Support zero batch in broadcast ops.
Also switch to OperationResolver.
Bug: 126737477
Test: NeuralNetworksTest_static
Change-Id: Ia2aaf7db4539ce5ffb97eb2341b0b5a56b2b8483
Merged-In: Ia2aaf7db4539ce5ffb97eb2341b0b5a56b2b8483
(cherry picked from commit 041d28acbe75b80b5d55db5daea7303751f1c4fa)
diff --git a/common/Android.bp b/common/Android.bp
index 21d2e3e..34608ee 100644
--- a/common/Android.bp
+++ b/common/Android.bp
@@ -25,6 +25,7 @@
srcs: [
"OperationResolver.cpp",
"operations/BidirectionalSequenceRNN.cpp",
+ "operations/Broadcast.cpp",
"operations/ChannelShuffle.cpp",
"operations/Comparisons.cpp",
"operations/Conv2D.cpp",
diff --git a/common/CpuExecutor.cpp b/common/CpuExecutor.cpp
index fa4e00a..0114389 100644
--- a/common/CpuExecutor.cpp
+++ b/common/CpuExecutor.cpp
@@ -688,64 +688,6 @@
LOG(ERROR) << "OEM operation not supported for CPU execution";
success = false;
} break;
- case OperationType::ADD: {
- if (!allParametersPresent(3, 1)) {
- return ANEURALNETWORKS_BAD_DATA;
- }
- const RunTimeOperandInfo& in1 = mOperands[ins[0]];
- const RunTimeOperandInfo& in2 = mOperands[ins[1]];
- int32_t activation = getScalarData<int32_t>(mOperands[ins[2]]);
-
- RunTimeOperandInfo& out = mOperands[outs[0]];
- Shape outShape = out.shape();
-
- if (!addMulPrepare(in1.shape(), in2.shape(), &outShape) ||
- !setInfoAndAllocateIfNeeded(&out, outShape, &result)) {
- break;
- }
- if (in1.type == OperandType::TENSOR_FLOAT32) {
- success = addFloat32(reinterpret_cast<const float*>(in1.buffer), in1.shape(),
- reinterpret_cast<const float*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<float*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_FLOAT16) {
- success = addFloat16(reinterpret_cast<const _Float16*>(in1.buffer), in1.shape(),
- reinterpret_cast<const _Float16*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<_Float16*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_QUANT8_ASYMM) {
- success = addQuant8(reinterpret_cast<const uint8_t*>(in1.buffer), in1.shape(),
- reinterpret_cast<const uint8_t*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<uint8_t*>(out.buffer), outShape);
- }
- } break;
- case OperationType::MUL: {
- if (!allParametersPresent(3, 1)) {
- return ANEURALNETWORKS_BAD_DATA;
- }
- const RunTimeOperandInfo& in1 = mOperands[ins[0]];
- const RunTimeOperandInfo& in2 = mOperands[ins[1]];
- int32_t activation = getScalarData<int32_t>(mOperands[ins[2]]);
-
- RunTimeOperandInfo& out = mOperands[outs[0]];
- Shape outShape = out.shape();
-
- if (!addMulPrepare(in1.shape(), in2.shape(), &outShape) ||
- !setInfoAndAllocateIfNeeded(&out, outShape, &result)) {
- break;
- }
- if (in1.type == OperandType::TENSOR_FLOAT32) {
- success = mulFloat32(reinterpret_cast<const float*>(in1.buffer), in1.shape(),
- reinterpret_cast<const float*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<float*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_FLOAT16) {
- success = mulFloat16(reinterpret_cast<const _Float16*>(in1.buffer), in1.shape(),
- reinterpret_cast<const _Float16*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<_Float16*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_QUANT8_ASYMM) {
- success = mulQuant8(reinterpret_cast<const uint8_t*>(in1.buffer), in1.shape(),
- reinterpret_cast<const uint8_t*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<uint8_t*>(out.buffer), outShape);
- }
- } break;
case OperationType::FLOOR: {
if (!allParametersPresent(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
@@ -1716,60 +1658,6 @@
reinterpret_cast<const int32_t*>(strides.buffer), beginMask,
endMask, shrinkAxisMask, output.buffer, outShape);
} break;
- case OperationType::DIV: {
- if (!allParametersPresent(3, 1)) {
- return ANEURALNETWORKS_BAD_DATA;
- }
- const RunTimeOperandInfo& in1 = mOperands[ins[0]];
- const RunTimeOperandInfo& in2 = mOperands[ins[1]];
- int32_t activation = getScalarData<int32_t>(mOperands[ins[2]]);
-
- RunTimeOperandInfo& out = mOperands[outs[0]];
- Shape outShape = out.shape();
-
- if (!addMulPrepare(in1.shape(), in2.shape(), &outShape) ||
- !setInfoAndAllocateIfNeeded(&out, outShape, &result)) {
- break;
- }
- if (in1.type == OperandType::TENSOR_FLOAT32) {
- success = divFloat32(reinterpret_cast<const float*>(in1.buffer), in1.shape(),
- reinterpret_cast<const float*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<float*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_FLOAT16) {
- success = divFloat16(reinterpret_cast<const _Float16*>(in1.buffer), in1.shape(),
- reinterpret_cast<const _Float16*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<_Float16*>(out.buffer), outShape);
- }
- } break;
- case OperationType::SUB: {
- if (!allParametersPresent(3, 1)) {
- return ANEURALNETWORKS_BAD_DATA;
- }
- const RunTimeOperandInfo& in1 = mOperands[ins[0]];
- const RunTimeOperandInfo& in2 = mOperands[ins[1]];
- int32_t activation = getScalarData<int32_t>(mOperands[ins[2]]);
-
- RunTimeOperandInfo& out = mOperands[outs[0]];
- Shape outShape = out.shape();
-
- if (!addMulPrepare(in1.shape(), in2.shape(), &outShape) ||
- !setInfoAndAllocateIfNeeded(&out, outShape, &result)) {
- break;
- }
- if (in1.type == OperandType::TENSOR_FLOAT16) {
- success = subFloat16(reinterpret_cast<const _Float16*>(in1.buffer), in1.shape(),
- reinterpret_cast<const _Float16*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<_Float16*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_FLOAT32) {
- success = subFloat32(reinterpret_cast<const float*>(in1.buffer), in1.shape(),
- reinterpret_cast<const float*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<float*>(out.buffer), outShape);
- } else if (in1.type == OperandType::TENSOR_QUANT8_ASYMM) {
- success = subQuant8(reinterpret_cast<const uint8_t*>(in1.buffer), in1.shape(),
- reinterpret_cast<const uint8_t*>(in2.buffer), in2.shape(),
- activation, reinterpret_cast<uint8_t*>(out.buffer), outShape);
- }
- } break;
case OperationType::MEAN: {
if (!allParametersPresent(3, 1)) {
return ANEURALNETWORKS_BAD_DATA;
diff --git a/common/OperationResolver.cpp b/common/OperationResolver.cpp
index 8f1edfb..e77cf40 100644
--- a/common/OperationResolver.cpp
+++ b/common/OperationResolver.cpp
@@ -25,6 +25,7 @@
// TODO(b/119608412): Find a way to not reference every operation here.
const OperationRegistration* register_ABS();
+const OperationRegistration* register_ADD();
const OperationRegistration* register_AVERAGE_POOL_2D();
const OperationRegistration* register_AXIS_ALIGNED_BBOX_TRANSFORM();
const OperationRegistration* register_BIDIRECTIONAL_SEQUENCE_RNN();
@@ -33,6 +34,7 @@
const OperationRegistration* register_CONV_2D();
const OperationRegistration* register_DEQUANTIZE();
const OperationRegistration* register_DETECTION_POSTPROCESSING();
+const OperationRegistration* register_DIV();
const OperationRegistration* register_EQUAL();
const OperationRegistration* register_EXP();
const OperationRegistration* register_FULLY_CONNECTED();
@@ -51,6 +53,7 @@
const OperationRegistration* register_LOGICAL_OR();
const OperationRegistration* register_LOG_SOFTMAX();
const OperationRegistration* register_MAX_POOL_2D();
+const OperationRegistration* register_MUL();
const OperationRegistration* register_NEG();
const OperationRegistration* register_NOT_EQUAL();
const OperationRegistration* register_PRELU();
@@ -68,11 +71,13 @@
const OperationRegistration* register_SELECT();
const OperationRegistration* register_SIN();
const OperationRegistration* register_SQRT();
+const OperationRegistration* register_SUB();
const OperationRegistration* register_UNIDIRECTIONAL_SEQUENCE_LSTM();
const OperationRegistration* register_UNIDIRECTIONAL_SEQUENCE_RNN();
BuiltinOperationResolver::BuiltinOperationResolver() {
registerOperation(register_ABS());
+ registerOperation(register_ADD());
registerOperation(register_AVERAGE_POOL_2D());
registerOperation(register_AXIS_ALIGNED_BBOX_TRANSFORM());
registerOperation(register_BIDIRECTIONAL_SEQUENCE_RNN());
@@ -81,6 +86,7 @@
registerOperation(register_CONV_2D());
registerOperation(register_DEQUANTIZE());
registerOperation(register_DETECTION_POSTPROCESSING());
+ registerOperation(register_DIV());
registerOperation(register_EQUAL());
registerOperation(register_EXP());
registerOperation(register_FULLY_CONNECTED());
@@ -99,6 +105,7 @@
registerOperation(register_LOGICAL_OR());
registerOperation(register_LOG_SOFTMAX());
registerOperation(register_MAX_POOL_2D());
+ registerOperation(register_MUL());
registerOperation(register_NEG());
registerOperation(register_NOT_EQUAL());
registerOperation(register_PRELU());
@@ -116,6 +123,7 @@
registerOperation(register_SELECT());
registerOperation(register_SIN());
registerOperation(register_SQRT());
+ registerOperation(register_SUB());
registerOperation(register_UNIDIRECTIONAL_SEQUENCE_LSTM());
registerOperation(register_UNIDIRECTIONAL_SEQUENCE_RNN());
}
diff --git a/common/OperationsUtils.cpp b/common/OperationsUtils.cpp
index af4e2e7..25a5258 100644
--- a/common/OperationsUtils.cpp
+++ b/common/OperationsUtils.cpp
@@ -289,6 +289,7 @@
}
bool calculateBroadcastedShape(const Shape& in1, const Shape& in2, Shape* out) {
+ NN_RET_CHECK(in1.type == in2.type);
uint32_t numberOfDims1 = getNumberOfDimensions(in1);
uint32_t numberOfDims2 = getNumberOfDimensions(in2);
uint32_t maxDims = std::max(numberOfDims1, numberOfDims2);
@@ -308,7 +309,7 @@
<< "\nSecond tensor: dimension " << numberOfDims2 - i << "of size " << dim2;
return false;
}
- out->dimensions[maxDims - i] = std::max(dim1, dim2);
+ out->dimensions[maxDims - i] = (dim1 == 1) ? dim2 : dim1;
}
return true;
}
@@ -318,15 +319,6 @@
return static_cast<uint8_t>(doubleValue / newShape.scale + newShape.offset);
}
-bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out) {
- NN_OPS_CHECK(getNumberOfDimensions(in1) <= 4 && getNumberOfDimensions(in2) <= 4);
- NN_OPS_CHECK(in1.type == in2.type);
- if (SameShape(in1, in2)) {
- return SetShape(in1, out);
- }
- return calculateBroadcastedShape(in1, in2, out);
-}
-
bool floorPrepare(const Shape& input, Shape* output) {
return SetShape(input, output);
}
diff --git a/common/Utils.cpp b/common/Utils.cpp
index 20429fd..ccb4f62 100644
--- a/common/Utils.cpp
+++ b/common/Utils.cpp
@@ -571,80 +571,6 @@
case ANEURALNETWORKS_OEM_OPERATION: {
return ANEURALNETWORKS_NO_ERROR;
}
- case ANEURALNETWORKS_ADD: {
- if (inputCount != 3 || outputCount != 1) {
- logInvalidInOutNumber(3, 1);
- return ANEURALNETWORKS_BAD_DATA;
- }
- auto inputType = operands[inputIndexes[0]].type;
- std::vector<OperandType> inExpectedTypes;
- std::vector<OperandType> outExpectedTypes;
- if (inputType == OperandType::TENSOR_FLOAT32 ||
- inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- inExpectedTypes = {
- inputType,
- inputType,
- OperandType::INT32,
- };
- outExpectedTypes = {inputType};
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
- } else if (inputType == OperandType::TENSOR_FLOAT16) {
- inExpectedTypes = {
- OperandType::TENSOR_FLOAT16,
- OperandType::TENSOR_FLOAT16,
- OperandType::INT32,
- };
- outExpectedTypes = {OperandType::TENSOR_FLOAT16};
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
- } else {
- LOG(ERROR) << "Unsupported input tensor type for operation "
- << getOperationName(opType);
- return ANEURALNETWORKS_BAD_DATA;
- }
- return validateOperationOperandTypes(operands,
- inputCount, inputIndexes,
- inExpectedTypes,
- outputCount, outputIndexes,
- outExpectedTypes);
- }
- case ANEURALNETWORKS_MUL: {
- if (inputCount != 3 || outputCount != 1) {
- logInvalidInOutNumber(3, 1);
- return ANEURALNETWORKS_BAD_DATA;
- }
- auto inputType = operands[inputIndexes[0]].type;
- std::vector<OperandType> inExpectedTypes;
- std::vector<OperandType> outExpectedTypes;
- if (inputType == OperandType::TENSOR_FLOAT32) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT32,
- OperandType::TENSOR_FLOAT32,
- OperandType::INT32};
- outExpectedTypes = {OperandType::TENSOR_FLOAT32};
- } else if (inputType == OperandType::TENSOR_FLOAT16) {
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
- inExpectedTypes = {
- OperandType::TENSOR_FLOAT16,
- OperandType::TENSOR_FLOAT16,
- OperandType::INT32,
- };
- outExpectedTypes = {OperandType::TENSOR_FLOAT16};
- } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
- OperandType::TENSOR_QUANT8_ASYMM,
- OperandType::INT32};
- outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
- } else {
- LOG(ERROR) << "Unsupported input tensor type for operation "
- << getOperationName(opType);
- return ANEURALNETWORKS_BAD_DATA;
- }
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
- return validateOperationOperandTypes(operands,
- inputCount, inputIndexes,
- inExpectedTypes,
- outputCount, outputIndexes,
- outExpectedTypes);
- }
case ANEURALNETWORKS_FLOOR: {
if (inputCount != 1 || outputCount != 1) {
logInvalidInOutNumber(1, 1);
@@ -1749,68 +1675,6 @@
inExpectedTypes, outputCount, outputIndexes,
outExpectedTypes);
}
- case ANEURALNETWORKS_DIV: {
- if (inputCount != 3 || outputCount != 1) {
- logInvalidInOutNumber(3, 1);
- return ANEURALNETWORKS_BAD_DATA;
- }
- auto inputType = operands[inputIndexes[0]].type;
- std::vector<OperandType> inExpectedTypes;
- std::vector<OperandType> outExpectedTypes;
- if (inputType == OperandType::TENSOR_FLOAT32) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT32,
- OperandType::TENSOR_FLOAT32,
- OperandType::INT32};
- outExpectedTypes = {OperandType::TENSOR_FLOAT32};
- } else if (inputType == OperandType::TENSOR_FLOAT16) {
- inExpectedTypes = {
- OperandType::TENSOR_FLOAT16,
- OperandType::TENSOR_FLOAT16,
- OperandType::INT32,
- };
- outExpectedTypes = {OperandType::TENSOR_FLOAT16};
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
- } else {
- LOG(ERROR) << "Unsupported input tensor type for operation "
- << getOperationName(opType);
- return ANEURALNETWORKS_BAD_DATA;
- }
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
- return validateOperationOperandTypes(operands,
- inputCount, inputIndexes,
- inExpectedTypes,
- outputCount, outputIndexes,
- outExpectedTypes);
- }
- case ANEURALNETWORKS_SUB: {
- if (inputCount != 3 || outputCount != 1) {
- logInvalidInOutNumber(3, 1);
- return ANEURALNETWORKS_BAD_DATA;
- }
- auto inputType = operands[inputIndexes[0]].type;
- std::vector<OperandType> inExpectedTypes;
- std::vector<OperandType> outExpectedTypes;
- if (inputType == OperandType::TENSOR_FLOAT32) {
- inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
- OperandType::INT32};
- outExpectedTypes = {OperandType::TENSOR_FLOAT32};
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
- } else if (inputType == OperandType::TENSOR_FLOAT16 ||
- inputType == OperandType::TENSOR_QUANT8_ASYMM) {
- inExpectedTypes = {inputType, inputType, OperandType::INT32};
- outExpectedTypes = {inputType};
- NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
- } else {
- LOG(ERROR) << "Unsupported input tensor type for operation "
- << getOperationName(opType);
- return ANEURALNETWORKS_BAD_DATA;
- }
- return validateOperationOperandTypes(operands,
- inputCount, inputIndexes,
- inExpectedTypes,
- outputCount, outputIndexes,
- outExpectedTypes);
- }
case ANEURALNETWORKS_MEAN: {
if (inputCount != 3 || outputCount != 1) {
logInvalidInOutNumber(3, 1);
diff --git a/common/include/Operations.h b/common/include/Operations.h
index 3eafd7e..d816761 100644
--- a/common/include/Operations.h
+++ b/common/include/Operations.h
@@ -44,20 +44,6 @@
struct Shape;
-bool addFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut);
-bool addFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut);
-bool addQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
- int32_t activation, uint8_t* out, const Shape& shapeOut);
-
-bool mulFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut);
-bool mulFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut);
-bool mulQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
- int32_t activation, uint8_t* out, const Shape& shapeOut);
-
bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape);
bool floorFloat32(const float* inputData, float* outputData, const Shape& shape);
@@ -172,20 +158,6 @@
const int32_t* padding, const Shape& paddingShape, T* outputData,
const Shape& outputShape);
-bool subFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut);
-
-bool subFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut);
-
-bool subQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
- int32_t activation, uint8_t* out, const Shape& shapeOut);
-
-bool divFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut);
-bool divFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut);
-
template <typename T>
bool transposeGeneric(const T* inputData, const Shape& inputShape, const int32_t* perm,
const Shape& permShape, T* outputData, const Shape& outputShape);
diff --git a/common/include/OperationsUtils.h b/common/include/OperationsUtils.h
index 0f6666e..604c355 100644
--- a/common/include/OperationsUtils.h
+++ b/common/include/OperationsUtils.h
@@ -293,8 +293,6 @@
uint8_t requantize(uint8_t value, const Shape& oldShape, const Shape& newShape);
// Preparation functions for the corresponding ops
-bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out1);
-
bool floorPrepare(const Shape& input, Shape* output);
bool quantizePrepare(const Shape& input, Shape* output);
diff --git a/common/operations/Broadcast.cpp b/common/operations/Broadcast.cpp
new file mode 100644
index 0000000..76b1c44
--- /dev/null
+++ b/common/operations/Broadcast.cpp
@@ -0,0 +1,518 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Contains the implementation of the operations.
+
+#define LOG_TAG "Operations"
+
+#include "CpuOperationUtils.h"
+#include "OperationResolver.h"
+
+#include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
+#include "tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h"
+
+#include "Tracing.h"
+
+namespace android {
+namespace nn {
+namespace broadcast {
+
+constexpr uint32_t kNumInputs = 3;
+constexpr uint32_t kInputTensor1 = 0;
+constexpr uint32_t kInputTensor2 = 1;
+constexpr uint32_t kActivationScalar = 2;
+
+constexpr uint32_t kNumOutputs = 1;
+constexpr uint32_t kOutputTensor = 0;
+
+namespace {
+
+#define ANDROID_NN_MACRO_DISPATCH(macro) \
+ switch (activation) { \
+ case (int32_t)FusedActivationFunc::NONE: \
+ macro(kNone); \
+ break; \
+ case (int32_t)FusedActivationFunc::RELU: \
+ macro(kRelu); \
+ break; \
+ case (int32_t)FusedActivationFunc::RELU1: \
+ macro(kRelu1); \
+ break; \
+ case (int32_t)FusedActivationFunc::RELU6: \
+ macro(kRelu6); \
+ break; \
+ default: \
+ LOG(ERROR) << "Unsupported fused activation function type"; \
+ return false; \
+ }
+
+using binaryFunctionFloat32 = std::function<bool(
+ const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
+ int32_t activation, float* out, const Shape& shapeOut)>;
+
+bool binaryOperationFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2,
+ const Shape& shape2, int32_t activation, _Float16* out,
+ const Shape& shapeOut, binaryFunctionFloat32 operationFloat32) {
+ std::vector<float> in1_float32(getNumberOfElements(shape1));
+ convertFloat16ToFloat32(in1, &in1_float32);
+ std::vector<float> in2_float32(getNumberOfElements(shape2));
+ convertFloat16ToFloat32(in2, &in2_float32);
+ std::vector<float> out_float32(getNumberOfElements(shapeOut));
+
+ operationFloat32(in1_float32.data(), shape1, in2_float32.data(), shape2, activation,
+ out_float32.data(), shapeOut);
+ convertFloat32ToFloat16(out_float32, out);
+
+ return true;
+}
+
+bool addFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
+ int32_t activation, float* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("addFloat32");
+ bool needBroadcast = !SameShape(shape1, shape2);
+ if (needBroadcast) {
+ NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
+#define ANDROID_NN_BROADCAST_ADD(activation) \
+ tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
+ in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2), out, \
+ convertShapeToDims(shapeOut))
+
+ ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
+#undef ANDROID_NN_BROADCAST_ADD
+ } else {
+ NNTRACE_COMP_SWITCH("optimized_ops::Add");
+#define ANDROID_NN_ADD(activation) \
+ tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \
+ in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2), out, \
+ convertShapeToDims(shapeOut))
+
+ ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_ADD)
+#undef ANDROID_NN_ADD
+ }
+
+ return true;
+}
+
+bool addFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
+ int32_t activation, _Float16* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("addFloat16");
+ return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &addFloat32);
+}
+
+bool addQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
+ int32_t activation, uint8_t* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("addQuant8");
+ bool needBroadcast = !SameShape(shape1, shape2);
+
+ const int32_t input1_offset = -shape1.offset;
+ const int32_t input2_offset = -shape2.offset;
+ const int32_t output_offset = shapeOut.offset;
+ const int left_shift = 20;
+ const double twice_max_input_scale = 2 * std::max(shape1.scale, shape2.scale);
+ const double real_input1_multiplier = shape1.scale / twice_max_input_scale;
+ const double real_input2_multiplier = shape2.scale / twice_max_input_scale;
+ const double real_output_multiplier =
+ twice_max_input_scale / ((1 << left_shift) * shapeOut.scale);
+
+ int32_t input1_multiplier;
+ int32_t input1_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_input1_multiplier, &input1_multiplier,
+ &input1_shift)) {
+ return false;
+ }
+ int32_t input2_multiplier;
+ int32_t input2_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_input2_multiplier, &input2_multiplier,
+ &input2_shift)) {
+ return false;
+ }
+ int32_t output_multiplier;
+ int32_t output_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_output_multiplier, &output_multiplier,
+ &output_shift)) {
+ return false;
+ }
+ int32_t output_activation_min;
+ int32_t output_activation_max;
+ CalculateActivationRangeUint8(activation, shapeOut, &output_activation_min,
+ &output_activation_max);
+
+ if (needBroadcast) {
+ NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
+#define ANDROID_NN_BROADCAST_ADD(activation) \
+ tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
+ left_shift, in1, convertShapeToDims(shape1), input1_offset, input1_multiplier, \
+ input1_shift, in2, convertShapeToDims(shape2), input2_offset, input2_multiplier, \
+ input2_shift, output_offset, output_multiplier, output_shift, output_activation_min, \
+ output_activation_max, out, convertShapeToDims(shapeOut))
+
+ ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
+#undef ANDROID_NN_BROADCAST_ADD
+ } else {
+ NNTRACE_COMP_SWITCH("optimized_ops::Add");
+#define ANDROID_NN_NORMAL_ADD(activation) \
+ tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \
+ left_shift, in1, convertShapeToDims(shape1), input1_offset, input1_multiplier, \
+ input1_shift, in2, convertShapeToDims(shape2), input2_offset, input2_multiplier, \
+ input2_shift, output_offset, output_multiplier, output_shift, output_activation_min, \
+ output_activation_max, out, convertShapeToDims(shapeOut))
+
+ ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_ADD)
+#undef ANDROID_NN_NORMAL_ADD
+ }
+
+ return true;
+}
+
+bool mulFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
+ int32_t activation, float* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("mulFloat32");
+ bool needBroadcast = !SameShape(shape1, shape2);
+
+ if (needBroadcast) {
+ NNTRACE_COMP_SWITCH("optimized_ops::BroadcastMul");
+#define ANDROID_NN_BROADCAST_MUL(activation) \
+ tflite::optimized_ops::BroadcastMul<tflite::FusedActivationFunctionType::activation>( \
+ in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2), out, \
+ convertShapeToDims(shapeOut))
+
+ ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_MUL)
+#undef ANDROID_NN_BROADCAST_MUL
+ } else {
+ float output_activation_min, output_activation_max;
+ CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
+
+ NNTRACE_COMP_SWITCH("optimized_ops::Mul");
+ tflite::optimized_ops::Mul(in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
+ output_activation_min, output_activation_max, out,
+ convertShapeToDims(shapeOut));
+ }
+
+ return true;
+}
+
+bool mulFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
+ int32_t activation, _Float16* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("mulFloat16");
+ return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &mulFloat32);
+}
+
+bool mulQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
+ int32_t activation, uint8_t* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("mulQuant8");
+ const int32_t input1_offset = -shape1.offset;
+ const int32_t input2_offset = -shape2.offset;
+ const int32_t output_offset = shapeOut.offset;
+ const double input_product_scale = shape1.scale * shape2.scale;
+ const double real_multiplier = input_product_scale / shapeOut.scale;
+ int32 output_multiplier;
+ int output_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_multiplier, &output_multiplier, &output_shift)) {
+ return false;
+ }
+ int32_t output_activation_min;
+ int32_t output_activation_max;
+ CalculateActivationRangeUint8(activation, shapeOut, &output_activation_min,
+ &output_activation_max);
+
+ // Use BROADCAST version to handle the normal case.
+ NNTRACE_COMP_SWITCH("optimized_ops::BroadcastMul");
+ tflite::optimized_ops::BroadcastMul(in1, convertShapeToDims(shape1), input1_offset, in2,
+ convertShapeToDims(shape2), input2_offset, output_offset,
+ output_multiplier, output_shift, output_activation_min,
+ output_activation_max, out, convertShapeToDims(shapeOut));
+
+ return true;
+}
+
+bool subFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
+ int32_t activation, float* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("subFloat32");
+ NNTRACE_COMP_SWITCH("optimized_ops::Sub");
+ tflite::optimized_ops::Sub(in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
+ out, convertShapeToDims(shapeOut));
+
+ // TFLite does not apply activation to broadcast sub.
+ float output_activation_min, output_activation_max;
+ CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
+ uint32_t numOutputElements = getNumberOfElements(shapeOut);
+ for (uint32_t i = 0; i < numOutputElements; i++) {
+ out[i] = std::min(std::max(out[i], output_activation_min), output_activation_max);
+ }
+ return true;
+}
+
+bool subFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
+ int32_t activation, _Float16* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("subFloat16");
+ return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &subFloat32);
+}
+
+bool subQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
+ int32_t activation, uint8_t* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("subQuant8");
+
+ const int32_t input1_offset = -shape1.offset;
+ const int32_t input2_offset = -shape2.offset;
+ const int32_t output_offset = shapeOut.offset;
+ const int left_shift = 20;
+ const double twice_max_input_scale = 2 * std::max(shape1.scale, shape2.scale);
+ const double real_input1_multiplier = shape1.scale / twice_max_input_scale;
+ const double real_input2_multiplier = shape2.scale / twice_max_input_scale;
+ const double real_output_multiplier =
+ twice_max_input_scale / ((1 << left_shift) * shapeOut.scale);
+
+ int32_t input1_multiplier;
+ int32_t input1_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_input1_multiplier, &input1_multiplier,
+ &input1_shift)) {
+ return false;
+ }
+ int32_t input2_multiplier;
+ int32_t input2_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_input2_multiplier, &input2_multiplier,
+ &input2_shift)) {
+ return false;
+ }
+ input2_multiplier *= -1;
+ int32_t output_multiplier;
+ int32_t output_shift;
+ if (!QuantizeMultiplierSmallerThanOne(real_output_multiplier, &output_multiplier,
+ &output_shift)) {
+ return false;
+ }
+ int32_t output_activation_min;
+ int32_t output_activation_max;
+ CalculateActivationRangeUint8(activation, shapeOut, &output_activation_min,
+ &output_activation_max);
+
+ // We are using tflite::optimized_ops::BroadcastAdd unconditionally here
+ // because tflite::optimized_ops::Add fails to pass some of the
+ // sub_quantized_different_scales tests.
+ NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
+#define ANDROID_NN_BROADCAST_ADD(activation) \
+ tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
+ left_shift, in1, convertShapeToDims(shape1), input1_offset, input1_multiplier, \
+ input1_shift, in2, convertShapeToDims(shape2), input2_offset, input2_multiplier, \
+ input2_shift, output_offset, output_multiplier, output_shift, output_activation_min, \
+ output_activation_max, out, convertShapeToDims(shapeOut))
+
+ ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
+#undef ANDROID_NN_BROADCAST_ADD
+
+ return true;
+}
+
+bool divFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
+ int32_t activation, float* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("divFloat32");
+ float output_activation_min, output_activation_max;
+ CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
+
+ bool needBroadcast = !SameShape(shape1, shape2);
+ if (needBroadcast) {
+ NNTRACE_COMP_SWITCH("optimized_ops::BroadcastDiv");
+ tflite::optimized_ops::BroadcastDiv(
+ in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
+ output_activation_min, output_activation_max, out, convertShapeToDims(shapeOut));
+ } else {
+ NNTRACE_COMP_SWITCH("optimized_ops::Div");
+ tflite::optimized_ops::Div(in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
+ output_activation_min, output_activation_max, out,
+ convertShapeToDims(shapeOut));
+ }
+ return true;
+}
+
+bool divFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
+ int32_t activation, _Float16* out, const Shape& shapeOut) {
+ NNTRACE_TRANS("divFloat16");
+ return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &divFloat32);
+}
+
+} // namespace
+
+bool validate(OperationType opType, const IOperationValidationContext* context) {
+ NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
+ NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
+ auto inputType = context->getInputType(kInputTensor1);
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ if (opType == OperationType::SUB) {
+ NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
+ } else if (opType == OperationType::DIV) {
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation DIV";
+ } else {
+ NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
+ }
+ } else {
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << getOperationName(opType);
+ }
+ return validateInputTypes(context, {inputType, inputType, OperandType::INT32}) &&
+ validateOutputTypes(context, {inputType});
+}
+
+bool prepare(IOperationExecutionContext* context) {
+ Shape input1 = context->getInputShape(kInputTensor1);
+ Shape input2 = context->getInputShape(kInputTensor2);
+ Shape output = context->getOutputShape(kOutputTensor);
+ NN_RET_CHECK_LE(getNumberOfDimensions(input1), 4);
+ NN_RET_CHECK_LE(getNumberOfDimensions(input2), 4);
+ NN_RET_CHECK(calculateBroadcastedShape(input1, input2, &output));
+ return context->setOutputShape(kOutputTensor, output);
+}
+
+bool executeAdd(IOperationExecutionContext* context) {
+ // Bypass execution in the case of zero-sized input.
+ if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
+ switch (context->getInputType(kInputTensor1)) {
+ case OperandType::TENSOR_FLOAT16:
+ return addFloat16(context->getInputBuffer<_Float16>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<_Float16>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<_Float16>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_FLOAT32:
+ return addFloat32(context->getInputBuffer<float>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<float>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<float>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return addQuant8(context->getInputBuffer<uint8_t>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<uint8_t>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<uint8_t>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ADD";
+ }
+}
+
+bool executeMul(IOperationExecutionContext* context) {
+ // Bypass execution in the case of zero-sized input.
+ if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
+ switch (context->getInputType(kInputTensor1)) {
+ case OperandType::TENSOR_FLOAT16:
+ return mulFloat16(context->getInputBuffer<_Float16>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<_Float16>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<_Float16>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_FLOAT32:
+ return mulFloat32(context->getInputBuffer<float>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<float>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<float>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return mulQuant8(context->getInputBuffer<uint8_t>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<uint8_t>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<uint8_t>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation MUL";
+ }
+}
+
+bool executeSub(IOperationExecutionContext* context) {
+ // Bypass execution in the case of zero-sized input.
+ if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
+ switch (context->getInputType(kInputTensor1)) {
+ case OperandType::TENSOR_FLOAT16:
+ return subFloat16(context->getInputBuffer<_Float16>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<_Float16>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<_Float16>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_FLOAT32:
+ return subFloat32(context->getInputBuffer<float>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<float>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<float>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_QUANT8_ASYMM:
+ return subQuant8(context->getInputBuffer<uint8_t>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<uint8_t>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<uint8_t>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation SUB";
+ }
+}
+
+bool executeDiv(IOperationExecutionContext* context) {
+ // Bypass execution in the case of zero-sized input.
+ if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
+ switch (context->getInputType(kInputTensor1)) {
+ case OperandType::TENSOR_FLOAT16:
+ return divFloat16(context->getInputBuffer<_Float16>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<_Float16>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<_Float16>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ case OperandType::TENSOR_FLOAT32:
+ return divFloat32(context->getInputBuffer<float>(kInputTensor1),
+ context->getInputShape(kInputTensor1),
+ context->getInputBuffer<float>(kInputTensor2),
+ context->getInputShape(kInputTensor2),
+ context->getInputValue<int32_t>(kActivationScalar),
+ context->getOutputBuffer<float>(kOutputTensor),
+ context->getOutputShape(kOutputTensor));
+ default:
+ NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation DIV";
+ }
+}
+
+} // namespace broadcast
+
+using std::placeholders::_1;
+NN_REGISTER_OPERATION(ADD, "ADD", std::bind(broadcast::validate, OperationType::ADD, _1),
+ broadcast::prepare, broadcast::executeAdd, .allowZeroSizedInput = true);
+NN_REGISTER_OPERATION(MUL, "MUL", std::bind(broadcast::validate, OperationType::MUL, _1),
+ broadcast::prepare, broadcast::executeMul, .allowZeroSizedInput = true);
+NN_REGISTER_OPERATION(SUB, "SUB", std::bind(broadcast::validate, OperationType::SUB, _1),
+ broadcast::prepare, broadcast::executeSub, .allowZeroSizedInput = true);
+NN_REGISTER_OPERATION(DIV, "DIV", std::bind(broadcast::validate, OperationType::DIV, _1),
+ broadcast::prepare, broadcast::executeDiv, .allowZeroSizedInput = true);
+
+} // namespace nn
+} // namespace android
diff --git a/common/operations/SimpleMath.cpp b/common/operations/SimpleMath.cpp
index 50c0b5e..ad9711f 100644
--- a/common/operations/SimpleMath.cpp
+++ b/common/operations/SimpleMath.cpp
@@ -29,204 +29,6 @@
namespace android {
namespace nn {
-#define ANDROID_NN_MACRO_DISPATCH(macro) \
- switch (activation) { \
- case (int32_t)FusedActivationFunc::NONE: \
- macro(kNone); \
- break; \
- case (int32_t)FusedActivationFunc::RELU: \
- macro(kRelu); \
- break; \
- case (int32_t)FusedActivationFunc::RELU1: \
- macro(kRelu1); \
- break; \
- case (int32_t)FusedActivationFunc::RELU6: \
- macro(kRelu6); \
- break; \
- default: \
- LOG(ERROR) << "Unsupported fused activation function type"; \
- return false; \
- }
-
-using binaryFunctionFloat32 = std::function<bool(
- const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut)>;
-
-bool binaryOperationFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2,
- const Shape& shape2, int32_t activation, _Float16* out,
- const Shape& shapeOut, binaryFunctionFloat32 operationFloat32) {
- std::vector<float> in1_float32(getNumberOfElements(shape1));
- convertFloat16ToFloat32(in1, &in1_float32);
- std::vector<float> in2_float32(getNumberOfElements(shape2));
- convertFloat16ToFloat32(in2, &in2_float32);
- std::vector<float> out_float32(getNumberOfElements(shapeOut));
-
- operationFloat32(in1_float32.data(), shape1, in2_float32.data(), shape2, activation,
- out_float32.data(), shapeOut);
- convertFloat32ToFloat16(out_float32, out);
-
- return true;
-}
-
-bool addFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut) {
- NNTRACE_TRANS("addFloat16");
- return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &addFloat32);
-}
-
-bool addFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut) {
- NNTRACE_TRANS("addFloat32");
- bool needBroadcast = !SameShape(shape1, shape2);
- if (needBroadcast) {
- NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
-#define ANDROID_NN_BROADCAST_ADD(activation) \
- tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
- in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2), out, \
- convertShapeToDims(shapeOut))
-
- ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
-#undef ANDROID_NN_BROADCAST_ADD
- } else {
- NNTRACE_COMP_SWITCH("optimized_ops::Add");
-#define ANDROID_NN_ADD(activation) \
- tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \
- in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2), out, \
- convertShapeToDims(shapeOut))
-
- ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_ADD)
-#undef ANDROID_NN_ADD
- }
-
- return true;
-}
-
-bool addQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
- int32_t activation, uint8_t* out, const Shape& shapeOut) {
- NNTRACE_TRANS("addQuant8");
- bool needBroadcast = !SameShape(shape1, shape2);
-
- const int32_t input1_offset = -shape1.offset;
- const int32_t input2_offset = -shape2.offset;
- const int32_t output_offset = shapeOut.offset;
- const int left_shift = 20;
- const double twice_max_input_scale = 2 * std::max(shape1.scale, shape2.scale);
- const double real_input1_multiplier = shape1.scale / twice_max_input_scale;
- const double real_input2_multiplier = shape2.scale / twice_max_input_scale;
- const double real_output_multiplier =
- twice_max_input_scale / ((1 << left_shift) * shapeOut.scale);
-
- int32_t input1_multiplier;
- int32_t input1_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_input1_multiplier, &input1_multiplier,
- &input1_shift)) {
- return false;
- }
- int32_t input2_multiplier;
- int32_t input2_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_input2_multiplier, &input2_multiplier,
- &input2_shift)) {
- return false;
- }
- int32_t output_multiplier;
- int32_t output_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_output_multiplier, &output_multiplier,
- &output_shift)) {
- return false;
- }
- int32_t output_activation_min;
- int32_t output_activation_max;
- CalculateActivationRangeUint8(activation, shapeOut, &output_activation_min,
- &output_activation_max);
-
- if (needBroadcast) {
- NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
-#define ANDROID_NN_BROADCAST_ADD(activation) \
- tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
- left_shift, in1, convertShapeToDims(shape1), input1_offset, input1_multiplier, \
- input1_shift, in2, convertShapeToDims(shape2), input2_offset, input2_multiplier, \
- input2_shift, output_offset, output_multiplier, output_shift, output_activation_min, \
- output_activation_max, out, convertShapeToDims(shapeOut))
-
- ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
-#undef ANDROID_NN_BROADCAST_ADD
- } else {
- NNTRACE_COMP_SWITCH("optimized_ops::Add");
-#define ANDROID_NN_NORMAL_ADD(activation) \
- tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \
- left_shift, in1, convertShapeToDims(shape1), input1_offset, input1_multiplier, \
- input1_shift, in2, convertShapeToDims(shape2), input2_offset, input2_multiplier, \
- input2_shift, output_offset, output_multiplier, output_shift, output_activation_min, \
- output_activation_max, out, convertShapeToDims(shapeOut))
-
- ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_ADD)
-#undef ANDROID_NN_NORMAL_ADD
- }
-
- return true;
-}
-
-bool mulFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut) {
- NNTRACE_TRANS("mulFloat16");
- return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &mulFloat32);
-}
-
-bool mulFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut) {
- NNTRACE_TRANS("mulFloat32");
- bool needBroadcast = !SameShape(shape1, shape2);
-
- if (needBroadcast) {
- NNTRACE_COMP_SWITCH("optimized_ops::BroadcastMul");
-#define ANDROID_NN_BROADCAST_MUL(activation) \
- tflite::optimized_ops::BroadcastMul<tflite::FusedActivationFunctionType::activation>( \
- in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2), out, \
- convertShapeToDims(shapeOut))
-
- ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_MUL)
-#undef ANDROID_NN_BROADCAST_MUL
- } else {
- float output_activation_min, output_activation_max;
- CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
-
- NNTRACE_COMP_SWITCH("optimized_ops::Mul");
- tflite::optimized_ops::Mul(in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
- output_activation_min, output_activation_max, out,
- convertShapeToDims(shapeOut));
- }
-
- return true;
-}
-
-bool mulQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
- int32_t activation, uint8_t* out, const Shape& shapeOut) {
- NNTRACE_TRANS("mulQuant8");
- const int32_t input1_offset = -shape1.offset;
- const int32_t input2_offset = -shape2.offset;
- const int32_t output_offset = shapeOut.offset;
- const double input_product_scale = shape1.scale * shape2.scale;
- const double real_multiplier = input_product_scale / shapeOut.scale;
- int32 output_multiplier;
- int output_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_multiplier, &output_multiplier, &output_shift)) {
- return false;
- }
- int32_t output_activation_min;
- int32_t output_activation_max;
- CalculateActivationRangeUint8(activation, shapeOut, &output_activation_min,
- &output_activation_max);
-
- // Use BROADCAST version to handle the normal case.
- NNTRACE_COMP_SWITCH("optimized_ops::BroadcastMul");
- tflite::optimized_ops::BroadcastMul(in1, convertShapeToDims(shape1), input1_offset, in2,
- convertShapeToDims(shape2), input2_offset, output_offset,
- output_multiplier, output_shift, output_activation_min,
- output_activation_max, out, convertShapeToDims(shapeOut));
-
- return true;
-}
-
bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape) {
NNTRACE_TRANS("floorFloat16");
std::vector<float> inputDataFloat32(getNumberOfElements(shape));
@@ -270,111 +72,6 @@
return true;
}
-bool subFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut) {
- NNTRACE_TRANS("subFloat16");
- return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &subFloat32);
-}
-
-bool subFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut) {
- NNTRACE_TRANS("subFloat32");
- NNTRACE_COMP_SWITCH("optimized_ops::Sub");
- tflite::optimized_ops::Sub(in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
- out, convertShapeToDims(shapeOut));
-
- // TFLite does not apply activation to broadcast sub.
- float output_activation_min, output_activation_max;
- CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
- uint32_t numOutputElements = getNumberOfElements(shapeOut);
- for (uint32_t i = 0; i < numOutputElements; i++) {
- out[i] = std::min(std::max(out[i], output_activation_min), output_activation_max);
- }
- return true;
-}
-
-bool subQuant8(const uint8_t* in1, const Shape& shape1, const uint8_t* in2, const Shape& shape2,
- int32_t activation, uint8_t* out, const Shape& shapeOut) {
- NNTRACE_TRANS("subQuant8");
-
- const int32_t input1_offset = -shape1.offset;
- const int32_t input2_offset = -shape2.offset;
- const int32_t output_offset = shapeOut.offset;
- const int left_shift = 20;
- const double twice_max_input_scale = 2 * std::max(shape1.scale, shape2.scale);
- const double real_input1_multiplier = shape1.scale / twice_max_input_scale;
- const double real_input2_multiplier = shape2.scale / twice_max_input_scale;
- const double real_output_multiplier =
- twice_max_input_scale / ((1 << left_shift) * shapeOut.scale);
-
- int32_t input1_multiplier;
- int32_t input1_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_input1_multiplier, &input1_multiplier,
- &input1_shift)) {
- return false;
- }
- int32_t input2_multiplier;
- int32_t input2_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_input2_multiplier, &input2_multiplier,
- &input2_shift)) {
- return false;
- }
- input2_multiplier *= -1;
- int32_t output_multiplier;
- int32_t output_shift;
- if (!QuantizeMultiplierSmallerThanOne(real_output_multiplier, &output_multiplier,
- &output_shift)) {
- return false;
- }
- int32_t output_activation_min;
- int32_t output_activation_max;
- CalculateActivationRangeUint8(activation, shapeOut, &output_activation_min,
- &output_activation_max);
-
- // We are using tflite::optimized_ops::BroadcastAdd unconditionally here
- // because tflite::optimized_ops::Add fails to pass some of the
- // sub_quantized_different_scales tests.
- NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
-#define ANDROID_NN_BROADCAST_ADD(activation) \
- tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
- left_shift, in1, convertShapeToDims(shape1), input1_offset, input1_multiplier, \
- input1_shift, in2, convertShapeToDims(shape2), input2_offset, input2_multiplier, \
- input2_shift, output_offset, output_multiplier, output_shift, output_activation_min, \
- output_activation_max, out, convertShapeToDims(shapeOut))
-
- ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
-#undef ANDROID_NN_BROADCAST_ADD
-
- return true;
-}
-
-bool divFloat16(const _Float16* in1, const Shape& shape1, const _Float16* in2, const Shape& shape2,
- int32_t activation, _Float16* out, const Shape& shapeOut) {
- NNTRACE_TRANS("divFloat16");
- return binaryOperationFloat16(in1, shape1, in2, shape2, activation, out, shapeOut, &divFloat32);
-}
-
-bool divFloat32(const float* in1, const Shape& shape1, const float* in2, const Shape& shape2,
- int32_t activation, float* out, const Shape& shapeOut) {
- NNTRACE_TRANS("divFloat32");
- float output_activation_min, output_activation_max;
- CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
-
- bool needBroadcast = !SameShape(shape1, shape2);
- if (needBroadcast) {
- NNTRACE_COMP_SWITCH("optimized_ops::BroadcastDiv");
- tflite::optimized_ops::BroadcastDiv(
- in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
- output_activation_min, output_activation_max, out, convertShapeToDims(shapeOut));
- } else {
- NNTRACE_COMP_SWITCH("optimized_ops::Div");
- tflite::optimized_ops::Div(in1, convertShapeToDims(shape1), in2, convertShapeToDims(shape2),
- output_activation_min, output_activation_max, out,
- convertShapeToDims(shapeOut));
- }
- return true;
-}
-
bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis,
const Shape& axisShape, bool keepDims, _Float16* outputData,
const Shape& outputShape) {