Implement IntrinsicBLAS for RS C++ API
Change-Id: I2337340ce9ed43ab49b55b37d349b696bb0679a1
diff --git a/cpp/Android.mk b/cpp/Android.mk
index 0c59f44..fe45db7 100644
--- a/cpp/Android.mk
+++ b/cpp/Android.mk
@@ -28,6 +28,7 @@
Script.cpp \
ScriptC.cpp \
ScriptIntrinsics.cpp \
+ ScriptIntrinsicBLAS.cpp \
Sampler.cpp
LOCAL_ADDITIONAL_DEPENDENCIES := $(LOCAL_PATH)/Android.mk
diff --git a/cpp/ScriptIntrinsicBLAS.cpp b/cpp/ScriptIntrinsicBLAS.cpp
new file mode 100644
index 0000000..63a8f0c
--- /dev/null
+++ b/cpp/ScriptIntrinsicBLAS.cpp
@@ -0,0 +1,1848 @@
+/*
+ * Copyright (C) 2015 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#include "RenderScript.h"
+#include "rsCppInternal.h"
+
+using namespace android;
+using namespace RSC;
+
+// ScriptIntrinsicBLAS APIS
+ScriptIntrinsicBLAS::ScriptIntrinsicBLAS(sp<RS> rs, sp<const Element> e)
+ : ScriptIntrinsic(rs, RS_SCRIPT_INTRINSIC_ID_BLAS, e) {
+
+}
+
+sp<ScriptIntrinsicBLAS> ScriptIntrinsicBLAS::create(sp<RS> rs) {
+ return new ScriptIntrinsicBLAS(rs, Element::U32(rs));
+}
+
+enum RsBlasDataType {
+ SINGLE,
+ DOUBLE,
+ SINGLE_COMPLEX,
+ DOUBLE_COMPLEX
+};
+
+static RsBlasCall
+setUpBLASCall(RsBlasDataType dataType, RsBlasFunction func,
+ int TransA, int TransB, int Side, int Uplo, int Diag,
+ int M, int N, int K, int incX, int incY, int KL, int KU,
+ float alphaF, float betaF, double alphaD, double betaD,
+ float alphaCX, float alphaCY, float betaCX, float betaCY,
+ double alphaZX, double alphaZY, double betaZX, double betaZY
+ ) {
+ RsBlasCall call;
+ memset(&call, 0, sizeof(call));
+ call.func = func;
+ call.transA = (RsBlasTranspose)TransA;
+ call.transB = (RsBlasTranspose)TransB;
+ call.side = (RsBlasSide)Side;
+ call.uplo = (RsBlasUplo)Uplo;
+ call.diag = (RsBlasDiag)Diag;
+ call.M = M;
+ call.N = N;
+ call.K = K;
+
+ switch (dataType) {
+ case SINGLE:
+ // For Single-precision BLAS.
+ call.alpha.f = alphaF;
+ call.beta.f = betaF;
+ break;
+ case DOUBLE:
+ // For Double-precision BLAS.
+ call.alpha.d = alphaD;
+ call.beta.d = betaD;
+ break;
+ case SINGLE_COMPLEX:
+ // For Single-precision complex BLAS.
+ call.alpha.c.r = alphaCX;
+ call.alpha.c.i = alphaCY;
+ call.beta.c.r = betaCX;
+ call.beta.c.i = betaCY;
+ break;
+ case DOUBLE_COMPLEX:
+ // For Double-precision complex BLAS.
+ call.alpha.z.r = alphaZX;
+ call.alpha.z.i = alphaZY;
+ call.beta.z.r = betaZX;
+ call.beta.z.i = betaZY;
+ break;
+ default:
+ break;
+ }
+
+ call.incX = incX;
+ call.incY = incY;
+ call.KL = KL;
+ call.KU = KU;
+
+ return call;
+}
+
+static void
+nScriptIntrinsicBLAS_Single(RS* mRS, RsContext con, RsScript id, RsBlasFunction func, int TransA,
+ int TransB, int Side, int Uplo, int Diag, int M, int N, int K,
+ float alpha, RsAllocation A, RsAllocation B,
+ float beta, RsAllocation C, int incX, int incY, int KL, int KU) {
+ RsBlasCall call = setUpBLASCall(SINGLE, func, TransA, TransB, Side, Uplo, Diag,
+ M, N, K, incX, incY, KL, KU, alpha, beta, 0.0, 0.0,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0, 0.0, 0.0, 0.0);
+ RsAllocation in_allocs[3] = {A, B, C};
+ tryDispatch(mRS, RS::dispatch->ScriptForEachMulti(con, id, 0, in_allocs, sizeof(in_allocs), nullptr,
+ &call, sizeof(call), nullptr, 0));
+}
+
+
+static void
+nScriptIntrinsicBLAS_Double(RS* mRS, RsContext con, RsScript id, RsBlasFunction func, int TransA,
+ int TransB, int Side, int Uplo, int Diag, int M, int N, int K,
+ double alpha, RsAllocation A, RsAllocation B,
+ double beta, RsAllocation C, int incX, int incY, int KL, int KU) {
+ RsBlasCall call = setUpBLASCall(DOUBLE, func, TransA, TransB, Side, Uplo, Diag,
+ M, N, K, incX, incY, KL, KU, 0.0f, 0.0f, alpha, beta,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0, 0.0, 0.0, 0.0);
+ RsAllocation in_allocs[3] = {A, B, C};
+ tryDispatch(mRS, RS::dispatch->ScriptForEachMulti(con, id, 0, in_allocs, sizeof(in_allocs), nullptr,
+ &call, sizeof(call), nullptr, 0));
+}
+
+static void
+nScriptIntrinsicBLAS_Complex(RS* mRS, RsContext con, RsScript id, RsBlasFunction func, int TransA,
+ int TransB, int Side, int Uplo, int Diag, int M, int N, int K,
+ float alphaX, float alphaY, RsAllocation A, RsAllocation B,
+ float betaX, float betaY, RsAllocation C, int incX, int incY, int KL, int KU) {
+ RsBlasCall call = setUpBLASCall(SINGLE_COMPLEX, func, TransA, TransB, Side, Uplo, Diag,
+ M, N, K, incX, incY, KL, KU, 0.0f, 0.0f, 0.0, 0.0,
+ alphaX, alphaY, betaX, betaY, 0.0, 0.0, 0.0, 0.0);
+ RsAllocation in_allocs[3] = {A, B, C};
+ tryDispatch(mRS, RS::dispatch->ScriptForEachMulti(con, id, 0, in_allocs, sizeof(in_allocs), nullptr,
+ &call, sizeof(call), nullptr, 0));
+}
+
+static void
+nScriptIntrinsicBLAS_Z(RS* mRS, RsContext con, RsScript id, RsBlasFunction func, int TransA,
+ int TransB, int Side, int Uplo, int Diag, int M, int N, int K,
+ double alphaX, double alphaY, RsAllocation A, RsAllocation B,
+ double betaX, double betaY, RsAllocation C, int incX, int incY, int KL, int KU) {
+ RsBlasCall call = setUpBLASCall(DOUBLE_COMPLEX, func, TransA, TransB, Side, Uplo, Diag,
+ M, N, K, incX, incY, KL, KU, 0.0f, 0.0f, 0.0, 0.0,
+ 0.0f, 0.0f, 0.0f, 0.0f, alphaX, alphaY, betaX, betaY);
+ RsAllocation in_allocs[3] = {A, B, C};
+ tryDispatch(mRS, RS::dispatch->ScriptForEachMulti(con, id, 0, in_allocs, sizeof(in_allocs), nullptr,
+ &call, sizeof(call), nullptr, 0));
+}
+
+
+static void
+nScriptIntrinsicBLAS_BNNM(RS* mRS, RsContext con, RsScript id, int M, int N, int K,
+ RsAllocation A, int a_offset, RsAllocation B, int b_offset,
+ RsAllocation C, int c_offset, int c_mult_int) {
+ RsBlasCall call;
+ memset(&call, 0, sizeof(call));
+ call.func = RsBlas_bnnm;
+ call.M = M;
+ call.N = N;
+ call.K = K;
+ call.a_offset = a_offset & 0xFF;
+ call.b_offset = b_offset & 0xFF;
+ call.c_offset = c_offset;
+ call.c_mult_int = c_mult_int;
+
+ RsAllocation in_allocs[3] = {A, B, C};
+ tryDispatch(mRS, RS::dispatch->ScriptForEachMulti(con, id, 0, in_allocs, sizeof(in_allocs), nullptr,
+ &call, sizeof(call), nullptr, 0));
+}
+
+/**
+ * Level 2 BLAS
+ */
+static void validateGEMV(RS* mRS, sp<const Element> e, RsBlasTranspose TransA, sp<Allocation> A,
+ sp<Allocation> X, int incX, sp<Allocation> Y, int incY) {
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = -1, expectedYDim = -1;
+ if (TransA == RsBlasNoTrans) {
+ expectedXDim = 1 + (N - 1) * incX;
+ expectedYDim = 1 + (M - 1) * incY;
+ } else {
+ expectedXDim = 1 + (M - 1) * incX;
+ expectedYDim = 1 + (N - 1) * incY;
+ }
+ if ((int)X->getType()->getX() != expectedXDim ||
+ (int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for GEMV");
+ }
+}
+
+void ScriptIntrinsicBLAS::SGEMV(RsBlasTranspose TransA, float alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY) {
+ validateGEMV(mRS, Element::F32(mRS), TransA, A, X, incX, Y, incY);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sgemv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha, A->getID(), X->getID(),
+ beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DGEMV(RsBlasTranspose TransA, double alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, double beta, sp<Allocation> Y, int incY) {
+ validateGEMV(mRS, Element::F64(mRS), TransA, A, X, incX, Y, incY);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dgemv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha, A->getID(), X->getID(),
+ beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CGEMV(RsBlasTranspose TransA, Float2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Float2 beta, sp<Allocation> Y, int incY) {
+ validateGEMV(mRS, Element::F32_2(mRS), TransA, A, X, incX, Y, incY);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cgemv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZGEMV(RsBlasTranspose TransA, Double2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Double2 beta, sp<Allocation> Y, int incY) {
+ validateGEMV(mRS, Element::F64_2(mRS), TransA, A, X, incX, Y, incY);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zgemv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SGBMV(RsBlasTranspose TransA, int KL, int KU, float alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, float beta, sp<Allocation> Y, int incY) {
+ // GBMV has the same validation requirements as GEMV + KL and KU >= 0
+ validateGEMV(mRS, Element::F32(mRS), TransA, A, X, incX, Y, incY);
+ if (KL < 0 || KU < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "KL and KU must be greater than or equal to 0");
+ }
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sgbmv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha, A->getID(), X->getID(),
+ beta, Y->getID(), incX, incY, KL, KU);
+}
+
+void ScriptIntrinsicBLAS::DGBMV(RsBlasTranspose TransA, int KL, int KU, double alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, double beta, sp<Allocation> Y, int incY) {
+ // GBMV has the same validation requirements as GEMV + KL and KU >= 0
+ validateGEMV(mRS, Element::F64(mRS), TransA, A, X, incX, Y, incY);
+ if (KL < 0 || KU < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "KL and KU must be greater than or equal to 0");
+ }
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dgbmv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha, A->getID(), X->getID(),
+ beta, Y->getID(), incX, incY, KL, KU);
+}
+
+void ScriptIntrinsicBLAS::CGBMV(RsBlasTranspose TransA, int KL, int KU, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, Float2 beta, sp<Allocation> Y, int incY) {
+ // GBMV has the same validation requirements as GEMV + KL and KU >= 0
+ validateGEMV(mRS, Element::F32_2(mRS), TransA, A, X, incX, Y, incY);
+ if (KL < 0 || KU < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "KL and KU must be greater than or equal to 0");
+ }
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cgbmv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, KL, KU);
+}
+
+void ScriptIntrinsicBLAS::ZGBMV(RsBlasTranspose TransA, int KL, int KU, Double2 alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, Double2 beta, sp<Allocation> Y, int incY) {
+ // GBMV has the same validation requirements as GEMV + KL and KU >= 0
+ validateGEMV(mRS, Element::F64_2(mRS), TransA, A, X, incX, Y, incY);
+ if (KL < 0 || KU < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "KL and KU must be greater than or equal to 0");
+ }
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zgbmv,
+ TransA, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, KL, KU);
+}
+
+static void validateTRMV(RS* mRS, sp<const Element> e, RsBlasUplo Uplo, RsBlasTranspose TransA,
+ RsBlasDiag Diag, sp<Allocation> A, sp<Allocation> X, int incX) {
+ int N = A->getType()->getY();
+ if ((int)A->getType()->getX() != N) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "A must be a square matrix for TRMV");
+ }
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (incX <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for TRMV");
+ }
+}
+
+static int validateTPMV(RS* mRS, sp<const Element> e, RsBlasUplo Uplo, RsBlasTranspose TransA,
+ RsBlasDiag Diag, sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ if (!Ap->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (Ap->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Ap must have a Y dimension of 0 or 1");
+ }
+
+ int N = sqrt((double)Ap->getType()->getX() * 2);
+ if ((int)Ap->getType()->getX() != ((N * (N+1)) / 2)) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid dimension for Ap");
+ }
+ if (incX <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for TPMV");
+ }
+
+ return N;
+}
+
+
+void ScriptIntrinsicBLAS::STRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ validateTRMV(mRS, Element::F32(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_strmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ validateTRMV(mRS, Element::F64(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtrmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ validateTRMV(mRS, Element::F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctrmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ validateTRMV(mRS, Element::F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztrmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::STBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBMV has the same requirements as TRMV + K >= 0
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be greater than or equal to 0");
+ }
+ validateTRMV(mRS, Element::F32(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_stbmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBMV has the same requirements as TRMV + K >= 0
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be greater than or equal to 0");
+ }
+ validateTRMV(mRS, Element::F64(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtbmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBMV has the same requirements as TRMV + K >= 0
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be greater than or equal to 0");
+ }
+ validateTRMV(mRS, Element::F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctbmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBMV has the same requirements as TRMV + K >= 0
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be greater than or equal to 0");
+ }
+ validateTRMV(mRS, Element::F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztbmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::STPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ int N = validateTPMV(mRS, Element::F32(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_stpmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ int N = validateTPMV(mRS, Element::F64(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtpmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ int N = validateTPMV(mRS, Element::F32_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctpmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ int N = validateTPMV(mRS, Element::F64_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztpmv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::STRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TRSV is the same as TRMV
+ validateTRMV(mRS, Element::F32(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_strsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TRSV is the same as TRMV
+ validateTRMV(mRS, Element::F64(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtrsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+
+}
+
+void ScriptIntrinsicBLAS::CTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TRSV is the same as TRMV
+ validateTRMV(mRS, Element::F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctrsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+
+}
+
+void ScriptIntrinsicBLAS::ZTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TRSV is the same as TRMV
+ validateTRMV(mRS, Element::F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztrsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+
+}
+
+void ScriptIntrinsicBLAS::STBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBSV is the same as TRMV + K >= 0
+ validateTRMV(mRS, Element::F32(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Number of diagonals must be positive");
+ }
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_stbsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBSV is the same as TRMV + K >= 0
+ validateTRMV(mRS, Element::F64(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Number of diagonals must be positive");
+ }
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtbsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0,
+ A->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBSV is the same as TRMV + K >= 0
+ validateTRMV(mRS, Element::F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Number of diagonals must be positive");
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctbsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K,
+ 0, 0, A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX) {
+ // TBSV is the same as TRMV + K >= 0
+ validateTRMV(mRS, Element::F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
+ int N = A->getType()->getY();
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Number of diagonals must be positive");
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztbsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0,
+ A->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::STPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ // TPSV is same as TPMV
+ int N = validateTPMV(mRS, Element::F32(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_stpsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ // TPSV is same as TPMV
+ int N = validateTPMV(mRS, Element::F64(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtpsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ // TPSV is same as TPMV
+ int N = validateTPMV(mRS, Element::F32_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctpsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX) {
+ // TPSV is same as TPMV
+ int N = validateTPMV(mRS, Element::F64_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztpsv,
+ TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0,
+ Ap->getID(), X->getID(), 0, 0, 0, incX, 0, 0, 0);
+}
+
+/**
+ * Level 2, S and D only
+ */
+static int validateSYMV(RS* mRS, sp<const Element> e, RsBlasUplo Uplo, sp<Allocation> A,
+ sp<Allocation> X, sp<Allocation> Y, int incX, int incY) {
+ int N = A->getType()->getY();
+ if ((int)A->getType()->getX() != N) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "A must be a square matrix for SYMV");
+ }
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e) ) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SYMV");
+ }
+ int expectedYDim = 1 + (N - 1) * incY;
+ if ((int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SYMV");
+ }
+ return N;
+}
+static int validateSPMV(RS* mRS, sp<const Element> e, RsBlasUplo Uplo, sp<Allocation> Ap,
+ sp<Allocation> X, int incX, sp<Allocation> Y, int incY) {
+ if (!Ap->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (Ap->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Ap must have a Y dimension of 0 or 1");
+ }
+
+ int N = sqrt((double)Ap->getType()->getX() * 2);
+ if ((int)Ap->getType()->getX() != ((N * (N+1)) / 2)) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid dimension for Ap");
+ }
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SPMV");
+ }
+ int expectedYDim = 1 + (N - 1) * incY;
+ if ((int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SPMV");
+ }
+
+ return N;
+}
+static void validateGER(RS* mRS, sp<const Element> e, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e) ) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+
+ if (N < 1 || M < 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "M and N must be 1 or greater for GER");
+ }
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (M - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for GER");
+ }
+ int expectedYDim = 1 + (N - 1) * incY;
+ if ((int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for GER");
+ }
+
+
+}
+static int validateSYR(RS* mRS, sp<const Element> e, RsBlasUplo Uplo,
+ sp<Allocation> X, int incX, sp<Allocation> A) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+
+ int N = A->getType()->getX();
+
+ if (X->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+ if (N != (int)A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "A must be a symmetric matrix");
+ }
+ if (incX <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SYR");
+ }
+ return N;
+}
+static int validateSPR(RS* mRS, sp<const Element> e, RsBlasUplo Uplo,
+ sp<Allocation> X, int incX, sp<Allocation> Ap) {
+ if (!Ap->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (Ap->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Ap must have a Y dimension of 0 or 1");
+ }
+
+ int N = sqrt((double)Ap->getType()->getX() * 2);
+ if ((int)Ap->getType()->getX() != ((N * (N+1)) / 2)) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid dimension for Ap");
+ }
+ if (incX <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SPR");
+ }
+
+ return N;
+}
+
+static int validateSYR2(RS* mRS, sp<const Element> e, RsBlasUplo Uplo, sp<Allocation> X,
+ int incX, sp<Allocation> Y, int incY, sp<Allocation> A) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ int N = A->getType()->getX();
+
+ if (N != (int)A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "A must be a symmetric matrix");
+ }
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ int expectedYDim = 1 + (N - 1) * incY;
+ if ((int)X->getType()->getX() != expectedXDim || (int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SYR");
+ }
+ return N;
+
+}
+static int validateSPR2(RS* mRS, sp<const Element> e, RsBlasUplo Uplo, sp<Allocation> X,
+ int incX, sp<Allocation> Y, int incY, sp<Allocation> Ap) {
+ if (!Ap->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ if (Ap->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Ap must have a Y dimension of 0 or 1");
+ }
+
+ int N = sqrt((double)Ap->getType()->getX() * 2);
+ if ((int)Ap->getType()->getX() != ((N * (N+1)) / 2)) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid dimension for Ap");
+ }
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (N - 1) * incX;
+ int expectedYDim = 1 + (N - 1) * incY;
+ if ((int)X->getType()->getX() != expectedXDim || (int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for SPR2");
+ }
+
+ return N;
+}
+
+void ScriptIntrinsicBLAS::SSYMV(RsBlasUplo Uplo, float alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY) {
+ int N = validateSYMV(mRS, Element::F32(mRS), Uplo, A, X, Y, incX, incY);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssymv,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ A->getID(), X->getID(), beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSBMV(RsBlasUplo Uplo, int K, float alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY) {
+ // SBMV is the same as SYMV + K >= 0
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be greater than or equal to 0");
+ }
+ int N = validateSYMV(mRS, Element::F32(mRS), Uplo, A, X, Y, incX, incY);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssbmv,
+ 0, 0, 0, Uplo, 0, 0, N, K, alpha,
+ A->getID(), X->getID(), beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSPMV(RsBlasUplo Uplo, float alpha, sp<Allocation> Ap, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY) {
+ int N = validateSPMV(mRS, Element::F32(mRS), Uplo, Ap, X, incX, Y, incY);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sspmv,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ Ap->getID(), X->getID(), beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SGER(float alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ validateGER(mRS, Element::F32(mRS), X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sger,
+ 0, 0, 0, 0, 0, M, N, 0, alpha,
+ X->getID(), Y->getID(), 0.f, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSYR(RsBlasUplo Uplo, float alpha, sp<Allocation> X,
+ int incX, sp<Allocation> A) {
+ int N = validateSYR(mRS, Element::F32(mRS), Uplo, X, incX, A);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssyr,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), A->getID(), 0.f, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSPR(RsBlasUplo Uplo, float alpha, sp<Allocation> X,
+ int incX, sp<Allocation> Ap) {
+ int N = validateSPR(mRS, Element::F32(mRS), Uplo, X, incX, Ap);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sspr,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha, X->getID(), Ap->getID(), 0.f, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSYR2(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ int N = validateSYR2(mRS, Element::F32(mRS), Uplo, X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssyr2,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), Y->getID(), 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSPR2(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap) {
+ int N = validateSPR2(mRS, Element::F32(mRS), Uplo, X, incX, Y, incY, Ap);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sspr2,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), Y->getID(), 0, Ap->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSYMV(RsBlasUplo Uplo, double alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, double beta, sp<Allocation> Y, int incY) {
+ int N = validateSYMV(mRS, Element::F64(mRS), Uplo, A, X, Y, incX, incY);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsymv,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ A->getID(), X->getID(), beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSBMV(RsBlasUplo Uplo, int K, double alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, double beta, sp<Allocation> Y, int incY) {
+ // SBMV is the same as SYMV + K >= 0
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be greater than or equal to 0");
+ }
+ int N = validateSYMV(mRS, Element::F64(mRS), Uplo, A, X, Y, incX, incY);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsbmv,
+ 0, 0, 0, Uplo, 0, 0, N, K, alpha,
+ A->getID(), X->getID(), beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSPMV(RsBlasUplo Uplo, double alpha, sp<Allocation> Ap, sp<Allocation> X,
+ int incX, double beta, sp<Allocation> Y, int incY) {
+ int N = validateSPMV(mRS, Element::F64(mRS), Uplo, Ap, X, incX, Y, incY);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dspmv,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ Ap->getID(), X->getID(), beta, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DGER(double alpha, sp<Allocation> X, int incX, sp<Allocation> Y,
+ int incY, sp<Allocation> A) {
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ validateGER(mRS, Element::F64(mRS), X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dger,
+ 0, 0, 0, 0, 0, M, N, 0, alpha,
+ X->getID(), Y->getID(), 0.f, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSYR(RsBlasUplo Uplo, double alpha, sp<Allocation> X,
+ int incX, sp<Allocation> A) {
+ int N = validateSYR(mRS, Element::F64(mRS), Uplo, X, incX, A);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsyr,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), A->getID(), 0.f, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSPR(RsBlasUplo Uplo, double alpha, sp<Allocation> X,
+ int incX, sp<Allocation> Ap) {
+ int N = validateSPR(mRS, Element::F64(mRS), Uplo, X, incX, Ap);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dspr,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), Ap->getID(), 0.f, 0, incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSYR2(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ int N = validateSYR2(mRS, Element::F64(mRS), Uplo, X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsyr2,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), Y->getID(), 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSPR2(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap) {
+ int N = validateSPR2(mRS, Element::F64(mRS), Uplo, X, incX, Y, incY, Ap);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dspr2,
+ 0, 0, 0, Uplo, 0, 0, N, 0, alpha,
+ X->getID(), Y->getID(), 0, Ap->getID(), incX, incY, 0, 0);
+}
+
+
+/**
+ * Level 2, C and Z only
+ */
+
+static void validateGERU(RS* mRS, sp<const Element> e, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !X->getType()->getElement()->isCompatible(e) ||
+ !Y->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (X->getType()->getY() > 1 || Y->getType()->getY() > 1) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "BLAS vectors must have Y dimension of 0 or 1");
+ }
+
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ if (incX <= 0 || incY <= 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Vector increments must be greater than 0");
+ }
+ int expectedXDim = 1 + (M - 1) * incX;
+ if ((int)X->getType()->getX() != expectedXDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for GERU");
+ }
+ int expectedYDim = 1 + (N - 1) * incY;
+ if ((int)Y->getType()->getX() != expectedYDim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Incorrect vector dimensions for GERU");
+ }
+
+}
+
+void ScriptIntrinsicBLAS::CHEMV(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, Float2 beta, sp<Allocation> Y, int incY) {
+ // HEMV is the same as SYR2 validation-wise
+ int N = validateSYR2(mRS, Element::F32_2(mRS), Uplo, X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_chemv,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CHBMV(RsBlasUplo Uplo, int K, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, Float2 beta, sp<Allocation> Y, int incY) {
+ // HBMV is the same as SYR2 validation-wise
+ int N = validateSYR2(mRS, Element::F32_2(mRS), Uplo, X, incX, Y, incY, A);
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be 0 or greater for HBMV");
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_chbmv,
+ 0, 0, 0, Uplo, 0, 0, N, K,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CHPMV(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> Ap,
+ sp<Allocation> X, int incX, Float2 beta, sp<Allocation> Y, int incY) {
+ // HPMV is the same as SPR2
+ int N = validateSPR2(mRS, Element::F32_2(mRS), Uplo, X, incX, Y, incY, Ap);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_chpmv,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, Ap->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CGERU(Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ validateGERU(mRS, Element::F32_2(mRS), X, incX, Y, incY, A);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cgeru,
+ 0, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CGERC(Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ // Same as GERU
+ validateGERU(mRS, Element::F32_2(mRS), X, incX, Y, incY, A);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cgerc,
+ 0, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CHER(RsBlasUplo Uplo, float alpha, sp<Allocation> X,
+ int incX, sp<Allocation> A) {
+ // Same as SYR
+ int N = validateSYR(mRS, Element::F32_2(mRS), Uplo, X, incX, A);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cher,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha, 0, X->getID(), 0,
+ 0, 0, A->getID(), incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CHPR(RsBlasUplo Uplo, float alpha, sp<Allocation> X,
+ int incX, sp<Allocation> Ap) {
+ // Equivalent to SPR for validation
+ int N = validateSPR(mRS, Element::F32_2(mRS), Uplo, X, incX, Ap);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_chpr,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha, 0, X->getID(), 0,
+ 0, 0, Ap->getID(), incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CHER2(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ // Same as SYR2
+ int N = validateSYR2(mRS, Element::F32_2(mRS), Uplo, X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cher2,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CHPR2(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap) {
+ // Same as SPR2
+ int N = validateSPR2(mRS, Element::F32_2(mRS), Uplo, X, incX, Y, incY, Ap);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_chpr2,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, Ap->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHEMV(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> A,
+ sp<Allocation> X, int incX, Double2 beta, sp<Allocation> Y, int incY) {
+ // HEMV is the same as SYR2 validation-wise
+ int N = validateSYR2(mRS, Element::F64_2(mRS), Uplo, X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zhemv,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHBMV(RsBlasUplo Uplo, int K, Double2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Double2 beta, sp<Allocation> Y, int incY) {
+ // HBMV is the same as SYR2 validation-wise
+ int N = validateSYR2(mRS, Element::F64_2(mRS), Uplo, X, incX, Y, incY, A);
+ if (K < 0) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "K must be 0 or greater for HBMV");
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zhbmv,
+ 0, 0, 0, Uplo, 0, 0, N, K,
+ alpha.x, alpha.y, A->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHPMV(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> Ap, sp<Allocation> X,
+ int incX, Double2 beta, sp<Allocation> Y, int incY) {
+ // HPMV is the same as SPR2
+ int N = validateSPR2(mRS, Element::F64_2(mRS), Uplo, X, incX, Y, incY, Ap);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zhpmv,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, Ap->getID(), X->getID(),
+ beta.x, beta.y, Y->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZGERU(Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ validateGERU(mRS, Element::F64_2(mRS), X, incX, Y, incY, A);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zgeru,
+ 0, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZGERC(Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ // Same as GERU
+ validateGERU(mRS, Element::F64_2(mRS), X, incX, Y, incY, A);
+ int M = A->getType()->getY();
+ int N = A->getType()->getX();
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zgerc,
+ 0, 0, 0, 0, 0, M, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHER(RsBlasUplo Uplo, double alpha, sp<Allocation> X,
+ int incX, sp<Allocation> A) {
+ // Same as SYR
+ int N = validateSYR(mRS, Element::F64_2(mRS), Uplo, X, incX, A);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zher,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha, 0, X->getID(), 0,
+ 0, 0, A->getID(), incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHPR(RsBlasUplo Uplo, double alpha, sp<Allocation> X,
+ int incX, sp<Allocation> Ap) {
+ // Equivalent to SPR for validation
+ int N = validateSPR(mRS, Element::F64_2(mRS), Uplo, X, incX, Ap);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zhpr,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha, 0, X->getID(), 0,
+ 0, 0, Ap->getID(), incX, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHER2(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A) {
+ // Same as SYR2
+ int N = validateSYR2(mRS, Element::F64_2(mRS), Uplo, X, incX, Y, incY, A);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zher2,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, A->getID(), incX, incY, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHPR2(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap) {
+ // Same as SPR2
+ int N = validateSPR2(mRS, Element::F64_2(mRS), Uplo, X, incX, Y, incY, Ap);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zhpr2,
+ 0, 0, 0, Uplo, 0, 0, N, 0,
+ alpha.x, alpha.y, X->getID(), Y->getID(),
+ 0, 0, Ap->getID(), incX, incY, 0, 0);
+}
+
+
+/**
+ * Level 3 BLAS
+ */
+
+static void validateL3(RS* mRS, sp<const Element> e, int TransA, int TransB, int Side,
+ sp<Allocation> A, sp<Allocation> B, sp<Allocation> C) {
+ int aM = -1, aN = -1, bM = -1, bN = -1, cM = -1, cN = -1;
+ if ((A != nullptr && !A->getType()->getElement()->isCompatible(e)) ||
+ (B != nullptr && !B->getType()->getElement()->isCompatible(e)) ||
+ (C != nullptr && !C->getType()->getElement()->isCompatible(e))) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (C == nullptr) {
+ // Since matrix C is used to store the result, it cannot be null.
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Allocation C cannot be null");
+ }
+ cM = C->getType()->getY();
+ cN = C->getType()->getX();
+
+ if (Side == RsBlasRight) {
+ if ((A == nullptr && B != nullptr) || (A != nullptr && B == nullptr)) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Provided Matrix A without Matrix B, or vice versa");
+ }
+ if (B != nullptr) {
+ bM = A->getType()->getY();
+ bN = A->getType()->getX();
+ }
+ if (A != nullptr) {
+ aM = B->getType()->getY();
+ aN = B->getType()->getX();
+ }
+ } else {
+ if (A != nullptr) {
+ if (TransA == RsBlasTrans || TransA == RsBlasConjTrans) {
+ aN = A->getType()->getY();
+ aM = A->getType()->getX();
+ } else {
+ aM = A->getType()->getY();
+ aN = A->getType()->getX();
+ }
+ }
+ if (B != nullptr) {
+ if (TransB == RsBlasTrans || TransB == RsBlasConjTrans) {
+ bN = B->getType()->getY();
+ bM = B->getType()->getX();
+ } else {
+ bM = B->getType()->getY();
+ bN = B->getType()->getX();
+ }
+ }
+ }
+ if (A != nullptr && B != nullptr && C != nullptr) {
+ if (aN != bM || aM != cM || bN != cN) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called BLAS with invalid dimensions");
+ }
+ } else if (A != nullptr && C != nullptr) {
+ // A and C only, for SYRK
+ if (cM != cN) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Matrix C is not symmetric");
+ }
+ if (aM != cM) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called BLAS with invalid dimensions");
+ }
+ } else if (A != nullptr && B != nullptr) {
+ // A and B only
+ if (aN != bM) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called BLAS with invalid dimensions");
+ }
+ }
+
+}
+
+void ScriptIntrinsicBLAS::SGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, float alpha,
+ sp<Allocation> A, sp<Allocation> B, float beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F32(mRS), TransA, TransB, 0, A, B, C);
+
+ int M = -1, N = -1, K = -1;
+ if (TransA != RsBlasNoTrans) {
+ M = A->getType()->getX();
+ K = A->getType()->getY();
+ } else {
+ M = A->getType()->getY();
+ K = A->getType()->getX();
+ }
+ if (TransB != RsBlasNoTrans) {
+ N = B->getType()->getY();
+ } else {
+ N = B->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_sgemm,
+ TransA, TransB, 0, 0, 0, M, N, K,
+ alpha, A->getID(), B->getID(),
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, double alpha,
+ sp<Allocation> A, sp<Allocation> B, double beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F64(mRS), TransA, TransB, 0, A, B, C);
+ int M = -1, N = -1, K = -1;
+ if (TransA != RsBlasNoTrans) {
+ M = A->getType()->getX();
+ K = A->getType()->getY();
+ } else {
+ M = A->getType()->getY();
+ K = A->getType()->getX();
+ }
+ if (TransB != RsBlasNoTrans) {
+ N = B->getType()->getY();
+ } else {
+ N = B->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dgemm,
+ TransA, TransB, 0, 0, 0, M, N, K,
+ alpha, A->getID(), B->getID(),
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, Float2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Float2 beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F32_2(mRS), TransA, TransB, 0, A, B, C);
+ int M = -1, N = -1, K = -1;
+ if (TransA != RsBlasNoTrans) {
+ M = A->getType()->getX();
+ K = A->getType()->getY();
+ } else {
+ M = A->getType()->getY();
+ K = A->getType()->getX();
+ }
+ if (TransB != RsBlasNoTrans) {
+ N = B->getType()->getY();
+ } else {
+ N = B->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cgemm,
+ TransA, TransB, 0, 0, 0, M, N, K,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, Double2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Double2 beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F64_2(mRS), TransA, TransB, 0, A, B, C);
+ int M = -1, N = -1, K = -1;
+ if (TransA != RsBlasNoTrans) {
+ M = A->getType()->getX();
+ K = A->getType()->getY();
+ } else {
+ M = A->getType()->getY();
+ K = A->getType()->getX();
+ }
+ if (TransB != RsBlasNoTrans) {
+ N = B->getType()->getY();
+ } else {
+ N = B->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zgemm,
+ TransA, TransB, 0, 0, 0, M, N, K,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSYMM(RsBlasSide Side, RsBlasUplo Uplo, float alpha,
+ sp<Allocation> A, sp<Allocation> B, float beta, sp<Allocation> C) {
+ //For SYMM, Matrix A should be symmetric
+ if (A->getType()->getX() != A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Matrix A is not symmetric");
+ }
+ validateL3(mRS, Element::F32(mRS), 0, 0, Side, A, B, C);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssymm,
+ 0, 0, Side, Uplo, 0, C->getType()->getY(), C->getType()->getX(), 0,
+ alpha, A->getID(), B->getID(),
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSYMM(RsBlasSide Side, RsBlasUplo Uplo, double alpha,
+ sp<Allocation> A, sp<Allocation> B, double beta, sp<Allocation> C) {
+ if (A->getType()->getX() != A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Matrix A is not symmetric");
+ }
+ validateL3(mRS, Element::F64(mRS), 0, 0, Side, A, B, C);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsymm,
+ 0, 0, Side, Uplo, 0, C->getType()->getY(), C->getType()->getX(), 0,
+ alpha, A->getID(), B->getID(),
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CSYMM(RsBlasSide Side, RsBlasUplo Uplo, Float2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Float2 beta, sp<Allocation> C) {
+ if (A->getType()->getX() != A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Matrix A is not symmetric");
+ }
+ validateL3(mRS, Element::F32_2(mRS), 0, 0, Side, A, B, C);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_csymm,
+ 0, 0, Side, Uplo, 0, C->getType()->getY(), C->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZSYMM(RsBlasSide Side, RsBlasUplo Uplo, Double2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Double2 beta, sp<Allocation> C) {
+ if (A->getType()->getX() != A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Matrix A is not symmetric");
+ }
+ validateL3(mRS, Element::F64_2(mRS), 0, 0, Side, A, B, C);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zsymm,
+ 0, 0, Side, Uplo, 0, C->getType()->getY(), C->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::SSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha,
+ sp<Allocation> A, float beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F32(mRS), Trans, 0, 0, A, nullptr, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssyrk,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha, A->getID(), 0,
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha,
+ sp<Allocation> A, double beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F64(mRS), Trans, 0, 0, A, nullptr, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsyrk,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha, A->getID(), 0,
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha,
+ sp<Allocation> A, Float2 beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F32_2(mRS), Trans, 0, 0, A, nullptr, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_csyrk,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha.x, alpha.y, A->getID(), 0,
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha,
+ sp<Allocation> A, Double2 beta, sp<Allocation> C) {
+ validateL3(mRS, Element::F64_2(mRS), Trans, 0, 0, A, nullptr, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zsyrk,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha.x, alpha.y, A->getID(), 0,
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+static void validateSYR2K(RS* mRS, sp<const Element> e, RsBlasTranspose Trans,
+ sp<Allocation> A, sp<Allocation> B, sp<Allocation> C) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !B->getType()->getElement()->isCompatible(e) ||
+ !C->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ int Cdim = -1;
+ // A is n x k if no transpose, k x n if transpose
+ // C is n x n
+ if (Trans == RsBlasTrans) {
+ // check columns versus C
+ Cdim = A->getType()->getX();
+ } else {
+ // check rows versus C
+ Cdim = A->getType()->getY();
+ }
+ if ((int)C->getType()->getX() != Cdim || (int)C->getType()->getY() != Cdim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid symmetric matrix in SYR2K");
+ }
+ // A dims == B dims
+ if (A->getType()->getX() != B->getType()->getX() || A->getType()->getY() != B->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid A and B in SYR2K");
+ }
+}
+
+void ScriptIntrinsicBLAS::SSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha,
+ sp<Allocation> A, sp<Allocation> B, float beta, sp<Allocation> C) {
+ validateSYR2K(mRS, Element::F32(mRS), Trans, A, B, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_ssyr2k,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha, A->getID(), B->getID(),
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha,
+ sp<Allocation> A, sp<Allocation> B, double beta, sp<Allocation> C) {
+ validateSYR2K(mRS, Element::F64(mRS), Trans, A, B, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dsyr2k,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha, A->getID(), B->getID(),
+ beta, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Float2 beta, sp<Allocation> C) {
+ validateSYR2K(mRS, Element::F32_2(mRS), Trans, A, B, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_csyr2k,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Double2 beta, sp<Allocation> C) {
+ validateSYR2K(mRS, Element::F64_2(mRS), Trans, A, B, C);
+ int K = -1;
+ if (Trans != RsBlasNoTrans) {
+ K = A->getType()->getY();
+ } else {
+ K = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zsyr2k,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), K,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+static void validateTRMM(RS* mRS, sp<const Element> e, RsBlasSide Side, RsBlasTranspose TransA,
+ sp<Allocation> A, sp<Allocation> B) {
+ int aM = -1, aN = -1, bM = -1, bN = -1;
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !B->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+
+ aM = A->getType()->getY();
+ aN = A->getType()->getX();
+ if (aM != aN) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called TRMM with a non-symmetric matrix A");
+ }
+
+ bM = B->getType()->getY();
+ bN = B->getType()->getX();
+ if (Side == RsBlasLeft) {
+ if (aN != bM) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called TRMM with invalid matrices");
+ }
+ } else {
+ if (bN != aM) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called TRMM with invalid matrices");
+ }
+ }
+}
+
+void ScriptIntrinsicBLAS::STRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ float alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRMM(mRS, Element::F32(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_strmm,
+ TransA, 0, Side, Uplo, Diag,\
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha, A->getID(), B->getID(), 0.f, 0, 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ double alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRMM(mRS, Element::F64(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtrmm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Float2 alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRMM(mRS, Element::F32_2(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctrmm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Double2 alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRMM(mRS, Element::F64_2(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztrmm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0, 0);
+}
+
+static void validateTRSM(RS* mRS, sp<const Element> e, RsBlasSide Side, RsBlasTranspose TransA,
+ sp<Allocation> A, sp<Allocation> B) {
+ int adim = -1, bM = -1, bN = -1;
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !B->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ adim = A->getType()->getX();
+ if (adim != (int)A->getType()->getY()) {
+ // This may be unnecessary, the restriction could potentially be relaxed.
+ // Allocation A needs to contain at least that symmetric matrix but could theoretically
+ // be larger for now we assume adapters are sufficient, will reevaluate in the future.
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called TRSM with a non-symmetric matrix A");
+ }
+ bM = B->getType()->getY();
+ bN = B->getType()->getX();
+ if (Side == RsBlasLeft) {
+ // A is M*M
+ if (adim != bM) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called TRSM with invalid matrix dimensions");
+ }
+ } else {
+ // A is N*N
+ if (adim != bN) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called TRSM with invalid matrix dimensions");
+ }
+ }
+}
+
+void ScriptIntrinsicBLAS::STRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ float alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRSM(mRS, Element::F32(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Single(mRS, mRS->getContext(), getID(), RsBlas_strsm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::DTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ double alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRSM(mRS, Element::F64(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Double(mRS, mRS->getContext(), getID(), RsBlas_dtrsm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::CTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Float2 alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRSM(mRS, Element::F32_2(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_ctrsm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Double2 alpha, sp<Allocation> A, sp<Allocation> B) {
+ validateTRSM(mRS, Element::F64_2(mRS), Side, TransA, A, B);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_ztrsm,
+ TransA, 0, Side, Uplo, Diag,
+ B->getType()->getY(), B->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(), 0, 0, 0, 0, 0, 0, 0);
+}
+
+static void validateHEMM(RS* mRS, sp<const Element> e, RsBlasSide Side,
+ sp<Allocation> A, sp<Allocation> B, sp<Allocation> C) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !B->getType()->getElement()->isCompatible(e) ||
+ !C->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+
+ // A must be square; can potentially be relaxed similar to TRSM
+ int adim = A->getType()->getX();
+ if (adim != (int)A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HEMM with non-square A");
+ }
+ if ((Side == RsBlasLeft && adim != (int)B->getType()->getY()) ||
+ (Side == RsBlasRight && adim != (int)B->getType()->getX())) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HEMM with invalid B");
+ }
+ if (B->getType()->getX() != C->getType()->getX() ||
+ B->getType()->getY() != C->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HEMM with mismatched B and C");
+ }
+}
+
+void ScriptIntrinsicBLAS::CHEMM(RsBlasSide Side, RsBlasUplo Uplo, Float2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Float2 beta, sp<Allocation> C) {
+ validateHEMM(mRS, Element::F32_2(mRS), Side, A, B, C);
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_chemm,
+ 0, 0, Side, Uplo, 0,
+ C->getType()->getY(), C->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHEMM(RsBlasSide Side, RsBlasUplo Uplo, Double2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Double2 beta, sp<Allocation> C) {
+ validateHEMM(mRS, Element::F64_2(mRS), Side, A, B, C);
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zhemm,
+ 0, 0, Side, Uplo, 0,
+ C->getType()->getY(), C->getType()->getX(), 0,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta.x, beta.y, C->getID(), 0, 0, 0, 0);
+}
+
+static void validateHERK(RS* mRS, sp<const Element> e, RsBlasTranspose Trans,
+ sp<Allocation> A, sp<Allocation> C) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !C->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (Trans != RsBlasNoTrans && Trans != RsBlasConjTrans) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Call HERK with invalid Transpose");
+ }
+ int cdim = C->getType()->getX();
+ if (cdim != (int)C->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HERK with non-square C");
+ }
+ if (Trans == RsBlasNoTrans) {
+ if (cdim != (int)A->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HERK with invalid A");
+ }
+ } else {
+ if (cdim != (int)A->getType()->getX()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HERK with invalid A");
+ }
+ }
+}
+
+void ScriptIntrinsicBLAS::CHERK(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha,
+ sp<Allocation> A, float beta, sp<Allocation> C) {
+ validateHERK(mRS, Element::F32_2(mRS), Trans, A, C);
+ int k = 0;
+ if (Trans == RsBlasConjTrans) {
+ k = A->getType()->getY();
+ } else {
+ k = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cherk,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), k,
+ alpha, 0, A->getID(), 0,
+ beta, 0, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHERK(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha,
+ sp<Allocation> A, double beta, sp<Allocation> C) {
+ validateHERK(mRS, Element::F64_2(mRS), Trans, A, C);
+ int k = 0;
+ if (Trans == RsBlasConjTrans) {
+ k = A->getType()->getY();
+ } else {
+ k = A->getType()->getX();
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zherk,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), k,
+ alpha, 0, A->getID(), 0,
+ beta, 0, C->getID(), 0, 0, 0, 0);
+}
+
+static void validateHER2K(RS* mRS, sp<const Element> e, RsBlasTranspose Trans,
+ sp<Allocation> A, sp<Allocation> B, sp<Allocation> C) {
+ if (!A->getType()->getElement()->isCompatible(e) ||
+ !B->getType()->getElement()->isCompatible(e) ||
+ !C->getType()->getElement()->isCompatible(e)) {
+ mRS->throwError(RS_ERROR_INVALID_ELEMENT, "Called BLAS with wrong Element type");
+ }
+ if (Trans != RsBlasNoTrans && Trans != RsBlasConjTrans) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Call HERK with invalid Transpose");
+ }
+ int cdim = C->getType()->getX();
+ if (cdim != (int)C->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HER2K with non-square C");
+ }
+ if (Trans == RsBlasNoTrans) {
+ if ((int)A->getType()->getY() != cdim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HER2K with invalid matrices");
+ }
+ } else {
+ if ((int)A->getType()->getX() != cdim) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HER2K with invalid matrices");
+ }
+ }
+ if (A->getType()->getX() != B->getType()->getX() || A->getType()->getY() != B->getType()->getY()) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Called HER2K with invalid A and B matrices");
+ }
+}
+
+void ScriptIntrinsicBLAS::CHER2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha,
+ sp<Allocation> A, sp<Allocation> B, float beta, sp<Allocation> C) {
+ validateHER2K(mRS, Element::F32_2(mRS), Trans, A, B, C);
+ int k = 0;
+ if (Trans == RsBlasNoTrans) {
+ k = A->getType()->getX();
+ } else {
+ k = A->getType()->getY();
+ }
+ nScriptIntrinsicBLAS_Complex(mRS, mRS->getContext(), getID(), RsBlas_cher2k,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), k,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta, 0, C->getID(), 0, 0, 0, 0);
+}
+
+void ScriptIntrinsicBLAS::ZHER2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha,
+ sp<Allocation> A, sp<Allocation> B, double beta, sp<Allocation> C) {
+ validateHER2K(mRS, Element::F64_2(mRS), Trans, A, B, C);
+ int k = 0;
+ if (Trans == RsBlasNoTrans) {
+ k = A->getType()->getX();
+ } else {
+ k = A->getType()->getY();
+ }
+ nScriptIntrinsicBLAS_Z(mRS, mRS->getContext(), getID(), RsBlas_zher2k,
+ Trans, 0, 0, Uplo, 0, 0, C->getType()->getX(), k,
+ alpha.x, alpha.y, A->getID(), B->getID(),
+ beta, 0, C->getID(), 0, 0, 0, 0);
+}
+
+
+
+void ScriptIntrinsicBLAS::BNNM(sp<Allocation> A, int a_offset, sp<Allocation> B, int b_offset,
+ sp<Allocation> C, int c_offset, int c_mult) {
+ validateL3(mRS, Element::U8(mRS), RsBlasNoTrans, RsBlasTrans, 0, A, B, C);
+
+ if (a_offset < 0 || a_offset > 255) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid a_offset passed to BNNM");
+ }
+ if (b_offset < 0 || b_offset > 255) {
+ mRS->throwError(RS_ERROR_INVALID_PARAMETER, "Invalid b_offset passed to BNNM");
+ }
+ int M = -1, N = -1, K = -1;
+ M = A->getType()->getY();
+ N = B->getType()->getY();
+ K = A->getType()->getX();
+
+ nScriptIntrinsicBLAS_BNNM(mRS, mRS->getContext(), getID(), M, N, K, A->getID(), a_offset,
+ B->getID(), b_offset, C->getID(), c_offset, c_mult);
+}
diff --git a/cpp/ScriptIntrinsics.cpp b/cpp/ScriptIntrinsics.cpp
index 54ce465..f159d11 100644
--- a/cpp/ScriptIntrinsics.cpp
+++ b/cpp/ScriptIntrinsics.cpp
@@ -635,4 +635,4 @@
}
Script::forEach(0, nullptr, out, nullptr, 0);
-}
+}
\ No newline at end of file
diff --git a/cpp/rsCppStructs.h b/cpp/rsCppStructs.h
index fd531f1..03ef3d5 100644
--- a/cpp/rsCppStructs.h
+++ b/cpp/rsCppStructs.h
@@ -86,6 +86,277 @@
RS_INIT_MAX = 32
};
+
+class Byte2 {
+ public:
+ int8_t x, y;
+
+ Byte2(int8_t initX, int8_t initY)
+ : x(initX), y(initY) {}
+ Byte2() : x(0), y(0) {}
+};
+
+class Byte3 {
+ public:
+ int8_t x, y, z;
+
+ Byte3(int8_t initX, int8_t initY, int8_t initZ)
+ : x(initX), y(initY), z(initZ) {}
+ Byte3() : x(0), y(0), z(0) {}
+};
+
+class Byte4 {
+ public:
+ int8_t x, y, z, w;
+
+ Byte4(int8_t initX, int8_t initY, int8_t initZ, int8_t initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ Byte4() : x(0), y(0), z(0), w(0) {}
+};
+
+class UByte2 {
+ public:
+ uint8_t x, y;
+
+ UByte2(uint8_t initX, uint8_t initY)
+ : x(initX), y(initY) {}
+ UByte2() : x(0), y(0) {}
+};
+
+class UByte3 {
+ public:
+ uint8_t x, y, z;
+
+ UByte3(uint8_t initX, uint8_t initY, uint8_t initZ)
+ : x(initX), y(initY), z(initZ) {}
+ UByte3() : x(0), y(0), z(0) {}
+};
+
+class UByte4 {
+ public:
+ uint8_t x, y, z, w;
+
+ UByte4(uint8_t initX, uint8_t initY, uint8_t initZ, uint8_t initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ UByte4() : x(0), y(0), z(0), w(0) {}
+};
+
+class Short2 {
+ public:
+ short x, y;
+
+ Short2(short initX, short initY)
+ : x(initX), y(initY) {}
+ Short2() : x(0), y(0) {}
+};
+
+class Short3 {
+ public:
+ short x, y, z;
+
+ Short3(short initX, short initY, short initZ)
+ : x(initX), y(initY), z(initZ) {}
+ Short3() : x(0), y(0), z(0) {}
+};
+
+class Short4 {
+ public:
+ short x, y, z, w;
+
+ Short4(short initX, short initY, short initZ, short initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ Short4() : x(0), y(0), z(0), w(0) {}
+};
+
+class UShort2 {
+ public:
+ uint16_t x, y;
+
+ UShort2(uint16_t initX, uint16_t initY)
+ : x(initX), y(initY) {}
+ UShort2() : x(0), y(0) {}
+};
+
+class UShort3 {
+ public:
+ uint16_t x, y, z;
+
+ UShort3(uint16_t initX, uint16_t initY, uint16_t initZ)
+ : x(initX), y(initY), z(initZ) {}
+ UShort3() : x(0), y(0), z(0) {}
+};
+
+class UShort4 {
+ public:
+ uint16_t x, y, z, w;
+
+ UShort4(uint16_t initX, uint16_t initY, uint16_t initZ, uint16_t initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ UShort4() : x(0), y(0), z(0), w(0) {}
+};
+
+class Int2 {
+ public:
+ int x, y;
+
+ Int2(int initX, int initY)
+ : x(initX), y(initY) {}
+ Int2() : x(0), y(0) {}
+};
+
+class Int3 {
+ public:
+ int x, y, z;
+
+ Int3(int initX, int initY, int initZ)
+ : x(initX), y(initY), z(initZ) {}
+ Int3() : x(0), y(0), z(0) {}
+};
+
+class Int4 {
+ public:
+ int x, y, z, w;
+
+ Int4(int initX, int initY, int initZ, int initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ Int4() : x(0), y(0), z(0), w(0) {}
+};
+
+class UInt2 {
+ public:
+ uint32_t x, y;
+
+ UInt2(uint32_t initX, uint32_t initY)
+ : x(initX), y(initY) {}
+ UInt2() : x(0), y(0) {}
+};
+
+class UInt3 {
+ public:
+ uint32_t x, y, z;
+
+ UInt3(uint32_t initX, uint32_t initY, uint32_t initZ)
+ : x(initX), y(initY), z(initZ) {}
+ UInt3() : x(0), y(0), z(0) {}
+};
+
+class UInt4 {
+ public:
+ uint32_t x, y, z, w;
+
+ UInt4(uint32_t initX, uint32_t initY, uint32_t initZ, uint32_t initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ UInt4() : x(0), y(0), z(0), w(0) {}
+};
+
+class Long2 {
+ public:
+ int64_t x, y;
+
+ Long2(int64_t initX, int64_t initY)
+ : x(initX), y(initY) {}
+ Long2() : x(0), y(0) {}
+};
+
+class Long3 {
+ public:
+ int64_t x, y, z;
+
+ Long3(int64_t initX, int64_t initY, int64_t initZ)
+ : x(initX), y(initY), z(initZ) {}
+ Long3() : x(0), y(0), z(0) {}
+};
+
+class Long4 {
+ public:
+ int64_t x, y, z, w;
+
+ Long4(int64_t initX, int64_t initY, int64_t initZ, int64_t initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ Long4() : x(0), y(0), z(0), w(0) {}
+};
+
+class ULong2 {
+ public:
+ uint64_t x, y;
+
+ ULong2(uint64_t initX, uint64_t initY)
+ : x(initX), y(initY) {}
+ ULong2() : x(0), y(0) {}
+};
+
+class ULong3 {
+ public:
+ uint64_t x, y, z;
+
+ ULong3(uint64_t initX, uint64_t initY, uint64_t initZ)
+ : x(initX), y(initY), z(initZ) {}
+ ULong3() : x(0), y(0), z(0) {}
+};
+
+class ULong4 {
+ public:
+ uint64_t x, y, z, w;
+
+ ULong4(uint64_t initX, uint64_t initY, uint64_t initZ, uint64_t initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ ULong4() : x(0), y(0), z(0), w(0) {}
+};
+
+class Float2 {
+ public:
+ float x, y;
+
+ Float2(float initX, float initY)
+ : x(initX), y(initY) {}
+ Float2() : x(0), y(0) {}
+};
+
+class Float3 {
+ public:
+ float x, y, z;
+
+ Float3(float initX, float initY, float initZ)
+ : x(initX), y(initY), z(initZ) {}
+ Float3() : x(0.f), y(0.f), z(0.f) {}
+};
+
+class Float4 {
+ public:
+ float x, y, z, w;
+
+ Float4(float initX, float initY, float initZ, float initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ Float4() : x(0.f), y(0.f), z(0.f), w(0.f) {}
+};
+
+class Double2 {
+ public:
+ double x, y;
+
+ Double2(double initX, double initY)
+ : x(initX), y(initY) {}
+ Double2() : x(0), y(0) {}
+};
+
+class Double3 {
+ public:
+ double x, y, z;
+
+ Double3(double initX, double initY, double initZ)
+ : x(initX), y(initY), z(initZ) {}
+ Double3() : x(0), y(0), z(0) {}
+};
+
+class Double4 {
+ public:
+ double x, y, z, w;
+
+ Double4(double initX, double initY, double initZ, double initW)
+ : x(initX), y(initY), z(initZ), w(initW) {}
+ Double4() : x(0), y(0), z(0), w(0) {}
+};
+
/**
* The RenderScript context. This class controls initialization, resource management, and teardown.
*/
@@ -1512,6 +1783,1946 @@
void setLUT(sp<Allocation> lut);
};
+
+/**
+ * Intrinsic kernel provides high performance RenderScript APIs to BLAS.
+ *
+ * The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard
+ * building blocks for performing basic vector and matrix operations.
+ *
+ * For detailed description of BLAS, please refer to http://www.netlib.org/blas/
+ *
+ **/
+class ScriptIntrinsicBLAS : public ScriptIntrinsic {
+ private:
+ ScriptIntrinsicBLAS(sp<RS> rs, sp<const Element> e);
+ public:
+ /**
+ * Create an intrinsic to access BLAS subroutines.
+ *
+ * @param rs The RenderScript context
+ * @return ScriptIntrinsicBLAS
+ */
+ static sp<ScriptIntrinsicBLAS> create(sp<RS> rs);
+
+ /**
+ * SGEMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void SGEMV(RsBlasTranspose TransA,
+ float alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ float beta, sp<Allocation> Y, int incY);
+
+ /**
+ * DGEMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void DGEMV(RsBlasTranspose TransA,
+ double alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ double beta, sp<Allocation> Y, int incY);
+
+ /**
+ * CGEMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void CGEMV(RsBlasTranspose TransA,
+ Float2 alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ Float2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * ZGEMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void ZGEMV(RsBlasTranspose TransA,
+ Double2 alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ Double2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * SGBMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html
+ *
+ * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
+ * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
+ * example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, m):
+ * for j in range(max(0, i-kl), min(i+ku+1, n)):
+ * b[i, j-i+kl] = a[i, j]
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param KL The number of sub-diagonals of the matrix A.
+ * @param KU The number of super-diagonals of the matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains the band matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void SGBMV(RsBlasTranspose TransA,
+ int KL, int KU, float alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ float beta, sp<Allocation> Y, int incY);
+
+ /**
+ * DGBMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html
+ *
+ * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
+ * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
+ * example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, m):
+ * for j in range(max(0, i-kl), min(i+ku+1, n)):
+ * b[i, j-i+kl] = a[i, j]
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param KL The number of sub-diagonals of the matrix A.
+ * @param KU The number of super-diagonals of the matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains the band matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void DGBMV(RsBlasTranspose TransA,
+ int KL, int KU, double alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, double beta, sp<Allocation> Y, int incY);
+
+ /**
+ * CGBMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html
+ *
+ * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
+ * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
+ * example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, m):
+ * for j in range(max(0, i-kl), min(i+ku+1, n)):
+ * b[i, j-i+kl] = a[i, j]
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param KL The number of sub-diagonals of the matrix A.
+ * @param KU The number of super-diagonals of the matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains the band matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void CGBMV(RsBlasTranspose TransA,
+ int KL, int KU, Float2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Float2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * ZGBMV performs one of the matrix-vector operations
+ * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html
+ *
+ * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
+ * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
+ * example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, m):
+ * for j in range(max(0, i-kl), min(i+ku+1, n)):
+ * b[i, j-i+kl] = a[i, j]
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param KL The number of sub-diagonals of the matrix A.
+ * @param KU The number of super-diagonals of the matrix A.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains the band matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void ZGBMV(RsBlasTranspose TransA,
+ int KL, int KU, Double2 alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ Double2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * STRMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void STRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * DTRMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void DTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * CTRMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x or x := A**H*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void CTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * ZTRMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x or x := A**H*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void ZTRMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * STBMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void STBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * DTBMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void DTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * CTBMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x or x := A**H*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void CTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * ZTBMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x or x := A**H*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void ZTBMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * STPMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void STPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * DTPMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void DTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * CTPMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x or x := A**H*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void CTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * ZTPMV performs one of the matrix-vector operations
+ * x := A*x or x := A**T*x or x := A**H*x
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void ZTPMV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * STRSV solves one of the systems of equations
+ * A*x = b or A**T*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void STRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * DTRSV solves one of the systems of equations
+ * A*x = b or A**T*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void DTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * CTRSV solves one of the systems of equations
+ * A*x = b or A**T*x = b or A**H*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void CTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * ZTRSV solves one of the systems of equations
+ * A*x = b or A**T*x = b or A**H*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void ZTRSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * STBSV solves one of the systems of equations
+ * A*x = b or A**T*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void STBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * DTBSV solves one of the systems of equations
+ * A*x = b or A**T*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void DTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * CTBSV solves one of the systems of equations
+ * A*x = b or A**T*x = b or A**H*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void CTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * ZTBSV solves one of the systems of equations
+ * A*x = b or A**T*x = b or A**H*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param K The number of off-diagonals of the matrix A
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void ZTBSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ int K, sp<Allocation> A, sp<Allocation> X, int incX);
+
+ /**
+ * STPSV solves one of the systems of equations
+ * A*x = b or A**T*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void STPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * DTPSV solves one of the systems of equations
+ * A*x = b or A**T*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void DTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * CTPSV solves one of the systems of equations
+ * A*x = b or A**T*x = b or A**H*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void CTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * ZTPSV solves one of the systems of equations
+ * A*x = b or A**T*x = b or A**H*x = b
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param Ap The input allocation contains packed matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ */
+ void ZTPSV(RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ sp<Allocation> Ap, sp<Allocation> X, int incX);
+
+ /**
+ * SSYMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void SSYMV(RsBlasUplo Uplo, float alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY);
+
+ /**
+ * SSBMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
+ * @param K The number of off-diagonals of the matrix A
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void SSBMV(RsBlasUplo Uplo, int K, float alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY);
+
+ /**
+ * SSPMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
+ * @param alpha The scalar alpha.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void SSPMV(RsBlasUplo Uplo, float alpha, sp<Allocation> Ap, sp<Allocation> X,
+ int incX, float beta, sp<Allocation> Y, int incY);
+
+ /**
+ * SGER performs the rank 1 operation
+ * A := alpha*x*y**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html
+ *
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ */
+ void SGER(float alpha, sp<Allocation> X, int incX, sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * SSYR performs the rank 1 operation
+ * A := alpha*x*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ */
+ void SSYR(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX, sp<Allocation> A);
+
+ /**
+ * SSPR performs the rank 1 operation
+ * A := alpha*x*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32}.
+ */
+ void SSPR(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX, sp<Allocation> Ap);
+
+ /**
+ * SSYR2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**T + alpha*y*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ */
+ void SSYR2(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * SSPR2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**T + alpha*y*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32}.
+ */
+ void SSPR2(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap);
+
+ /**
+ * DSYMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void DSYMV(RsBlasUplo Uplo, double alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ double beta, sp<Allocation> Y, int incY);
+
+ /**
+ * DSBMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
+ * @param K The number of off-diagonals of the matrix A
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void DSBMV(RsBlasUplo Uplo, int K, double alpha, sp<Allocation> A, sp<Allocation> X, int incX,
+ double beta, sp<Allocation> Y, int incY);
+
+ /**
+ * DSPMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
+ * @param alpha The scalar alpha.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void DSPMV(RsBlasUplo Uplo, double alpha, sp<Allocation> Ap, sp<Allocation> X, int incX,
+ double beta, sp<Allocation> Y, int incY);
+
+ /**
+ * DGER performs the rank 1 operation
+ * A := alpha*x*y**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html
+ *
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ */
+ void DGER(double alpha, sp<Allocation> X, int incX, sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * DSYR performs the rank 1 operation
+ * A := alpha*x*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ */
+ void DSYR(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX, sp<Allocation> A);
+
+ /**
+ * DSPR performs the rank 1 operation
+ * A := alpha*x*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64}.
+ */
+ void DSPR(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX, sp<Allocation> Ap);
+
+ /**
+ * DSYR2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**T + alpha*y*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ */
+ void DSYR2(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * DSPR2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**T + alpha*y*x**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64}.
+ */
+ void DSPR2(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap);
+
+ /**
+ * CHEMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void CHEMV(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Float2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * CHBMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
+ * @param K The number of off-diagonals of the matrix A
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void CHBMV(RsBlasUplo Uplo, int K, Float2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Float2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * CHPMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
+ * @param alpha The scalar alpha.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void CHPMV(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> Ap, sp<Allocation> X,
+ int incX, Float2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * CGERU performs the rank 1 operation
+ * A := alpha*x*y**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html
+ *
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ */
+ void CGERU(Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * CGERC performs the rank 1 operation
+ * A := alpha*x*y**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html
+ *
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ */
+ void CGERC(Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * CHER performs the rank 1 operation
+ * A := alpha*x*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ */
+ void CHER(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX, sp<Allocation> A);
+
+ /**
+ * CHPR performs the rank 1 operation
+ * A := alpha*x*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ */
+ void CHPR(RsBlasUplo Uplo, float alpha, sp<Allocation> X, int incX, sp<Allocation> Ap);
+
+ /**
+ * CHER2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**H + alpha*y*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ */
+ void CHER2(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * CHPR2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**H + alpha*y*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F32_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F32_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ */
+ void CHPR2(RsBlasUplo Uplo, Float2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap);
+
+ /**
+ * ZHEMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void ZHEMV(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Double2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * ZHBMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
+ * but only the region N*(K+1) will be referenced. The following subroutine can is an
+ * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
+ * for i in range(0, n):
+ * for j in range(i, min(i+k+1, n)):
+ * b[i, j-i] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
+ * @param K The number of off-diagonals of the matrix A
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void ZHBMV(RsBlasUplo Uplo, int K, Double2 alpha, sp<Allocation> A, sp<Allocation> X,
+ int incX, Double2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * ZHPMV performs the matrix-vector operation
+ * y := alpha*A*x + beta*y
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
+ * @param alpha The scalar alpha.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param beta The scalar beta.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ */
+ void ZHPMV(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> Ap, sp<Allocation> X,
+ int incX, Double2 beta, sp<Allocation> Y, int incY);
+
+ /**
+ * ZGERU performs the rank 1 operation
+ * A := alpha*x*y**T + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html
+ *
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ */
+ void ZGERU(Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * ZGERC performs the rank 1 operation
+ * A := alpha*x*y**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html
+ *
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ */
+ void ZGERC(Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * ZHER performs the rank 1 operation
+ * A := alpha*x*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ */
+ void ZHER(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX, sp<Allocation> A);
+
+ /**
+ * ZHPR performs the rank 1 operation
+ * A := alpha*x*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ */
+ void ZHPR(RsBlasUplo Uplo, double alpha, sp<Allocation> X, int incX, sp<Allocation> Ap);
+
+ /**
+ * ZHER2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**H + alpha*y*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ */
+ void ZHER2(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> A);
+
+ /**
+ * ZHPR2 performs the symmetric rank 2 operation
+ * A := alpha*x*y**H + alpha*y*x**H + A
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html
+ *
+ * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
+ * The following subroutine can is an example showing how to convert a UPPER trianglar matrix
+ * 'a' to packed matrix 'b'.
+ * k = 0
+ * for i in range(0, n):
+ * for j in range(i, n):
+ * b[k++] = a[i, j]
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
+ * @param alpha The scalar alpha.
+ * @param X The input allocation contains vector x, supported elements type: {Element#F64_2}.
+ * @param incX The increment for the elements of vector x, must be larger than zero.
+ * @param Y The input allocation contains vector y, supported elements type: {Element#F64_2}.
+ * @param incY The increment for the elements of vector y, must be larger than zero.
+ * @param Ap The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ */
+ void ZHPR2(RsBlasUplo Uplo, Double2 alpha, sp<Allocation> X, int incX,
+ sp<Allocation> Y, int incY, sp<Allocation> Ap);
+
+ /**
+ * SGEMM performs one of the matrix-matrix operations
+ * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param TransB The type of transpose applied to matrix B.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32}.
+ */
+ void SGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, float alpha, sp<Allocation> A,
+ sp<Allocation> B, float beta, sp<Allocation> C);
+
+
+ /**
+ * DGEMM performs one of the matrix-matrix operations
+ * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param TransB The type of transpose applied to matrix B.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64}.
+ */
+ void DGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, double alpha, sp<Allocation> A,
+ sp<Allocation> B, double beta, sp<Allocation> C);
+
+ /**
+ * CGEMM performs one of the matrix-matrix operations
+ * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param TransB The type of transpose applied to matrix B.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> B, Float2 beta, sp<Allocation> C);
+
+ /**
+ * ZGEMM performs one of the matrix-matrix operations
+ * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html
+ *
+ * @param TransA The type of transpose applied to matrix A.
+ * @param TransB The type of transpose applied to matrix B.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2
+ */
+ void ZGEMM(RsBlasTranspose TransA, RsBlasTranspose TransB, Double2 alpha, sp<Allocation> A,
+ sp<Allocation> B, Double2 beta, sp<Allocation> C);
+
+ /**
+ * SSYMM performs one of the matrix-matrix operations
+ * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32}.
+ */
+ void SSYMM(RsBlasSide Side, RsBlasUplo Uplo, float alpha, sp<Allocation> A,
+ sp<Allocation> B, float beta, sp<Allocation> C);
+
+ /**
+ * DSYMM performs one of the matrix-matrix operations
+ * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64}.
+ */
+ void DSYMM(RsBlasSide Side, RsBlasUplo Uplo, double alpha, sp<Allocation> A,
+ sp<Allocation> B, double beta, sp<Allocation> C);
+
+ /**
+ * CSYMM performs one of the matrix-matrix operations
+ * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CSYMM(RsBlasSide Side, RsBlasUplo Uplo, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> B, Float2 beta, sp<Allocation> C);
+
+ /**
+ * ZSYMM performs one of the matrix-matrix operations
+ * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}.
+ */
+ void ZSYMM(RsBlasSide Side, RsBlasUplo Uplo, Double2 alpha, sp<Allocation> A,
+ sp<Allocation> B, Double2 beta, sp<Allocation> C);
+
+ /**
+ * SSYRK performs one of the symmetric rank k operations
+ * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32}.
+ */
+ void SSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha,
+ sp<Allocation> A, float beta, sp<Allocation> C);
+
+ /**
+ * DSYRK performs one of the symmetric rank k operations
+ * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64}.
+ */
+ void DSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha,
+ sp<Allocation> A, double beta, sp<Allocation> C);
+
+ /**
+ * CSYRK performs one of the symmetric rank k operations
+ * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha,
+ sp<Allocation> A, Float2 beta, sp<Allocation> C);
+
+ /**
+ * ZSYRK performs one of the symmetric rank k operations
+ * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}.
+ */
+ void ZSYRK(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha,
+ sp<Allocation> A, Double2 beta, sp<Allocation> C);
+
+ /**
+ * SSYR2K performs one of the symmetric rank 2k operations
+ * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32}.
+ */
+ void SSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha,
+ sp<Allocation> A, sp<Allocation> B, float beta, sp<Allocation> C);
+
+ /**
+ * DSYR2K performs one of the symmetric rank 2k operations
+ * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64}.
+ */
+ void DSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha,
+ sp<Allocation> A, sp<Allocation> B, double beta, sp<Allocation> C);
+
+ /**
+ * CSYR2K performs one of the symmetric rank 2k operations
+ * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Float2 beta, sp<Allocation> C);
+
+ /**
+ * ZSYR2K performs one of the symmetric rank 2k operations
+ * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}.
+ */
+ void ZSYR2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha,
+ sp<Allocation> A, sp<Allocation> B, Double2 beta, sp<Allocation> C);
+
+ /**
+ * STRMM performs one of the matrix-matrix operations
+ * B := alpha*op(A)*B or B := alpha*B*op(A)
+ * op(A) is one of op(A) = A or op(A) = A**T
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32}.
+ */
+ void STRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA,
+ RsBlasDiag Diag, float alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * DTRMM performs one of the matrix-matrix operations
+ * B := alpha*op(A)*B or B := alpha*B*op(A)
+ * op(A) is one of op(A) = A or op(A) = A**T
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64}.
+ */
+ void DTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ double alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * CTRMM performs one of the matrix-matrix operations
+ * B := alpha*op(A)*B or B := alpha*B*op(A)
+ * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ */
+ void CTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Float2 alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * ZTRMM performs one of the matrix-matrix operations
+ * B := alpha*op(A)*B or B := alpha*B*op(A)
+ * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}.
+ */
+ void ZTRMM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Double2 alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * STRSM solves one of the matrix equations
+ * op(A)*X := alpha*B or X*op(A) := alpha*B
+ * op(A) is one of op(A) = A or op(A) = A**T
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32}.
+ */
+ void STRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ float alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * DTRSM solves one of the matrix equations
+ * op(A)*X := alpha*B or X*op(A) := alpha*B
+ * op(A) is one of op(A) = A or op(A) = A**T
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64}.
+ */
+ void DTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ double alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * CTRSM solves one of the matrix equations
+ * op(A)*X := alpha*B or X*op(A) := alpha*B
+ * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ */
+ void CTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Float2 alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * ZTRSM solves one of the matrix equations
+ * op(A)*X := alpha*B or X*op(A) := alpha*B
+ * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether matrix A is upper or lower triangular.
+ * @param TransA The type of transpose applied to matrix A.
+ * @param Diag Specifies whether or not A is unit triangular.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}.
+ */
+ void ZTRSM(RsBlasSide Side, RsBlasUplo Uplo, RsBlasTranspose TransA, RsBlasDiag Diag,
+ Double2 alpha, sp<Allocation> A, sp<Allocation> B);
+
+ /**
+ * CHEMM performs one of the matrix-matrix operations
+ * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CHEMM(RsBlasSide Side, RsBlasUplo Uplo, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> B, Float2 beta, sp<Allocation> C);
+
+ /**
+ * ZHEMM performs one of the matrix-matrix operations
+ * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html
+ *
+ * @param Side Specifies whether the symmetric matrix A appears on the left or right.
+ * @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}.
+ */
+ void ZHEMM(RsBlasSide Side, RsBlasUplo Uplo, Double2 alpha, sp<Allocation> A,
+ sp<Allocation> B, Double2 beta, sp<Allocation> C);
+
+ /**
+ * CHERK performs one of the hermitian rank k operations
+ * C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CHERK(RsBlasUplo Uplo, RsBlasTranspose Trans, float alpha, sp<Allocation> A,
+ float beta, sp<Allocation> C);
+
+ /**
+ * ZHERK performs one of the hermitian rank k operations
+ * C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}.
+ */
+ void ZHERK(RsBlasUplo Uplo, RsBlasTranspose Trans, double alpha, sp<Allocation> A,
+ double beta, sp<Allocation> C);
+
+ /**
+ * CHER2K performs one of the hermitian rank 2k operations
+ * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F32_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F32_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F32_2}.
+ */
+ void CHER2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Float2 alpha, sp<Allocation> A,
+ sp<Allocation> B, float beta, sp<Allocation> C);
+
+ /**
+ * ZHER2K performs one of the hermitian rank 2k operations
+ * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
+ *
+ * Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html
+ *
+ * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
+ * @param Trans The type of transpose applied to the operation.
+ * @param alpha The scalar alpha.
+ * @param A The input allocation contains matrix A, supported elements type: {Element#F64_2}.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#F64_2}.
+ * @param beta The scalar beta.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#F64_2}.
+ */
+ void ZHER2K(RsBlasUplo Uplo, RsBlasTranspose Trans, Double2 alpha, sp<Allocation> A,
+ sp<Allocation> B, double beta, sp<Allocation> C);
+
+ /**
+ * 8-bit GEMM-like operation for neural networks: C = A * Transpose(B)
+ * Calculations are done in 1.10.21 fixed-point format for the final output,
+ * just before there's a shift down to drop the fractional parts. The output
+ * values are gated to 0 to 255 to fit in a byte, but the 10-bit format
+ * gives some headroom to avoid wrapping around on small overflows.
+ *
+ * @param A The input allocation contains matrix A, supported elements type: {Element#U8}.
+ * @param a_offset The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255.
+ * @param B The input allocation contains matrix B, supported elements type: {Element#U8}.
+ * @param b_offset The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255.
+ * @param C The input allocation contains matrix C, supported elements type: {Element#U8}.
+ * @param c_offset The offset for all values in matrix C.
+ * @param c_mult The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult.
+ **/
+ void BNNM(sp<Allocation> A, int a_offset, sp<Allocation> B, int b_offset, sp<Allocation> C,
+ int c_offset, int c_mult);
+};
+
/**
* Intrinsic kernel for blending two Allocations.
*/
@@ -2114,276 +4325,6 @@
};
-class Byte2 {
- public:
- int8_t x, y;
-
- Byte2(int8_t initX, int8_t initY)
- : x(initX), y(initY) {}
- Byte2() : x(0), y(0) {}
-};
-
-class Byte3 {
- public:
- int8_t x, y, z;
-
- Byte3(int8_t initX, int8_t initY, int8_t initZ)
- : x(initX), y(initY), z(initZ) {}
- Byte3() : x(0), y(0), z(0) {}
-};
-
-class Byte4 {
- public:
- int8_t x, y, z, w;
-
- Byte4(int8_t initX, int8_t initY, int8_t initZ, int8_t initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- Byte4() : x(0), y(0), z(0), w(0) {}
-};
-
-class UByte2 {
- public:
- uint8_t x, y;
-
- UByte2(uint8_t initX, uint8_t initY)
- : x(initX), y(initY) {}
- UByte2() : x(0), y(0) {}
-};
-
-class UByte3 {
- public:
- uint8_t x, y, z;
-
- UByte3(uint8_t initX, uint8_t initY, uint8_t initZ)
- : x(initX), y(initY), z(initZ) {}
- UByte3() : x(0), y(0), z(0) {}
-};
-
-class UByte4 {
- public:
- uint8_t x, y, z, w;
-
- UByte4(uint8_t initX, uint8_t initY, uint8_t initZ, uint8_t initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- UByte4() : x(0), y(0), z(0), w(0) {}
-};
-
-class Short2 {
- public:
- short x, y;
-
- Short2(short initX, short initY)
- : x(initX), y(initY) {}
- Short2() : x(0), y(0) {}
-};
-
-class Short3 {
- public:
- short x, y, z;
-
- Short3(short initX, short initY, short initZ)
- : x(initX), y(initY), z(initZ) {}
- Short3() : x(0), y(0), z(0) {}
-};
-
-class Short4 {
- public:
- short x, y, z, w;
-
- Short4(short initX, short initY, short initZ, short initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- Short4() : x(0), y(0), z(0), w(0) {}
-};
-
-class UShort2 {
- public:
- uint16_t x, y;
-
- UShort2(uint16_t initX, uint16_t initY)
- : x(initX), y(initY) {}
- UShort2() : x(0), y(0) {}
-};
-
-class UShort3 {
- public:
- uint16_t x, y, z;
-
- UShort3(uint16_t initX, uint16_t initY, uint16_t initZ)
- : x(initX), y(initY), z(initZ) {}
- UShort3() : x(0), y(0), z(0) {}
-};
-
-class UShort4 {
- public:
- uint16_t x, y, z, w;
-
- UShort4(uint16_t initX, uint16_t initY, uint16_t initZ, uint16_t initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- UShort4() : x(0), y(0), z(0), w(0) {}
-};
-
-class Int2 {
- public:
- int x, y;
-
- Int2(int initX, int initY)
- : x(initX), y(initY) {}
- Int2() : x(0), y(0) {}
-};
-
-class Int3 {
- public:
- int x, y, z;
-
- Int3(int initX, int initY, int initZ)
- : x(initX), y(initY), z(initZ) {}
- Int3() : x(0), y(0), z(0) {}
-};
-
-class Int4 {
- public:
- int x, y, z, w;
-
- Int4(int initX, int initY, int initZ, int initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- Int4() : x(0), y(0), z(0), w(0) {}
-};
-
-class UInt2 {
- public:
- uint32_t x, y;
-
- UInt2(uint32_t initX, uint32_t initY)
- : x(initX), y(initY) {}
- UInt2() : x(0), y(0) {}
-};
-
-class UInt3 {
- public:
- uint32_t x, y, z;
-
- UInt3(uint32_t initX, uint32_t initY, uint32_t initZ)
- : x(initX), y(initY), z(initZ) {}
- UInt3() : x(0), y(0), z(0) {}
-};
-
-class UInt4 {
- public:
- uint32_t x, y, z, w;
-
- UInt4(uint32_t initX, uint32_t initY, uint32_t initZ, uint32_t initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- UInt4() : x(0), y(0), z(0), w(0) {}
-};
-
-class Long2 {
- public:
- int64_t x, y;
-
- Long2(int64_t initX, int64_t initY)
- : x(initX), y(initY) {}
- Long2() : x(0), y(0) {}
-};
-
-class Long3 {
- public:
- int64_t x, y, z;
-
- Long3(int64_t initX, int64_t initY, int64_t initZ)
- : x(initX), y(initY), z(initZ) {}
- Long3() : x(0), y(0), z(0) {}
-};
-
-class Long4 {
- public:
- int64_t x, y, z, w;
-
- Long4(int64_t initX, int64_t initY, int64_t initZ, int64_t initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- Long4() : x(0), y(0), z(0), w(0) {}
-};
-
-class ULong2 {
- public:
- uint64_t x, y;
-
- ULong2(uint64_t initX, uint64_t initY)
- : x(initX), y(initY) {}
- ULong2() : x(0), y(0) {}
-};
-
-class ULong3 {
- public:
- uint64_t x, y, z;
-
- ULong3(uint64_t initX, uint64_t initY, uint64_t initZ)
- : x(initX), y(initY), z(initZ) {}
- ULong3() : x(0), y(0), z(0) {}
-};
-
-class ULong4 {
- public:
- uint64_t x, y, z, w;
-
- ULong4(uint64_t initX, uint64_t initY, uint64_t initZ, uint64_t initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- ULong4() : x(0), y(0), z(0), w(0) {}
-};
-
-class Float2 {
- public:
- float x, y;
-
- Float2(float initX, float initY)
- : x(initX), y(initY) {}
- Float2() : x(0), y(0) {}
-};
-
-class Float3 {
- public:
- float x, y, z;
-
- Float3(float initX, float initY, float initZ)
- : x(initX), y(initY), z(initZ) {}
- Float3() : x(0.f), y(0.f), z(0.f) {}
-};
-
-class Float4 {
- public:
- float x, y, z, w;
-
- Float4(float initX, float initY, float initZ, float initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- Float4() : x(0.f), y(0.f), z(0.f), w(0.f) {}
-};
-
-class Double2 {
- public:
- double x, y;
-
- Double2(double initX, double initY)
- : x(initX), y(initY) {}
- Double2() : x(0), y(0) {}
-};
-
-class Double3 {
- public:
- double x, y, z;
-
- Double3(double initX, double initY, double initZ)
- : x(initX), y(initY), z(initZ) {}
- Double3() : x(0), y(0), z(0) {}
-};
-
-class Double4 {
- public:
- double x, y, z, w;
-
- Double4(double initX, double initY, double initZ, double initW)
- : x(initX), y(initY), z(initZ), w(initW) {}
- Double4() : x(0), y(0), z(0), w(0) {}
-};
-
}
}