAveragingTouchFilter() { |
| for (uint32_t currentIndex = 0; currentIndex < currentTouch.pointerCount; currentIndex++) { |
| uint32_t id = currentTouch.pointers[currentIndex].id; |
| int32_t x = currentTouch.pointers[currentIndex].x; |
| int32_t y = currentTouch.pointers[currentIndex].y; |
| int32_t pressure = currentTouch.pointers[currentIndex].pressure; |
| |
| if (lastTouch.idBits.hasBit(id)) { |
| // Pointer was down before and is still down now. |
| // Compute average over history trace. |
| uint32_t start = averagingTouchFilter.historyStart[id]; |
| uint32_t end = averagingTouchFilter.historyEnd[id]; |
| |
| int64_t deltaX = x - averagingTouchFilter.historyData[end].pointers[id].x; |
| int64_t deltaY = y - averagingTouchFilter.historyData[end].pointers[id].y; |
| uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); |
| |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld", |
| id, distance); |
| #endif |
| |
| if (distance < AVERAGING_DISTANCE_LIMIT) { |
| // Increment end index in preparation for recording new historical data. |
| end += 1; |
| if (end > AVERAGING_HISTORY_SIZE) { |
| end = 0; |
| } |
| |
| // If the end index has looped back to the start index then we have filled |
| // the historical trace up to the desired size so we drop the historical |
| // data at the start of the trace. |
| if (end == start) { |
| start += 1; |
| if (start > AVERAGING_HISTORY_SIZE) { |
| start = 0; |
| } |
| } |
| |
| // Add the raw data to the historical trace. |
| averagingTouchFilter.historyStart[id] = start; |
| averagingTouchFilter.historyEnd[id] = end; |
| averagingTouchFilter.historyData[end].pointers[id].x = x; |
| averagingTouchFilter.historyData[end].pointers[id].y = y; |
| averagingTouchFilter.historyData[end].pointers[id].pressure = pressure; |
| |
| // Average over all historical positions in the trace by total pressure. |
| int32_t averagedX = 0; |
| int32_t averagedY = 0; |
| int32_t totalPressure = 0; |
| for (;;) { |
| int32_t historicalX = averagingTouchFilter.historyData[start].pointers[id].x; |
| int32_t historicalY = averagingTouchFilter.historyData[start].pointers[id].y; |
| int32_t historicalPressure = averagingTouchFilter.historyData[start] |
| .pointers[id].pressure; |
| |
| averagedX += historicalX * historicalPressure; |
| averagedY += historicalY * historicalPressure; |
| totalPressure += historicalPressure; |
| |
| if (start == end) { |
| break; |
| } |
| |
| start += 1; |
| if (start > AVERAGING_HISTORY_SIZE) { |
| start = 0; |
| } |
| } |
| |
| averagedX /= totalPressure; |
| averagedY /= totalPressure; |
| |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - " |
| "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure, |
| averagedX, averagedY); |
| #endif |
| |
| currentTouch.pointers[currentIndex].x = averagedX; |
| currentTouch.pointers[currentIndex].y = averagedY; |
| } else { |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id); |
| #endif |
| } |
| } else { |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id); |
| #endif |
| } |
| |
| // Reset pointer history. |
| averagingTouchFilter.historyStart[id] = 0; |
| averagingTouchFilter.historyEnd[id] = 0; |
| averagingTouchFilter.historyData[0].pointers[id].x = x; |
| averagingTouchFilter.historyData[0].pointers[id].y = y; |
| averagingTouchFilter.historyData[0].pointers[id].pressure = pressure; |
| } |
| } |
| |
| bool InputDevice::TouchScreenState::isPointInsideDisplay(int32_t x, int32_t y) const { |
| if (! parameters.xAxis.valid || ! parameters.yAxis.valid) { |
| // Assume all points on a touch screen without valid axis parameters are |
| // inside the display. |
| return true; |
| } |
| |
| return x >= parameters.xAxis.minValue |
| && x <= parameters.xAxis.maxValue |
| && y >= parameters.yAxis.minValue |
| && y <= parameters.yAxis.maxValue; |
| } |
| |
| const InputDevice::VirtualKey* InputDevice::TouchScreenState::findVirtualKeyHit() const { |
| int32_t x = currentTouch.pointers[0].x; |
| int32_t y = currentTouch.pointers[0].y; |
| for (size_t i = 0; i < virtualKeys.size(); i++) { |
| const InputDevice::VirtualKey& virtualKey = virtualKeys[i]; |
| |
| #if DEBUG_VIRTUAL_KEYS |
| LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " |
| "left=%d, top=%d, right=%d, bottom=%d", |
| x, y, |
| virtualKey.keyCode, virtualKey.scanCode, |
| virtualKey.hitLeft, virtualKey.hitTop, |
| virtualKey.hitRight, virtualKey.hitBottom); |
| #endif |
| |
| if (virtualKey.isHit(x, y)) { |
| return & virtualKey; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| // --- InputDevice::SingleTouchScreenState --- |
| |
| void InputDevice::SingleTouchScreenState::reset() { |
| accumulator.clear(); |
| current.down = false; |
| current.x = 0; |
| current.y = 0; |
| current.pressure = 0; |
| current.size = 0; |
| } |
| |
| |
| // --- InputDevice::MultiTouchScreenState --- |
| |
| void InputDevice::MultiTouchScreenState::reset() { |
| accumulator.clear(); |
| } |
| |
| } // namespace android |