Fix corner cases where vk dependency graph breaks

There are 2 issues with the current implementation of VkReconstruct:

a. When deleting a child handle it does not erase itself from its
   parent. When doing snapshot we enumerate children handles and check
   if they are still "alive". But the handle pool is written in the way
   that it could reuse handles that have been previously destroyed,
   invalidating the "alive" check.
b. Previous dependency graph does not support one handle with multiple
   parents.

In this commit we fix (a) by making child<->parent pointer
bidirectional. When deleting a child it will be erased from its parents.

We fix (b) by rewriting a significant part of dependency graph logic on
snapshot save.

The commit also makes all destroy command to be recursive (except for
vkDestroyShaderModule), which will be handled in later commits.

Also add dependency VkFrameBuffer -> VkImageView.

Bug: 3015153
Test: GfxstreamEnd2EndVkSnapshotImageTest#ImageViewDependency
Change-Id: I7128412acffc17cf8972c53b64f3d1d335e712be
5 files changed
tree: 2b8e6ea1d5802030c6058c023957af69778ed5d8
  1. cmake/
  2. codegen/
  3. common/
  4. docs/
  5. guest/
  6. host/
  7. include/
  8. qnx/
  9. scripts/
  10. subprojects/
  11. third-party/
  12. utils/
  13. .clang-format
  14. .gitignore
  15. Android.bp
  16. BUILD.bazel
  17. CMakeLists.txt
  18. LICENSE
  19. meson.build
  20. meson_options.txt
  21. MODULE_LICENSE_APACHE2
  22. OWNERS
  23. README.md
README.md

Graphics Streaming Kit (formerly: Vulkan Cereal)

Graphics Streaming Kit is a code generator that makes it easier to serialize and forward graphics API calls from one place to another:

  • From a virtual machine guest to host for virtualized graphics
  • From one process to another for IPC graphics
  • From one computer to another via network sockets

Build: Linux

The latest directions for the standalone Linux build are provided here.

Build: Windows

Make sure the latest CMake is installed. Make sure Visual Studio 2019 is installed on your system along with all the Clang C++ toolchain components. Then:

mkdir build
cd build
cmake . ../ -A x64 -T ClangCL

A solution file should be generated. Then open the solution file in Visual studio and build the gfxstream_backend target.

Build: Android for host

Be in the Android build system. Then:

m libgfxstream_backend

It then ends up in out/host

This also builds for Android on-device.

Output artifacts

libgfxstream_backend.(dll|so|dylib)

Regenerating Vulkan code

To re-generate both guest and Vulkan code, please run:

scripts/generate-gfxstream-vulkan.sh

Regenerating GLES/RenderControl code

First, build build/gfxstream-generic-apigen. Then run:

scripts/generate-apigen-source.sh

Tests

Windows Tests

There are a bunch of test executables generated. They require libEGL.dll and libGLESv2.dll and vulkan-1.dll to be available, possibly from your GPU vendor or ANGLE, in the %PATH%.

Android Host Tests

There are Android mock testa available, runnable on Linux. To build these tests, run:

m GfxstreamEnd2EndTests

Structure

  • CMakeLists.txt: specifies all host-side build targets. This includes all backends along with client/server setups that live only on the host. Some
    • Backend implementations
    • Implementations of the host side of various transports
    • Frontends used for host-side testing with a mock implementation of guest graphics stack (mainly Android)
    • Frontends that result in actual Linux/macOS/Windows gles/vk libraries (isolation / fault tolerance use case)
  • Android.bp: specifies all guest-side build targets for Android:
    • Implementations of the guest side of various transports (above the kernel)
    • Frontends
  • BUILD.gn: specifies all guest-side build targets for Fuchsia
    • Implementations of the guest side of various transports (above the kernel)
    • Frontends
  • base/: common libraries that are built for both the guest and host. Contains utility code related to synchronization, threading, and suballocation.
  • protocols/: implementations of protocols for various graphics APIs. May contain code generators to make it easy to regen the protocol based on certain things.
  • host-common/: implementations of host-side support code that makes it easier to run the server in a variety of virtual device environments. Contains concrete implementations of auxiliary virtual devices such as Address Space Device and Goldfish Pipe.
  • stream-servers/: implementations of various backends for various graphics APIs that consume protocol. gfxstream-virtio-gpu-renderer.cpp contains a virtio-gpu backend implementation.

Guest Vulkan design

gfxstream vulkan is the most actively developed component. Some key commponents of the current design include:

  • 1:1 threading model - each guest Vulkan encoder thread gets host side decoding thread
  • Support for both virtio-gpu, goldish and testing transports.
  • Support for Android, Fuchsia, and Linux guests.
  • Ring Buffer to stream commands, in the style of io_uring.
  • Mesa embedded to provide dispatch and objects.
  • Currently, there are a set of Mesa objects and gfxstream objects. For example, struct gfxstream_vk_device and the gfxstream object goldfish_device both are internal representations of Vulkan opaque handle VkDevice. The Mesa object is used first, since Mesa provides dispatch. The Mesa object contains a key to the hash table to get a gfxstream internal object (for example, gfxstream_vk_device::internal_object). Eventually, gfxstream objects will be phased out and Mesa objects used exclusively.