Add REDUCE_* ops
Operations added:
- REDUCE_PROD
- REDUCE_SUM
- REDUCE_MAX
- REDUCE_MIN
- REDUCE_ANY
- REDUCE_ALL
Fix: 113564646
Test: NeuralNetworksTest_static_asan
Change-Id: I3a03358c941b0d0b324406b4f43a8bde97dfa505
Merged-In: I3a03358c941b0d0b324406b4f43a8bde97dfa505
(cherry picked from commit 88fe2437673dab80cef6bccb60f23e02ddbdb15f)
diff --git a/common/operations/Reduce.cpp b/common/operations/Reduce.cpp
new file mode 100644
index 0000000..6b1d413
--- /dev/null
+++ b/common/operations/Reduce.cpp
@@ -0,0 +1,229 @@
+/*
+ * Copyright (C) 2018 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "Operations"
+
+#include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h"
+
+#include "HalInterfaces.h"
+#include "OperationResolver.h"
+#include "OperationsUtils.h"
+#include "Tracing.h"
+
+namespace android {
+namespace nn {
+namespace reduce {
+
+typedef uint8_t bool8; // TODO: Where to define this?
+
+constexpr uint32_t kNumInputs = 3;
+constexpr uint32_t kInputTensor = 0;
+constexpr uint32_t kInputAxes = 1;
+constexpr uint32_t kInputKeepDims = 2;
+
+constexpr uint32_t kNumOutputs = 1;
+constexpr uint32_t kOutputTensor = 0;
+
+// Values from
+// https://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
+constexpr _Float16 kFloat16Max = 65504;
+constexpr _Float16 kFloat16Lowest = -kFloat16Max;
+
+namespace {
+
+template <typename T>
+inline bool compute(IOperationExecutionContext* context, T init, T func(T, T)) {
+ const Shape inputShape = context->getInputShape(kInputTensor);
+ const Shape axesShape = context->getInputShape(kInputAxes);
+ const Shape outputShape = context->getOutputShape(kOutputTensor);
+ const uint32_t inputRank = getNumberOfDimensions(inputShape);
+ const uint32_t numAxes = getNumberOfElements(axesShape);
+ std::vector<int> tempIndex(inputShape.dimensions.size());
+ std::vector<int> tempAxes(numAxes);
+ return tflite::reference_ops::ReduceGeneric<T>(
+ context->getInputBuffer<T>(kInputTensor),
+ reinterpret_cast<const int32_t*>(inputShape.dimensions.data()), inputRank,
+ context->getOutputBuffer<T>(kOutputTensor),
+ reinterpret_cast<const int32_t*>(outputShape.dimensions.data()),
+ outputShape.dimensions.size(), context->getInputBuffer<int32_t>(kInputAxes), numAxes,
+ context->getInputValue<bool8>(kInputKeepDims), tempIndex.data(), tempAxes.data(), init,
+ func);
+}
+
+} // namespace
+
+bool validateProdSum(const IOperationValidationContext* context) {
+ NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
+ NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
+ OperandType inputType = context->getInputType(kInputTensor);
+ NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32)
+ << "Unsupported tensor type for REDUCE_PROD or REDUCE_SUM";
+ NN_RET_CHECK(
+ validateInputTypes(context, {inputType, OperandType::TENSOR_INT32, OperandType::BOOL}));
+ NN_RET_CHECK(validateOutputTypes(context, {inputType}));
+ return validateHalVersion(context, HalVersion::V1_2);
+}
+
+bool validateMaxMin(const IOperationValidationContext* context) {
+ NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
+ NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
+ OperandType inputType = context->getInputType(kInputTensor);
+ NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM)
+ << "Unsupported tensor type for REDUCE_MAX or REDUCE_MIN";
+ NN_RET_CHECK(
+ validateInputTypes(context, {inputType, OperandType::TENSOR_INT32, OperandType::BOOL}));
+ NN_RET_CHECK(validateOutputTypes(context, {inputType}));
+ return validateHalVersion(context, HalVersion::V1_2);
+}
+
+bool validateLogical(const IOperationValidationContext* context) {
+ NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
+ NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
+ OperandType inputType = context->getInputType(kInputTensor);
+ NN_RET_CHECK(inputType == OperandType::TENSOR_BOOL8)
+ << "Unsupported tensor type for REDUCE_ANY or REDUCE_ALL";
+ NN_RET_CHECK(
+ validateInputTypes(context, {inputType, OperandType::TENSOR_INT32, OperandType::BOOL}));
+ NN_RET_CHECK(validateOutputTypes(context, {inputType}));
+ return validateHalVersion(context, HalVersion::V1_2);
+}
+
+bool prepare(IOperationExecutionContext* context) {
+ Shape inputShape = context->getInputShape(kInputTensor);
+ const uint32_t inputRank = getNumberOfDimensions(inputShape);
+
+ std::vector<bool> shouldReduce(inputRank);
+ const int32_t* axes = context->getInputBuffer<int32_t>(kInputAxes);
+ Shape axesShape = context->getInputShape(kInputAxes);
+ NN_RET_CHECK_EQ(getNumberOfDimensions(axesShape), 1u);
+ const uint32_t numAxes = getNumberOfElements(axesShape);
+ for (uint32_t i = 0; i < numAxes; ++i) {
+ int32_t axis = axes[i];
+ NN_RET_CHECK(handleNegativeAxis(inputRank, &axis));
+ shouldReduce[axis] = true;
+ }
+
+ // Input and output must have the same quantization parameters, etc.
+ Shape outputShape = inputShape;
+ outputShape.dimensions.clear();
+ bool keepDims = context->getInputValue<bool8>(kInputKeepDims);
+ for (uint32_t axis = 0; axis < inputRank; ++axis) {
+ if (shouldReduce[axis]) {
+ if (keepDims) {
+ outputShape.dimensions.push_back(1);
+ }
+ } else {
+ outputShape.dimensions.push_back(getSizeOfDimension(inputShape, axis));
+ }
+ }
+
+ return context->setOutputShape(kOutputTensor, outputShape);
+}
+
+bool executeProd(IOperationExecutionContext* context) {
+ switch (context->getInputType(kInputTensor)) {
+ case OperandType::TENSOR_FLOAT16:
+ return compute<_Float16>(context, 1, [](_Float16 a, _Float16 b) { return a * b; });
+ case OperandType::TENSOR_FLOAT32:
+ return compute<float>(context, 1, [](float a, float b) { return a * b; });
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation REDUCE_PROD";
+ }
+}
+
+bool executeSum(IOperationExecutionContext* context) {
+ switch (context->getInputType(kInputTensor)) {
+ case OperandType::TENSOR_FLOAT16:
+ return compute<_Float16>(context, 0, [](_Float16 a, _Float16 b) { return a + b; });
+ case OperandType::TENSOR_FLOAT32:
+ return compute<float>(context, 0, [](float a, float b) { return a + b; });
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation REDUCE_SUM";
+ }
+}
+
+bool executeMax(IOperationExecutionContext* context) {
+ switch (context->getInputType(kInputTensor)) {
+ case OperandType::TENSOR_FLOAT16:
+ return compute<_Float16>(context, kFloat16Lowest,
+ [](_Float16 a, _Float16 b) { return std::max(a, b); });
+ case OperandType::TENSOR_FLOAT32:
+ return compute<float>(context, std::numeric_limits<float>::lowest(),
+ [](float a, float b) { return std::max(a, b); });
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return compute<uint8_t>(context, std::numeric_limits<uint8_t>::lowest(),
+ [](uint8_t a, uint8_t b) { return std::max(a, b); });
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation REDUCE_MAX";
+ }
+}
+
+bool executeMin(IOperationExecutionContext* context) {
+ switch (context->getInputType(kInputTensor)) {
+ case OperandType::TENSOR_FLOAT16:
+ return compute<_Float16>(context, kFloat16Max,
+ [](_Float16 a, _Float16 b) { return std::min(a, b); });
+ case OperandType::TENSOR_FLOAT32:
+ return compute<float>(context, std::numeric_limits<float>::max(),
+ [](float a, float b) { return std::min(a, b); });
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return compute<uint8_t>(context, std::numeric_limits<uint8_t>::max(),
+ [](uint8_t a, uint8_t b) { return std::min(a, b); });
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation REDUCE_MIN";
+ }
+}
+
+bool executeAny(IOperationExecutionContext* context) {
+ switch (context->getInputType(kInputTensor)) {
+ case OperandType::TENSOR_BOOL8:
+ return compute<bool8>(context, false,
+ [](bool8 a, bool8 b) { return static_cast<bool8>(a || b); });
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation REDUCE_ANY";
+ }
+}
+
+bool executeAll(IOperationExecutionContext* context) {
+ switch (context->getInputType(kInputTensor)) {
+ case OperandType::TENSOR_BOOL8:
+ return compute<bool8>(context, true,
+ [](bool8 a, bool8 b) { return static_cast<bool8>(a && b); });
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation REDUCE_ALL";
+ }
+}
+
+} // namespace reduce
+
+NN_REGISTER_OPERATION(REDUCE_PROD, "REDUCE_PROD", reduce::validateProdSum, reduce::prepare,
+ reduce::executeProd);
+NN_REGISTER_OPERATION(REDUCE_SUM, "REDUCE_SUM", reduce::validateProdSum, reduce::prepare,
+ reduce::executeSum);
+NN_REGISTER_OPERATION(REDUCE_MAX, "REDUCE_MAX", reduce::validateMaxMin, reduce::prepare,
+ reduce::executeMax);
+NN_REGISTER_OPERATION(REDUCE_MIN, "REDUCE_MIN", reduce::validateMaxMin, reduce::prepare,
+ reduce::executeMin);
+NN_REGISTER_OPERATION(REDUCE_ANY, "REDUCE_ANY", reduce::validateLogical, reduce::prepare,
+ reduce::executeAny);
+NN_REGISTER_OPERATION(REDUCE_ALL, "REDUCE_ALL", reduce::validateLogical, reduce::prepare,
+ reduce::executeAll);
+
+} // namespace nn
+} // namespace android