Add sources for API 35

Downloaded from https://dl.google.com/android/repository/source-35_r01.zip
using SdkManager in Studio

Test: None
Change-Id: I83f78aa820b66edfdc9f8594d17bc7b6cacccec1
diff --git a/android-35/java/lang/invoke/ArrayElementVarHandle.java b/android-35/java/lang/invoke/ArrayElementVarHandle.java
new file mode 100644
index 0000000..e315ba7
--- /dev/null
+++ b/android-35/java/lang/invoke/ArrayElementVarHandle.java
@@ -0,0 +1,35 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package java.lang.invoke;
+
+import java.lang.reflect.Field;
+import java.lang.reflect.Modifier;
+
+/**
+ * A VarHandle to access array elements.
+ * @hide
+ */
+final class ArrayElementVarHandle extends VarHandle {
+    private ArrayElementVarHandle(Class<?> arrayClass) {
+        super(arrayClass.getComponentType(), arrayClass, false /* isFinal */,
+              arrayClass, int.class);
+    }
+
+    static ArrayElementVarHandle create(Class<?> arrayClass) {
+        return new ArrayElementVarHandle(arrayClass);
+    }
+}
diff --git a/android-35/java/lang/invoke/ByteArrayViewVarHandle.java b/android-35/java/lang/invoke/ByteArrayViewVarHandle.java
new file mode 100644
index 0000000..abdb1cb
--- /dev/null
+++ b/android-35/java/lang/invoke/ByteArrayViewVarHandle.java
@@ -0,0 +1,37 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package java.lang.invoke;
+
+import java.nio.ByteOrder;
+
+/**
+ * A VarHandle to access byte array elements as an array of primitive types.
+ * @hide
+ */
+final class ByteArrayViewVarHandle extends VarHandle {
+    private boolean nativeByteOrder;
+
+    private ByteArrayViewVarHandle(Class<?> arrayClass, ByteOrder byteOrder) {
+        super(arrayClass.getComponentType(), byte[].class, false /* isFinal */,
+              byte[].class, int.class);
+        this.nativeByteOrder = byteOrder.equals(ByteOrder.nativeOrder());
+    }
+
+    static ByteArrayViewVarHandle create(Class<?> arrayClass, ByteOrder byteOrder) {
+        return new ByteArrayViewVarHandle(arrayClass, byteOrder);
+    }
+}
diff --git a/android-35/java/lang/invoke/ByteBufferViewVarHandle.java b/android-35/java/lang/invoke/ByteBufferViewVarHandle.java
new file mode 100644
index 0000000..75fcbab
--- /dev/null
+++ b/android-35/java/lang/invoke/ByteBufferViewVarHandle.java
@@ -0,0 +1,38 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package java.lang.invoke;
+
+import java.nio.ByteBuffer;
+import java.nio.ByteOrder;
+
+/**
+ * A VarHandle to access byte array elements as an array of primitive types.
+ * @hide
+ */
+final class ByteBufferViewVarHandle extends VarHandle {
+    private boolean nativeByteOrder;
+
+    private ByteBufferViewVarHandle(Class<?> arrayClass, ByteOrder byteOrder) {
+        super(arrayClass.getComponentType(), byte[].class, false /* isFinal */,
+              ByteBuffer.class, int.class);
+        this.nativeByteOrder = byteOrder.equals(ByteOrder.nativeOrder());
+    }
+
+    static ByteBufferViewVarHandle create(Class<?> arrayClass, ByteOrder byteOrder) {
+        return new ByteBufferViewVarHandle(arrayClass, byteOrder);
+    }
+}
diff --git a/android-35/java/lang/invoke/CallSite.java b/android-35/java/lang/invoke/CallSite.java
new file mode 100644
index 0000000..069b2fd
--- /dev/null
+++ b/android-35/java/lang/invoke/CallSite.java
@@ -0,0 +1,385 @@
+/*
+ * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+// Android-changed: Not using Empty.
+//import sun.invoke.empty.Empty;
+import static java.lang.invoke.MethodHandleStatics.*;
+import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
+
+/**
+ * A {@code CallSite} is a holder for a variable {@link MethodHandle},
+ * which is called its {@code target}.
+ * An {@code invokedynamic} instruction linked to a {@code CallSite} delegates
+ * all calls to the site's current target.
+ * A {@code CallSite} may be associated with several {@code invokedynamic}
+ * instructions, or it may be "free floating", associated with none.
+ * In any case, it may be invoked through an associated method handle
+ * called its {@linkplain #dynamicInvoker dynamic invoker}.
+ * <p>
+ * {@code CallSite} is an abstract class which does not allow
+ * direct subclassing by users.  It has three immediate,
+ * concrete subclasses that may be either instantiated or subclassed.
+ * <ul>
+ * <li>If a mutable target is not required, an {@code invokedynamic} instruction
+ * may be permanently bound by means of a {@linkplain ConstantCallSite constant call site}.
+ * <li>If a mutable target is required which has volatile variable semantics,
+ * because updates to the target must be immediately and reliably witnessed by other threads,
+ * a {@linkplain VolatileCallSite volatile call site} may be used.
+ * <li>Otherwise, if a mutable target is required,
+ * a {@linkplain MutableCallSite mutable call site} may be used.
+ * </ul>
+ * <p>
+ * A non-constant call site may be <em>relinked</em> by changing its target.
+ * The new target must have the same {@linkplain MethodHandle#type() type}
+ * as the previous target.
+ * Thus, though a call site can be relinked to a series of
+ * successive targets, it cannot change its type.
+ * <p>
+ * Here is a sample use of call sites and bootstrap methods which links every
+ * dynamic call site to print its arguments:
+<blockquote><pre>{@code
+static void test() throws Throwable {
+    // THE FOLLOWING LINE IS PSEUDOCODE FOR A JVM INSTRUCTION
+    InvokeDynamic[#bootstrapDynamic].baz("baz arg", 2, 3.14);
+}
+private static void printArgs(Object... args) {
+  System.out.println(java.util.Arrays.deepToString(args));
+}
+private static final MethodHandle printArgs;
+static {
+  MethodHandles.Lookup lookup = MethodHandles.lookup();
+  Class thisClass = lookup.lookupClass();  // (who am I?)
+  printArgs = lookup.findStatic(thisClass,
+      "printArgs", MethodType.methodType(void.class, Object[].class));
+}
+private static CallSite bootstrapDynamic(MethodHandles.Lookup caller, String name, MethodType type) {
+  // ignore caller and name, but match the type:
+  return new ConstantCallSite(printArgs.asType(type));
+}
+}</pre></blockquote>
+ * @author John Rose, JSR 292 EG
+ */
+abstract
+public class CallSite {
+    // Android-changed: not used.
+    // static { MethodHandleImpl.initStatics(); }
+
+    // The actual payload of this call site:
+    /*package-private*/
+    MethodHandle target;    // Note: This field is known to the JVM.  Do not change.
+
+    /**
+     * Make a blank call site object with the given method type.
+     * An initial target method is supplied which will throw
+     * an {@link IllegalStateException} if called.
+     * <p>
+     * Before this {@code CallSite} object is returned from a bootstrap method,
+     * it is usually provided with a more useful target method,
+     * via a call to {@link CallSite#setTarget(MethodHandle) setTarget}.
+     * @throws NullPointerException if the proposed type is null
+     */
+    /*package-private*/
+    CallSite(MethodType type) {
+        // Android-changed: No cache for these.
+        // Instead create uninitializedCallSite target here using method handle transformations
+        // to create a method handle that has the expected method type but throws an
+        // IllegalStateException.
+        // target = makeUninitializedCallSite(type);
+        this.target = MethodHandles.throwException(type.returnType(), IllegalStateException.class);
+        this.target = MethodHandles.insertArguments(
+            this.target, 0, new IllegalStateException("uninitialized call site"));
+        if (type.parameterCount() > 0) {
+            this.target = MethodHandles.dropArguments(this.target, 0, type.ptypes());
+        }
+
+        // Android-changed: Using initializer method for GET_TARGET instead of static initializer.
+        initializeGetTarget();
+    }
+
+    /**
+     * Make a call site object equipped with an initial target method handle.
+     * @param target the method handle which will be the initial target of the call site
+     * @throws NullPointerException if the proposed target is null
+     */
+    /*package-private*/
+    CallSite(MethodHandle target) {
+        target.type();  // null check
+        this.target = target;
+
+        // Android-changed: Using initializer method for GET_TARGET instead of static initializer.
+        initializeGetTarget();
+    }
+
+    /**
+     * Make a call site object equipped with an initial target method handle.
+     * @param targetType the desired type of the call site
+     * @param createTargetHook a hook which will bind the call site to the target method handle
+     * @throws WrongMethodTypeException if the hook cannot be invoked on the required arguments,
+     *         or if the target returned by the hook is not of the given {@code targetType}
+     * @throws NullPointerException if the hook returns a null value
+     * @throws ClassCastException if the hook returns something other than a {@code MethodHandle}
+     * @throws Throwable anything else thrown by the hook function
+     */
+    /*package-private*/
+    CallSite(MethodType targetType, MethodHandle createTargetHook) throws Throwable {
+        this(targetType);
+        ConstantCallSite selfCCS = (ConstantCallSite) this;
+        MethodHandle boundTarget = (MethodHandle) createTargetHook.invokeWithArguments(selfCCS);
+        checkTargetChange(this.target, boundTarget);
+        this.target = boundTarget;
+
+        // Android-changed: Using initializer method for GET_TARGET instead of static initializer.
+        initializeGetTarget();
+    }
+
+    /**
+     * Returns the type of this call site's target.
+     * Although targets may change, any call site's type is permanent, and can never change to an unequal type.
+     * The {@code setTarget} method enforces this invariant by refusing any new target that does
+     * not have the previous target's type.
+     * @return the type of the current target, which is also the type of any future target
+     */
+    public MethodType type() {
+        // warning:  do not call getTarget here, because CCS.getTarget can throw IllegalStateException
+        return target.type();
+    }
+
+    /**
+     * Returns the target method of the call site, according to the
+     * behavior defined by this call site's specific class.
+     * The immediate subclasses of {@code CallSite} document the
+     * class-specific behaviors of this method.
+     *
+     * @return the current linkage state of the call site, its target method handle
+     * @see ConstantCallSite
+     * @see VolatileCallSite
+     * @see #setTarget
+     * @see ConstantCallSite#getTarget
+     * @see MutableCallSite#getTarget
+     * @see VolatileCallSite#getTarget
+     */
+    public abstract MethodHandle getTarget();
+
+    /**
+     * Updates the target method of this call site, according to the
+     * behavior defined by this call site's specific class.
+     * The immediate subclasses of {@code CallSite} document the
+     * class-specific behaviors of this method.
+     * <p>
+     * The type of the new target must be {@linkplain MethodType#equals equal to}
+     * the type of the old target.
+     *
+     * @param newTarget the new target
+     * @throws NullPointerException if the proposed new target is null
+     * @throws WrongMethodTypeException if the proposed new target
+     *         has a method type that differs from the previous target
+     * @see CallSite#getTarget
+     * @see ConstantCallSite#setTarget
+     * @see MutableCallSite#setTarget
+     * @see VolatileCallSite#setTarget
+     */
+    public abstract void setTarget(MethodHandle newTarget);
+
+    void checkTargetChange(MethodHandle oldTarget, MethodHandle newTarget) {
+        MethodType oldType = oldTarget.type();
+        MethodType newType = newTarget.type();  // null check!
+        if (!newType.equals(oldType))
+            throw wrongTargetType(newTarget, oldType);
+    }
+
+    private static WrongMethodTypeException wrongTargetType(MethodHandle target, MethodType type) {
+        return new WrongMethodTypeException(String.valueOf(target)+" should be of type "+type);
+    }
+
+    /**
+     * Produces a method handle equivalent to an invokedynamic instruction
+     * which has been linked to this call site.
+     * <p>
+     * This method is equivalent to the following code:
+     * <blockquote><pre>{@code
+     * MethodHandle getTarget, invoker, result;
+     * getTarget = MethodHandles.publicLookup().bind(this, "getTarget", MethodType.methodType(MethodHandle.class));
+     * invoker = MethodHandles.exactInvoker(this.type());
+     * result = MethodHandles.foldArguments(invoker, getTarget)
+     * }</pre></blockquote>
+     *
+     * @return a method handle which always invokes this call site's current target
+     */
+    public abstract MethodHandle dynamicInvoker();
+
+    /*non-public*/ MethodHandle makeDynamicInvoker() {
+        // Android-changed: Use bindTo() rather than bindArgumentL() (not implemented).
+        MethodHandle getTarget = GET_TARGET.bindTo(this);
+        MethodHandle invoker = MethodHandles.exactInvoker(this.type());
+        return MethodHandles.foldArguments(invoker, getTarget);
+    }
+
+    // Android-changed: no longer final. GET_TARGET assigned in initializeGetTarget().
+    private static MethodHandle GET_TARGET = null;
+
+    private void initializeGetTarget() {
+        // Android-changed: moved from static initializer for GET_TARGET.
+        // This avoids issues with running early. Called from constructors.
+        // CallSite creation is not performance critical.
+        synchronized (CallSite.class) {
+            if (GET_TARGET == null) {
+                try {
+                    GET_TARGET = IMPL_LOOKUP.
+                            findVirtual(CallSite.class, "getTarget",
+                                        MethodType.methodType(MethodHandle.class));
+                } catch (ReflectiveOperationException e) {
+                    throw new InternalError(e);
+                }
+            }
+        }
+    }
+
+    // Android-changed: not used.
+    // /** This guy is rolled into the default target if a MethodType is supplied to the constructor. */
+    // /*package-private*/
+    // static Empty uninitializedCallSite() {
+    //     throw new IllegalStateException("uninitialized call site");
+    // }
+
+    // unsafe stuff:
+    private static final long TARGET_OFFSET;
+    static {
+        try {
+            TARGET_OFFSET = UNSAFE.objectFieldOffset(CallSite.class.getDeclaredField("target"));
+        } catch (Exception ex) { throw new Error(ex); }
+    }
+
+    /*package-private*/
+    void setTargetNormal(MethodHandle newTarget) {
+        // Android-changed: Set value directly.
+        // MethodHandleNatives.setCallSiteTargetNormal(this, newTarget);
+        target = newTarget;
+    }
+    /*package-private*/
+    MethodHandle getTargetVolatile() {
+        return (MethodHandle) UNSAFE.getObjectVolatile(this, TARGET_OFFSET);
+    }
+    /*package-private*/
+    void setTargetVolatile(MethodHandle newTarget) {
+        // Android-changed: Set value directly.
+        // MethodHandleNatives.setCallSiteTargetVolatile(this, newTarget);
+        UNSAFE.putObjectVolatile(this, TARGET_OFFSET, newTarget);
+    }
+
+    // Android-changed: not used.
+    // this implements the upcall from the JVM, MethodHandleNatives.makeDynamicCallSite:
+    // static CallSite makeSite(MethodHandle bootstrapMethod,
+    //                          // Callee information:
+    //                          String name, MethodType type,
+    //                          // Extra arguments for BSM, if any:
+    //                          Object info,
+    //                          // Caller information:
+    //                          Class<?> callerClass) {
+    //     MethodHandles.Lookup caller = IMPL_LOOKUP.in(callerClass);
+    //     CallSite site;
+    //     try {
+    //         Object binding;
+    //         info = maybeReBox(info);
+    //         if (info == null) {
+    //             binding = bootstrapMethod.invoke(caller, name, type);
+    //         } else if (!info.getClass().isArray()) {
+    //             binding = bootstrapMethod.invoke(caller, name, type, info);
+    //         } else {
+    //             Object[] argv = (Object[]) info;
+    //             maybeReBoxElements(argv);
+    //             switch (argv.length) {
+    //             case 0:
+    //                 binding = bootstrapMethod.invoke(caller, name, type);
+    //                 break;
+    //             case 1:
+    //                 binding = bootstrapMethod.invoke(caller, name, type,
+    //                                                  argv[0]);
+    //                 break;
+    //             case 2:
+    //                 binding = bootstrapMethod.invoke(caller, name, type,
+    //                                                  argv[0], argv[1]);
+    //                 break;
+    //             case 3:
+    //                 binding = bootstrapMethod.invoke(caller, name, type,
+    //                                                  argv[0], argv[1], argv[2]);
+    //                 break;
+    //             case 4:
+    //                 binding = bootstrapMethod.invoke(caller, name, type,
+    //                                                  argv[0], argv[1], argv[2], argv[3]);
+    //                 break;
+    //             case 5:
+    //                 binding = bootstrapMethod.invoke(caller, name, type,
+    //                                                  argv[0], argv[1], argv[2], argv[3], argv[4]);
+    //                 break;
+    //             case 6:
+    //                 binding = bootstrapMethod.invoke(caller, name, type,
+    //                                                  argv[0], argv[1], argv[2], argv[3], argv[4], argv[5]);
+    //                 break;
+    //             default:
+    //                 final int NON_SPREAD_ARG_COUNT = 3;  // (caller, name, type)
+    //                 if (NON_SPREAD_ARG_COUNT + argv.length > MethodType.MAX_MH_ARITY)
+    //                     throw new BootstrapMethodError("too many bootstrap method arguments");
+    //                 MethodType bsmType = bootstrapMethod.type();
+    //                 MethodType invocationType = MethodType.genericMethodType(NON_SPREAD_ARG_COUNT + argv.length);
+    //                 MethodHandle typedBSM = bootstrapMethod.asType(invocationType);
+    //                 MethodHandle spreader = invocationType.invokers().spreadInvoker(NON_SPREAD_ARG_COUNT);
+    //                 binding = spreader.invokeExact(typedBSM, (Object)caller, (Object)name, (Object)type, argv);
+    //             }
+    //         }
+    //         //System.out.println("BSM for "+name+type+" => "+binding);
+    //         if (binding instanceof CallSite) {
+    //             site = (CallSite) binding;
+    //         }  else {
+    //             throw new ClassCastException("bootstrap method failed to produce a CallSite");
+    //         }
+    //         if (!site.getTarget().type().equals(type))
+    //             throw wrongTargetType(site.getTarget(), type);
+    //     } catch (Throwable ex) {
+    //         BootstrapMethodError bex;
+    //         if (ex instanceof BootstrapMethodError)
+    //             bex = (BootstrapMethodError) ex;
+    //         else
+    //             bex = new BootstrapMethodError("call site initialization exception", ex);
+    //         throw bex;
+    //     }
+    //     return site;
+    // }
+
+    // private static Object maybeReBox(Object x) {
+    //     if (x instanceof Integer) {
+    //         int xi = (int) x;
+    //         if (xi == (byte) xi)
+    //             x = xi;  // must rebox; see JLS 5.1.7
+    //     }
+    //     return x;
+    // }
+    // private static void maybeReBoxElements(Object[] xa) {
+    //     for (int i = 0; i < xa.length; i++) {
+    //         xa[i] = maybeReBox(xa[i]);
+    //     }
+    // }
+}
diff --git a/android-35/java/lang/invoke/ConstantBootstraps.java b/android-35/java/lang/invoke/ConstantBootstraps.java
new file mode 100644
index 0000000..7e414b1
--- /dev/null
+++ b/android-35/java/lang/invoke/ConstantBootstraps.java
@@ -0,0 +1,441 @@
+/*
+ * Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.lang.invoke;
+
+import sun.invoke.util.Wrapper;
+
+import static java.lang.invoke.MethodHandleNatives.mapLookupExceptionToError;
+import static java.util.Objects.requireNonNull;
+
+import java.lang.reflect.Modifier;
+
+/**
+ * Bootstrap methods for dynamically-computed constants.
+ *
+ * <p>The bootstrap methods in this class will throw a
+ * {@code NullPointerException} for any reference argument that is {@code null},
+ * unless the argument is specified to be unused or specified to accept a
+ * {@code null} value.
+ *
+ * @since 11
+ */
+public final class ConstantBootstraps {
+    /**
+     * Do not call.
+     */
+    private ConstantBootstraps() {throw new AssertionError();}
+
+    // implements the upcall from the JVM, MethodHandleNatives.linkDynamicConstant:
+    /*non-public*/
+    // BEGIN Android-removed: Remove unused implementation.
+    /*
+    static Object makeConstant(MethodHandle bootstrapMethod,
+                               // Callee information:
+                               String name, Class<?> type,
+                               // Extra arguments for BSM, if any:
+                               Object info,
+                               // Caller information:
+                               Class<?> callerClass) {
+        // Restrict bootstrap methods to those whose first parameter is Lookup
+        // The motivation here is, in the future, to possibly support BSMs
+        // that do not accept the meta-data of lookup/name/type, thereby
+        // allowing the co-opting of existing methods to be used as BSMs as
+        // long as the static arguments can be passed as method arguments
+        MethodType mt = bootstrapMethod.type();
+        if (mt.parameterCount() < 2 ||
+            !MethodHandles.Lookup.class.isAssignableFrom(mt.parameterType(0))) {
+            throw new BootstrapMethodError(
+                    "Invalid bootstrap method declared for resolving a dynamic constant: " + bootstrapMethod);
+        }
+
+        // BSMI.invoke handles all type checking and exception translation.
+        // If type is not a reference type, the JVM is expecting a boxed
+        // version, and will manage unboxing on the other side.
+        return BootstrapMethodInvoker.invoke(
+                type, bootstrapMethod, name, type, info, callerClass);
+    }
+    */
+    // END Android-removed: Remove unused implementation.
+
+    /**
+     * Returns a {@code null} object reference for the reference type specified
+     * by {@code type}.
+     *
+     * @param lookup unused
+     * @param name unused
+     * @param type a reference type
+     * @return a {@code null} value
+     * @throws IllegalArgumentException if {@code type} is not a reference type
+     */
+    public static Object nullConstant(MethodHandles.Lookup lookup, String name, Class<?> type) {
+        if (requireNonNull(type).isPrimitive()) {
+            throw new IllegalArgumentException(String.format("not reference: %s", type));
+        }
+
+        return null;
+    }
+
+    /**
+     * Returns a {@link Class} mirror for the primitive type whose type
+     * descriptor is specified by {@code name}.
+     *
+     * @param lookup unused
+     * @param name the descriptor (JVMS 4.3) of the desired primitive type
+     * @param type the required result type (must be {@code Class.class})
+     * @return the {@link Class} mirror
+     * @throws IllegalArgumentException if the name is not a descriptor for a
+     * primitive type or the type is not {@code Class.class}
+     */
+    public static Class<?> primitiveClass(MethodHandles.Lookup lookup, String name, Class<?> type) {
+        requireNonNull(name);
+        requireNonNull(type);
+        if (type != Class.class) {
+            throw new IllegalArgumentException();
+        }
+        if (name.length() != 1) {
+            throw new IllegalArgumentException(String.format("not primitive: %s", name));
+        }
+
+        return Wrapper.forPrimitiveType(name.charAt(0)).primitiveType();
+    }
+
+    /**
+     * Returns an {@code enum} constant of the type specified by {@code type}
+     * with the name specified by {@code name}.
+     *
+     * @param lookup the lookup context describing the class performing the
+     * operation (normally stacked by the JVM)
+     * @param name the name of the constant to return, which must exactly match
+     * an enum constant in the specified type.
+     * @param type the {@code Class} object describing the enum type for which
+     * a constant is to be returned
+     * @param <E> The enum type for which a constant value is to be returned
+     * @return the enum constant of the specified enum type with the
+     * specified name
+     * @throws IllegalAccessError if the declaring class or the field is not
+     * accessible to the class performing the operation
+     * @throws IllegalArgumentException if the specified enum type has
+     * no constant with the specified name, or the specified
+     * class object does not represent an enum type
+     * @see Enum#valueOf(Class, String)
+     */
+    public static <E extends Enum<E>> E enumConstant(MethodHandles.Lookup lookup, String name, Class<E> type) {
+        requireNonNull(lookup);
+        requireNonNull(name);
+        requireNonNull(type);
+        validateClassAccess(lookup, type);
+
+        return Enum.valueOf(type, name);
+    }
+
+    /**
+     * Returns the value of a static final field.
+     *
+     * @param lookup the lookup context describing the class performing the
+     * operation (normally stacked by the JVM)
+     * @param name the name of the field
+     * @param type the type of the field
+     * @param declaringClass the class in which the field is declared
+     * @return the value of the field
+     * @throws IllegalAccessError if the declaring class or the field is not
+     * accessible to the class performing the operation
+     * @throws NoSuchFieldError if the specified field does not exist
+     * @throws IncompatibleClassChangeError if the specified field is not
+     * {@code final}
+     */
+    public static Object getStaticFinal(MethodHandles.Lookup lookup, String name, Class<?> type,
+                                        Class<?> declaringClass) {
+        requireNonNull(lookup);
+        requireNonNull(name);
+        requireNonNull(type);
+        requireNonNull(declaringClass);
+
+        MethodHandle mh;
+        try {
+            mh = lookup.findStaticGetter(declaringClass, name, type);
+            // Android-changed: Re-implement final modifier check with existing APIs.
+            // MemberName member = mh.internalMemberName();
+            // if (!member.isFinal()) {
+            MethodHandleInfo info = lookup.revealDirect(mh);
+            if (!Modifier.isFinal(info.getModifiers())) {
+                throw new IncompatibleClassChangeError("not a final field: " + name);
+            }
+        }
+        catch (ReflectiveOperationException ex) {
+            throw mapLookupExceptionToError(ex);
+        }
+
+        // Since mh is a handle to a static field only instances of
+        // VirtualMachineError are anticipated to be thrown, such as a
+        // StackOverflowError or an InternalError from the j.l.invoke code
+        try {
+            return mh.invoke();
+        }
+        catch (RuntimeException | Error e) {
+            throw e;
+        }
+        catch (Throwable e) {
+            throw new LinkageError("Unexpected throwable", e);
+        }
+    }
+
+    /**
+     * Returns the value of a static final field declared in the class which
+     * is the same as the field's type (or, for primitive-valued fields,
+     * declared in the wrapper class.)  This is a simplified form of
+     * {@link #getStaticFinal(MethodHandles.Lookup, String, Class, Class)}
+     * for the case where a class declares distinguished constant instances of
+     * itself.
+     *
+     * @param lookup the lookup context describing the class performing the
+     * operation (normally stacked by the JVM)
+     * @param name the name of the field
+     * @param type the type of the field
+     * @return the value of the field
+     * @throws IllegalAccessError if the declaring class or the field is not
+     * accessible to the class performing the operation
+     * @throws NoSuchFieldError if the specified field does not exist
+     * @throws IncompatibleClassChangeError if the specified field is not
+     * {@code final}
+     * @see #getStaticFinal(MethodHandles.Lookup, String, Class, Class)
+     */
+    public static Object getStaticFinal(MethodHandles.Lookup lookup, String name, Class<?> type) {
+        requireNonNull(type);
+
+        Class<?> declaring = type.isPrimitive()
+                             ? Wrapper.forPrimitiveType(type).wrapperType()
+                             : type;
+        return getStaticFinal(lookup, name, type, declaring);
+    }
+
+
+    /**
+     * Returns the result of invoking a method handle with the provided
+     * arguments.
+     * <p>
+     * This method behaves as if the method handle to be invoked is the result
+     * of adapting the given method handle, via {@link MethodHandle#asType}, to
+     * adjust the return type to the desired type.
+     *
+     * @param lookup unused
+     * @param name unused
+     * @param type the desired type of the value to be returned, which must be
+     * compatible with the return type of the method handle
+     * @param handle the method handle to be invoked
+     * @param args the arguments to pass to the method handle, as if with
+     * {@link MethodHandle#invokeWithArguments}.  Each argument may be
+     * {@code null}.
+     * @return the result of invoking the method handle
+     * @throws WrongMethodTypeException if the handle's method type cannot be
+     * adjusted to take the given number of arguments, or if the handle's return
+     * type cannot be adjusted to the desired type
+     * @throws ClassCastException if an argument or the result produced by
+     * invoking the handle cannot be converted by reference casting
+     * @throws Throwable anything thrown by the method handle invocation
+     */
+    public static Object invoke(MethodHandles.Lookup lookup, String name, Class<?> type,
+                                MethodHandle handle, Object... args) throws Throwable {
+        requireNonNull(type);
+        requireNonNull(handle);
+        requireNonNull(args);
+
+        if (type != handle.type().returnType()) {
+            // Adjust the return type of the handle to be invoked while
+            // preserving variable arity if present
+            handle = handle.asType(handle.type().changeReturnType(type)).
+                    withVarargs(handle.isVarargsCollector());
+        }
+
+        return handle.invokeWithArguments(args);
+    }
+
+    /**
+     * Finds a {@link VarHandle} for an instance field.
+     *
+     * @param lookup the lookup context describing the class performing the
+     * operation (normally stacked by the JVM)
+     * @param name the name of the field
+     * @param type the required result type (must be {@code Class<VarHandle>})
+     * @param declaringClass the class in which the field is declared
+     * @param fieldType the type of the field
+     * @return the {@link VarHandle}
+     * @throws IllegalAccessError if the declaring class or the field is not
+     * accessible to the class performing the operation
+     * @throws NoSuchFieldError if the specified field does not exist
+     * @throws IllegalArgumentException if the type is not {@code VarHandle}
+     */
+    public static VarHandle fieldVarHandle(MethodHandles.Lookup lookup, String name, Class<VarHandle> type,
+                                           Class<?> declaringClass, Class<?> fieldType) {
+        requireNonNull(lookup);
+        requireNonNull(name);
+        requireNonNull(type);
+        requireNonNull(declaringClass);
+        requireNonNull(fieldType);
+        if (type != VarHandle.class) {
+            throw new IllegalArgumentException();
+        }
+
+        try {
+            return lookup.findVarHandle(declaringClass, name, fieldType);
+        }
+        catch (ReflectiveOperationException e) {
+            throw mapLookupExceptionToError(e);
+        }
+    }
+
+    /**
+     * Finds a {@link VarHandle} for a static field.
+     *
+     * @param lookup the lookup context describing the class performing the
+     * operation (normally stacked by the JVM)
+     * @param name the name of the field
+     * @param type the required result type (must be {@code Class<VarHandle>})
+     * @param declaringClass the class in which the field is declared
+     * @param fieldType the type of the field
+     * @return the {@link VarHandle}
+     * @throws IllegalAccessError if the declaring class or the field is not
+     * accessible to the class performing the operation
+     * @throws NoSuchFieldError if the specified field does not exist
+     * @throws IllegalArgumentException if the type is not {@code VarHandle}
+     */
+    public static VarHandle staticFieldVarHandle(MethodHandles.Lookup lookup, String name, Class<VarHandle> type,
+                                                 Class<?> declaringClass, Class<?> fieldType) {
+        requireNonNull(lookup);
+        requireNonNull(name);
+        requireNonNull(type);
+        requireNonNull(declaringClass);
+        requireNonNull(fieldType);
+        if (type != VarHandle.class) {
+            throw new IllegalArgumentException();
+        }
+
+        try {
+            return lookup.findStaticVarHandle(declaringClass, name, fieldType);
+        }
+        catch (ReflectiveOperationException e) {
+            throw mapLookupExceptionToError(e);
+        }
+    }
+
+    /**
+     * Finds a {@link VarHandle} for an array type.
+     *
+     * @param lookup the lookup context describing the class performing the
+     * operation (normally stacked by the JVM)
+     * @param name unused
+     * @param type the required result type (must be {@code Class<VarHandle>})
+     * @param arrayClass the type of the array
+     * @return the {@link VarHandle}
+     * @throws IllegalAccessError if the component type of the array is not
+     * accessible to the class performing the operation
+     * @throws IllegalArgumentException if the type is not {@code VarHandle}
+     */
+    public static VarHandle arrayVarHandle(MethodHandles.Lookup lookup, String name, Class<VarHandle> type,
+                                           Class<?> arrayClass) {
+        requireNonNull(lookup);
+        requireNonNull(type);
+        requireNonNull(arrayClass);
+        if (type != VarHandle.class) {
+            throw new IllegalArgumentException();
+        }
+
+        return MethodHandles.arrayElementVarHandle(validateClassAccess(lookup, arrayClass));
+    }
+
+    /**
+     * Applies a conversion from a source type to a destination type.
+     * <p>
+     * Given a destination type {@code dstType} and an input
+     * value {@code value}, one of the following will happen:
+     * <ul>
+     * <li>If {@code dstType} is {@code void.class},
+     *     a {@link ClassCastException} is thrown.
+     * <li>If {@code dstType} is {@code Object.class}, {@code value} is returned as is.
+     * </ul>
+     * <p>
+     * Otherwise one of the following conversions is applied to {@code value}:
+     * <ol>
+     * <li>If {@code dstType} is a reference type, a reference cast
+     *     is applied to {@code value} as if by calling {@code dstType.cast(value)}.
+     * <li>If {@code dstType} is a primitive type, then, if the runtime type
+     *     of {@code value} is a primitive wrapper type (such as {@link Integer}),
+     *     a Java unboxing conversion is applied {@jls 5.1.8} followed by a
+     *     Java casting conversion {@jls 5.5} converting either directly to
+     *     {@code dstType}, or, if {@code dstType} is {@code boolean},
+     *     to {@code int}, which is then converted to either {@code true}
+     *     or {@code false} depending on whether the least-significant-bit
+     *     is 1 or 0 respectively. If the runtime type of {@code value} is
+     *     not a primitive wrapper type a {@link ClassCastException} is thrown.
+     * </ol>
+     * <p>
+     * The result is the same as when using the following code:
+     * <blockquote><pre>{@code
+     * MethodHandle id = MethodHandles.identity(dstType);
+     * MethodType mt = MethodType.methodType(dstType, Object.class);
+     * MethodHandle conv = MethodHandles.explicitCastArguments(id, mt);
+     * return conv.invoke(value);
+     * }</pre></blockquote>
+     *
+     * @param lookup unused
+     * @param name unused
+     * @param dstType the destination type of the conversion
+     * @param value the value to be converted
+     * @return the converted value
+     * @throws ClassCastException when {@code dstType} is {@code void},
+     *         when a cast per (1) fails, or when {@code dstType} is a primitive type
+     *         and the runtime type of {@code value} is not a primitive wrapper type
+     *         (such as {@link Integer})
+     *
+     * @since 15
+     */
+    public static Object explicitCast(MethodHandles.Lookup lookup, String name, Class<?> dstType, Object value)
+            throws ClassCastException {
+        if (dstType == void.class)
+            throw new ClassCastException("Can not convert to void");
+        if (dstType == Object.class)
+            return value;
+
+        MethodHandle id = MethodHandles.identity(dstType);
+        MethodType mt = MethodType.methodType(dstType, Object.class);
+        MethodHandle conv = MethodHandles.explicitCastArguments(id, mt);
+        try {
+            return conv.invoke(value);
+        } catch (RuntimeException|Error e) {
+            throw e; // let specified CCE and other runtime exceptions/errors through
+        } catch (Throwable throwable) {
+            throw new InternalError(throwable); // Not specified, throw InternalError
+        }
+    }
+
+    private static <T> Class<T> validateClassAccess(MethodHandles.Lookup lookup, Class<T> type) {
+        try {
+            lookup.accessClass(type);
+            return type;
+        }
+        catch (ReflectiveOperationException ex) {
+            throw mapLookupExceptionToError(ex);
+        }
+    }
+}
diff --git a/android-35/java/lang/invoke/ConstantCallSite.java b/android-35/java/lang/invoke/ConstantCallSite.java
new file mode 100644
index 0000000..f7d87ba
--- /dev/null
+++ b/android-35/java/lang/invoke/ConstantCallSite.java
@@ -0,0 +1,121 @@
+/*
+ * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+/**
+ * A {@code ConstantCallSite} is a {@link CallSite} whose target is permanent, and can never be changed.
+ * An {@code invokedynamic} instruction linked to a {@code ConstantCallSite} is permanently
+ * bound to the call site's target.
+ * @author John Rose, JSR 292 EG
+ * @since 1.7
+ */
+public class ConstantCallSite extends CallSite {
+    private final boolean isFrozen;
+
+    /**
+     * Creates a call site with a permanent target.
+     * @param target the target to be permanently associated with this call site
+     * @throws NullPointerException if the proposed target is null
+     */
+    public ConstantCallSite(MethodHandle target) {
+        super(target);
+        isFrozen = true;
+    }
+
+    /**
+     * Creates a call site with a permanent target, possibly bound to the call site itself.
+     * <p>
+     * During construction of the call site, the {@code createTargetHook} is invoked to
+     * produce the actual target, as if by a call of the form
+     * {@code (MethodHandle) createTargetHook.invoke(this)}.
+     * <p>
+     * Note that user code cannot perform such an action directly in a subclass constructor,
+     * since the target must be fixed before the {@code ConstantCallSite} constructor returns.
+     * <p>
+     * The hook is said to bind the call site to a target method handle,
+     * and a typical action would be {@code someTarget.bindTo(this)}.
+     * However, the hook is free to take any action whatever,
+     * including ignoring the call site and returning a constant target.
+     * <p>
+     * The result returned by the hook must be a method handle of exactly
+     * the same type as the call site.
+     * <p>
+     * While the hook is being called, the new {@code ConstantCallSite}
+     * object is in a partially constructed state.
+     * In this state,
+     * a call to {@code getTarget}, or any other attempt to use the target,
+     * will result in an {@code IllegalStateException}.
+     * It is legal at all times to obtain the call site's type using the {@code type} method.
+     *
+     * @param targetType the type of the method handle to be permanently associated with this call site
+     * @param createTargetHook a method handle to invoke (on the call site) to produce the call site's target
+     * @throws WrongMethodTypeException if the hook cannot be invoked on the required arguments,
+     *         or if the target returned by the hook is not of the given {@code targetType}
+     * @throws NullPointerException if the hook returns a null value
+     * @throws ClassCastException if the hook returns something other than a {@code MethodHandle}
+     * @throws Throwable anything else thrown by the hook function
+     */
+    protected ConstantCallSite(MethodType targetType, MethodHandle createTargetHook) throws Throwable {
+        super(targetType, createTargetHook);
+        isFrozen = true;
+    }
+
+    /**
+     * Returns the target method of the call site, which behaves
+     * like a {@code final} field of the {@code ConstantCallSite}.
+     * That is, the target is always the original value passed
+     * to the constructor call which created this instance.
+     *
+     * @return the immutable linkage state of this call site, a constant method handle
+     * @throws IllegalStateException if the {@code ConstantCallSite} constructor has not completed
+     */
+    @Override public final MethodHandle getTarget() {
+        if (!isFrozen)  throw new IllegalStateException();
+        return target;
+    }
+
+    /**
+     * Always throws an {@link UnsupportedOperationException}.
+     * This kind of call site cannot change its target.
+     * @param ignore a new target proposed for the call site, which is ignored
+     * @throws UnsupportedOperationException because this kind of call site cannot change its target
+     */
+    @Override public final void setTarget(MethodHandle ignore) {
+        throw new UnsupportedOperationException();
+    }
+
+    /**
+     * Returns this call site's permanent target.
+     * Since that target will never change, this is a correct implementation
+     * of {@link CallSite#dynamicInvoker CallSite.dynamicInvoker}.
+     * @return the immutable linkage state of this call site, a constant method handle
+     * @throws IllegalStateException if the {@code ConstantCallSite} constructor has not completed
+     */
+    @Override
+    public final MethodHandle dynamicInvoker() {
+        return getTarget();
+    }
+}
diff --git a/android-35/java/lang/invoke/FieldVarHandle.java b/android-35/java/lang/invoke/FieldVarHandle.java
new file mode 100644
index 0000000..beb056a
--- /dev/null
+++ b/android-35/java/lang/invoke/FieldVarHandle.java
@@ -0,0 +1,43 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package java.lang.invoke;
+
+import java.lang.reflect.Field;
+import java.lang.reflect.Modifier;
+
+/**
+ * A VarHandle that's associated with an instance field.
+ * @hide
+ */
+class FieldVarHandle extends VarHandle {
+    private final long artField;
+
+    private FieldVarHandle(Field field, Class<?> coordinateType0) {
+        super(field.getType(), Modifier.isFinal(field.getModifiers()), coordinateType0);
+        artField = field.getArtField();
+    }
+
+    protected FieldVarHandle(Field field) {
+        super(field.getType(), Modifier.isFinal(field.getModifiers()));
+        artField = field.getArtField();
+    }
+
+    static FieldVarHandle create(Field field) {
+        assert !Modifier.isStatic(field.getModifiers());
+        return new FieldVarHandle(field, field.getDeclaringClass());
+    }
+}
diff --git a/android-35/java/lang/invoke/LambdaConversionException.java b/android-35/java/lang/invoke/LambdaConversionException.java
new file mode 100644
index 0000000..2dc8f22
--- /dev/null
+++ b/android-35/java/lang/invoke/LambdaConversionException.java
@@ -0,0 +1,78 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+/**
+ * LambdaConversionException
+ *
+ * @since 1.8
+ */
+public class LambdaConversionException extends Exception {
+    private static final long serialVersionUID = 292L + 8L;
+
+    /**
+     * Constructs a {@code LambdaConversionException}.
+     */
+    public LambdaConversionException() {
+    }
+
+    /**
+     * Constructs a {@code LambdaConversionException} with a message.
+     * @param message the detail message
+     */
+    public LambdaConversionException(String message) {
+        super(message);
+    }
+
+    /**
+     * Constructs a {@code LambdaConversionException} with a message and cause.
+     * @param message the detail message
+     * @param cause the cause
+     */
+    public LambdaConversionException(String message, Throwable cause) {
+        super(message, cause);
+    }
+
+    /**
+     * Constructs a {@code LambdaConversionException} with a cause.
+     * @param cause the cause
+     */
+    public LambdaConversionException(Throwable cause) {
+        super(cause);
+    }
+
+    /**
+     * Constructs a {@code LambdaConversionException} with a message,
+     * cause, and other settings.
+     * @param message the detail message
+     * @param cause the cause
+     * @param enableSuppression whether or not suppressed exceptions are enabled
+     * @param writableStackTrace whether or not the stack trace is writable
+     */
+    public LambdaConversionException(String message, Throwable cause, boolean enableSuppression, boolean writableStackTrace) {
+        super(message, cause, enableSuppression, writableStackTrace);
+    }
+}
diff --git a/android-35/java/lang/invoke/LambdaMetafactory.java b/android-35/java/lang/invoke/LambdaMetafactory.java
new file mode 100644
index 0000000..e1ce46f
--- /dev/null
+++ b/android-35/java/lang/invoke/LambdaMetafactory.java
@@ -0,0 +1,49 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+public class LambdaMetafactory {
+
+    public static final int FLAG_SERIALIZABLE = 1 << 0;
+
+    public static final int FLAG_MARKERS = 1 << 1;
+
+    public static final int FLAG_BRIDGES = 1 << 2;
+
+    public static CallSite metafactory(MethodHandles.Lookup caller,
+                                       String invokedName,
+                                       MethodType invokedType,
+                                       MethodType samMethodType,
+                                       MethodHandle implMethod,
+                                       MethodType instantiatedMethodType)
+            throws LambdaConversionException { return null; }
+
+    public static CallSite altMetafactory(MethodHandles.Lookup caller,
+                                          String invokedName,
+                                          MethodType invokedType,
+                                          Object... args)
+            throws LambdaConversionException { return null; }
+}
diff --git a/android-35/java/lang/invoke/MethodHandle.java b/android-35/java/lang/invoke/MethodHandle.java
new file mode 100644
index 0000000..b03b769
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodHandle.java
@@ -0,0 +1,1769 @@
+/*
+ * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import java.util.Arrays;
+import java.util.Objects;
+
+import dalvik.system.EmulatedStackFrame;
+
+import static java.lang.invoke.MethodHandleStatics.*;
+
+/**
+ * A method handle is a typed, directly executable reference to an underlying method,
+ * constructor, field, or similar low-level operation, with optional
+ * transformations of arguments or return values.
+ * These transformations are quite general, and include such patterns as
+ * {@linkplain #asType conversion},
+ * {@linkplain #bindTo insertion},
+ * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
+ * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
+ *
+ * <h1>Method handle contents</h1>
+ * Method handles are dynamically and strongly typed according to their parameter and return types.
+ * They are not distinguished by the name or the defining class of their underlying methods.
+ * A method handle must be invoked using a symbolic type descriptor which matches
+ * the method handle's own {@linkplain #type type descriptor}.
+ * <p>
+ * Every method handle reports its type descriptor via the {@link #type type} accessor.
+ * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
+ * whose structure is a series of classes, one of which is
+ * the return type of the method (or {@code void.class} if none).
+ * <p>
+ * A method handle's type controls the types of invocations it accepts,
+ * and the kinds of transformations that apply to it.
+ * <p>
+ * A method handle contains a pair of special invoker methods
+ * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
+ * Both invoker methods provide direct access to the method handle's
+ * underlying method, constructor, field, or other operation,
+ * as modified by transformations of arguments and return values.
+ * Both invokers accept calls which exactly match the method handle's own type.
+ * The plain, inexact invoker also accepts a range of other call types.
+ * <p>
+ * Method handles are immutable and have no visible state.
+ * Of course, they can be bound to underlying methods or data which exhibit state.
+ * With respect to the Java Memory Model, any method handle will behave
+ * as if all of its (internal) fields are final variables.  This means that any method
+ * handle made visible to the application will always be fully formed.
+ * This is true even if the method handle is published through a shared
+ * variable in a data race.
+ * <p>
+ * Method handles cannot be subclassed by the user.
+ * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
+ * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
+ * operation.  The programmer should not draw conclusions about a method handle
+ * from its specific class, as the method handle class hierarchy (if any)
+ * may change from time to time or across implementations from different vendors.
+ *
+ * <h1>Method handle compilation</h1>
+ * A Java method call expression naming {@code invokeExact} or {@code invoke}
+ * can invoke a method handle from Java source code.
+ * From the viewpoint of source code, these methods can take any arguments
+ * and their result can be cast to any return type.
+ * Formally this is accomplished by giving the invoker methods
+ * {@code Object} return types and variable arity {@code Object} arguments,
+ * but they have an additional quality called <em>signature polymorphism</em>
+ * which connects this freedom of invocation directly to the JVM execution stack.
+ * <p>
+ * As is usual with virtual methods, source-level calls to {@code invokeExact}
+ * and {@code invoke} compile to an {@code invokevirtual} instruction.
+ * More unusually, the compiler must record the actual argument types,
+ * and may not perform method invocation conversions on the arguments.
+ * Instead, it must push them on the stack according to their own unconverted types.
+ * The method handle object itself is pushed on the stack before the arguments.
+ * The compiler then calls the method handle with a symbolic type descriptor which
+ * describes the argument and return types.
+ * <p>
+ * To issue a complete symbolic type descriptor, the compiler must also determine
+ * the return type.  This is based on a cast on the method invocation expression,
+ * if there is one, or else {@code Object} if the invocation is an expression
+ * or else {@code void} if the invocation is a statement.
+ * The cast may be to a primitive type (but not {@code void}).
+ * <p>
+ * As a corner case, an uncasted {@code null} argument is given
+ * a symbolic type descriptor of {@code java.lang.Void}.
+ * The ambiguity with the type {@code Void} is harmless, since there are no references of type
+ * {@code Void} except the null reference.
+ *
+ * <h1>Method handle invocation</h1>
+ * The first time a {@code invokevirtual} instruction is executed
+ * it is linked, by symbolically resolving the names in the instruction
+ * and verifying that the method call is statically legal.
+ * This is true of calls to {@code invokeExact} and {@code invoke}.
+ * In this case, the symbolic type descriptor emitted by the compiler is checked for
+ * correct syntax and names it contains are resolved.
+ * Thus, an {@code invokevirtual} instruction which invokes
+ * a method handle will always link, as long
+ * as the symbolic type descriptor is syntactically well-formed
+ * and the types exist.
+ * <p>
+ * When the {@code invokevirtual} is executed after linking,
+ * the receiving method handle's type is first checked by the JVM
+ * to ensure that it matches the symbolic type descriptor.
+ * If the type match fails, it means that the method which the
+ * caller is invoking is not present on the individual
+ * method handle being invoked.
+ * <p>
+ * In the case of {@code invokeExact}, the type descriptor of the invocation
+ * (after resolving symbolic type names) must exactly match the method type
+ * of the receiving method handle.
+ * In the case of plain, inexact {@code invoke}, the resolved type descriptor
+ * must be a valid argument to the receiver's {@link #asType asType} method.
+ * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
+ * <p>
+ * After type matching, a call to {@code invokeExact} directly
+ * and immediately invoke the method handle's underlying method
+ * (or other behavior, as the case may be).
+ * <p>
+ * A call to plain {@code invoke} works the same as a call to
+ * {@code invokeExact}, if the symbolic type descriptor specified by the caller
+ * exactly matches the method handle's own type.
+ * If there is a type mismatch, {@code invoke} attempts
+ * to adjust the type of the receiving method handle,
+ * as if by a call to {@link #asType asType},
+ * to obtain an exactly invokable method handle {@code M2}.
+ * This allows a more powerful negotiation of method type
+ * between caller and callee.
+ * <p>
+ * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
+ * and implementations are therefore not required to materialize it.)
+ *
+ * <h1>Invocation checking</h1>
+ * In typical programs, method handle type matching will usually succeed.
+ * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
+ * either directly (in the case of {@code invokeExact}) or indirectly as if
+ * by a failed call to {@code asType} (in the case of {@code invoke}).
+ * <p>
+ * Thus, a method type mismatch which might show up as a linkage error
+ * in a statically typed program can show up as
+ * a dynamic {@code WrongMethodTypeException}
+ * in a program which uses method handles.
+ * <p>
+ * Because method types contain "live" {@code Class} objects,
+ * method type matching takes into account both types names and class loaders.
+ * Thus, even if a method handle {@code M} is created in one
+ * class loader {@code L1} and used in another {@code L2},
+ * method handle calls are type-safe, because the caller's symbolic type
+ * descriptor, as resolved in {@code L2},
+ * is matched against the original callee method's symbolic type descriptor,
+ * as resolved in {@code L1}.
+ * The resolution in {@code L1} happens when {@code M} is created
+ * and its type is assigned, while the resolution in {@code L2} happens
+ * when the {@code invokevirtual} instruction is linked.
+ * <p>
+ * Apart from the checking of type descriptors,
+ * a method handle's capability to call its underlying method is unrestricted.
+ * If a method handle is formed on a non-public method by a class
+ * that has access to that method, the resulting handle can be used
+ * in any place by any caller who receives a reference to it.
+ * <p>
+ * Unlike with the Core Reflection API, where access is checked every time
+ * a reflective method is invoked,
+ * method handle access checking is performed
+ * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
+ * In the case of {@code ldc} (see below), access checking is performed as part of linking
+ * the constant pool entry underlying the constant method handle.
+ * <p>
+ * Thus, handles to non-public methods, or to methods in non-public classes,
+ * should generally be kept secret.
+ * They should not be passed to untrusted code unless their use from
+ * the untrusted code would be harmless.
+ *
+ * <h1>Method handle creation</h1>
+ * Java code can create a method handle that directly accesses
+ * any method, constructor, or field that is accessible to that code.
+ * This is done via a reflective, capability-based API called
+ * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
+ * For example, a static method handle can be obtained
+ * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
+ * There are also conversion methods from Core Reflection API objects,
+ * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
+ * <p>
+ * Like classes and strings, method handles that correspond to accessible
+ * fields, methods, and constructors can also be represented directly
+ * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
+ * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
+ * refers directly to an associated {@code CONSTANT_Methodref},
+ * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
+ * constant pool entry.
+ * (For full details on method handle constants,
+ * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
+ * <p>
+ * Method handles produced by lookups or constant loads from methods or
+ * constructors with the variable arity modifier bit ({@code 0x0080})
+ * have a corresponding variable arity, as if they were defined with
+ * the help of {@link #asVarargsCollector asVarargsCollector}.
+ * <p>
+ * A method reference may refer either to a static or non-static method.
+ * In the non-static case, the method handle type includes an explicit
+ * receiver argument, prepended before any other arguments.
+ * In the method handle's type, the initial receiver argument is typed
+ * according to the class under which the method was initially requested.
+ * (E.g., if a non-static method handle is obtained via {@code ldc},
+ * the type of the receiver is the class named in the constant pool entry.)
+ * <p>
+ * Method handle constants are subject to the same link-time access checks
+ * their corresponding bytecode instructions, and the {@code ldc} instruction
+ * will throw corresponding linkage errors if the bytecode behaviors would
+ * throw such errors.
+ * <p>
+ * As a corollary of this, access to protected members is restricted
+ * to receivers only of the accessing class, or one of its subclasses,
+ * and the accessing class must in turn be a subclass (or package sibling)
+ * of the protected member's defining class.
+ * If a method reference refers to a protected non-static method or field
+ * of a class outside the current package, the receiver argument will
+ * be narrowed to the type of the accessing class.
+ * <p>
+ * When a method handle to a virtual method is invoked, the method is
+ * always looked up in the receiver (that is, the first argument).
+ * <p>
+ * A non-virtual method handle to a specific virtual method implementation
+ * can also be created.  These do not perform virtual lookup based on
+ * receiver type.  Such a method handle simulates the effect of
+ * an {@code invokespecial} instruction to the same method.
+ *
+ * <h1>Usage examples</h1>
+ * Here are some examples of usage:
+ * <blockquote><pre>{@code
+Object x, y; String s; int i;
+MethodType mt; MethodHandle mh;
+MethodHandles.Lookup lookup = MethodHandles.lookup();
+// mt is (char,char)String
+mt = MethodType.methodType(String.class, char.class, char.class);
+mh = lookup.findVirtual(String.class, "replace", mt);
+s = (String) mh.invokeExact("daddy",'d','n');
+// invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
+assertEquals(s, "nanny");
+// weakly typed invocation (using MHs.invoke)
+s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
+assertEquals(s, "savvy");
+// mt is (Object[])List
+mt = MethodType.methodType(java.util.List.class, Object[].class);
+mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
+assert(mh.isVarargsCollector());
+x = mh.invoke("one", "two");
+// invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
+assertEquals(x, java.util.Arrays.asList("one","two"));
+// mt is (Object,Object,Object)Object
+mt = MethodType.genericMethodType(3);
+mh = mh.asType(mt);
+x = mh.invokeExact((Object)1, (Object)2, (Object)3);
+// invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
+assertEquals(x, java.util.Arrays.asList(1,2,3));
+// mt is ()int
+mt = MethodType.methodType(int.class);
+mh = lookup.findVirtual(java.util.List.class, "size", mt);
+i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
+// invokeExact(Ljava/util/List;)I
+assert(i == 3);
+mt = MethodType.methodType(void.class, String.class);
+mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
+mh.invokeExact(System.out, "Hello, world.");
+// invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
+ * }</pre></blockquote>
+ * Each of the above calls to {@code invokeExact} or plain {@code invoke}
+ * generates a single invokevirtual instruction with
+ * the symbolic type descriptor indicated in the following comment.
+ * In these examples, the helper method {@code assertEquals} is assumed to
+ * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
+ * on its arguments, and asserts that the result is true.
+ *
+ * <h1>Exceptions</h1>
+ * The methods {@code invokeExact} and {@code invoke} are declared
+ * to throw {@link java.lang.Throwable Throwable},
+ * which is to say that there is no static restriction on what a method handle
+ * can throw.  Since the JVM does not distinguish between checked
+ * and unchecked exceptions (other than by their class, of course),
+ * there is no particular effect on bytecode shape from ascribing
+ * checked exceptions to method handle invocations.  But in Java source
+ * code, methods which perform method handle calls must either explicitly
+ * throw {@code Throwable}, or else must catch all
+ * throwables locally, rethrowing only those which are legal in the context,
+ * and wrapping ones which are illegal.
+ *
+ * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
+ * The unusual compilation and linkage behavior of
+ * {@code invokeExact} and plain {@code invoke}
+ * is referenced by the term <em>signature polymorphism</em>.
+ * As defined in the Java Language Specification,
+ * a signature polymorphic method is one which can operate with
+ * any of a wide range of call signatures and return types.
+ * <p>
+ * In source code, a call to a signature polymorphic method will
+ * compile, regardless of the requested symbolic type descriptor.
+ * As usual, the Java compiler emits an {@code invokevirtual}
+ * instruction with the given symbolic type descriptor against the named method.
+ * The unusual part is that the symbolic type descriptor is derived from
+ * the actual argument and return types, not from the method declaration.
+ * <p>
+ * When the JVM processes bytecode containing signature polymorphic calls,
+ * it will successfully link any such call, regardless of its symbolic type descriptor.
+ * (In order to retain type safety, the JVM will guard such calls with suitable
+ * dynamic type checks, as described elsewhere.)
+ * <p>
+ * Bytecode generators, including the compiler back end, are required to emit
+ * untransformed symbolic type descriptors for these methods.
+ * Tools which determine symbolic linkage are required to accept such
+ * untransformed descriptors, without reporting linkage errors.
+ *
+ * <h1>Interoperation between method handles and the Core Reflection API</h1>
+ * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
+ * any class member represented by a Core Reflection API object
+ * can be converted to a behaviorally equivalent method handle.
+ * For example, a reflective {@link java.lang.reflect.Method Method} can
+ * be converted to a method handle using
+ * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
+ * The resulting method handles generally provide more direct and efficient
+ * access to the underlying class members.
+ * <p>
+ * As a special case,
+ * when the Core Reflection API is used to view the signature polymorphic
+ * methods {@code invokeExact} or plain {@code invoke} in this class,
+ * they appear as ordinary non-polymorphic methods.
+ * Their reflective appearance, as viewed by
+ * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
+ * is unaffected by their special status in this API.
+ * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
+ * will report exactly those modifier bits required for any similarly
+ * declared method, including in this case {@code native} and {@code varargs} bits.
+ * <p>
+ * As with any reflected method, these methods (when reflected) may be
+ * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
+ * However, such reflective calls do not result in method handle invocations.
+ * Such a call, if passed the required argument
+ * (a single one, of type {@code Object[]}), will ignore the argument and
+ * will throw an {@code UnsupportedOperationException}.
+ * <p>
+ * Since {@code invokevirtual} instructions can natively
+ * invoke method handles under any symbolic type descriptor, this reflective view conflicts
+ * with the normal presentation of these methods via bytecodes.
+ * Thus, these two native methods, when reflectively viewed by
+ * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
+ * <p>
+ * In order to obtain an invoker method for a particular type descriptor,
+ * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
+ * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
+ * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
+ * API is also able to return a method handle
+ * to call {@code invokeExact} or plain {@code invoke},
+ * for any specified type descriptor .
+ *
+ * <h1>Interoperation between method handles and Java generics</h1>
+ * A method handle can be obtained on a method, constructor, or field
+ * which is declared with Java generic types.
+ * As with the Core Reflection API, the type of the method handle
+ * will constructed from the erasure of the source-level type.
+ * When a method handle is invoked, the types of its arguments
+ * or the return value cast type may be generic types or type instances.
+ * If this occurs, the compiler will replace those
+ * types by their erasures when it constructs the symbolic type descriptor
+ * for the {@code invokevirtual} instruction.
+ * <p>
+ * Method handles do not represent
+ * their function-like types in terms of Java parameterized (generic) types,
+ * because there are three mismatches between function-like types and parameterized
+ * Java types.
+ * <ul>
+ * <li>Method types range over all possible arities,
+ * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
+ * Generics are not variadic, and so cannot represent this.</li>
+ * <li>Method types can specify arguments of primitive types,
+ * which Java generic types cannot range over.</li>
+ * <li>Higher order functions over method handles (combinators) are
+ * often generic across a wide range of function types, including
+ * those of multiple arities.  It is impossible to represent such
+ * genericity with a Java type parameter.</li>
+ * </ul>
+ *
+ * <h1><a name="maxarity"></a>Arity limits</h1>
+ * The JVM imposes on all methods and constructors of any kind an absolute
+ * limit of 255 stacked arguments.  This limit can appear more restrictive
+ * in certain cases:
+ * <ul>
+ * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
+ * <li>A non-static method consumes an extra argument for the object on which the method is called.
+ * <li>A constructor consumes an extra argument for the object which is being constructed.
+ * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
+ *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
+ * </ul>
+ * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
+ * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
+ * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
+ * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
+ *
+ * @see MethodType
+ * @see MethodHandles
+ * @author John Rose, JSR 292 EG
+ */
+public abstract class MethodHandle {
+    // Android-removed: MethodHandleImpl.initStatics() unused on Android.
+    // static { MethodHandleImpl.initStatics(); }
+
+    /**
+     * Internal marker interface which distinguishes (to the Java compiler)
+     * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
+     *
+     * @hide
+     */
+    @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
+    @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
+    // Android-changed: Made public @hide as otherwise it breaks the stubs generation.
+    // @interface PolymorphicSignature { }
+    public @interface PolymorphicSignature { }
+
+    /**
+     * The type of this method handle, this corresponds to the exact type of the method
+     * being invoked.
+     */
+    private final MethodType type;
+
+    // Android-removed: LambdaForm is unused on Android.
+    // They will be substituted with appropriate implementation / delegate classes.
+    /*
+    /*private* final LambdaForm form;
+    // form is not private so that invokers can easily fetch it
+    */
+    /*private*/ MethodHandle asTypeCache;
+    // asTypeCache is not private so that invokers can easily fetch it
+    /*
+    // Android-removed: customizationCount is unused on Android.
+    /*non-public* byte customizationCount;
+    // customizationCount should be accessible from invokers
+    */
+
+    /**
+     * The spread invoker associated with this type with zero trailing arguments.
+     * This is used to speed up invokeWithArguments.
+     */
+    private MethodHandle cachedSpreadInvoker;
+
+    /**
+     * The INVOKE* constants and SGET/SPUT and IGET/IPUT constants specify the behaviour of this
+     * method handle with respect to the ArtField* or the ArtMethod* that it operates on. These
+     * behaviours are equivalent to the dex bytecode behaviour on the respective method_id or
+     * field_id in the equivalent instruction.
+     *
+     * INVOKE_TRANSFORM is a special type of handle which doesn't encode any dex bytecode behaviour,
+     * instead it transforms the list of input arguments or performs other higher order operations
+     * before (optionally) delegating to another method handle.
+     */
+
+    /** @hide */ public static final int INVOKE_VIRTUAL = 0;
+    /** @hide */ public static final int INVOKE_SUPER = 1;
+    /** @hide */ public static final int INVOKE_DIRECT = 2;
+    /** @hide */ public static final int INVOKE_STATIC = 3;
+    /** @hide */ public static final int INVOKE_INTERFACE = 4;
+    /** @hide */ public static final int INVOKE_TRANSFORM = 5;
+    /** @hide */ public static final int INVOKE_VAR_HANDLE = 6;
+    /** @hide */ public static final int INVOKE_VAR_HANDLE_EXACT = 7;
+    /** @hide */ public static final int IGET = 8;
+    /** @hide */ public static final int IPUT = 9;
+    /** @hide */ public static final int SGET = 10;
+    /** @hide */ public static final int SPUT = 11;
+
+    // The kind of this method handle (used by the runtime). This is one of the INVOKE_*
+    // constants or SGET/SPUT, IGET/IPUT.
+    /** @hide */ protected final int handleKind;
+
+    // The ArtMethod* or ArtField* associated with this method handle (used by the runtime).
+    /** @hide */ protected final long artFieldOrMethod;
+
+    /** @hide */
+    protected MethodHandle(long artFieldOrMethod, int handleKind, MethodType type) {
+        this.artFieldOrMethod = artFieldOrMethod;
+        this.handleKind = handleKind;
+        this.type = type;
+    }
+    // END Android-added: Android specific implementation.
+
+    /**
+     * Reports the type of this method handle.
+     * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
+     * @return the method handle type
+     */
+    public MethodType type() {
+        return type;
+    }
+
+    // BEGIN Android-removed: LambdaForm unsupported on Android.
+    /*
+    /**
+     * Package-private constructor for the method handle implementation hierarchy.
+     * Method handle inheritance will be contained completely within
+     * the {@code java.lang.invoke} package.
+     *
+    // @param type type (permanently assigned) of the new method handle
+    /*non-public* MethodHandle(MethodType type, LambdaForm form) {
+        type.getClass();  // explicit NPE
+        form.getClass();  // explicit NPE
+        this.type = type;
+        this.form = form.uncustomize();
+
+        this.form.prepare();  // TO DO:  Try to delay this step until just before invocation.
+    }
+    */
+    // END Android-removed: LambdaForm unsupported on Android.
+
+    /**
+     * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
+     * The symbolic type descriptor at the call site of {@code invokeExact} must
+     * exactly match this method handle's {@link #type type}.
+     * No conversions are allowed on arguments or return values.
+     * <p>
+     * When this method is observed via the Core Reflection API,
+     * it will appear as a single native method, taking an object array and returning an object.
+     * If this native method is invoked directly via
+     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
+     * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
+     * it will throw an {@code UnsupportedOperationException}.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
+     * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
+     */
+    public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
+
+    /**
+     * Invokes the method handle, allowing any caller type descriptor,
+     * and optionally performing conversions on arguments and return values.
+     * <p>
+     * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
+     * the call proceeds as if by {@link #invokeExact invokeExact}.
+     * <p>
+     * Otherwise, the call proceeds as if this method handle were first
+     * adjusted by calling {@link #asType asType} to adjust this method handle
+     * to the required type, and then the call proceeds as if by
+     * {@link #invokeExact invokeExact} on the adjusted method handle.
+     * <p>
+     * There is no guarantee that the {@code asType} call is actually made.
+     * If the JVM can predict the results of making the call, it may perform
+     * adaptations directly on the caller's arguments,
+     * and call the target method handle according to its own exact type.
+     * <p>
+     * The resolved type descriptor at the call site of {@code invoke} must
+     * be a valid argument to the receivers {@code asType} method.
+     * In particular, the caller must specify the same argument arity
+     * as the callee's type,
+     * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
+     * <p>
+     * When this method is observed via the Core Reflection API,
+     * it will appear as a single native method, taking an object array and returning an object.
+     * If this native method is invoked directly via
+     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
+     * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
+     * it will throw an {@code UnsupportedOperationException}.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
+     * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
+     * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
+     */
+    public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
+
+    // BEGIN Android-removed: RI implementation unused on Android.
+    /*
+    /**
+     * Private method for trusted invocation of a method handle respecting simplified signatures.
+     * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
+     * <p>
+     * The caller signature is restricted to the following basic types:
+     * Object, int, long, float, double, and void return.
+     * <p>
+     * The caller is responsible for maintaining type correctness by ensuring
+     * that the each outgoing argument value is a member of the range of the corresponding
+     * callee argument type.
+     * (The caller should therefore issue appropriate casts and integer narrowing
+     * operations on outgoing argument values.)
+     * The caller can assume that the incoming result value is part of the range
+     * of the callee's return type.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     *
+    /*non-public* final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
+
+    /**
+     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
+     * The caller signature is restricted to basic types as with {@code invokeBasic}.
+     * The trailing (not leading) argument must be a MemberName.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     *
+    /*non-public* static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
+
+    /**
+     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
+     * The caller signature is restricted to basic types as with {@code invokeBasic}.
+     * The trailing (not leading) argument must be a MemberName.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     *
+    /*non-public* static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
+
+    /**
+     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
+     * The caller signature is restricted to basic types as with {@code invokeBasic}.
+     * The trailing (not leading) argument must be a MemberName.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     *
+    /*non-public* static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
+
+    /**
+     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
+     * The caller signature is restricted to basic types as with {@code invokeBasic}.
+     * The trailing (not leading) argument must be a MemberName.
+     * @param args the signature-polymorphic parameter list, statically represented using varargs
+     * @return the signature-polymorphic result, statically represented using {@code Object}
+     *
+    /*non-public* static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
+    */
+    // END Android-removed: RI implementation unused on Android.
+
+    /**
+     * Performs a variable arity invocation, passing the arguments in the given list
+     * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
+     * which mentions only the type {@code Object}, and whose arity is the length
+     * of the argument list.
+     * <p>
+     * Specifically, execution proceeds as if by the following steps,
+     * although the methods are not guaranteed to be called if the JVM
+     * can predict their effects.
+     * <ul>
+     * <li>Determine the length of the argument array as {@code N}.
+     *     For a null reference, {@code N=0}. </li>
+     * <li>Determine the general type {@code TN} of {@code N} arguments as
+     *     as {@code TN=MethodType.genericMethodType(N)}.</li>
+     * <li>Force the original target method handle {@code MH0} to the
+     *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
+     * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
+     * <li>Invoke the type-adjusted method handle on the unpacked arguments:
+     *     MH1.invokeExact(A0, ...). </li>
+     * <li>Take the return value as an {@code Object} reference. </li>
+     * </ul>
+     * <p>
+     * Because of the action of the {@code asType} step, the following argument
+     * conversions are applied as necessary:
+     * <ul>
+     * <li>reference casting
+     * <li>unboxing
+     * <li>widening primitive conversions
+     * </ul>
+     * <p>
+     * The result returned by the call is boxed if it is a primitive,
+     * or forced to null if the return type is void.
+     * <p>
+     * This call is equivalent to the following code:
+     * <blockquote><pre>{@code
+     * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
+     * Object result = invoker.invokeExact(this, arguments);
+     * }</pre></blockquote>
+     * <p>
+     * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
+     * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
+     * It can therefore be used as a bridge between native or reflective code and method handles.
+     *
+     * @param arguments the arguments to pass to the target
+     * @return the result returned by the target
+     * @throws ClassCastException if an argument cannot be converted by reference casting
+     * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
+     * @throws Throwable anything thrown by the target method invocation
+     * @see MethodHandles#spreadInvoker
+     */
+    public Object invokeWithArguments(Object... arguments) throws Throwable {
+        MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
+        // BEGIN Android-changed: Android specific implementation.
+        // return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
+        MethodHandle invoker = cachedSpreadInvoker;
+        if (invoker == null || !invoker.type().equals(invocationType)) {
+            invoker = MethodHandles.spreadInvoker(invocationType, 0);
+            cachedSpreadInvoker = invoker;
+        }
+        return invoker.invoke(asType(invocationType), arguments);
+        // END Android-changed: Android specific implementation.
+    }
+
+    /**
+     * Performs a variable arity invocation, passing the arguments in the given array
+     * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
+     * which mentions only the type {@code Object}, and whose arity is the length
+     * of the argument array.
+     * <p>
+     * This method is also equivalent to the following code:
+     * <blockquote><pre>{@code
+     *   invokeWithArguments(arguments.toArray()
+     * }</pre></blockquote>
+     *
+     * @param arguments the arguments to pass to the target
+     * @return the result returned by the target
+     * @throws NullPointerException if {@code arguments} is a null reference
+     * @throws ClassCastException if an argument cannot be converted by reference casting
+     * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
+     * @throws Throwable anything thrown by the target method invocation
+     */
+    public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
+        return invokeWithArguments(arguments.toArray());
+    }
+
+    /**
+     * Produces an adapter method handle which adapts the type of the
+     * current method handle to a new type.
+     * The resulting method handle is guaranteed to report a type
+     * which is equal to the desired new type.
+     * <p>
+     * If the original type and new type are equal, returns {@code this}.
+     * <p>
+     * The new method handle, when invoked, will perform the following
+     * steps:
+     * <ul>
+     * <li>Convert the incoming argument list to match the original
+     *     method handle's argument list.
+     * <li>Invoke the original method handle on the converted argument list.
+     * <li>Convert any result returned by the original method handle
+     *     to the return type of new method handle.
+     * </ul>
+     * <p>
+     * This method provides the crucial behavioral difference between
+     * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
+     * The two methods
+     * perform the same steps when the caller's type descriptor exactly m atches
+     * the callee's, but when the types differ, plain {@link #invoke invoke}
+     * also calls {@code asType} (or some internal equivalent) in order
+     * to match up the caller's and callee's types.
+     * <p>
+     * If the current method is a variable arity method handle
+     * argument list conversion may involve the conversion and collection
+     * of several arguments into an array, as
+     * {@linkplain #asVarargsCollector described elsewhere}.
+     * In every other case, all conversions are applied <em>pairwise</em>,
+     * which means that each argument or return value is converted to
+     * exactly one argument or return value (or no return value).
+     * The applied conversions are defined by consulting the
+     * the corresponding component types of the old and new
+     * method handle types.
+     * <p>
+     * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
+     * or old and new return types.  Specifically, for some valid index {@code i}, let
+     * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
+     * Or else, going the other way for return values, let
+     * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
+     * If the types are the same, the new method handle makes no change
+     * to the corresponding argument or return value (if any).
+     * Otherwise, one of the following conversions is applied
+     * if possible:
+     * <ul>
+     * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
+     *     (The types do not need to be related in any particular way.
+     *     This is because a dynamic value of null can convert to any reference type.)
+     * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
+     *     conversion (JLS 5.3) is applied, if one exists.
+     *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
+     * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
+     *     a Java casting conversion (JLS 5.5) is applied if one exists.
+     *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
+     *     which is then widened as needed to <em>T1</em>.)
+     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
+     *     conversion will be applied at runtime, possibly followed
+     *     by a Java method invocation conversion (JLS 5.3)
+     *     on the primitive value.  (These are the primitive widening conversions.)
+     *     <em>T0</em> must be a wrapper class or a supertype of one.
+     *     (In the case where <em>T0</em> is Object, these are the conversions
+     *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
+     *     The unboxing conversion must have a possibility of success, which means that
+     *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
+     *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
+     *     primitive value can be widened to <em>T1</em>.
+     * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
+     * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
+     * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
+     *     a zero value is introduced.
+     * </ul>
+     * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
+     * because neither corresponds specifically to the <em>dynamic type</em> of any
+     * actual argument or return value.)
+     * <p>
+     * The method handle conversion cannot be made if any one of the required
+     * pairwise conversions cannot be made.
+     * <p>
+     * At runtime, the conversions applied to reference arguments
+     * or return values may require additional runtime checks which can fail.
+     * An unboxing operation may fail because the original reference is null,
+     * causing a {@link java.lang.NullPointerException NullPointerException}.
+     * An unboxing operation or a reference cast may also fail on a reference
+     * to an object of the wrong type,
+     * causing a {@link java.lang.ClassCastException ClassCastException}.
+     * Although an unboxing operation may accept several kinds of wrappers,
+     * if none are available, a {@code ClassCastException} will be thrown.
+     *
+     * @param newType the expected type of the new method handle
+     * @return a method handle which delegates to {@code this} after performing
+     *           any necessary argument conversions, and arranges for any
+     *           necessary return value conversions
+     * @throws NullPointerException if {@code newType} is a null reference
+     * @throws WrongMethodTypeException if the conversion cannot be made
+     * @see MethodHandles#explicitCastArguments
+     */
+    public MethodHandle asType(MethodType newType) {
+        // Fast path alternative to a heavyweight {@code asType} call.
+        // Return 'this' if the conversion will be a no-op.
+        // Android-changed: use equals() rather than = since MethodTypes are not interned.
+        if (newType.equals(type)) {
+            return this;
+        }
+        // Return 'this.asTypeCache' if the conversion is already memoized.
+        MethodHandle atc = asTypeCached(newType);
+        if (atc != null) {
+            return atc;
+        }
+        return asTypeUncached(newType);
+    }
+
+    private MethodHandle asTypeCached(MethodType newType) {
+        MethodHandle atc = asTypeCache;
+        // Android-changed: use equals() rather than = since MethodTypes are not interned.
+        if (atc != null && newType.equals(atc.type)) {
+            return atc;
+        }
+        return null;
+    }
+
+    /** Override this to change asType behavior. */
+    /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
+        if (!type.isConvertibleTo(newType))
+            throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
+        // BEGIN Android-changed: Android specific implementation.
+        // return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true);
+        return asTypeCache = new Transformers.AsTypeAdapter(this, newType);
+        // END Android-changed: Android specific implementation.
+    }
+
+    /**
+     * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
+     * and spreads its elements as positional arguments.
+     * The new method handle adapts, as its <i>target</i>,
+     * the current method handle.  The type of the adapter will be
+     * the same as the type of the target, except that the final
+     * {@code arrayLength} parameters of the target's type are replaced
+     * by a single array parameter of type {@code arrayType}.
+     * <p>
+     * If the array element type differs from any of the corresponding
+     * argument types on the original target,
+     * the original target is adapted to take the array elements directly,
+     * as if by a call to {@link #asType asType}.
+     * <p>
+     * When called, the adapter replaces a trailing array argument
+     * by the array's elements, each as its own argument to the target.
+     * (The order of the arguments is preserved.)
+     * They are converted pairwise by casting and/or unboxing
+     * to the types of the trailing parameters of the target.
+     * Finally the target is called.
+     * What the target eventually returns is returned unchanged by the adapter.
+     * <p>
+     * Before calling the target, the adapter verifies that the array
+     * contains exactly enough elements to provide a correct argument count
+     * to the target method handle.
+     * (The array may also be null when zero elements are required.)
+     * <p>
+     * When the adapter is called, the length of the supplied {@code array}
+     * argument is queried as if by {@code array.length} or {@code arraylength}
+     * bytecode. If the adapter accepts a zero-length trailing array argument,
+     * the supplied {@code array} argument can either be a zero-length array or
+     * {@code null}; otherwise, the adapter will throw a {@code NullPointerException}
+     * if the array is {@code null} and throw an {@link IllegalArgumentException}
+     * if the array does not have the correct number of elements.
+     * <p>
+     * Here are some simple examples of array-spreading method handles:
+     * <blockquote><pre>{@code
+MethodHandle equals = publicLookup()
+  .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
+assert( (boolean) equals.invokeExact("me", (Object)"me"));
+assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
+// spread both arguments from a 2-array:
+MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
+assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
+assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
+// try to spread from anything but a 2-array:
+for (int n = 0; n <= 10; n++) {
+  Object[] badArityArgs = (n == 2 ? new Object[0] : new Object[n]);
+  try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
+  catch (IllegalArgumentException ex) { } // OK
+}
+// spread both arguments from a String array:
+MethodHandle eq2s = equals.asSpreader(String[].class, 2);
+assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
+assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
+// spread second arguments from a 1-array:
+MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
+assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
+assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
+// spread no arguments from a 0-array or null:
+MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
+assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
+assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
+// asSpreader and asCollector are approximate inverses:
+for (int n = 0; n <= 2; n++) {
+    for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
+        MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
+        assert( (boolean) equals2.invokeWithArguments("me", "me"));
+        assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
+    }
+}
+MethodHandle caToString = publicLookup()
+  .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
+assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
+MethodHandle caString3 = caToString.asCollector(char[].class, 3);
+assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
+MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
+assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
+     * }</pre></blockquote>
+     * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
+     * @param arrayLength the number of arguments to spread from an incoming array argument
+     * @return a new method handle which spreads its final array argument,
+     *         before calling the original method handle
+     * @throws NullPointerException if {@code arrayType} is a null reference
+     * @throws IllegalArgumentException if {@code arrayType} is not an array type,
+     *         or if target does not have at least
+     *         {@code arrayLength} parameter types,
+     *         or if {@code arrayLength} is negative,
+     *         or if the resulting method handle's type would have
+     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
+     * @throws WrongMethodTypeException if the implied {@code asType} call fails
+     * @see #asCollector
+     */
+    public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
+        return asSpreader(type().parameterCount() - arrayLength, arrayType, arrayLength);
+    }
+
+    /**
+     * Makes an <em>array-spreading</em> method handle, which accepts an array argument at a given position and spreads
+     * its elements as positional arguments in place of the array. The new method handle adapts, as its <i>target</i>,
+     * the current method handle. The type of the adapter will be the same as the type of the target, except that the
+     * {@code arrayLength} parameters of the target's type, starting at the zero-based position {@code spreadArgPos},
+     * are replaced by a single array parameter of type {@code arrayType}.
+     * <p>
+     * This method behaves very much like {@link #asSpreader(Class, int)}, but accepts an additional {@code spreadArgPos}
+     * argument to indicate at which position in the parameter list the spreading should take place.
+     *
+     * @apiNote Example:
+     * <blockquote><pre>{@code
+    MethodHandle compare = LOOKUP.findStatic(Objects.class, "compare", methodType(int.class, Object.class, Object.class, Comparator.class));
+    MethodHandle compare2FromArray = compare.asSpreader(0, Object[].class, 2);
+    Object[] ints = new Object[]{3, 9, 7, 7};
+    Comparator<Integer> cmp = (a, b) -> a - b;
+    assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 0, 2), cmp) < 0);
+    assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 1, 3), cmp) > 0);
+    assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 2, 4), cmp) == 0);
+     * }</pre></blockquote>
+     * @param spreadArgPos the position (zero-based index) in the argument list at which spreading should start.
+     * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
+     * @param arrayLength the number of arguments to spread from an incoming array argument
+     * @return a new method handle which spreads an array argument at a given position,
+     *         before calling the original method handle
+     * @throws NullPointerException if {@code arrayType} is a null reference
+     * @throws IllegalArgumentException if {@code arrayType} is not an array type,
+     *         or if target does not have at least
+     *         {@code arrayLength} parameter types,
+     *         or if {@code arrayLength} is negative,
+     *         or if {@code spreadArgPos} has an illegal value (negative, or together with arrayLength exceeding the
+     *         number of arguments),
+     *         or if the resulting method handle's type would have
+     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
+     * @throws WrongMethodTypeException if the implied {@code asType} call fails
+     *
+     * @see #asSpreader(Class, int)
+     * @since 9
+     */
+    public MethodHandle asSpreader(int spreadArgPos, Class<?> arrayType, int arrayLength) {
+        MethodType postSpreadType = asSpreaderChecks(arrayType, spreadArgPos, arrayLength);
+        // BEGIN Android-changed: Android specific implementation.
+        /*
+        MethodHandle afterSpread = this.asType(postSpreadType);
+        BoundMethodHandle mh = afterSpread.rebind();
+        LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength);
+        MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, spreadArgPos + arrayLength, arrayType);
+        return mh.copyWith(preSpreadType, lform);
+        */
+        final int spreadEnd = spreadArgPos + arrayLength;
+        final MethodType adapterType =
+                postSpreadType.replaceParameterTypes(spreadArgPos, spreadEnd, arrayType);
+        return new Transformers.Spreader(
+                asType(postSpreadType), adapterType, spreadArgPos, arrayLength);
+        // END Android-changed: Android specific implementation.
+    }
+
+    /**
+     * See if {@code asSpreader} can be validly called with the given arguments.
+     * Return the type of the method handle call after spreading but before conversions.
+     */
+    private MethodType asSpreaderChecks(Class<?> arrayType, int pos, int arrayLength) {
+        spreadArrayChecks(arrayType, arrayLength);
+        int nargs = type().parameterCount();
+        if (nargs < arrayLength || arrayLength < 0)
+            throw newIllegalArgumentException("bad spread array length");
+        if (pos < 0 || pos + arrayLength > nargs) {
+            throw newIllegalArgumentException("bad spread position");
+        }
+        Class<?> arrayElement = arrayType.getComponentType();
+        MethodType mtype = type();
+        boolean match = true, fail = false;
+        for (int i = pos; i < pos + arrayLength; i++) {
+            Class<?> ptype = mtype.parameterType(i);
+            if (ptype != arrayElement) {
+                match = false;
+                if (!MethodType.canConvert(arrayElement, ptype)) {
+                    fail = true;
+                    break;
+                }
+            }
+        }
+        if (match)  return mtype;
+        MethodType needType = mtype.asSpreaderType(arrayType, pos, arrayLength);
+        if (!fail)  return needType;
+        // elicit an error:
+        this.asType(needType);
+        throw newInternalError("should not return");
+    }
+
+    private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
+        Class<?> arrayElement = arrayType.getComponentType();
+        if (arrayElement == null)
+            throw newIllegalArgumentException("not an array type", arrayType);
+        if ((arrayLength & 0x7F) != arrayLength) {
+            if ((arrayLength & 0xFF) != arrayLength)
+                throw newIllegalArgumentException("array length is not legal", arrayLength);
+            assert(arrayLength >= 128);
+            if (arrayElement == long.class ||
+                arrayElement == double.class)
+                throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
+        }
+    }
+
+    /**
+     * Adapts this method handle to be {@linkplain #asVarargsCollector variable arity}
+     * if the boolean flag is true, else {@linkplain #asFixedArity fixed arity}.
+     * If the method handle is already of the proper arity mode, it is returned
+     * unchanged.
+     * @apiNote
+     * <p>This method is sometimes useful when adapting a method handle that
+     * may be variable arity, to ensure that the resulting adapter is also
+     * variable arity if and only if the original handle was.  For example,
+     * this code changes the first argument of a handle {@code mh} to {@code int} without
+     * disturbing its variable arity property:
+     * {@code mh.asType(mh.type().changeParameterType(0,int.class))
+     *     .withVarargs(mh.isVarargsCollector())}
+     * <p>
+     * This call is approximately equivalent to the following code:
+     * <blockquote><pre>{@code
+     * if (makeVarargs == isVarargsCollector())
+     *   return this;
+     * else if (makeVarargs)
+     *   return asVarargsCollector(type().lastParameterType());
+     * else
+     *   return return asFixedArity();
+     * }</pre></blockquote>
+     * @param makeVarargs true if the return method handle should have variable arity behavior
+     * @return a method handle of the same type, with possibly adjusted variable arity behavior
+     * @throws IllegalArgumentException if {@code makeVarargs} is true and
+     *         this method handle does not have a trailing array parameter
+     * @since 9
+     * @see #asVarargsCollector
+     * @see #asFixedArity
+     */
+    public MethodHandle withVarargs(boolean makeVarargs) {
+        assert(!isVarargsCollector());  // subclass responsibility
+        if (makeVarargs) {
+           return asVarargsCollector(type().lastParameterType());
+        } else {
+            return this;
+        }
+    }
+
+    /**
+     * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
+     * positional arguments and collects them into an array argument.
+     * The new method handle adapts, as its <i>target</i>,
+     * the current method handle.  The type of the adapter will be
+     * the same as the type of the target, except that a single trailing
+     * parameter (usually of type {@code arrayType}) is replaced by
+     * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
+     * <p>
+     * If the array type differs from the final argument type on the original target,
+     * the original target is adapted to take the array type directly,
+     * as if by a call to {@link #asType asType}.
+     * <p>
+     * When called, the adapter replaces its trailing {@code arrayLength}
+     * arguments by a single new array of type {@code arrayType}, whose elements
+     * comprise (in order) the replaced arguments.
+     * Finally the target is called.
+     * What the target eventually returns is returned unchanged by the adapter.
+     * <p>
+     * (The array may also be a shared constant when {@code arrayLength} is zero.)
+     * <p>
+     * (<em>Note:</em> The {@code arrayType} is often identical to the last
+     * parameter type of the original target.
+     * It is an explicit argument for symmetry with {@code asSpreader}, and also
+     * to allow the target to use a simple {@code Object} as its last parameter type.)
+     * <p>
+     * In order to create a collecting adapter which is not restricted to a particular
+     * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
+     * <p>
+     * Here are some examples of array-collecting method handles:
+     * <blockquote><pre>{@code
+MethodHandle deepToString = publicLookup()
+  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
+assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
+MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
+assertEquals(methodType(String.class, Object.class), ts1.type());
+//assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
+assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
+// arrayType can be a subtype of Object[]
+MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
+assertEquals(methodType(String.class, String.class, String.class), ts2.type());
+assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
+MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
+assertEquals("[]", (String) ts0.invokeExact());
+// collectors can be nested, Lisp-style
+MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
+assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
+// arrayType can be any primitive array type
+MethodHandle bytesToString = publicLookup()
+  .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
+  .asCollector(byte[].class, 3);
+assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
+MethodHandle longsToString = publicLookup()
+  .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
+  .asCollector(long[].class, 1);
+assertEquals("[123]", (String) longsToString.invokeExact((long)123));
+     * }</pre></blockquote>
+     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
+     * @param arrayLength the number of arguments to collect into a new array argument
+     * @return a new method handle which collects some trailing argument
+     *         into an array, before calling the original method handle
+     * @throws NullPointerException if {@code arrayType} is a null reference
+     * @throws IllegalArgumentException if {@code arrayType} is not an array type
+     *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
+     *         or {@code arrayLength} is not a legal array size,
+     *         or the resulting method handle's type would have
+     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
+     * @throws WrongMethodTypeException if the implied {@code asType} call fails
+     * @see #asSpreader
+     * @see #asVarargsCollector
+     */
+    public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
+        return asCollector(type().parameterCount() - 1, arrayType, arrayLength);
+    }
+
+   /**
+     * Makes an <em>array-collecting</em> method handle, which accepts a given number of positional arguments starting
+     * at a given position, and collects them into an array argument. The new method handle adapts, as its
+     * <i>target</i>, the current method handle. The type of the adapter will be the same as the type of the target,
+     * except that the parameter at the position indicated by {@code collectArgPos} (usually of type {@code arrayType})
+     * is replaced by {@code arrayLength} parameters whose type is element type of {@code arrayType}.
+     * <p>
+     * This method behaves very much like {@link #asCollector(Class, int)}, but differs in that its {@code
+     * collectArgPos} argument indicates at which position in the parameter list arguments should be collected. This
+     * index is zero-based.
+     *
+     * @apiNote Examples:
+     * <blockquote><pre>{@code
+    StringWriter swr = new StringWriter();
+    MethodHandle swWrite = LOOKUP.findVirtual(StringWriter.class, "write", methodType(void.class, char[].class, int.class, int.class)).bindTo(swr);
+    MethodHandle swWrite4 = swWrite.asCollector(0, char[].class, 4);
+    swWrite4.invoke('A', 'B', 'C', 'D', 1, 2);
+    assertEquals("BC", swr.toString());
+    swWrite4.invoke('P', 'Q', 'R', 'S', 0, 4);
+    assertEquals("BCPQRS", swr.toString());
+    swWrite4.invoke('W', 'X', 'Y', 'Z', 3, 1);
+    assertEquals("BCPQRSZ", swr.toString());
+     * }</pre></blockquote>
+     * <p>
+     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
+     * variable-arity method handle}, even if the original target method handle was.
+     * @param collectArgPos the zero-based position in the parameter list at which to start collecting.
+     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
+     * @param arrayLength the number of arguments to collect into a new array argument
+     * @return a new method handle which collects some arguments
+     *         into an array, before calling the original method handle
+     * @throws NullPointerException if {@code arrayType} is a null reference
+     * @throws IllegalArgumentException if {@code arrayType} is not an array type
+     *         or {@code arrayType} is not assignable to this method handle's array parameter type,
+     *         or {@code arrayLength} is not a legal array size,
+     *         or {@code collectArgPos} has an illegal value (negative, or greater than the number of arguments),
+     *         or the resulting method handle's type would have
+     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
+     * @throws WrongMethodTypeException if the implied {@code asType} call fails
+     *
+     * @see #asCollector(Class, int)
+     * @since 9
+     */
+    public MethodHandle asCollector(int collectArgPos, Class<?> arrayType, int arrayLength) {
+        asCollectorChecks(arrayType, collectArgPos, arrayLength);
+        // BEGIN Android-changed: Android specific implementation.
+        /*
+        BoundMethodHandle mh = rebind();
+        MethodType resultType = type().asCollectorType(arrayType, collectArgPos, arrayLength);
+        MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
+        LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray);
+        if (lform != null) {
+            return mh.copyWith(resultType, lform);
+        }
+        lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType());
+        return mh.copyWithExtendL(resultType, lform, newArray);
+        */
+        return new Transformers.Collector(this, arrayType, collectArgPos, arrayLength);
+        // END Android-changed: Android specific implementation.
+    }
+
+    /**
+     * See if {@code asCollector} can be validly called with the given arguments.
+     * Return false if the last parameter is not an exact match to arrayType.
+     */
+    /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int pos, int arrayLength) {
+        spreadArrayChecks(arrayType, arrayLength);
+        int nargs = type().parameterCount();
+        if (pos < 0 || pos >= nargs) {
+            throw newIllegalArgumentException("bad collect position");
+        }
+        if (nargs != 0) {
+            Class<?> param = type().parameterType(pos);
+            if (param == arrayType)  return true;
+            if (param.isAssignableFrom(arrayType))  return false;
+        }
+        throw newIllegalArgumentException("array type not assignable to argument", this, arrayType);
+    }
+
+    /**
+     * Makes a <em>variable arity</em> adapter which is able to accept
+     * any number of trailing positional arguments and collect them
+     * into an array argument.
+     * <p>
+     * The type and behavior of the adapter will be the same as
+     * the type and behavior of the target, except that certain
+     * {@code invoke} and {@code asType} requests can lead to
+     * trailing positional arguments being collected into target's
+     * trailing parameter.
+     * Also, the
+     * {@linkplain MethodType#lastParameterType last parameter type}
+     * of the adapter will be
+     * {@code arrayType}, even if the target has a different
+     * last parameter type.
+     * <p>
+     * This transformation may return {@code this} if the method handle is
+     * already of variable arity and its trailing parameter type
+     * is identical to {@code arrayType}.
+     * <p>
+     * When called with {@link #invokeExact invokeExact}, the adapter invokes
+     * the target with no argument changes.
+     * (<em>Note:</em> This behavior is different from a
+     * {@linkplain #asCollector fixed arity collector},
+     * since it accepts a whole array of indeterminate length,
+     * rather than a fixed number of arguments.)
+     * <p>
+     * When called with plain, inexact {@link #invoke invoke}, if the caller
+     * type is the same as the adapter, the adapter invokes the target as with
+     * {@code invokeExact}.
+     * (This is the normal behavior for {@code invoke} when types match.)
+     * <p>
+     * Otherwise, if the caller and adapter arity are the same, and the
+     * trailing parameter type of the caller is a reference type identical to
+     * or assignable to the trailing parameter type of the adapter,
+     * the arguments and return values are converted pairwise,
+     * as if by {@link #asType asType} on a fixed arity
+     * method handle.
+     * <p>
+     * Otherwise, the arities differ, or the adapter's trailing parameter
+     * type is not assignable from the corresponding caller type.
+     * In this case, the adapter replaces all trailing arguments from
+     * the original trailing argument position onward, by
+     * a new array of type {@code arrayType}, whose elements
+     * comprise (in order) the replaced arguments.
+     * <p>
+     * The caller type must provides as least enough arguments,
+     * and of the correct type, to satisfy the target's requirement for
+     * positional arguments before the trailing array argument.
+     * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
+     * where {@code N} is the arity of the target.
+     * Also, there must exist conversions from the incoming arguments
+     * to the target's arguments.
+     * As with other uses of plain {@code invoke}, if these basic
+     * requirements are not fulfilled, a {@code WrongMethodTypeException}
+     * may be thrown.
+     * <p>
+     * In all cases, what the target eventually returns is returned unchanged by the adapter.
+     * <p>
+     * In the final case, it is exactly as if the target method handle were
+     * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
+     * to the arity required by the caller type.
+     * (As with {@code asCollector}, if the array length is zero,
+     * a shared constant may be used instead of a new array.
+     * If the implied call to {@code asCollector} would throw
+     * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
+     * the call to the variable arity adapter must throw
+     * {@code WrongMethodTypeException}.)
+     * <p>
+     * The behavior of {@link #asType asType} is also specialized for
+     * variable arity adapters, to maintain the invariant that
+     * plain, inexact {@code invoke} is always equivalent to an {@code asType}
+     * call to adjust the target type, followed by {@code invokeExact}.
+     * Therefore, a variable arity adapter responds
+     * to an {@code asType} request by building a fixed arity collector,
+     * if and only if the adapter and requested type differ either
+     * in arity or trailing argument type.
+     * The resulting fixed arity collector has its type further adjusted
+     * (if necessary) to the requested type by pairwise conversion,
+     * as if by another application of {@code asType}.
+     * <p>
+     * When a method handle is obtained by executing an {@code ldc} instruction
+     * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
+     * as a variable arity method (with the modifier bit {@code 0x0080}),
+     * the method handle will accept multiple arities, as if the method handle
+     * constant were created by means of a call to {@code asVarargsCollector}.
+     * <p>
+     * In order to create a collecting adapter which collects a predetermined
+     * number of arguments, and whose type reflects this predetermined number,
+     * use {@link #asCollector asCollector} instead.
+     * <p>
+     * No method handle transformations produce new method handles with
+     * variable arity, unless they are documented as doing so.
+     * Therefore, besides {@code asVarargsCollector} and {@code withVarargs},
+     * all methods in {@code MethodHandle} and {@code MethodHandles}
+     * will return a method handle with fixed arity,
+     * except in the cases where they are specified to return their original
+     * operand (e.g., {@code asType} of the method handle's own type).
+     * <p>
+     * Calling {@code asVarargsCollector} on a method handle which is already
+     * of variable arity will produce a method handle with the same type and behavior.
+     * It may (or may not) return the original variable arity method handle.
+     * <p>
+     * Here is an example, of a list-making variable arity method handle:
+     * <blockquote><pre>{@code
+MethodHandle deepToString = publicLookup()
+  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
+MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
+assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
+assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
+assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
+assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
+// findStatic of Arrays.asList(...) produces a variable arity method handle:
+MethodHandle asList = publicLookup()
+  .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
+assertEquals(methodType(List.class, Object[].class), asList.type());
+assert(asList.isVarargsCollector());
+assertEquals("[]", asList.invoke().toString());
+assertEquals("[1]", asList.invoke(1).toString());
+assertEquals("[two, too]", asList.invoke("two", "too").toString());
+String[] argv = { "three", "thee", "tee" };
+assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
+assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
+List ls = (List) asList.invoke((Object)argv);
+assertEquals(1, ls.size());
+assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
+     * }</pre></blockquote>
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * These rules are designed as a dynamically-typed variation
+     * of the Java rules for variable arity methods.
+     * In both cases, callers to a variable arity method or method handle
+     * can either pass zero or more positional arguments, or else pass
+     * pre-collected arrays of any length.  Users should be aware of the
+     * special role of the final argument, and of the effect of a
+     * type match on that final argument, which determines whether
+     * or not a single trailing argument is interpreted as a whole
+     * array or a single element of an array to be collected.
+     * Note that the dynamic type of the trailing argument has no
+     * effect on this decision, only a comparison between the symbolic
+     * type descriptor of the call site and the type descriptor of the method handle.)
+     *
+     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
+     * @return a new method handle which can collect any number of trailing arguments
+     *         into an array, before calling the original method handle
+     * @throws NullPointerException if {@code arrayType} is a null reference
+     * @throws IllegalArgumentException if {@code arrayType} is not an array type
+     *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
+     * @see #asCollector
+     * @see #isVarargsCollector
+     * @see #withVarargs
+     * @see #asFixedArity
+     */
+    public MethodHandle asVarargsCollector(Class<?> arrayType) {
+        Objects.requireNonNull(arrayType);
+        boolean lastMatch = asCollectorChecks(arrayType, type().parameterCount() - 1, 0);
+        if (isVarargsCollector() && lastMatch)
+            return this;
+        // Android-changed: Android specific implementation.
+        // return MethodHandleImpl.makeVarargsCollector(this, arrayType);
+        return new Transformers.VarargsCollector(this);
+    }
+
+    /**
+     * Determines if this method handle
+     * supports {@linkplain #asVarargsCollector variable arity} calls.
+     * Such method handles arise from the following sources:
+     * <ul>
+     * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
+     * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
+     *     which resolves to a variable arity Java method or constructor
+     * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
+     *     which resolves to a variable arity Java method or constructor
+     * </ul>
+     * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
+     * @see #asVarargsCollector
+     * @see #asFixedArity
+     */
+    public boolean isVarargsCollector() {
+        return false;
+    }
+
+    /**
+     * Makes a <em>fixed arity</em> method handle which is otherwise
+     * equivalent to the current method handle.
+     * <p>
+     * If the current method handle is not of
+     * {@linkplain #asVarargsCollector variable arity},
+     * the current method handle is returned.
+     * This is true even if the current method handle
+     * could not be a valid input to {@code asVarargsCollector}.
+     * <p>
+     * Otherwise, the resulting fixed-arity method handle has the same
+     * type and behavior of the current method handle,
+     * except that {@link #isVarargsCollector isVarargsCollector}
+     * will be false.
+     * The fixed-arity method handle may (or may not) be the
+     * a previous argument to {@code asVarargsCollector}.
+     * <p>
+     * Here is an example, of a list-making variable arity method handle:
+     * <blockquote><pre>{@code
+MethodHandle asListVar = publicLookup()
+  .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
+  .asVarargsCollector(Object[].class);
+MethodHandle asListFix = asListVar.asFixedArity();
+assertEquals("[1]", asListVar.invoke(1).toString());
+Exception caught = null;
+try { asListFix.invoke((Object)1); }
+catch (Exception ex) { caught = ex; }
+assert(caught instanceof ClassCastException);
+assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
+try { asListFix.invoke("two", "too"); }
+catch (Exception ex) { caught = ex; }
+assert(caught instanceof WrongMethodTypeException);
+Object[] argv = { "three", "thee", "tee" };
+assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
+assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
+assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
+assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
+     * }</pre></blockquote>
+     *
+     * @return a new method handle which accepts only a fixed number of arguments
+     * @see #asVarargsCollector
+     * @see #isVarargsCollector
+     */
+    public MethodHandle asFixedArity() {
+        // BEGIN Android-changed: Android specific implementation.
+        // assert(!isVarargsCollector());
+        // return this;
+
+        MethodHandle mh = this;
+        if (mh.isVarargsCollector()) {
+            mh = ((Transformers.VarargsCollector) mh).asFixedArity();
+        }
+        assert(!mh.isVarargsCollector());
+        return mh;
+        // END Android-changed: Android specific implementation.
+    }
+
+    /**
+     * Binds a value {@code x} to the first argument of a method handle, without invoking it.
+     * The new method handle adapts, as its <i>target</i>,
+     * the current method handle by binding it to the given argument.
+     * The type of the bound handle will be
+     * the same as the type of the target, except that a single leading
+     * reference parameter will be omitted.
+     * <p>
+     * When called, the bound handle inserts the given value {@code x}
+     * as a new leading argument to the target.  The other arguments are
+     * also passed unchanged.
+     * What the target eventually returns is returned unchanged by the bound handle.
+     * <p>
+     * The reference {@code x} must be convertible to the first parameter
+     * type of the target.
+     * <p>
+     * (<em>Note:</em>  Because method handles are immutable, the target method handle
+     * retains its original type and behavior.)
+     * @param x  the value to bind to the first argument of the target
+     * @return a new method handle which prepends the given value to the incoming
+     *         argument list, before calling the original method handle
+     * @throws IllegalArgumentException if the target does not have a
+     *         leading parameter type that is a reference type
+     * @throws ClassCastException if {@code x} cannot be converted
+     *         to the leading parameter type of the target
+     * @see MethodHandles#insertArguments
+     */
+    public MethodHandle bindTo(Object x) {
+        x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
+        // Android-changed: Android specific implementation.
+        // return bindArgumentL(0, x);
+        return new Transformers.BindTo(this, x);
+    }
+
+    /**
+     * Returns a string representation of the method handle,
+     * starting with the string {@code "MethodHandle"} and
+     * ending with the string representation of the method handle's type.
+     * In other words, this method returns a string equal to the value of:
+     * <blockquote><pre>{@code
+     * "MethodHandle" + type().toString()
+     * }</pre></blockquote>
+     * <p>
+     * (<em>Note:</em>  Future releases of this API may add further information
+     * to the string representation.
+     * Therefore, the present syntax should not be parsed by applications.)
+     *
+     * @return a string representation of the method handle
+     */
+    @Override
+    public String toString() {
+        // Android-removed: Debugging support unused on Android.
+        // if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
+        return standardString();
+    }
+    String standardString() {
+        return "MethodHandle"+type;
+    }
+
+    // BEGIN Android-removed: Debugging support unused on Android.
+    /*
+    /** Return a string with a several lines describing the method handle structure.
+     *  This string would be suitable for display in an IDE debugger.
+     *
+    String debugString() {
+        return type+" : "+internalForm()+internalProperties();
+    }
+    */
+    // END Android-removed: Debugging support unused on Android.
+
+    // BEGIN Android-added: Android specific implementation.
+    /** @hide */
+    public int getHandleKind() {
+        if (handleKind == INVOKE_VAR_HANDLE_EXACT || handleKind == INVOKE_VAR_HANDLE) {
+            // No need to expose Android implementation detail, avoids larger
+            // MethodHandleInfo changes in revealDirect() code path.
+            return INVOKE_VIRTUAL;
+        }
+        return handleKind;
+    }
+
+    /** @hide */
+    protected void transform(EmulatedStackFrame arguments) throws Throwable {
+        throw new AssertionError("MethodHandle.transform should never be called.");
+    }
+
+    /**
+     * Entry back into the runtime to dispatch a MethodHandle with a specific EmulatedStackFrame
+     * containing the arguments to provide.
+     * @param arguments the stack frame holding arguments for the invocation.
+     * @hide
+     */
+    /* package-private */ native void invokeExactWithFrame(EmulatedStackFrame arguments)
+            throws Throwable;
+
+    /**
+     * Creates a copy of this method handle, copying all relevant data.
+     *
+     * @hide
+     */
+    protected MethodHandle duplicate() {
+        try {
+            return (MethodHandle) this.clone();
+        } catch (CloneNotSupportedException cnse) {
+            throw new AssertionError("Subclass of Transformer is not cloneable");
+        }
+    }
+
+    /**
+     * This is the entry point for all transform calls, and dispatches to the protected
+     * transform method. This layer of indirection exists purely for convenience, because
+     * we can invoke-direct on a fixed ArtMethod for all transform variants.
+     *
+     * NOTE: If this extra layer of indirection proves to be a problem, we can get rid
+     * of this layer of indirection at the cost of some additional ugliness.
+     */
+    private void transformInternal(EmulatedStackFrame arguments) throws Throwable {
+        transform(arguments);
+    }
+    // END Android-added: Android specific implementation.
+
+    // BEGIN Android-removed: RI implementation unused on Android.
+    /*
+    //// Implementation methods.
+    //// Sub-classes can override these default implementations.
+    //// All these methods assume arguments are already validated.
+
+    // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
+
+    BoundMethodHandle bindArgumentL(int pos, Object value) {
+        return rebind().bindArgumentL(pos, value);
+    }
+
+    /*non-public*
+    MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
+        if (!member.isVarargs())  return this;
+        Class<?> arrayType = type().lastParameterType();
+        if (arrayType.isArray()) {
+            return MethodHandleImpl.makeVarargsCollector(this, arrayType);
+        }
+        throw member.makeAccessException("cannot make variable arity", null);
+    }
+
+    /*non-public*
+    MethodHandle viewAsType(MethodType newType, boolean strict) {
+        // No actual conversions, just a new view of the same method.
+        // Note that this operation must not produce a DirectMethodHandle,
+        // because retyped DMHs, like any transformed MHs,
+        // cannot be cracked into MethodHandleInfo.
+        assert viewAsTypeChecks(newType, strict);
+        BoundMethodHandle mh = rebind();
+        assert(!((MethodHandle)mh instanceof DirectMethodHandle));
+        return mh.copyWith(newType, mh.form);
+    }
+
+    /*non-public*
+    boolean viewAsTypeChecks(MethodType newType, boolean strict) {
+        if (strict) {
+            assert(type().isViewableAs(newType, true))
+                : Arrays.asList(this, newType);
+        } else {
+            assert(type().basicType().isViewableAs(newType.basicType(), true))
+                : Arrays.asList(this, newType);
+        }
+        return true;
+    }
+
+    // Decoding
+
+    /*non-public*
+    LambdaForm internalForm() {
+        return form;
+    }
+
+    /*non-public*
+    MemberName internalMemberName() {
+        return null;  // DMH returns DMH.member
+    }
+
+    /*non-public*
+    Class<?> internalCallerClass() {
+        return null;  // caller-bound MH for @CallerSensitive method returns caller
+    }
+
+    /*non-public*
+    MethodHandleImpl.Intrinsic intrinsicName() {
+        // no special intrinsic meaning to most MHs
+        return MethodHandleImpl.Intrinsic.NONE;
+    }
+
+    /*non-public*
+    MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) {
+        if (member != null) {
+            return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial);
+        } else if (internalMemberName() == null) {
+            // The required internaMemberName is null, and this MH (like most) doesn't have one.
+            return this;
+        } else {
+            // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
+            MethodHandle result = rebind();
+            assert (result.internalMemberName() == null);
+            return result;
+        }
+    }
+
+    /*non-public*
+    boolean isInvokeSpecial() {
+        return false;  // DMH.Special returns true
+    }
+
+    /*non-public*
+    Object internalValues() {
+        return null;
+    }
+
+    /*non-public*
+    Object internalProperties() {
+        // Override to something to follow this.form, like "\n& FOO=bar"
+        return "";
+    }
+
+    //// Method handle implementation methods.
+    //// Sub-classes can override these default implementations.
+    //// All these methods assume arguments are already validated.
+
+    /*non-public*
+    abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
+
+    /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH.
+     *  Many transforms are implemented only for BMHs.
+     *  @return a behaviorally equivalent BMH
+     *
+    abstract BoundMethodHandle rebind();
+
+    /**
+     * Replace the old lambda form of this method handle with a new one.
+     * The new one must be functionally equivalent to the old one.
+     * Threads may continue running the old form indefinitely,
+     * but it is likely that the new one will be preferred for new executions.
+     * Use with discretion.
+     *
+    /*non-public*
+    void updateForm(LambdaForm newForm) {
+        assert(newForm.customized == null || newForm.customized == this);
+        if (form == newForm)  return;
+        newForm.prepare();  // as in MethodHandle.<init>
+        UNSAFE.putObject(this, FORM_OFFSET, newForm);
+        UNSAFE.fullFence();
+    }
+
+    /** Craft a LambdaForm customized for this particular MethodHandle *
+    /*non-public*
+    void customize() {
+        if (form.customized == null) {
+            LambdaForm newForm = form.customize(this);
+            updateForm(newForm);
+        } else {
+            assert(form.customized == this);
+        }
+    }
+
+    private static final long FORM_OFFSET;
+    static {
+        try {
+            FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form"));
+        } catch (ReflectiveOperationException ex) {
+            throw newInternalError(ex);
+        }
+    }
+    */
+    // END Android-removed: RI implementation unused on Android.
+}
diff --git a/android-35/java/lang/invoke/MethodHandleImpl.java b/android-35/java/lang/invoke/MethodHandleImpl.java
new file mode 100644
index 0000000..a72b07b
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodHandleImpl.java
@@ -0,0 +1,199 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  The Android Open Source
+ * Project designates this particular file as subject to the "Classpath"
+ * exception as provided by The Android Open Source Project in the LICENSE
+ * file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package java.lang.invoke;
+
+import java.lang.reflect.Constructor;
+import java.lang.reflect.Member;
+import java.lang.reflect.Method;
+import java.lang.reflect.Modifier;
+
+// Android-changed: Android specific implementation.
+// The whole class was implemented from scratch for the Android runtime based
+// on the specification of the MethodHandle class.
+// The code does not originate from upstream OpenJDK.
+/**
+ * A method handle that's directly associated with an ArtField or an ArtMethod and
+ * specifies no additional transformations.
+ *
+ * @hide
+ */
+public class MethodHandleImpl extends MethodHandle implements Cloneable {
+    private HandleInfo info;
+
+    MethodHandleImpl(long artFieldOrMethod, int handleKind, MethodType type) {
+        super(artFieldOrMethod, handleKind, type);
+    }
+
+    @Override
+    public Object clone() throws CloneNotSupportedException {
+        return super.clone();
+    }
+
+    MethodHandleInfo reveal() {
+        if (info == null) {
+            final Member member = getMemberInternal();
+            info = new HandleInfo(member, this);
+        }
+
+        return info;
+    }
+
+    /**
+     * Materialize a member from this method handle's ArtField or ArtMethod pointer.
+     */
+    public native Member getMemberInternal();
+
+    /**
+     * Implementation of {@code MethodHandleInfo} in terms of the handle being cracked
+     * and its corresponding {@code java.lang.reflect.Member}.
+     */
+    static class HandleInfo implements MethodHandleInfo {
+        private final Member member;
+        private final MethodHandle handle;
+
+        HandleInfo(Member member, MethodHandle handle) {
+            this.member = member;
+            this.handle = handle;
+        }
+
+        @Override
+        public int getReferenceKind() {
+            switch (handle.getHandleKind()) {
+                case INVOKE_VIRTUAL: {
+                    if (member.getDeclaringClass().isInterface()) {
+                        return REF_invokeInterface;
+                    } else {
+                        return REF_invokeVirtual;
+                    }
+                }
+
+                case INVOKE_DIRECT: {
+                    if (member instanceof Constructor) {
+                        return REF_newInvokeSpecial;
+                    } else {
+                        return REF_invokeSpecial;
+                    }
+                }
+
+                case INVOKE_SUPER:
+                    return MethodHandleInfo.REF_invokeSpecial;
+                case INVOKE_STATIC:
+                    return MethodHandleInfo.REF_invokeStatic;
+                case IGET:
+                    return MethodHandleInfo.REF_getField;
+                case IPUT:
+                    return MethodHandleInfo.REF_putField;
+                case SGET:
+                    return MethodHandleInfo.REF_getStatic;
+                case SPUT:
+                    return MethodHandleInfo.REF_putStatic;
+                default:
+                    throw new AssertionError("Unexpected handle kind: " + handle.getHandleKind());
+            }
+        }
+
+        @Override
+        public Class<?> getDeclaringClass() {
+            return member.getDeclaringClass();
+        }
+
+        @Override
+        public String getName() {
+            if (member instanceof Constructor) {
+                return "<init>";
+            }
+
+            return member.getName();
+        }
+
+        @Override
+        public MethodType getMethodType() {
+            // The "nominal" type of a cracked method handle is the same as the type
+            // of the handle itself, except in the cases enumerated below.
+            MethodType handleType = handle.type();
+
+            boolean omitLeadingParam = false;
+
+            // For constructs, the return type is always void.class, and not the type of
+            // the object returned. We also need to omit the leading reference, which is
+            // nominally the type of the object being constructed.
+            if (member instanceof Constructor) {
+                handleType = handleType.changeReturnType(void.class);
+                omitLeadingParam = true;
+            }
+
+            // For instance field gets/puts and instance method gets/puts, we omit the
+            // leading reference parameter to |this|.
+            switch (handle.getHandleKind()) {
+                case IGET:
+                case IPUT:
+                case INVOKE_INTERFACE:
+                case INVOKE_DIRECT:
+                case INVOKE_VIRTUAL:
+                case INVOKE_SUPER:
+                    omitLeadingParam = true;
+            }
+
+            return omitLeadingParam ? handleType.dropParameterTypes(0, 1) : handleType;
+        }
+
+        @Override
+        public <T extends Member> T reflectAs(Class<T> expected, MethodHandles.Lookup lookup) {
+            try {
+                final Class declaringClass = member.getDeclaringClass();
+                if (Modifier.isNative(getModifiers()) &&
+                        (MethodHandle.class.isAssignableFrom(declaringClass)
+                                || VarHandle.class.isAssignableFrom(declaringClass))) {
+                    if (member instanceof Method) {
+                        Method m = (Method) member;
+                        if (m.isVarArgs()) {
+                            // Signature-polymorphic methods should not be reflected as there
+                            // is no support for invoking them via reflection.
+                            //
+                            // We've identified this method as signature-polymorphic due to
+                            // its flags (var-args and native) and its class.
+                            throw new IllegalArgumentException(
+                                    "Reflecting signature polymorphic method");
+                        }
+                    }
+                }
+                lookup.checkAccess(
+                        declaringClass, declaringClass, member.getModifiers(), member.getName());
+            } catch (IllegalAccessException exception) {
+                throw new IllegalArgumentException("Unable to access member.", exception);
+            }
+
+            return (T) member;
+        }
+
+        @Override
+        public int getModifiers() {
+            return member.getModifiers();
+        }
+
+        @Override
+        public String toString() {
+            return MethodHandleInfo.toString(
+                    getReferenceKind(), getDeclaringClass(), getName(), getMethodType());
+        }
+    }
+}
diff --git a/android-35/java/lang/invoke/MethodHandleInfo.java b/android-35/java/lang/invoke/MethodHandleInfo.java
new file mode 100644
index 0000000..356768d
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodHandleInfo.java
@@ -0,0 +1,321 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import java.lang.reflect.*;
+import java.util.*;
+import java.lang.invoke.MethodHandleNatives.Constants;
+import java.lang.invoke.MethodHandles.Lookup;
+import static java.lang.invoke.MethodHandleStatics.*;
+
+/**
+ * A symbolic reference obtained by cracking a direct method handle
+ * into its consitutent symbolic parts.
+ * To crack a direct method handle, call {@link Lookup#revealDirect Lookup.revealDirect}.
+ * <h1><a name="directmh"></a>Direct Method Handles</h1>
+ * A <em>direct method handle</em> represents a method, constructor, or field without
+ * any intervening argument bindings or other transformations.
+ * The method, constructor, or field referred to by a direct method handle is called
+ * its <em>underlying member</em>.
+ * Direct method handles may be obtained in any of these ways:
+ * <ul>
+ * <li>By executing an {@code ldc} instruction on a {@code CONSTANT_MethodHandle} constant.
+ *     (See the Java Virtual Machine Specification, sections 4.4.8 and 5.4.3.)
+ * <li>By calling one of the <a href="MethodHandles.Lookup.html#lookups">Lookup Factory Methods</a>,
+ *     such as {@link Lookup#findVirtual Lookup.findVirtual},
+ *     to resolve a symbolic reference into a method handle.
+ *     A symbolic reference consists of a class, name string, and type.
+ * <li>By calling the factory method {@link Lookup#unreflect Lookup.unreflect}
+ *     or {@link Lookup#unreflectSpecial Lookup.unreflectSpecial}
+ *     to convert a {@link Method} into a method handle.
+ * <li>By calling the factory method {@link Lookup#unreflectConstructor Lookup.unreflectConstructor}
+ *     to convert a {@link Constructor} into a method handle.
+ * <li>By calling the factory method {@link Lookup#unreflectGetter Lookup.unreflectGetter}
+ *     or {@link Lookup#unreflectSetter Lookup.unreflectSetter}
+ *     to convert a {@link Field} into a method handle.
+ * </ul>
+ *
+ * <h1>Restrictions on Cracking</h1>
+ * Given a suitable {@code Lookup} object, it is possible to crack any direct method handle
+ * to recover a symbolic reference for the underlying method, constructor, or field.
+ * Cracking must be done via a {@code Lookup} object equivalent to that which created
+ * the target method handle, or which has enough access permissions to recreate
+ * an equivalent method handle.
+ * <p>
+ * If the underlying method is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>,
+ * the direct method handle will have been "bound" to a particular caller class, the
+ * {@linkplain java.lang.invoke.MethodHandles.Lookup#lookupClass() lookup class}
+ * of the lookup object used to create it.
+ * Cracking this method handle with a different lookup class will fail
+ * even if the underlying method is public (like {@code Class.forName}).
+ * <p>
+ * The requirement of lookup object matching provides a "fast fail" behavior
+ * for programs which may otherwise trust erroneous revelation of a method
+ * handle with symbolic information (or caller binding) from an unexpected scope.
+ * Use {@link java.lang.invoke.MethodHandles#reflectAs} to override this limitation.
+ *
+ * <h1><a name="refkinds"></a>Reference kinds</h1>
+ * The <a href="MethodHandles.Lookup.html#lookups">Lookup Factory Methods</a>
+ * correspond to all major use cases for methods, constructors, and fields.
+ * These use cases may be distinguished using small integers as follows:
+ * <table border=1 cellpadding=5 summary="reference kinds">
+ * <tr><th>reference kind</th><th>descriptive name</th><th>scope</th><th>member</th><th>behavior</th></tr>
+ * <tr>
+ *     <td>{@code 1}</td><td>{@code REF_getField}</td><td>{@code class}</td>
+ *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 2}</td><td>{@code REF_getStatic}</td><td>{@code class} or {@code interface}</td>
+ *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 3}</td><td>{@code REF_putField}</td><td>{@code class}</td>
+ *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 4}</td><td>{@code REF_putStatic}</td><td>{@code class}</td>
+ *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 5}</td><td>{@code REF_invokeVirtual}</td><td>{@code class}</td>
+ *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 6}</td><td>{@code REF_invokeStatic}</td><td>{@code class} or {@code interface}</td>
+ *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 7}</td><td>{@code REF_invokeSpecial}</td><td>{@code class} or {@code interface}</td>
+ *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 8}</td><td>{@code REF_newInvokeSpecial}</td><td>{@code class}</td>
+ *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
+ * </tr>
+ * <tr>
+ *     <td>{@code 9}</td><td>{@code REF_invokeInterface}</td><td>{@code interface}</td>
+ *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
+ * </tr>
+ * </table>
+ * @since 1.8
+ */
+public
+interface MethodHandleInfo {
+    /**
+     * A direct method handle reference kind,
+     * as defined in the <a href="MethodHandleInfo.html#refkinds">table above</a>.
+     */
+    public static final int
+        REF_getField                = Constants.REF_getField,
+        REF_getStatic               = Constants.REF_getStatic,
+        REF_putField                = Constants.REF_putField,
+        REF_putStatic               = Constants.REF_putStatic,
+        REF_invokeVirtual           = Constants.REF_invokeVirtual,
+        REF_invokeStatic            = Constants.REF_invokeStatic,
+        REF_invokeSpecial           = Constants.REF_invokeSpecial,
+        REF_newInvokeSpecial        = Constants.REF_newInvokeSpecial,
+        REF_invokeInterface         = Constants.REF_invokeInterface;
+
+    /**
+     * Returns the reference kind of the cracked method handle, which in turn
+     * determines whether the method handle's underlying member was a constructor, method, or field.
+     * See the <a href="MethodHandleInfo.html#refkinds">table above</a> for definitions.
+     * @return the integer code for the kind of reference used to access the underlying member
+     */
+    public int getReferenceKind();
+
+    /**
+     * Returns the class in which the cracked method handle's underlying member was defined.
+     * @return the declaring class of the underlying member
+     */
+    public Class<?> getDeclaringClass();
+
+    /**
+     * Returns the name of the cracked method handle's underlying member.
+     * This is {@code "<init>"} if the underlying member was a constructor,
+     * else it is a simple method name or field name.
+     * @return the simple name of the underlying member
+     */
+    public String getName();
+
+    /**
+     * Returns the nominal type of the cracked symbolic reference, expressed as a method type.
+     * If the reference is to a constructor, the return type will be {@code void}.
+     * If it is to a non-static method, the method type will not mention the {@code this} parameter.
+     * If it is to a field and the requested access is to read the field,
+     * the method type will have no parameters and return the field type.
+     * If it is to a field and the requested access is to write the field,
+     * the method type will have one parameter of the field type and return {@code void}.
+     * <p>
+     * Note that original direct method handle may include a leading {@code this} parameter,
+     * or (in the case of a constructor) will replace the {@code void} return type
+     * with the constructed class.
+     * The nominal type does not include any {@code this} parameter,
+     * and (in the case of a constructor) will return {@code void}.
+     * @return the type of the underlying member, expressed as a method type
+     */
+    public MethodType getMethodType();
+
+    // Utility methods.
+    // NOTE: class/name/type and reference kind constitute a symbolic reference
+    // member and modifiers are an add-on, derived from Core Reflection (or the equivalent)
+
+    /**
+     * Reflects the underlying member as a method, constructor, or field object.
+     * If the underlying member is public, it is reflected as if by
+     * {@code getMethod}, {@code getConstructor}, or {@code getField}.
+     * Otherwise, it is reflected as if by
+     * {@code getDeclaredMethod}, {@code getDeclaredConstructor}, or {@code getDeclaredField}.
+     * The underlying member must be accessible to the given lookup object.
+     * @param <T> the desired type of the result, either {@link Member} or a subtype
+     * @param expected a class object representing the desired result type {@code T}
+     * @param lookup the lookup object that created this MethodHandleInfo, or one with equivalent access privileges
+     * @return a reference to the method, constructor, or field object
+     * @exception ClassCastException if the member is not of the expected type
+     * @exception NullPointerException if either argument is {@code null}
+     * @exception IllegalArgumentException if the underlying member is not accessible to the given lookup object
+     */
+    public <T extends Member> T reflectAs(Class<T> expected, Lookup lookup);
+
+    /**
+     * Returns the access modifiers of the underlying member.
+     * @return the Java language modifiers for underlying member,
+     *         or -1 if the member cannot be accessed
+     * @see Modifier
+     * @see #reflectAs
+     */
+    public int getModifiers();
+
+    /**
+     * Determines if the underlying member was a variable arity method or constructor.
+     * Such members are represented by method handles that are varargs collectors.
+     * @implSpec
+     * This produces a result equivalent to:
+     * <pre>{@code
+     *     getReferenceKind() >= REF_invokeVirtual && Modifier.isTransient(getModifiers())
+     * }</pre>
+     *
+     *
+     * @return {@code true} if and only if the underlying member was declared with variable arity.
+     */
+    // spelling derived from java.lang.reflect.Executable, not MethodHandle.isVarargsCollector
+    public default boolean isVarArgs()  {
+        // fields are never varargs:
+        if (MethodHandleNatives.refKindIsField((byte) getReferenceKind()))
+            return false;
+        // not in the public API: Modifier.VARARGS
+        final int ACC_VARARGS = 0x00000080;  // from JVMS 4.6 (Table 4.20)
+        assert(ACC_VARARGS == Modifier.TRANSIENT);
+        return Modifier.isTransient(getModifiers());
+    }
+
+    /**
+     * Returns the descriptive name of the given reference kind,
+     * as defined in the <a href="MethodHandleInfo.html#refkinds">table above</a>.
+     * The conventional prefix "REF_" is omitted.
+     * @param referenceKind an integer code for a kind of reference used to access a class member
+     * @return a mixed-case string such as {@code "getField"}
+     * @exception IllegalArgumentException if the argument is not a valid
+     *            <a href="MethodHandleInfo.html#refkinds">reference kind number</a>
+     */
+    public static String referenceKindToString(int referenceKind) {
+        if (!MethodHandleNatives.refKindIsValid(referenceKind))
+            throw newIllegalArgumentException("invalid reference kind", referenceKind);
+        return MethodHandleNatives.refKindName((byte)referenceKind);
+    }
+
+    /**
+     * Returns a string representation for a {@code MethodHandleInfo},
+     * given the four parts of its symbolic reference.
+     * This is defined to be of the form {@code "RK C.N:MT"}, where {@code RK} is the
+     * {@linkplain #referenceKindToString reference kind string} for {@code kind},
+     * {@code C} is the {@linkplain java.lang.Class#getName name} of {@code defc}
+     * {@code N} is the {@code name}, and
+     * {@code MT} is the {@code type}.
+     * These four values may be obtained from the
+     * {@linkplain #getReferenceKind reference kind},
+     * {@linkplain #getDeclaringClass declaring class},
+     * {@linkplain #getName member name},
+     * and {@linkplain #getMethodType method type}
+     * of a {@code MethodHandleInfo} object.
+     *
+     * @implSpec
+     * This produces a result equivalent to:
+     * <pre>{@code
+     *     String.format("%s %s.%s:%s", referenceKindToString(kind), defc.getName(), name, type)
+     * }</pre>
+     *
+     * @param kind the {@linkplain #getReferenceKind reference kind} part of the symbolic reference
+     * @param defc the {@linkplain #getDeclaringClass declaring class} part of the symbolic reference
+     * @param name the {@linkplain #getName member name} part of the symbolic reference
+     * @param type the {@linkplain #getMethodType method type} part of the symbolic reference
+     * @return a string of the form {@code "RK C.N:MT"}
+     * @exception IllegalArgumentException if the first argument is not a valid
+     *            <a href="MethodHandleInfo.html#refkinds">reference kind number</a>
+     * @exception NullPointerException if any reference argument is {@code null}
+     */
+    public static String toString(int kind, Class<?> defc, String name, MethodType type) {
+        Objects.requireNonNull(name); Objects.requireNonNull(type);
+        return String.format("%s %s.%s:%s", referenceKindToString(kind), defc.getName(), name, type);
+    }
+
+    // BEGIN Android-added: refKind...() methods needed for API compatibility with 26.
+    // These methods were accidentally added into the public API in API level. They are now
+    // deprecated as a prelude to being removed from the public API.
+    /**
+     * @deprecated This internal method was accidentally added to API 26 and must not be used. No
+     *             replacement is available but it is possible to replicate using information from
+     *             the <a href="MethodHandleInfo.html#refkinds">table above</a>, e.g.
+     *             {@code refKind >= 1 && refKind <= 9}. There are no guarantees that this logic
+     *             will work if future versions extend the table.
+     */
+    @Deprecated
+    static boolean refKindIsValid(int refKind) {
+        return MethodHandleNatives.refKindIsValid(refKind);
+    }
+
+    /**
+     * @deprecated This internal method was accidentally added to API 26 and must not be used. No
+     *             replacement is available but it is possible to replicate using information from
+     *             the <a href="MethodHandleInfo.html#refkinds">table above</a>, e.g.
+     *             {@code refKind >= 1 && refKind <= 4}.  There are no guarantees that this logic
+     *             will work if future versions extend the table.
+     */
+    @Deprecated
+    static boolean refKindIsField(int refKind) {
+        return MethodHandleNatives.refKindIsField((byte) refKind);
+    }
+
+    /**
+     * @deprecated This internal method was accidentally added to API 26 and must not be used. Use
+     *             {@link MethodHandleInfo#referenceKindToString(int)} instead.
+     */
+    @Deprecated
+    static String refKindName(int refKind) {
+        return MethodHandleNatives.refKindName((byte) refKind);
+    }
+    // END Android-added: refKind...() methods needed for API compatibility with 26.
+}
diff --git a/android-35/java/lang/invoke/MethodHandleNatives.java b/android-35/java/lang/invoke/MethodHandleNatives.java
new file mode 100644
index 0000000..94e17bb
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodHandleNatives.java
@@ -0,0 +1,580 @@
+/*
+ * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import static java.lang.invoke.MethodHandleNatives.Constants.*;
+
+/**
+ * The JVM interface for the method handles package is all here.
+ * This is an interface internal and private to an implementation of JSR 292.
+ * <em>This class is not part of the JSR 292 standard.</em>
+ * @author jrose
+ */
+class MethodHandleNatives {
+
+    // BEGIN Android-removed: Unused implementation code.
+    /*
+    private MethodHandleNatives() { } // static only
+
+    /// MemberName support
+
+    static native void init(MemberName self, Object ref);
+    static native void expand(MemberName self);
+    static native MemberName resolve(MemberName self, Class<?> caller) throws LinkageError, ClassNotFoundException;
+    static native int getMembers(Class<?> defc, String matchName, String matchSig,
+            int matchFlags, Class<?> caller, int skip, MemberName[] results);
+
+    /// Field layout queries parallel to sun.misc.Unsafe:
+    static native long objectFieldOffset(MemberName self);  // e.g., returns vmindex
+    static native long staticFieldOffset(MemberName self);  // e.g., returns vmindex
+    static native Object staticFieldBase(MemberName self);  // e.g., returns clazz
+    static native Object getMemberVMInfo(MemberName self);  // returns {vmindex,vmtarget}
+
+    /// MethodHandle support
+
+    /** Fetch MH-related JVM parameter.
+     *  which=0 retrieves MethodHandlePushLimit
+     *  which=1 retrieves stack slot push size (in address units)
+     *
+    static native int getConstant(int which);
+
+    static final boolean COUNT_GWT;
+
+    /// CallSite support
+
+    /** Tell the JVM that we need to change the target of a CallSite. *
+    static native void setCallSiteTargetNormal(CallSite site, MethodHandle target);
+    static native void setCallSiteTargetVolatile(CallSite site, MethodHandle target);
+
+    private static native void registerNatives();
+    static {
+        registerNatives();
+        COUNT_GWT                   = getConstant(Constants.GC_COUNT_GWT) != 0;
+
+        // The JVM calls MethodHandleNatives.<clinit>.  Cascade the <clinit> calls as needed:
+        MethodHandleImpl.initStatics();
+    }
+    */
+    // END Android-removed: Unused implementation code.
+
+    // All compile-time constants go here.
+    // There is an opportunity to check them against the JVM's idea of them.
+    static class Constants {
+        Constants() { } // static only
+        // BEGIN Android-removed: Unused implementation code.
+        /*
+        // MethodHandleImpl
+        static final int // for getConstant
+                GC_COUNT_GWT = 4,
+                GC_LAMBDA_SUPPORT = 5;
+
+        // MemberName
+        // The JVM uses values of -2 and above for vtable indexes.
+        // Field values are simple positive offsets.
+        // Ref: src/share/vm/oops/methodOop.hpp
+        // This value is negative enough to avoid such numbers,
+        // but not too negative.
+        static final int
+                MN_IS_METHOD           = 0x00010000, // method (not constructor)
+                MN_IS_CONSTRUCTOR      = 0x00020000, // constructor
+                MN_IS_FIELD            = 0x00040000, // field
+                MN_IS_TYPE             = 0x00080000, // nested type
+                MN_CALLER_SENSITIVE    = 0x00100000, // @CallerSensitive annotation detected
+                MN_REFERENCE_KIND_SHIFT = 24, // refKind
+                MN_REFERENCE_KIND_MASK = 0x0F000000 >> MN_REFERENCE_KIND_SHIFT,
+                // The SEARCH_* bits are not for MN.flags but for the matchFlags argument of MHN.getMembers:
+                MN_SEARCH_SUPERCLASSES = 0x00100000,
+                MN_SEARCH_INTERFACES   = 0x00200000;
+
+        /**
+         * Basic types as encoded in the JVM.  These code values are not
+         * intended for use outside this class.  They are used as part of
+         * a private interface between the JVM and this class.
+         *
+        static final int
+            T_BOOLEAN  =  4,
+            T_CHAR     =  5,
+            T_FLOAT    =  6,
+            T_DOUBLE   =  7,
+            T_BYTE     =  8,
+            T_SHORT    =  9,
+            T_INT      = 10,
+            T_LONG     = 11,
+            T_OBJECT   = 12,
+            //T_ARRAY    = 13
+            T_VOID     = 14,
+            //T_ADDRESS  = 15
+            T_ILLEGAL  = 99;
+
+        /**
+         * Constant pool entry types.
+         *
+        static final byte
+            CONSTANT_Utf8                = 1,
+            CONSTANT_Integer             = 3,
+            CONSTANT_Float               = 4,
+            CONSTANT_Long                = 5,
+            CONSTANT_Double              = 6,
+            CONSTANT_Class               = 7,
+            CONSTANT_String              = 8,
+            CONSTANT_Fieldref            = 9,
+            CONSTANT_Methodref           = 10,
+            CONSTANT_InterfaceMethodref  = 11,
+            CONSTANT_NameAndType         = 12,
+            CONSTANT_MethodHandle        = 15,  // JSR 292
+            CONSTANT_MethodType          = 16,  // JSR 292
+            CONSTANT_InvokeDynamic       = 18,
+            CONSTANT_LIMIT               = 19;   // Limit to tags found in classfiles
+
+        /**
+         * Access modifier flags.
+         *
+        static final char
+            ACC_PUBLIC                 = 0x0001,
+            ACC_PRIVATE                = 0x0002,
+            ACC_PROTECTED              = 0x0004,
+            ACC_STATIC                 = 0x0008,
+            ACC_FINAL                  = 0x0010,
+            ACC_SYNCHRONIZED           = 0x0020,
+            ACC_VOLATILE               = 0x0040,
+            ACC_TRANSIENT              = 0x0080,
+            ACC_NATIVE                 = 0x0100,
+            ACC_INTERFACE              = 0x0200,
+            ACC_ABSTRACT               = 0x0400,
+            ACC_STRICT                 = 0x0800,
+            ACC_SYNTHETIC              = 0x1000,
+            ACC_ANNOTATION             = 0x2000,
+            ACC_ENUM                   = 0x4000,
+            // aliases:
+            ACC_SUPER                  = ACC_SYNCHRONIZED,
+            ACC_BRIDGE                 = ACC_VOLATILE,
+            ACC_VARARGS                = ACC_TRANSIENT;
+        */
+        // END Android-removed: Unused implementation code.
+
+        /**
+         * Constant pool reference-kind codes, as used by CONSTANT_MethodHandle CP entries.
+         */
+        static final byte
+            REF_NONE                    = 0,  // null value
+            REF_getField                = 1,
+            REF_getStatic               = 2,
+            REF_putField                = 3,
+            REF_putStatic               = 4,
+            REF_invokeVirtual           = 5,
+            REF_invokeStatic            = 6,
+            REF_invokeSpecial           = 7,
+            REF_newInvokeSpecial        = 8,
+            REF_invokeInterface         = 9,
+            REF_LIMIT                  = 10;
+    }
+
+    static boolean refKindIsValid(int refKind) {
+        return (refKind > REF_NONE && refKind < REF_LIMIT);
+    }
+    static boolean refKindIsField(byte refKind) {
+        assert(refKindIsValid(refKind));
+        return (refKind <= REF_putStatic);
+    }
+    // BEGIN Android-removed: Unused implementation code.
+    /*
+    static boolean refKindIsGetter(byte refKind) {
+        assert(refKindIsValid(refKind));
+        return (refKind <= REF_getStatic);
+    }
+    static boolean refKindIsSetter(byte refKind) {
+        return refKindIsField(refKind) && !refKindIsGetter(refKind);
+    }
+    static boolean refKindIsMethod(byte refKind) {
+        return !refKindIsField(refKind) && (refKind != REF_newInvokeSpecial);
+    }
+    static boolean refKindIsConstructor(byte refKind) {
+        return (refKind == REF_newInvokeSpecial);
+    }
+    static boolean refKindHasReceiver(byte refKind) {
+        assert(refKindIsValid(refKind));
+        return (refKind & 1) != 0;
+    }
+    static boolean refKindIsStatic(byte refKind) {
+        return !refKindHasReceiver(refKind) && (refKind != REF_newInvokeSpecial);
+    }
+    static boolean refKindDoesDispatch(byte refKind) {
+        assert(refKindIsValid(refKind));
+        return (refKind == REF_invokeVirtual ||
+                refKind == REF_invokeInterface);
+    }
+    static {
+        final int HR_MASK = ((1 << REF_getField) |
+                             (1 << REF_putField) |
+                             (1 << REF_invokeVirtual) |
+                             (1 << REF_invokeSpecial) |
+                             (1 << REF_invokeInterface)
+                            );
+        for (byte refKind = REF_NONE+1; refKind < REF_LIMIT; refKind++) {
+            assert(refKindHasReceiver(refKind) == (((1<<refKind) & HR_MASK) != 0)) : refKind;
+        }
+    }
+    */
+    // END Android-removed: Unused implementation code.
+    static String refKindName(byte refKind) {
+        assert(refKindIsValid(refKind));
+        switch (refKind) {
+        case REF_getField:          return "getField";
+        case REF_getStatic:         return "getStatic";
+        case REF_putField:          return "putField";
+        case REF_putStatic:         return "putStatic";
+        case REF_invokeVirtual:     return "invokeVirtual";
+        case REF_invokeStatic:      return "invokeStatic";
+        case REF_invokeSpecial:     return "invokeSpecial";
+        case REF_newInvokeSpecial:  return "newInvokeSpecial";
+        case REF_invokeInterface:   return "invokeInterface";
+        default:                    return "REF_???";
+        }
+    }
+    // BEGIN Android-removed: Unused implementation code.
+    /*
+    private static native int getNamedCon(int which, Object[] name);
+    static boolean verifyConstants() {
+        Object[] box = { null };
+        for (int i = 0; ; i++) {
+            box[0] = null;
+            int vmval = getNamedCon(i, box);
+            if (box[0] == null)  break;
+            String name = (String) box[0];
+            try {
+                Field con = Constants.class.getDeclaredField(name);
+                int jval = con.getInt(null);
+                if (jval == vmval)  continue;
+                String err = (name+": JVM has "+vmval+" while Java has "+jval);
+                if (name.equals("CONV_OP_LIMIT")) {
+                    System.err.println("warning: "+err);
+                    continue;
+                }
+                throw new InternalError(err);
+            } catch (NoSuchFieldException | IllegalAccessException ex) {
+                String err = (name+": JVM has "+vmval+" which Java does not define");
+                // ignore exotic ops the JVM cares about; we just wont issue them
+                //System.err.println("warning: "+err);
+                continue;
+            }
+        }
+        return true;
+    }
+    static {
+        assert(verifyConstants());
+    }
+
+    // Up-calls from the JVM.
+    // These must NOT be public.
+
+    /**
+     * The JVM is linking an invokedynamic instruction.  Create a reified call site for it.
+     *
+    static MemberName linkCallSite(Object callerObj,
+                                   Object bootstrapMethodObj,
+                                   Object nameObj, Object typeObj,
+                                   Object staticArguments,
+                                   Object[] appendixResult) {
+        MethodHandle bootstrapMethod = (MethodHandle)bootstrapMethodObj;
+        Class<?> caller = (Class<?>)callerObj;
+        String name = nameObj.toString().intern();
+        MethodType type = (MethodType)typeObj;
+        if (!TRACE_METHOD_LINKAGE)
+            return linkCallSiteImpl(caller, bootstrapMethod, name, type,
+                                    staticArguments, appendixResult);
+        return linkCallSiteTracing(caller, bootstrapMethod, name, type,
+                                   staticArguments, appendixResult);
+    }
+    static MemberName linkCallSiteImpl(Class<?> caller,
+                                       MethodHandle bootstrapMethod,
+                                       String name, MethodType type,
+                                       Object staticArguments,
+                                       Object[] appendixResult) {
+        CallSite callSite = CallSite.makeSite(bootstrapMethod,
+                                              name,
+                                              type,
+                                              staticArguments,
+                                              caller);
+        if (callSite instanceof ConstantCallSite) {
+            appendixResult[0] = callSite.dynamicInvoker();
+            return Invokers.linkToTargetMethod(type);
+        } else {
+            appendixResult[0] = callSite;
+            return Invokers.linkToCallSiteMethod(type);
+        }
+    }
+    // Tracing logic:
+    static MemberName linkCallSiteTracing(Class<?> caller,
+                                          MethodHandle bootstrapMethod,
+                                          String name, MethodType type,
+                                          Object staticArguments,
+                                          Object[] appendixResult) {
+        Object bsmReference = bootstrapMethod.internalMemberName();
+        if (bsmReference == null)  bsmReference = bootstrapMethod;
+        Object staticArglist = (staticArguments instanceof Object[] ?
+                                java.util.Arrays.asList((Object[]) staticArguments) :
+                                staticArguments);
+        System.out.println("linkCallSite "+caller.getName()+" "+
+                           bsmReference+" "+
+                           name+type+"/"+staticArglist);
+        try {
+            MemberName res = linkCallSiteImpl(caller, bootstrapMethod, name, type,
+                                              staticArguments, appendixResult);
+            System.out.println("linkCallSite => "+res+" + "+appendixResult[0]);
+            return res;
+        } catch (Throwable ex) {
+            System.out.println("linkCallSite => throw "+ex);
+            throw ex;
+        }
+    }
+
+    /**
+     * The JVM wants a pointer to a MethodType.  Oblige it by finding or creating one.
+     *
+    static MethodType findMethodHandleType(Class<?> rtype, Class<?>[] ptypes) {
+        return MethodType.makeImpl(rtype, ptypes, true);
+    }
+
+    /**
+     * The JVM wants to link a call site that requires a dynamic type check.
+     * Name is a type-checking invoker, invokeExact or invoke.
+     * Return a JVM method (MemberName) to handle the invoking.
+     * The method assumes the following arguments on the stack:
+     * 0: the method handle being invoked
+     * 1-N: the arguments to the method handle invocation
+     * N+1: an optional, implicitly added argument (typically the given MethodType)
+     * <p>
+     * The nominal method at such a call site is an instance of
+     * a signature-polymorphic method (see @PolymorphicSignature).
+     * Such method instances are user-visible entities which are
+     * "split" from the generic placeholder method in {@code MethodHandle}.
+     * (Note that the placeholder method is not identical with any of
+     * its instances.  If invoked reflectively, is guaranteed to throw an
+     * {@code UnsupportedOperationException}.)
+     * If the signature-polymorphic method instance is ever reified,
+     * it appears as a "copy" of the original placeholder
+     * (a native final member of {@code MethodHandle}) except
+     * that its type descriptor has shape required by the instance,
+     * and the method instance is <em>not</em> varargs.
+     * The method instance is also marked synthetic, since the
+     * method (by definition) does not appear in Java source code.
+     * <p>
+     * The JVM is allowed to reify this method as instance metadata.
+     * For example, {@code invokeBasic} is always reified.
+     * But the JVM may instead call {@code linkMethod}.
+     * If the result is an * ordered pair of a {@code (method, appendix)},
+     * the method gets all the arguments (0..N inclusive)
+     * plus the appendix (N+1), and uses the appendix to complete the call.
+     * In this way, one reusable method (called a "linker method")
+     * can perform the function of any number of polymorphic instance
+     * methods.
+     * <p>
+     * Linker methods are allowed to be weakly typed, with any or
+     * all references rewritten to {@code Object} and any primitives
+     * (except {@code long}/{@code float}/{@code double})
+     * rewritten to {@code int}.
+     * A linker method is trusted to return a strongly typed result,
+     * according to the specific method type descriptor of the
+     * signature-polymorphic instance it is emulating.
+     * This can involve (as necessary) a dynamic check using
+     * data extracted from the appendix argument.
+     * <p>
+     * The JVM does not inspect the appendix, other than to pass
+     * it verbatim to the linker method at every call.
+     * This means that the JDK runtime has wide latitude
+     * for choosing the shape of each linker method and its
+     * corresponding appendix.
+     * Linker methods should be generated from {@code LambdaForm}s
+     * so that they do not become visible on stack traces.
+     * <p>
+     * The {@code linkMethod} call is free to omit the appendix
+     * (returning null) and instead emulate the required function
+     * completely in the linker method.
+     * As a corner case, if N==255, no appendix is possible.
+     * In this case, the method returned must be custom-generated to
+     * to perform any needed type checking.
+     * <p>
+     * If the JVM does not reify a method at a call site, but instead
+     * calls {@code linkMethod}, the corresponding call represented
+     * in the bytecodes may mention a valid method which is not
+     * representable with a {@code MemberName}.
+     * Therefore, use cases for {@code linkMethod} tend to correspond to
+     * special cases in reflective code such as {@code findVirtual}
+     * or {@code revealDirect}.
+     *
+    static MemberName linkMethod(Class<?> callerClass, int refKind,
+                                 Class<?> defc, String name, Object type,
+                                 Object[] appendixResult) {
+        if (!TRACE_METHOD_LINKAGE)
+            return linkMethodImpl(callerClass, refKind, defc, name, type, appendixResult);
+        return linkMethodTracing(callerClass, refKind, defc, name, type, appendixResult);
+    }
+    static MemberName linkMethodImpl(Class<?> callerClass, int refKind,
+                                     Class<?> defc, String name, Object type,
+                                     Object[] appendixResult) {
+        try {
+            if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
+                return Invokers.methodHandleInvokeLinkerMethod(name, fixMethodType(callerClass, type), appendixResult);
+            }
+        } catch (Throwable ex) {
+            if (ex instanceof LinkageError)
+                throw (LinkageError) ex;
+            else
+                throw new LinkageError(ex.getMessage(), ex);
+        }
+        throw new LinkageError("no such method "+defc.getName()+"."+name+type);
+    }
+    private static MethodType fixMethodType(Class<?> callerClass, Object type) {
+        if (type instanceof MethodType)
+            return (MethodType) type;
+        else
+            return MethodType.fromMethodDescriptorString((String)type, callerClass.getClassLoader());
+    }
+    // Tracing logic:
+    static MemberName linkMethodTracing(Class<?> callerClass, int refKind,
+                                        Class<?> defc, String name, Object type,
+                                        Object[] appendixResult) {
+        System.out.println("linkMethod "+defc.getName()+"."+
+                           name+type+"/"+Integer.toHexString(refKind));
+        try {
+            MemberName res = linkMethodImpl(callerClass, refKind, defc, name, type, appendixResult);
+            System.out.println("linkMethod => "+res+" + "+appendixResult[0]);
+            return res;
+        } catch (Throwable ex) {
+            System.out.println("linkMethod => throw "+ex);
+            throw ex;
+        }
+    }
+
+
+    /**
+     * The JVM is resolving a CONSTANT_MethodHandle CP entry.  And it wants our help.
+     * It will make an up-call to this method.  (Do not change the name or signature.)
+     * The type argument is a Class for field requests and a MethodType for non-fields.
+     * <p>
+     * Recent versions of the JVM may also pass a resolved MemberName for the type.
+     * In that case, the name is ignored and may be null.
+     *
+    static MethodHandle linkMethodHandleConstant(Class<?> callerClass, int refKind,
+                                                 Class<?> defc, String name, Object type) {
+        try {
+            Lookup lookup = IMPL_LOOKUP.in(callerClass);
+            assert(refKindIsValid(refKind));
+            return lookup.linkMethodHandleConstant((byte) refKind, defc, name, type);
+        } catch (IllegalAccessException ex) {
+            Throwable cause = ex.getCause();
+            if (cause instanceof AbstractMethodError) {
+                throw (AbstractMethodError) cause;
+            } else {
+                Error err = new IllegalAccessError(ex.getMessage());
+                throw initCauseFrom(err, ex);
+            }
+        } catch (NoSuchMethodException ex) {
+            Error err = new NoSuchMethodError(ex.getMessage());
+            throw initCauseFrom(err, ex);
+        } catch (NoSuchFieldException ex) {
+            Error err = new NoSuchFieldError(ex.getMessage());
+            throw initCauseFrom(err, ex);
+        } catch (ReflectiveOperationException ex) {
+            Error err = new IncompatibleClassChangeError();
+            throw initCauseFrom(err, ex);
+        }
+    }
+    */
+    // END Android-removed: Unused implementation code.
+
+    // BEGIN Android-added: Add mapLookupExceptionToError(ex) from OpenJDK 17. http://b/270028670
+    /**
+     * Map a reflective exception to a linkage error.
+     */
+    static LinkageError mapLookupExceptionToError(ReflectiveOperationException ex) {
+        LinkageError err;
+        if (ex instanceof IllegalAccessException) {
+            Throwable cause = ex.getCause();
+            if (cause instanceof AbstractMethodError) {
+                return (AbstractMethodError) cause;
+            } else {
+                err = new IllegalAccessError(ex.getMessage());
+            }
+        } else if (ex instanceof NoSuchMethodException) {
+            err = new NoSuchMethodError(ex.getMessage());
+        } else if (ex instanceof NoSuchFieldException) {
+            err = new NoSuchFieldError(ex.getMessage());
+        } else {
+            err = new IncompatibleClassChangeError();
+        }
+        return initCauseFrom(err, ex);
+    }
+
+    /**
+     * Use best possible cause for err.initCause(), substituting the
+     * cause for err itself if the cause has the same (or better) type.
+     */
+    static <E extends Error> E initCauseFrom(E err, Exception ex) {
+        Throwable th = ex.getCause();
+        @SuppressWarnings("unchecked")
+        final Class<E> Eclass = (Class<E>) err.getClass();
+        if (Eclass.isInstance(th))
+            return Eclass.cast(th);
+        err.initCause(th == null ? ex : th);
+        return err;
+    }
+    // END Android-added: Add mapLookupExceptionToError(ex) from OpenJDK 17. http://b/270028670
+
+    // BEGIN Android-removed: Unused implementation code.
+    /**
+     * Is this method a caller-sensitive method?
+     * I.e., does it call Reflection.getCallerClass or a similer method
+     * to ask about the identity of its caller?
+     *
+    static boolean isCallerSensitive(MemberName mem) {
+        if (!mem.isInvocable())  return false;  // fields are not caller sensitive
+
+        return mem.isCallerSensitive() || canBeCalledVirtual(mem);
+    }
+
+    static boolean canBeCalledVirtual(MemberName mem) {
+        assert(mem.isInvocable());
+        Class<?> defc = mem.getDeclaringClass();
+        switch (mem.getName()) {
+        case "checkMemberAccess":
+            return canBeCalledVirtual(mem, java.lang.SecurityManager.class);
+        case "getContextClassLoader":
+            return canBeCalledVirtual(mem, java.lang.Thread.class);
+        }
+        return false;
+    }
+
+    static boolean canBeCalledVirtual(MemberName symbolicRef, Class<?> definingClass) {
+        Class<?> symbolicRefClass = symbolicRef.getDeclaringClass();
+        if (symbolicRefClass == definingClass)  return true;
+        if (symbolicRef.isStatic() || symbolicRef.isPrivate())  return false;
+        return (definingClass.isAssignableFrom(symbolicRefClass) ||  // Msym overrides Mdef
+                symbolicRefClass.isInterface());                     // Mdef implements Msym
+    }
+    */
+    // END Android-removed: Unused implementation code.
+}
diff --git a/android-35/java/lang/invoke/MethodHandleStatics.java b/android-35/java/lang/invoke/MethodHandleStatics.java
new file mode 100644
index 0000000..90265cc
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodHandleStatics.java
@@ -0,0 +1,169 @@
+/*
+ * Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import sun.misc.Unsafe;
+
+/**
+ * This class consists exclusively of static names internal to the
+ * method handle implementation.
+ * Usage:  {@code import static java.lang.invoke.MethodHandleStatics.*}
+ * @author John Rose, JSR 292 EG
+ */
+/*non-public*/ class MethodHandleStatics {
+
+    private MethodHandleStatics() { }  // do not instantiate
+
+    static final Unsafe UNSAFE = Unsafe.getUnsafe();
+
+    // Android-changed: Remove debugging related static fields.
+    // They are unused and have no equivalent on Android.
+    /*
+    static final boolean DEBUG_METHOD_HANDLE_NAMES;
+    static final boolean DUMP_CLASS_FILES;
+    static final boolean TRACE_INTERPRETER;
+    static final boolean TRACE_METHOD_LINKAGE;
+    static final int COMPILE_THRESHOLD;
+    static final int DONT_INLINE_THRESHOLD;
+    static final int PROFILE_LEVEL;
+    static final boolean PROFILE_GWT;
+    static final int CUSTOMIZE_THRESHOLD;
+
+    static {
+        final Object[] values = new Object[9];
+        AccessController.doPrivileged(new PrivilegedAction<Void>() {
+                public Void run() {
+                    values[0] = Boolean.getBoolean("java.lang.invoke.MethodHandle.DEBUG_NAMES");
+                    values[1] = Boolean.getBoolean("java.lang.invoke.MethodHandle.DUMP_CLASS_FILES");
+                    values[2] = Boolean.getBoolean("java.lang.invoke.MethodHandle.TRACE_INTERPRETER");
+                    values[3] = Boolean.getBoolean("java.lang.invoke.MethodHandle.TRACE_METHOD_LINKAGE");
+                    values[4] = Integer.getInteger("java.lang.invoke.MethodHandle.COMPILE_THRESHOLD", 0);
+                    values[5] = Integer.getInteger("java.lang.invoke.MethodHandle.DONT_INLINE_THRESHOLD", 30);
+                    values[6] = Integer.getInteger("java.lang.invoke.MethodHandle.PROFILE_LEVEL", 0);
+                    values[7] = Boolean.parseBoolean(System.getProperty("java.lang.invoke.MethodHandle.PROFILE_GWT", "true"));
+                    values[8] = Integer.getInteger("java.lang.invoke.MethodHandle.CUSTOMIZE_THRESHOLD", 127);
+                    return null;
+                }
+            });
+        DEBUG_METHOD_HANDLE_NAMES = (Boolean) values[0];
+        DUMP_CLASS_FILES          = (Boolean) values[1];
+        TRACE_INTERPRETER         = (Boolean) values[2];
+        TRACE_METHOD_LINKAGE      = (Boolean) values[3];
+        COMPILE_THRESHOLD         = (Integer) values[4];
+        DONT_INLINE_THRESHOLD     = (Integer) values[5];
+        PROFILE_LEVEL             = (Integer) values[6];
+        PROFILE_GWT               = (Boolean) values[7];
+        CUSTOMIZE_THRESHOLD       = (Integer) values[8];
+
+        if (CUSTOMIZE_THRESHOLD < -1 || CUSTOMIZE_THRESHOLD > 127) {
+            throw newInternalError("CUSTOMIZE_THRESHOLD should be in [-1...127] range");
+        }
+    }
+
+    /** Tell if any of the debugging switches are turned on.
+     *  If this is the case, it is reasonable to perform extra checks or save extra information.
+     *
+    /*non-public* static boolean debugEnabled() {
+        return (DEBUG_METHOD_HANDLE_NAMES |
+                DUMP_CLASS_FILES |
+                TRACE_INTERPRETER |
+                TRACE_METHOD_LINKAGE);
+    }
+    */
+
+    // Android-removed: Methods operating on MethodHandles that are currently unused on Android.
+    /*
+    /*non-public* static String getNameString(MethodHandle target, MethodType type) {
+        if (type == null)
+            type = target.type();
+        MemberName name = null;
+        if (target != null)
+            name = target.internalMemberName();
+        if (name == null)
+            return "invoke" + type;
+        return name.getName() + type;
+    }
+
+    /*non-public* static String getNameString(MethodHandle target, MethodHandle typeHolder) {
+        return getNameString(target, typeHolder == null ? (MethodType) null : typeHolder.type());
+    }
+
+    /*non-public* static String getNameString(MethodHandle target) {
+        return getNameString(target, (MethodType) null);
+    }
+
+    /*non-public* static String addTypeString(Object obj, MethodHandle target) {
+        String str = String.valueOf(obj);
+        if (target == null)  return str;
+        int paren = str.indexOf('(');
+        if (paren >= 0) str = str.substring(0, paren);
+        return str + target.type();
+    }
+    */
+
+    // handy shared exception makers (they simplify the common case code)
+    /*non-public*/ static InternalError newInternalError(String message) {
+        return new InternalError(message);
+    }
+    /*non-public*/ static InternalError newInternalError(String message, Throwable cause) {
+        return new InternalError(message, cause);
+    }
+    /*non-public*/ static InternalError newInternalError(Throwable cause) {
+        return new InternalError(cause);
+    }
+    /*non-public*/ static RuntimeException newIllegalStateException(String message) {
+        return new IllegalStateException(message);
+    }
+    /*non-public*/ static RuntimeException newIllegalStateException(String message, Object obj) {
+        return new IllegalStateException(message(message, obj));
+    }
+    /*non-public*/ static RuntimeException newIllegalArgumentException(String message) {
+        return new IllegalArgumentException(message);
+    }
+    /*non-public*/ static RuntimeException newIllegalArgumentException(String message, Object obj) {
+        return new IllegalArgumentException(message(message, obj));
+    }
+    /*non-public*/ static RuntimeException newIllegalArgumentException(String message, Object obj, Object obj2) {
+        return new IllegalArgumentException(message(message, obj, obj2));
+    }
+    /** Propagate unchecked exceptions and errors, but wrap anything checked and throw that instead. */
+    /*non-public*/ static Error uncaughtException(Throwable ex) {
+        if (ex instanceof Error)  throw (Error) ex;
+        if (ex instanceof RuntimeException)  throw (RuntimeException) ex;
+        throw newInternalError("uncaught exception", ex);
+    }
+    static Error NYI() {
+        throw new AssertionError("NYI");
+    }
+    private static String message(String message, Object obj) {
+        if (obj != null)  message = message + ": " + obj;
+        return message;
+    }
+    private static String message(String message, Object obj, Object obj2) {
+        if (obj != null || obj2 != null)  message = message + ": " + obj + ", " + obj2;
+        return message;
+    }
+}
diff --git a/android-35/java/lang/invoke/MethodHandles.java b/android-35/java/lang/invoke/MethodHandles.java
new file mode 100644
index 0000000..31756bf
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodHandles.java
@@ -0,0 +1,5913 @@
+/*
+ * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import sun.invoke.util.VerifyAccess;
+import sun.invoke.util.Wrapper;
+import sun.reflect.Reflection;
+
+import java.lang.reflect.*;
+import java.nio.ByteOrder;
+import java.util.List;
+import java.util.Arrays;
+import java.util.ArrayList;
+import java.util.Iterator;
+import java.util.NoSuchElementException;
+import java.util.Objects;
+import java.util.stream.Collectors;
+import java.util.stream.Stream;
+
+import static java.lang.invoke.MethodHandleStatics.*;
+import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
+import static java.lang.invoke.MethodType.methodType;
+
+/**
+ * This class consists exclusively of static methods that operate on or return
+ * method handles. They fall into several categories:
+ * <ul>
+ * <li>Lookup methods which help create method handles for methods and fields.
+ * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
+ * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
+ * </ul>
+ * <p>
+ * @author John Rose, JSR 292 EG
+ * @since 1.7
+ */
+public class MethodHandles {
+
+    private MethodHandles() { }  // do not instantiate
+
+    // Android-changed: We do not use MemberName / MethodHandleImpl.
+    //
+    // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
+    // static { MethodHandleImpl.initStatics(); }
+    // See IMPL_LOOKUP below.
+
+    //// Method handle creation from ordinary methods.
+
+    /**
+     * Returns a {@link Lookup lookup object} with
+     * full capabilities to emulate all supported bytecode behaviors of the caller.
+     * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
+     * Factory methods on the lookup object can create
+     * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
+     * for any member that the caller has access to via bytecodes,
+     * including protected and private fields and methods.
+     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
+     * Do not store it in place where untrusted code can access it.
+     * <p>
+     * This method is caller sensitive, which means that it may return different
+     * values to different callers.
+     * <p>
+     * For any given caller class {@code C}, the lookup object returned by this call
+     * has equivalent capabilities to any lookup object
+     * supplied by the JVM to the bootstrap method of an
+     * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
+     * executing in the same caller class {@code C}.
+     * @return a lookup object for the caller of this method, with private access
+     */
+    // Android-changed: Remove caller sensitive.
+    // @CallerSensitive
+    public static Lookup lookup() {
+        return new Lookup(Reflection.getCallerClass());
+    }
+
+    /**
+     * Returns a {@link Lookup lookup object} which is trusted minimally.
+     * It can only be used to create method handles to
+     * publicly accessible fields and methods.
+     * <p>
+     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
+     * of this lookup object will be {@link java.lang.Object}.
+     *
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * The lookup class can be changed to any other class {@code C} using an expression of the form
+     * {@link Lookup#in publicLookup().in(C.class)}.
+     * Since all classes have equal access to public names,
+     * such a change would confer no new access rights.
+     * A public lookup object is always subject to
+     * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
+     * Also, it cannot access
+     * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
+     * @return a lookup object which is trusted minimally
+     */
+    public static Lookup publicLookup() {
+        return Lookup.PUBLIC_LOOKUP;
+    }
+
+    // Android-removed: Documentation related to the security manager and module checks
+    /**
+     * Returns a {@link Lookup lookup object} with full capabilities to emulate all
+     * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
+     * private access</a>, on a target class.
+     * @param targetClass the target class
+     * @param lookup the caller lookup object
+     * @return a lookup object for the target class, with private access
+     * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class
+     * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
+     * @throws IllegalAccessException is not thrown on Android
+     * @since 9
+     */
+    public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
+        // Android-removed: SecurityManager calls
+        // SecurityManager sm = System.getSecurityManager();
+        // if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
+        if (targetClass.isPrimitive())
+            throw new IllegalArgumentException(targetClass + " is a primitive class");
+        if (targetClass.isArray())
+            throw new IllegalArgumentException(targetClass + " is an array class");
+        // BEGIN Android-removed: There is no module information on Android
+        /**
+         * Module targetModule = targetClass.getModule();
+         * Module callerModule = lookup.lookupClass().getModule();
+         * if (!callerModule.canRead(targetModule))
+         *     throw new IllegalAccessException(callerModule + " does not read " + targetModule);
+         * if (targetModule.isNamed()) {
+         *     String pn = targetClass.getPackageName();
+         *     assert pn.length() > 0 : "unnamed package cannot be in named module";
+         *     if (!targetModule.isOpen(pn, callerModule))
+         *         throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
+         * }
+         * if ((lookup.lookupModes() & Lookup.MODULE) == 0)
+         *     throw new IllegalAccessException("lookup does not have MODULE lookup mode");
+         * if (!callerModule.isNamed() && targetModule.isNamed()) {
+         *     IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
+         *     if (logger != null) {
+         *         logger.logIfOpenedForIllegalAccess(lookup, targetClass);
+         *     }
+         * }
+         */
+        // END Android-removed: There is no module information on Android
+        return new Lookup(targetClass);
+    }
+
+
+    /**
+     * Performs an unchecked "crack" of a
+     * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
+     * The result is as if the user had obtained a lookup object capable enough
+     * to crack the target method handle, called
+     * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
+     * on the target to obtain its symbolic reference, and then called
+     * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
+     * to resolve the symbolic reference to a member.
+     * <p>
+     * If there is a security manager, its {@code checkPermission} method
+     * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
+     * @param <T> the desired type of the result, either {@link Member} or a subtype
+     * @param target a direct method handle to crack into symbolic reference components
+     * @param expected a class object representing the desired result type {@code T}
+     * @return a reference to the method, constructor, or field object
+     * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
+     * @exception NullPointerException if either argument is {@code null}
+     * @exception IllegalArgumentException if the target is not a direct method handle
+     * @exception ClassCastException if the member is not of the expected type
+     * @since 1.8
+     */
+    public static <T extends Member> T
+    reflectAs(Class<T> expected, MethodHandle target) {
+        MethodHandleImpl directTarget = getMethodHandleImpl(target);
+        // Given that this is specified to be an "unchecked" crack, we can directly allocate
+        // a member from the underlying ArtField / Method and bypass all associated access checks.
+        return expected.cast(directTarget.getMemberInternal());
+    }
+
+    /**
+     * A <em>lookup object</em> is a factory for creating method handles,
+     * when the creation requires access checking.
+     * Method handles do not perform
+     * access checks when they are called, but rather when they are created.
+     * Therefore, method handle access
+     * restrictions must be enforced when a method handle is created.
+     * The caller class against which those restrictions are enforced
+     * is known as the {@linkplain #lookupClass lookup class}.
+     * <p>
+     * A lookup class which needs to create method handles will call
+     * {@link #lookup MethodHandles.lookup} to create a factory for itself.
+     * When the {@code Lookup} factory object is created, the identity of the lookup class is
+     * determined, and securely stored in the {@code Lookup} object.
+     * The lookup class (or its delegates) may then use factory methods
+     * on the {@code Lookup} object to create method handles for access-checked members.
+     * This includes all methods, constructors, and fields which are allowed to the lookup class,
+     * even private ones.
+     *
+     * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
+     * The factory methods on a {@code Lookup} object correspond to all major
+     * use cases for methods, constructors, and fields.
+     * Each method handle created by a factory method is the functional
+     * equivalent of a particular <em>bytecode behavior</em>.
+     * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
+     * Here is a summary of the correspondence between these factory methods and
+     * the behavior the resulting method handles:
+     * <table border=1 cellpadding=5 summary="lookup method behaviors">
+     * <tr>
+     *     <th><a name="equiv"></a>lookup expression</th>
+     *     <th>member</th>
+     *     <th>bytecode behavior</th>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
+     *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
+     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
+     *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
+     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
+     *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
+     *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
+     *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
+     *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
+     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
+     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
+     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
+     *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
+     * </tr>
+     * <tr>
+     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
+     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
+     * </tr>
+     * </table>
+     *
+     * Here, the type {@code C} is the class or interface being searched for a member,
+     * documented as a parameter named {@code refc} in the lookup methods.
+     * The method type {@code MT} is composed from the return type {@code T}
+     * and the sequence of argument types {@code A*}.
+     * The constructor also has a sequence of argument types {@code A*} and
+     * is deemed to return the newly-created object of type {@code C}.
+     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
+     * The formal parameter {@code this} stands for the self-reference of type {@code C};
+     * if it is present, it is always the leading argument to the method handle invocation.
+     * (In the case of some {@code protected} members, {@code this} may be
+     * restricted in type to the lookup class; see below.)
+     * The name {@code arg} stands for all the other method handle arguments.
+     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
+     * stands for a null reference if the accessed method or field is static,
+     * and {@code this} otherwise.
+     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
+     * for reflective objects corresponding to the given members.
+     * <p>
+     * In cases where the given member is of variable arity (i.e., a method or constructor)
+     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
+     * In all other cases, the returned method handle will be of fixed arity.
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * The equivalence between looked-up method handles and underlying
+     * class members and bytecode behaviors
+     * can break down in a few ways:
+     * <ul style="font-size:smaller;">
+     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
+     * the lookup can still succeed, even when there is no equivalent
+     * Java expression or bytecoded constant.
+     * <li>Likewise, if {@code T} or {@code MT}
+     * is not symbolically accessible from the lookup class's loader,
+     * the lookup can still succeed.
+     * For example, lookups for {@code MethodHandle.invokeExact} and
+     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
+     * <li>If there is a security manager installed, it can forbid the lookup
+     * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
+     * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
+     * constant is not subject to security manager checks.
+     * <li>If the looked-up method has a
+     * <a href="MethodHandle.html#maxarity">very large arity</a>,
+     * the method handle creation may fail, due to the method handle
+     * type having too many parameters.
+     * </ul>
+     *
+     * <h1><a name="access"></a>Access checking</h1>
+     * Access checks are applied in the factory methods of {@code Lookup},
+     * when a method handle is created.
+     * This is a key difference from the Core Reflection API, since
+     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
+     * performs access checking against every caller, on every call.
+     * <p>
+     * All access checks start from a {@code Lookup} object, which
+     * compares its recorded lookup class against all requests to
+     * create method handles.
+     * A single {@code Lookup} object can be used to create any number
+     * of access-checked method handles, all checked against a single
+     * lookup class.
+     * <p>
+     * A {@code Lookup} object can be shared with other trusted code,
+     * such as a metaobject protocol.
+     * A shared {@code Lookup} object delegates the capability
+     * to create method handles on private members of the lookup class.
+     * Even if privileged code uses the {@code Lookup} object,
+     * the access checking is confined to the privileges of the
+     * original lookup class.
+     * <p>
+     * A lookup can fail, because
+     * the containing class is not accessible to the lookup class, or
+     * because the desired class member is missing, or because the
+     * desired class member is not accessible to the lookup class, or
+     * because the lookup object is not trusted enough to access the member.
+     * In any of these cases, a {@code ReflectiveOperationException} will be
+     * thrown from the attempted lookup.  The exact class will be one of
+     * the following:
+     * <ul>
+     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
+     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
+     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
+     * </ul>
+     * <p>
+     * In general, the conditions under which a method handle may be
+     * looked up for a method {@code M} are no more restrictive than the conditions
+     * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
+     * Where the JVM would raise exceptions like {@code NoSuchMethodError},
+     * a method handle lookup will generally raise a corresponding
+     * checked exception, such as {@code NoSuchMethodException}.
+     * And the effect of invoking the method handle resulting from the lookup
+     * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
+     * to executing the compiled, verified, and resolved call to {@code M}.
+     * The same point is true of fields and constructors.
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * Access checks only apply to named and reflected methods,
+     * constructors, and fields.
+     * Other method handle creation methods, such as
+     * {@link MethodHandle#asType MethodHandle.asType},
+     * do not require any access checks, and are used
+     * independently of any {@code Lookup} object.
+     * <p>
+     * If the desired member is {@code protected}, the usual JVM rules apply,
+     * including the requirement that the lookup class must be either be in the
+     * same package as the desired member, or must inherit that member.
+     * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
+     * In addition, if the desired member is a non-static field or method
+     * in a different package, the resulting method handle may only be applied
+     * to objects of the lookup class or one of its subclasses.
+     * This requirement is enforced by narrowing the type of the leading
+     * {@code this} parameter from {@code C}
+     * (which will necessarily be a superclass of the lookup class)
+     * to the lookup class itself.
+     * <p>
+     * The JVM imposes a similar requirement on {@code invokespecial} instruction,
+     * that the receiver argument must match both the resolved method <em>and</em>
+     * the current class.  Again, this requirement is enforced by narrowing the
+     * type of the leading parameter to the resulting method handle.
+     * (See the Java Virtual Machine Specification, section 4.10.1.9.)
+     * <p>
+     * The JVM represents constructors and static initializer blocks as internal methods
+     * with special names ({@code "<init>"} and {@code "<clinit>"}).
+     * The internal syntax of invocation instructions allows them to refer to such internal
+     * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
+     * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
+     * <p>
+     * In some cases, access between nested classes is obtained by the Java compiler by creating
+     * an wrapper method to access a private method of another class
+     * in the same top-level declaration.
+     * For example, a nested class {@code C.D}
+     * can access private members within other related classes such as
+     * {@code C}, {@code C.D.E}, or {@code C.B},
+     * but the Java compiler may need to generate wrapper methods in
+     * those related classes.  In such cases, a {@code Lookup} object on
+     * {@code C.E} would be unable to those private members.
+     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
+     * which can transform a lookup on {@code C.E} into one on any of those other
+     * classes, without special elevation of privilege.
+     * <p>
+     * The accesses permitted to a given lookup object may be limited,
+     * according to its set of {@link #lookupModes lookupModes},
+     * to a subset of members normally accessible to the lookup class.
+     * For example, the {@link #publicLookup publicLookup}
+     * method produces a lookup object which is only allowed to access
+     * public members in public classes.
+     * The caller sensitive method {@link #lookup lookup}
+     * produces a lookup object with full capabilities relative to
+     * its caller class, to emulate all supported bytecode behaviors.
+     * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
+     * with fewer access modes than the original lookup object.
+     *
+     * <p style="font-size:smaller;">
+     * <a name="privacc"></a>
+     * <em>Discussion of private access:</em>
+     * We say that a lookup has <em>private access</em>
+     * if its {@linkplain #lookupModes lookup modes}
+     * include the possibility of accessing {@code private} members.
+     * As documented in the relevant methods elsewhere,
+     * only lookups with private access possess the following capabilities:
+     * <ul style="font-size:smaller;">
+     * <li>access private fields, methods, and constructors of the lookup class
+     * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
+     *     such as {@code Class.forName}
+     * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
+     * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
+     *     for classes accessible to the lookup class
+     * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
+     *     within the same package member
+     * </ul>
+     * <p style="font-size:smaller;">
+     * Each of these permissions is a consequence of the fact that a lookup object
+     * with private access can be securely traced back to an originating class,
+     * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
+     * can be reliably determined and emulated by method handles.
+     *
+     * <h1><a name="secmgr"></a>Security manager interactions</h1>
+     * Although bytecode instructions can only refer to classes in
+     * a related class loader, this API can search for methods in any
+     * class, as long as a reference to its {@code Class} object is
+     * available.  Such cross-loader references are also possible with the
+     * Core Reflection API, and are impossible to bytecode instructions
+     * such as {@code invokestatic} or {@code getfield}.
+     * There is a {@linkplain java.lang.SecurityManager security manager API}
+     * to allow applications to check such cross-loader references.
+     * These checks apply to both the {@code MethodHandles.Lookup} API
+     * and the Core Reflection API
+     * (as found on {@link java.lang.Class Class}).
+     * <p>
+     * If a security manager is present, member lookups are subject to
+     * additional checks.
+     * From one to three calls are made to the security manager.
+     * Any of these calls can refuse access by throwing a
+     * {@link java.lang.SecurityException SecurityException}.
+     * Define {@code smgr} as the security manager,
+     * {@code lookc} as the lookup class of the current lookup object,
+     * {@code refc} as the containing class in which the member
+     * is being sought, and {@code defc} as the class in which the
+     * member is actually defined.
+     * The value {@code lookc} is defined as <em>not present</em>
+     * if the current lookup object does not have
+     * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
+     * The calls are made according to the following rules:
+     * <ul>
+     * <li><b>Step 1:</b>
+     *     If {@code lookc} is not present, or if its class loader is not
+     *     the same as or an ancestor of the class loader of {@code refc},
+     *     then {@link SecurityManager#checkPackageAccess
+     *     smgr.checkPackageAccess(refcPkg)} is called,
+     *     where {@code refcPkg} is the package of {@code refc}.
+     * <li><b>Step 2:</b>
+     *     If the retrieved member is not public and
+     *     {@code lookc} is not present, then
+     *     {@link SecurityManager#checkPermission smgr.checkPermission}
+     *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
+     * <li><b>Step 3:</b>
+     *     If the retrieved member is not public,
+     *     and if {@code lookc} is not present,
+     *     and if {@code defc} and {@code refc} are different,
+     *     then {@link SecurityManager#checkPackageAccess
+     *     smgr.checkPackageAccess(defcPkg)} is called,
+     *     where {@code defcPkg} is the package of {@code defc}.
+     * </ul>
+     * Security checks are performed after other access checks have passed.
+     * Therefore, the above rules presuppose a member that is public,
+     * or else that is being accessed from a lookup class that has
+     * rights to access the member.
+     *
+     * <h1><a name="callsens"></a>Caller sensitive methods</h1>
+     * A small number of Java methods have a special property called caller sensitivity.
+     * A <em>caller-sensitive</em> method can behave differently depending on the
+     * identity of its immediate caller.
+     * <p>
+     * If a method handle for a caller-sensitive method is requested,
+     * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
+     * but they take account of the lookup class in a special way.
+     * The resulting method handle behaves as if it were called
+     * from an instruction contained in the lookup class,
+     * so that the caller-sensitive method detects the lookup class.
+     * (By contrast, the invoker of the method handle is disregarded.)
+     * Thus, in the case of caller-sensitive methods,
+     * different lookup classes may give rise to
+     * differently behaving method handles.
+     * <p>
+     * In cases where the lookup object is
+     * {@link #publicLookup publicLookup()},
+     * or some other lookup object without
+     * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
+     * the lookup class is disregarded.
+     * In such cases, no caller-sensitive method handle can be created,
+     * access is forbidden, and the lookup fails with an
+     * {@code IllegalAccessException}.
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * For example, the caller-sensitive method
+     * {@link java.lang.Class#forName(String) Class.forName(x)}
+     * can return varying classes or throw varying exceptions,
+     * depending on the class loader of the class that calls it.
+     * A public lookup of {@code Class.forName} will fail, because
+     * there is no reasonable way to determine its bytecode behavior.
+     * <p style="font-size:smaller;">
+     * If an application caches method handles for broad sharing,
+     * it should use {@code publicLookup()} to create them.
+     * If there is a lookup of {@code Class.forName}, it will fail,
+     * and the application must take appropriate action in that case.
+     * It may be that a later lookup, perhaps during the invocation of a
+     * bootstrap method, can incorporate the specific identity
+     * of the caller, making the method accessible.
+     * <p style="font-size:smaller;">
+     * The function {@code MethodHandles.lookup} is caller sensitive
+     * so that there can be a secure foundation for lookups.
+     * Nearly all other methods in the JSR 292 API rely on lookup
+     * objects to check access requests.
+     */
+    // Android-changed: Change link targets from MethodHandles#[public]Lookup to
+    // #[public]Lookup to work around complaints from javadoc.
+    public static final
+    class Lookup {
+        /** The class on behalf of whom the lookup is being performed. */
+        /* @NonNull */ private final Class<?> lookupClass;
+
+        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
+        private final int allowedModes;
+
+        /** A single-bit mask representing {@code public} access,
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value, {@code 0x01}, happens to be the same as the value of the
+         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
+         */
+        public static final int PUBLIC = Modifier.PUBLIC;
+
+        /** A single-bit mask representing {@code private} access,
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value, {@code 0x02}, happens to be the same as the value of the
+         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
+         */
+        public static final int PRIVATE = Modifier.PRIVATE;
+
+        /** A single-bit mask representing {@code protected} access,
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value, {@code 0x04}, happens to be the same as the value of the
+         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
+         */
+        public static final int PROTECTED = Modifier.PROTECTED;
+
+        /** A single-bit mask representing {@code package} access (default access),
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value is {@code 0x08}, which does not correspond meaningfully to
+         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
+         */
+        public static final int PACKAGE = Modifier.STATIC;
+
+        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
+
+        // Android-note: Android has no notion of a trusted lookup. If required, such lookups
+        // are performed by the runtime. As a result, we always use lookupClass, which will always
+        // be non-null in our implementation.
+        //
+        // private static final int TRUSTED   = -1;
+
+        private static int fixmods(int mods) {
+            mods &= (ALL_MODES - PACKAGE);
+            return (mods != 0) ? mods : PACKAGE;
+        }
+
+        /** Tells which class is performing the lookup.  It is this class against
+         *  which checks are performed for visibility and access permissions.
+         *  <p>
+         *  The class implies a maximum level of access permission,
+         *  but the permissions may be additionally limited by the bitmask
+         *  {@link #lookupModes lookupModes}, which controls whether non-public members
+         *  can be accessed.
+         *  @return the lookup class, on behalf of which this lookup object finds members
+         */
+        public Class<?> lookupClass() {
+            return lookupClass;
+        }
+
+        /** Tells which access-protection classes of members this lookup object can produce.
+         *  The result is a bit-mask of the bits
+         *  {@linkplain #PUBLIC PUBLIC (0x01)},
+         *  {@linkplain #PRIVATE PRIVATE (0x02)},
+         *  {@linkplain #PROTECTED PROTECTED (0x04)},
+         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
+         *  <p>
+         *  A freshly-created lookup object
+         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
+         *  has all possible bits set, since the caller class can access all its own members.
+         *  A lookup object on a new lookup class
+         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
+         *  may have some mode bits set to zero.
+         *  The purpose of this is to restrict access via the new lookup object,
+         *  so that it can access only names which can be reached by the original
+         *  lookup object, and also by the new lookup class.
+         *  @return the lookup modes, which limit the kinds of access performed by this lookup object
+         */
+        public int lookupModes() {
+            return allowedModes & ALL_MODES;
+        }
+
+        /** Embody the current class (the lookupClass) as a lookup class
+         * for method handle creation.
+         * Must be called by from a method in this package,
+         * which in turn is called by a method not in this package.
+         */
+        Lookup(Class<?> lookupClass) {
+            this(lookupClass, ALL_MODES);
+            // make sure we haven't accidentally picked up a privileged class:
+            checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
+        }
+
+        private Lookup(Class<?> lookupClass, int allowedModes) {
+            this.lookupClass = lookupClass;
+            this.allowedModes = allowedModes;
+        }
+
+        /**
+         * Creates a lookup on the specified new lookup class.
+         * The resulting object will report the specified
+         * class as its own {@link #lookupClass lookupClass}.
+         * <p>
+         * However, the resulting {@code Lookup} object is guaranteed
+         * to have no more access capabilities than the original.
+         * In particular, access capabilities can be lost as follows:<ul>
+         * <li>If the new lookup class differs from the old one,
+         * protected members will not be accessible by virtue of inheritance.
+         * (Protected members may continue to be accessible because of package sharing.)
+         * <li>If the new lookup class is in a different package
+         * than the old one, protected and default (package) members will not be accessible.
+         * <li>If the new lookup class is not within the same package member
+         * as the old one, private members will not be accessible.
+         * <li>If the new lookup class is not accessible to the old lookup class,
+         * then no members, not even public members, will be accessible.
+         * (In all other cases, public members will continue to be accessible.)
+         * </ul>
+         *
+         * @param requestedLookupClass the desired lookup class for the new lookup object
+         * @return a lookup object which reports the desired lookup class
+         * @throws NullPointerException if the argument is null
+         */
+        public Lookup in(Class<?> requestedLookupClass) {
+            requestedLookupClass.getClass();  // null check
+            // Android-changed: There's no notion of a trusted lookup.
+            // if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
+            //    return new Lookup(requestedLookupClass, ALL_MODES);
+
+            if (requestedLookupClass == this.lookupClass)
+                return this;  // keep same capabilities
+            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
+            if ((newModes & PACKAGE) != 0
+                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
+                newModes &= ~(PACKAGE|PRIVATE);
+            }
+            // Allow nestmate lookups to be created without special privilege:
+            if ((newModes & PRIVATE) != 0
+                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
+                newModes &= ~PRIVATE;
+            }
+            if ((newModes & PUBLIC) != 0
+                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
+                // The requested class it not accessible from the lookup class.
+                // No permissions.
+                newModes = 0;
+            }
+            checkUnprivilegedlookupClass(requestedLookupClass, newModes);
+            return new Lookup(requestedLookupClass, newModes);
+        }
+
+        // Make sure outer class is initialized first.
+        //
+        // Android-changed: Removed unnecessary reference to IMPL_NAMES.
+        // static { IMPL_NAMES.getClass(); }
+
+        /** Version of lookup which is trusted minimally.
+         *  It can only be used to create method handles to
+         *  publicly accessible members.
+         */
+        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
+
+        /** Package-private version of lookup which is trusted. */
+        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES);
+
+        private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
+            String name = lookupClass.getName();
+            if (name.startsWith("java.lang.invoke."))
+                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
+
+            // For caller-sensitive MethodHandles.lookup()
+            // disallow lookup more restricted packages
+            //
+            // Android-changed: The bootstrap classloader isn't null.
+            if (allowedModes == ALL_MODES &&
+                    lookupClass.getClassLoader() == Object.class.getClassLoader()) {
+                if ((name.startsWith("java.")
+                            && !name.startsWith("java.io.ObjectStreamClass")
+                            && !name.startsWith("java.util.concurrent.")
+                            && !name.equals("java.lang.Daemons$FinalizerWatchdogDaemon")
+                            && !name.equals("java.lang.runtime.ObjectMethods")
+                            && !name.equals("java.lang.Thread")
+                            && !name.equals("java.util.HashMap")) ||
+                        (name.startsWith("sun.")
+                                && !name.startsWith("sun.invoke.")
+                                && !name.equals("sun.reflect.ReflectionFactory"))) {
+                    throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
+                }
+            }
+        }
+
+        /**
+         * Displays the name of the class from which lookups are to be made.
+         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
+         * If there are restrictions on the access permitted to this lookup,
+         * this is indicated by adding a suffix to the class name, consisting
+         * of a slash and a keyword.  The keyword represents the strongest
+         * allowed access, and is chosen as follows:
+         * <ul>
+         * <li>If no access is allowed, the suffix is "/noaccess".
+         * <li>If only public access is allowed, the suffix is "/public".
+         * <li>If only public and package access are allowed, the suffix is "/package".
+         * <li>If only public, package, and private access are allowed, the suffix is "/private".
+         * </ul>
+         * If none of the above cases apply, it is the case that full
+         * access (public, package, private, and protected) is allowed.
+         * In this case, no suffix is added.
+         * This is true only of an object obtained originally from
+         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
+         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
+         * always have restricted access, and will display a suffix.
+         * <p>
+         * (It may seem strange that protected access should be
+         * stronger than private access.  Viewed independently from
+         * package access, protected access is the first to be lost,
+         * because it requires a direct subclass relationship between
+         * caller and callee.)
+         * @see #in
+         */
+        @Override
+        public String toString() {
+            String cname = lookupClass.getName();
+            switch (allowedModes) {
+            case 0:  // no privileges
+                return cname + "/noaccess";
+            case PUBLIC:
+                return cname + "/public";
+            case PUBLIC|PACKAGE:
+                return cname + "/package";
+            case ALL_MODES & ~PROTECTED:
+                return cname + "/private";
+            case ALL_MODES:
+                return cname;
+            // Android-changed: No support for TRUSTED callers.
+            // case TRUSTED:
+            //    return "/trusted";  // internal only; not exported
+            default:  // Should not happen, but it's a bitfield...
+                cname = cname + "/" + Integer.toHexString(allowedModes);
+                assert(false) : cname;
+                return cname;
+            }
+        }
+
+        /**
+         * Produces a method handle for a static method.
+         * The type of the method handle will be that of the method.
+         * (Since static methods do not take receivers, there is no
+         * additional receiver argument inserted into the method handle type,
+         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
+         * The method and all its argument types must be accessible to the lookup object.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p>
+         * If the returned method handle is invoked, the method's class will
+         * be initialized, if it has not already been initialized.
+         * <p><b>Example:</b>
+         * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
+  "asList", methodType(List.class, Object[].class));
+assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
+         * }</pre></blockquote>
+         * @param refc the class from which the method is accessed
+         * @param name the name of the method
+         * @param type the type of the method
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails,
+         *                                or if the method is not {@code static},
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public
+        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            Method method = refc.getDeclaredMethod(name, type.ptypes());
+            final int modifiers = method.getModifiers();
+            if (!Modifier.isStatic(modifiers)) {
+                throw new IllegalAccessException("Method" + method + " is not static");
+            }
+            checkReturnType(method, type);
+            checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName());
+            return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type);
+        }
+
+        private MethodHandle findVirtualForMH(String name, MethodType type) {
+            // these names require special lookups because of the implicit MethodType argument
+            if ("invoke".equals(name))
+                return invoker(type);
+            if ("invokeExact".equals(name))
+                return exactInvoker(type);
+            return null;
+        }
+
+        private MethodHandle findVirtualForVH(String name, MethodType type) {
+            VarHandle.AccessMode accessMode;
+            try {
+                accessMode = VarHandle.AccessMode.valueFromMethodName(name);
+            } catch (IllegalArgumentException e) {
+                return null;
+            }
+            return varHandleInvoker(accessMode, type);
+        }
+
+        private static MethodHandle createMethodHandle(Method method, int handleKind,
+                                                       MethodType methodType) {
+            MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType);
+            if (method.isVarArgs()) {
+                return new Transformers.VarargsCollector(mh);
+            } else {
+                return mh;
+            }
+        }
+
+        /**
+         * Produces a method handle for a virtual method.
+         * The type of the method handle will be that of the method,
+         * with the receiver type (usually {@code refc}) prepended.
+         * The method and all its argument types must be accessible to the lookup object.
+         * <p>
+         * When called, the handle will treat the first argument as a receiver
+         * and dispatch on the receiver's type to determine which method
+         * implementation to enter.
+         * (The dispatching action is identical with that performed by an
+         * {@code invokevirtual} or {@code invokeinterface} instruction.)
+         * <p>
+         * The first argument will be of type {@code refc} if the lookup
+         * class has full privileges to access the member.  Otherwise
+         * the member must be {@code protected} and the first argument
+         * will be restricted in type to the lookup class.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p>
+         * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
+         * instructions and method handles produced by {@code findVirtual},
+         * if the class is {@code MethodHandle} and the name string is
+         * {@code invokeExact} or {@code invoke}, the resulting
+         * method handle is equivalent to one produced by
+         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
+         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
+         * with the same {@code type} argument.
+         *
+         * <b>Example:</b>
+         * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_concat = publicLookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
+  "hashCode", methodType(int.class));
+MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
+  "hashCode", methodType(int.class));
+assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
+assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
+assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
+// interface method:
+MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
+  "subSequence", methodType(CharSequence.class, int.class, int.class));
+assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
+// constructor "internal method" must be accessed differently:
+MethodType MT_newString = methodType(void.class); //()V for new String()
+try { assertEquals("impossible", lookup()
+        .findVirtual(String.class, "<init>", MT_newString));
+ } catch (NoSuchMethodException ex) { } // OK
+MethodHandle MH_newString = publicLookup()
+  .findConstructor(String.class, MT_newString);
+assertEquals("", (String) MH_newString.invokeExact());
+         * }</pre></blockquote>
+         *
+         * @param refc the class or interface from which the method is accessed
+         * @param name the name of the method
+         * @param type the type of the method, with the receiver argument omitted
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails,
+         *                                or if the method is {@code static}
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            // Special case : when we're looking up a virtual method on the MethodHandles class
+            // itself, we can return one of our specialized invokers.
+            if (refc == MethodHandle.class) {
+                MethodHandle mh = findVirtualForMH(name, type);
+                if (mh != null) {
+                    return mh;
+                }
+            } else if (refc == VarHandle.class) {
+                // Returns an non-exact invoker.
+                MethodHandle mh = findVirtualForVH(name, type);
+                if (mh != null) {
+                    return mh;
+                }
+            }
+
+            Method method = refc.getInstanceMethod(name, type.ptypes());
+            if (method == null) {
+                // This is pretty ugly and a consequence of the MethodHandles API. We have to throw
+                // an IAE and not an NSME if the method exists but is static (even though the RI's
+                // IAE has a message that says "no such method"). We confine the ugliness and
+                // slowness to the failure case, and allow getInstanceMethod to remain fairly
+                // general.
+                try {
+                    Method m = refc.getDeclaredMethod(name, type.ptypes());
+                    if (Modifier.isStatic(m.getModifiers())) {
+                        throw new IllegalAccessException("Method" + m + " is static");
+                    }
+                } catch (NoSuchMethodException ignored) {
+                }
+
+                throw new NoSuchMethodException(name + " "  + Arrays.toString(type.ptypes()));
+            }
+            checkReturnType(method, type);
+
+            // We have a valid method, perform access checks.
+            checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName());
+
+            // Insert the leading reference parameter.
+            MethodType handleType = type.insertParameterTypes(0, refc);
+            return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType);
+        }
+
+        /**
+         * Produces a method handle which creates an object and initializes it, using
+         * the constructor of the specified type.
+         * The parameter types of the method handle will be those of the constructor,
+         * while the return type will be a reference to the constructor's class.
+         * The constructor and all its argument types must be accessible to the lookup object.
+         * <p>
+         * The requested type must have a return type of {@code void}.
+         * (This is consistent with the JVM's treatment of constructor type descriptors.)
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p>
+         * If the returned method handle is invoked, the constructor's class will
+         * be initialized, if it has not already been initialized.
+         * <p><b>Example:</b>
+         * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_newArrayList = publicLookup().findConstructor(
+  ArrayList.class, methodType(void.class, Collection.class));
+Collection orig = Arrays.asList("x", "y");
+Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
+assert(orig != copy);
+assertEquals(orig, copy);
+// a variable-arity constructor:
+MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
+  ProcessBuilder.class, methodType(void.class, String[].class));
+ProcessBuilder pb = (ProcessBuilder)
+  MH_newProcessBuilder.invoke("x", "y", "z");
+assertEquals("[x, y, z]", pb.command().toString());
+         * }</pre></blockquote>
+         * @param refc the class or interface from which the method is accessed
+         * @param type the type of the method, with the receiver argument omitted, and a void return type
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the constructor does not exist
+         * @throws IllegalAccessException if access checking fails
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            if (refc.isArray()) {
+                throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
+            }
+            // The queried |type| is (PT1,PT2,..)V
+            Constructor constructor = refc.getDeclaredConstructor(type.ptypes());
+            if (constructor == null) {
+                throw new NoSuchMethodException(
+                    "No constructor for " + constructor.getDeclaringClass() + " matching " + type);
+            }
+            checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(),
+                    constructor.getName());
+
+            return createMethodHandleForConstructor(constructor);
+        }
+
+        // BEGIN Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670
+        // TODO: Unhide this method.
+        /**
+         * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
+         * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
+         * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class,
+         * and then determines whether the class is accessible to this lookup object.
+         * <p>
+         * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
+         * its class loader, and the {@linkplain #lookupModes() lookup modes}.
+         *
+         * @param targetName the fully qualified name of the class to be looked up.
+         * @return the requested class.
+         * @throws SecurityException if a security manager is present and it
+         *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws LinkageError if the linkage fails
+         * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
+         * @throws IllegalAccessException if the class is not accessible, using the allowed access
+         * modes.
+         * @throws NullPointerException if {@code targetName} is null
+         * @since 9
+         * @jvms 5.4.3.1 Class and Interface Resolution
+         * @hide
+         */
+        public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
+            Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
+            return accessClass(targetClass);
+        }
+        // END Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670
+
+        private MethodHandle createMethodHandleForConstructor(Constructor constructor) {
+            Class<?> refc = constructor.getDeclaringClass();
+            MethodType constructorType =
+                    MethodType.methodType(refc, constructor.getParameterTypes());
+            MethodHandle mh;
+            if (refc == String.class) {
+                // String constructors have optimized StringFactory methods
+                // that matches returned type. These factory methods combine the
+                // memory allocation and initialization calls for String objects.
+                mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT,
+                                          constructorType);
+            } else {
+                // Constructors for all other classes use a Construct transformer to perform
+                // their memory allocation and call to <init>.
+                MethodType initType = initMethodType(constructorType);
+                MethodHandle initHandle = new MethodHandleImpl(
+                    constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType);
+                mh = new Transformers.Construct(initHandle, constructorType);
+            }
+
+            if (constructor.isVarArgs()) {
+                mh = new Transformers.VarargsCollector(mh);
+            }
+            return mh;
+        }
+
+        private static MethodType initMethodType(MethodType constructorType) {
+            // Returns a MethodType appropriate for class <init>
+            // methods. Constructor MethodTypes have the form
+            // (PT1,PT2,...)C and class <init> MethodTypes have the
+            // form (C,PT1,PT2,...)V.
+            assert constructorType.rtype() != void.class;
+
+            // Insert constructorType C as the first parameter type in
+            // the MethodType for <init>.
+            Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1];
+            initPtypes[0] = constructorType.rtype();
+            System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1,
+                             constructorType.ptypes().length);
+
+            // Set the return type for the <init> MethodType to be void.
+            return MethodType.methodType(void.class, initPtypes);
+        }
+
+        // BEGIN Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670
+        /*
+         * Returns IllegalAccessException due to access violation to the given targetClass.
+         *
+         * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized}
+         * which verifies access to a class rather a member.
+         */
+        private IllegalAccessException makeAccessException(Class<?> targetClass) {
+            String message = "access violation: "+ targetClass;
+            if (this == MethodHandles.publicLookup()) {
+                message += ", from public Lookup";
+            } else {
+                // Android-changed: Remove unsupported module name.
+                // Module m = lookupClass().getModule();
+                // message += ", from " + lookupClass() + " (" + m + ")";
+                 message += ", from " + lookupClass();
+                // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17.
+                // if (prevLookupClass != null) {
+                //    message += ", previous lookup " +
+                //            prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")";
+                // }
+            }
+            return new IllegalAccessException(message);
+        }
+
+        // TODO: Unhide this method.
+        /**
+         * Determines if a class can be accessed from the lookup context defined by
+         * this {@code Lookup} object. The static initializer of the class is not run.
+         * If {@code targetClass} is an array class, {@code targetClass} is accessible
+         * if the element type of the array class is accessible.  Otherwise,
+         * {@code targetClass} is determined as accessible as follows.
+         *
+         * <p>
+         * If {@code targetClass} is in the same module as the lookup class,
+         * the lookup class is {@code LC} in module {@code M1} and
+         * the previous lookup class is in module {@code M0} or
+         * {@code null} if not present,
+         * {@code targetClass} is accessible if and only if one of the following is true:
+         * <ul>
+         * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
+         *     {@code LC} or other class in the same nest of {@code LC}.</li>
+         * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
+         *     in the same runtime package of {@code LC}.</li>
+         * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
+         *     a public type in {@code M1}.</li>
+         * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
+         *     a public type in a package exported by {@code M1} to at least  {@code M0}
+         *     if the previous lookup class is present; otherwise, {@code targetClass}
+         *     is a public type in a package exported by {@code M1} unconditionally.</li>
+         * </ul>
+         *
+         * <p>
+         * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
+         * can access public types in all modules when the type is in a package
+         * that is exported unconditionally.
+         * <p>
+         * Otherwise, {@code targetClass} is in a different module from {@code lookupClass},
+         * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
+         * is inaccessible.
+         * <p>
+         * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
+         * {@code M1} is the module containing {@code lookupClass} and
+         * {@code M2} is the module containing {@code targetClass},
+         * then {@code targetClass} is accessible if and only if
+         * <ul>
+         * <li>{@code M1} reads {@code M2}, and
+         * <li>{@code targetClass} is public and in a package exported by
+         *     {@code M2} at least to {@code M1}.
+         * </ul>
+         * <p>
+         * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
+         * {@code M1} and {@code M2} are as before, and {@code M0} is the module
+         * containing the previous lookup class, then {@code targetClass} is accessible
+         * if and only if one of the following is true:
+         * <ul>
+         * <li>{@code targetClass} is in {@code M0} and {@code M1}
+         *     {@linkplain Module#reads reads} {@code M0} and the type is
+         *     in a package that is exported to at least {@code M1}.
+         * <li>{@code targetClass} is in {@code M1} and {@code M0}
+         *     {@linkplain Module#reads reads} {@code M1} and the type is
+         *     in a package that is exported to at least {@code M0}.
+         * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
+         *     and {@code M1} reads {@code M2} and the type is in a package
+         *     that is exported to at least both {@code M0} and {@code M2}.
+         * </ul>
+         * <p>
+         * Otherwise, {@code targetClass} is not accessible.
+         *
+         * @param targetClass the class to be access-checked
+         * @return the class that has been access-checked
+         * @throws IllegalAccessException if the class is not accessible from the lookup class
+         * and previous lookup class, if present, using the allowed access modes.
+         * @throws SecurityException if a security manager is present and it
+         *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if {@code targetClass} is {@code null}
+         * @since 9
+         * @see <a href="#cross-module-lookup">Cross-module lookups</a>
+         * @hide
+         */
+        public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
+            if (!isClassAccessible(targetClass)) {
+                throw makeAccessException(targetClass);
+            }
+            // Android-removed: SecurityManager is unnecessary on Android.
+            // checkSecurityManager(targetClass);
+            return targetClass;
+        }
+
+        boolean isClassAccessible(Class<?> refc) {
+            Objects.requireNonNull(refc);
+            Class<?> caller = lookupClassOrNull();
+            Class<?> type = refc;
+            while (type.isArray()) {
+                type = type.getComponentType();
+            }
+            // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17.
+            // return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes);
+            return caller == null || VerifyAccess.isClassAccessible(type, caller, allowedModes);
+        }
+
+        // This is just for calling out to MethodHandleImpl.
+        private Class<?> lookupClassOrNull() {
+            // Android-changed: Android always returns lookupClass and has no concept of TRUSTED.
+            // return (allowedModes == TRUSTED) ? null : lookupClass;
+            return lookupClass;
+        }
+        // END Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670
+
+        /**
+         * Produces an early-bound method handle for a virtual method.
+         * It will bypass checks for overriding methods on the receiver,
+         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
+         * instruction from within the explicitly specified {@code specialCaller}.
+         * The type of the method handle will be that of the method,
+         * with a suitably restricted receiver type prepended.
+         * (The receiver type will be {@code specialCaller} or a subtype.)
+         * The method and all its argument types must be accessible
+         * to the lookup object.
+         * <p>
+         * Before method resolution,
+         * if the explicitly specified caller class is not identical with the
+         * lookup class, or if this lookup object does not have
+         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
+         * privileges, the access fails.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p style="font-size:smaller;">
+         * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
+         * even though the {@code invokespecial} instruction can refer to them
+         * in special circumstances.  Use {@link #findConstructor findConstructor}
+         * to access instance initialization methods in a safe manner.)</em>
+         * <p><b>Example:</b>
+         * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+static class Listie extends ArrayList {
+  public String toString() { return "[wee Listie]"; }
+  static Lookup lookup() { return MethodHandles.lookup(); }
+}
+...
+// no access to constructor via invokeSpecial:
+MethodHandle MH_newListie = Listie.lookup()
+  .findConstructor(Listie.class, methodType(void.class));
+Listie l = (Listie) MH_newListie.invokeExact();
+try { assertEquals("impossible", Listie.lookup().findSpecial(
+        Listie.class, "<init>", methodType(void.class), Listie.class));
+ } catch (NoSuchMethodException ex) { } // OK
+// access to super and self methods via invokeSpecial:
+MethodHandle MH_super = Listie.lookup().findSpecial(
+  ArrayList.class, "toString" , methodType(String.class), Listie.class);
+MethodHandle MH_this = Listie.lookup().findSpecial(
+  Listie.class, "toString" , methodType(String.class), Listie.class);
+MethodHandle MH_duper = Listie.lookup().findSpecial(
+  Object.class, "toString" , methodType(String.class), Listie.class);
+assertEquals("[]", (String) MH_super.invokeExact(l));
+assertEquals(""+l, (String) MH_this.invokeExact(l));
+assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
+try { assertEquals("inaccessible", Listie.lookup().findSpecial(
+        String.class, "toString", methodType(String.class), Listie.class));
+ } catch (IllegalAccessException ex) { } // OK
+Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
+assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
+         * }</pre></blockquote>
+         *
+         * @param refc the class or interface from which the method is accessed
+         * @param name the name of the method (which must not be "&lt;init&gt;")
+         * @param type the type of the method, with the receiver argument omitted
+         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
+                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
+            if (specialCaller == null) {
+                throw new NullPointerException("specialCaller == null");
+            }
+
+            if (type == null) {
+                throw new NullPointerException("type == null");
+            }
+
+            if (name == null) {
+                throw new NullPointerException("name == null");
+            }
+
+            if (refc == null) {
+                throw new NullPointerException("ref == null");
+            }
+
+            // Make sure that the special caller is identical to the lookup class or that we have
+            // private access.
+            // Android-changed: Also allow access to any interface methods.
+            checkSpecialCaller(specialCaller, refc);
+
+            // Even though constructors are invoked using a "special" invoke, handles to them can't
+            // be created using findSpecial. Callers must use findConstructor instead. Similarly,
+            // there is no path for calling static class initializers.
+            if (name.startsWith("<")) {
+                throw new NoSuchMethodException(name + " is not a valid method name.");
+            }
+
+            Method method = refc.getDeclaredMethod(name, type.ptypes());
+            checkReturnType(method, type);
+            return findSpecial(method, type, refc, specialCaller);
+        }
+
+        private MethodHandle findSpecial(Method method, MethodType type,
+                                         Class<?> refc, Class<?> specialCaller)
+                throws IllegalAccessException {
+            if (Modifier.isStatic(method.getModifiers())) {
+                throw new IllegalAccessException("expected a non-static method:" + method);
+            }
+
+            if (Modifier.isPrivate(method.getModifiers())) {
+                // Since this is a private method, we'll need to also make sure that the
+                // lookup class is the same as the refering class. We've already checked that
+                // the specialCaller is the same as the special lookup class, both of these must
+                // be the same as the declaring class(*) in order to access the private method.
+                //
+                // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those
+                // either.
+                if (refc != lookupClass()) {
+                    throw new IllegalAccessException("no private access for invokespecial : "
+                            + refc + ", from" + this);
+                }
+
+                // This is a private method, so there's nothing special to do.
+                MethodType handleType = type.insertParameterTypes(0, refc);
+                return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType);
+            }
+
+            // This is a public, protected or package-private method, which means we're expecting
+            // invoke-super semantics. We'll have to restrict the receiver type appropriately on the
+            // handle once we check that there really is a "super" relationship between them.
+            if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) {
+                throw new IllegalAccessException(refc + "is not assignable from " + specialCaller);
+            }
+
+            // Note that we restrict the receiver to "specialCaller" instances.
+            MethodType handleType = type.insertParameterTypes(0, specialCaller);
+            return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType);
+        }
+
+        /**
+         * Produces a method handle giving read access to a non-static field.
+         * The type of the method handle will have a return type of the field's
+         * value type.
+         * The method handle's single argument will be the instance containing
+         * the field.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can load values from the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return findAccessor(refc, name, type, MethodHandle.IGET);
+        }
+
+        private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind)
+            throws NoSuchFieldException, IllegalAccessException {
+            final Field field = findFieldOfType(refc, name, type);
+            return findAccessor(field, refc, type, kind, true /* performAccessChecks */);
+        }
+
+        private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> type, int kind,
+                                          boolean performAccessChecks)
+                throws IllegalAccessException {
+            final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT;
+            final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT;
+            commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks);
+            if (performAccessChecks) {
+                final int modifiers = field.getModifiers();
+                if (isSetterKind && Modifier.isFinal(modifiers)) {
+                    throw new IllegalAccessException("Field " + field + " is final");
+                }
+            }
+
+            final MethodType methodType;
+            switch (kind) {
+                case MethodHandle.SGET:
+                    methodType = MethodType.methodType(type);
+                    break;
+                case MethodHandle.SPUT:
+                    methodType = MethodType.methodType(void.class, type);
+                    break;
+                case MethodHandle.IGET:
+                    methodType = MethodType.methodType(type, refc);
+                    break;
+                case MethodHandle.IPUT:
+                    methodType = MethodType.methodType(void.class, refc, type);
+                    break;
+                default:
+                    throw new IllegalArgumentException("Invalid kind " + kind);
+            }
+            return new MethodHandleImpl(field.getArtField(), kind, methodType);
+        }
+
+        /**
+         * Produces a method handle giving write access to a non-static field.
+         * The type of the method handle will have a void return type.
+         * The method handle will take two arguments, the instance containing
+         * the field, and the value to be stored.
+         * The second argument will be of the field's value type.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can store values into the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return findAccessor(refc, name, type, MethodHandle.IPUT);
+        }
+
+        // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
+        /**
+         * Produces a VarHandle giving access to a non-static field {@code name}
+         * of type {@code type} declared in a class of type {@code recv}.
+         * The VarHandle's variable type is {@code type} and it has one
+         * coordinate type, {@code recv}.
+         * <p>
+         * Access checking is performed immediately on behalf of the lookup
+         * class.
+         * <p>
+         * Certain access modes of the returned VarHandle are unsupported under
+         * the following conditions:
+         * <ul>
+         * <li>if the field is declared {@code final}, then the write, atomic
+         *     update, numeric atomic update, and bitwise atomic update access
+         *     modes are unsupported.
+         * <li>if the field type is anything other than {@code byte},
+         *     {@code short}, {@code char}, {@code int}, {@code long},
+         *     {@code float}, or {@code double} then numeric atomic update
+         *     access modes are unsupported.
+         * <li>if the field type is anything other than {@code boolean},
+         *     {@code byte}, {@code short}, {@code char}, {@code int} or
+         *     {@code long} then bitwise atomic update access modes are
+         *     unsupported.
+         * </ul>
+         * <p>
+         * If the field is declared {@code volatile} then the returned VarHandle
+         * will override access to the field (effectively ignore the
+         * {@code volatile} declaration) in accordance to its specified
+         * access modes.
+         * <p>
+         * If the field type is {@code float} or {@code double} then numeric
+         * and atomic update access modes compare values using their bitwise
+         * representation (see {@link Float#floatToRawIntBits} and
+         * {@link Double#doubleToRawLongBits}, respectively).
+         * @apiNote
+         * Bitwise comparison of {@code float} values or {@code double} values,
+         * as performed by the numeric and atomic update access modes, differ
+         * from the primitive {@code ==} operator and the {@link Float#equals}
+         * and {@link Double#equals} methods, specifically with respect to
+         * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
+         * Care should be taken when performing a compare and set or a compare
+         * and exchange operation with such values since the operation may
+         * unexpectedly fail.
+         * There are many possible NaN values that are considered to be
+         * {@code NaN} in Java, although no IEEE 754 floating-point operation
+         * provided by Java can distinguish between them.  Operation failure can
+         * occur if the expected or witness value is a NaN value and it is
+         * transformed (perhaps in a platform specific manner) into another NaN
+         * value, and thus has a different bitwise representation (see
+         * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
+         * details).
+         * The values {@code -0.0} and {@code +0.0} have different bitwise
+         * representations but are considered equal when using the primitive
+         * {@code ==} operator.  Operation failure can occur if, for example, a
+         * numeric algorithm computes an expected value to be say {@code -0.0}
+         * and previously computed the witness value to be say {@code +0.0}.
+         * @param recv the receiver class, of type {@code R}, that declares the
+         * non-static field
+         * @param name the field's name
+         * @param type the field's type, of type {@code T}
+         * @return a VarHandle giving access to non-static fields.
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         * @since 9
+         */
+        public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            final Field field = findFieldOfType(recv, name, type);
+            final boolean isStatic = false;
+            final boolean performAccessChecks = true;
+            commonFieldChecks(field, recv, type, isStatic, performAccessChecks);
+            return FieldVarHandle.create(field);
+        }
+        // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
+
+        // BEGIN Android-added: Common field resolution and access check methods.
+        private Field findFieldOfType(final Class<?> refc, String name, Class<?> type)
+                throws NoSuchFieldException {
+            Field field = null;
+
+            // Search refc and super classes for the field.
+            for (Class<?> cls = refc; cls != null; cls = cls.getSuperclass()) {
+                try {
+                    field = cls.getDeclaredField(name);
+                    break;
+                } catch (NoSuchFieldException e) {
+                }
+            }
+
+            if (field == null) {
+                // Force failure citing refc.
+                field = refc.getDeclaredField(name);
+            }
+
+            final Class<?> fieldType = field.getType();
+            if (fieldType != type) {
+                throw new NoSuchFieldException(name);
+            }
+            return field;
+        }
+
+        private void commonFieldChecks(Field field, Class<?> refc, Class<?> type,
+                                       boolean isStatic, boolean performAccessChecks)
+                throws IllegalAccessException {
+            final int modifiers = field.getModifiers();
+            if (performAccessChecks) {
+                checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName());
+            }
+            if (Modifier.isStatic(modifiers) != isStatic) {
+                String reason = "Field " + field + " is " +
+                        (isStatic ? "not " : "") + "static";
+                throw new IllegalAccessException(reason);
+            }
+        }
+        // END Android-added: Common field resolution and access check methods.
+
+        /**
+         * Produces a method handle giving read access to a static field.
+         * The type of the method handle will have a return type of the field's
+         * value type.
+         * The method handle will take no arguments.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * <p>
+         * If the returned method handle is invoked, the field's class will
+         * be initialized, if it has not already been initialized.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can load values from the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return findAccessor(refc, name, type, MethodHandle.SGET);
+        }
+
+        /**
+         * Produces a method handle giving write access to a static field.
+         * The type of the method handle will have a void return type.
+         * The method handle will take a single
+         * argument, of the field's value type, the value to be stored.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * <p>
+         * If the returned method handle is invoked, the field's class will
+         * be initialized, if it has not already been initialized.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can store values into the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return findAccessor(refc, name, type, MethodHandle.SPUT);
+        }
+
+        // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
+        /**
+         * Produces a VarHandle giving access to a static field {@code name} of
+         * type {@code type} declared in a class of type {@code decl}.
+         * The VarHandle's variable type is {@code type} and it has no
+         * coordinate types.
+         * <p>
+         * Access checking is performed immediately on behalf of the lookup
+         * class.
+         * <p>
+         * If the returned VarHandle is operated on, the declaring class will be
+         * initialized, if it has not already been initialized.
+         * <p>
+         * Certain access modes of the returned VarHandle are unsupported under
+         * the following conditions:
+         * <ul>
+         * <li>if the field is declared {@code final}, then the write, atomic
+         *     update, numeric atomic update, and bitwise atomic update access
+         *     modes are unsupported.
+         * <li>if the field type is anything other than {@code byte},
+         *     {@code short}, {@code char}, {@code int}, {@code long},
+         *     {@code float}, or {@code double}, then numeric atomic update
+         *     access modes are unsupported.
+         * <li>if the field type is anything other than {@code boolean},
+         *     {@code byte}, {@code short}, {@code char}, {@code int} or
+         *     {@code long} then bitwise atomic update access modes are
+         *     unsupported.
+         * </ul>
+         * <p>
+         * If the field is declared {@code volatile} then the returned VarHandle
+         * will override access to the field (effectively ignore the
+         * {@code volatile} declaration) in accordance to its specified
+         * access modes.
+         * <p>
+         * If the field type is {@code float} or {@code double} then numeric
+         * and atomic update access modes compare values using their bitwise
+         * representation (see {@link Float#floatToRawIntBits} and
+         * {@link Double#doubleToRawLongBits}, respectively).
+         * @apiNote
+         * Bitwise comparison of {@code float} values or {@code double} values,
+         * as performed by the numeric and atomic update access modes, differ
+         * from the primitive {@code ==} operator and the {@link Float#equals}
+         * and {@link Double#equals} methods, specifically with respect to
+         * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
+         * Care should be taken when performing a compare and set or a compare
+         * and exchange operation with such values since the operation may
+         * unexpectedly fail.
+         * There are many possible NaN values that are considered to be
+         * {@code NaN} in Java, although no IEEE 754 floating-point operation
+         * provided by Java can distinguish between them.  Operation failure can
+         * occur if the expected or witness value is a NaN value and it is
+         * transformed (perhaps in a platform specific manner) into another NaN
+         * value, and thus has a different bitwise representation (see
+         * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
+         * details).
+         * The values {@code -0.0} and {@code +0.0} have different bitwise
+         * representations but are considered equal when using the primitive
+         * {@code ==} operator.  Operation failure can occur if, for example, a
+         * numeric algorithm computes an expected value to be say {@code -0.0}
+         * and previously computed the witness value to be say {@code +0.0}.
+         * @param decl the class that declares the static field
+         * @param name the field's name
+         * @param type the field's type, of type {@code T}
+         * @return a VarHandle giving access to a static field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         * @since 9
+         */
+        public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            final Field field = findFieldOfType(decl, name, type);
+            final boolean isStatic = true;
+            final boolean performAccessChecks = true;
+            commonFieldChecks(field, decl, type, isStatic, performAccessChecks);
+            return StaticFieldVarHandle.create(field);
+        }
+        // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
+
+        /**
+         * Produces an early-bound method handle for a non-static method.
+         * The receiver must have a supertype {@code defc} in which a method
+         * of the given name and type is accessible to the lookup class.
+         * The method and all its argument types must be accessible to the lookup object.
+         * The type of the method handle will be that of the method,
+         * without any insertion of an additional receiver parameter.
+         * The given receiver will be bound into the method handle,
+         * so that every call to the method handle will invoke the
+         * requested method on the given receiver.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set
+         * <em>and</em> the trailing array argument is not the only argument.
+         * (If the trailing array argument is the only argument,
+         * the given receiver value will be bound to it.)
+         * <p>
+         * This is equivalent to the following code:
+         * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle mh0 = lookup().findVirtual(defc, name, type);
+MethodHandle mh1 = mh0.bindTo(receiver);
+MethodType mt1 = mh1.type();
+if (mh0.isVarargsCollector())
+  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
+return mh1;
+         * }</pre></blockquote>
+         * where {@code defc} is either {@code receiver.getClass()} or a super
+         * type of that class, in which the requested method is accessible
+         * to the lookup class.
+         * (Note that {@code bindTo} does not preserve variable arity.)
+         * @param receiver the object from which the method is accessed
+         * @param name the name of the method
+         * @param type the type of the method, with the receiver argument omitted
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         * @see MethodHandle#bindTo
+         * @see #findVirtual
+         */
+        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            MethodHandle handle = findVirtual(receiver.getClass(), name, type);
+            MethodHandle adapter = handle.bindTo(receiver);
+            MethodType adapterType = adapter.type();
+            if (handle.isVarargsCollector()) {
+                adapter = adapter.asVarargsCollector(
+                        adapterType.parameterType(adapterType.parameterCount() - 1));
+            }
+
+            return adapter;
+        }
+
+        /**
+         * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
+         * to <i>m</i>, if the lookup class has permission.
+         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
+         * If <i>m</i> is virtual, overriding is respected on every call.
+         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
+         * The type of the method handle will be that of the method,
+         * with the receiver type prepended (but only if it is non-static).
+         * If the method's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p>
+         * If <i>m</i> is static, and
+         * if the returned method handle is invoked, the method's class will
+         * be initialized, if it has not already been initialized.
+         * @param m the reflected method
+         * @return a method handle which can invoke the reflected method
+         * @throws IllegalAccessException if access checking fails
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflect(Method m) throws IllegalAccessException {
+            if (m == null) {
+                throw new NullPointerException("m == null");
+            }
+
+            MethodType methodType = MethodType.methodType(m.getReturnType(),
+                    m.getParameterTypes());
+
+            // We should only perform access checks if setAccessible hasn't been called yet.
+            if (!m.isAccessible()) {
+                checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(),
+                        m.getName());
+            }
+
+            if (Modifier.isStatic(m.getModifiers())) {
+                return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType);
+            } else {
+                methodType = methodType.insertParameterTypes(0, m.getDeclaringClass());
+                return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType);
+            }
+        }
+
+        /**
+         * Produces a method handle for a reflected method.
+         * It will bypass checks for overriding methods on the receiver,
+         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
+         * instruction from within the explicitly specified {@code specialCaller}.
+         * The type of the method handle will be that of the method,
+         * with a suitably restricted receiver type prepended.
+         * (The receiver type will be {@code specialCaller} or a subtype.)
+         * If the method's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class,
+         * as if {@code invokespecial} instruction were being linked.
+         * <p>
+         * Before method resolution,
+         * if the explicitly specified caller class is not identical with the
+         * lookup class, or if this lookup object does not have
+         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
+         * privileges, the access fails.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param m the reflected method
+         * @param specialCaller the class nominally calling the method
+         * @return a method handle which can invoke the reflected method
+         * @throws IllegalAccessException if access checking fails
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
+            if (m == null) {
+                throw new NullPointerException("m == null");
+            }
+
+            if (specialCaller == null) {
+                throw new NullPointerException("specialCaller == null");
+            }
+
+            if (!m.isAccessible()) {
+                // Android-changed: Match Java language 9 behavior where unreflectSpecial continues
+                // to require exact caller lookupClass match.
+                checkSpecialCaller(specialCaller, null);
+            }
+
+            final MethodType methodType = MethodType.methodType(m.getReturnType(),
+                    m.getParameterTypes());
+            return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller);
+        }
+
+        /**
+         * Produces a method handle for a reflected constructor.
+         * The type of the method handle will be that of the constructor,
+         * with the return type changed to the declaring class.
+         * The method handle will perform a {@code newInstance} operation,
+         * creating a new instance of the constructor's class on the
+         * arguments passed to the method handle.
+         * <p>
+         * If the constructor's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p>
+         * If the returned method handle is invoked, the constructor's class will
+         * be initialized, if it has not already been initialized.
+         * @param c the reflected constructor
+         * @return a method handle which can invoke the reflected constructor
+         * @throws IllegalAccessException if access checking fails
+         *                                or if the method's variable arity modifier bit
+         *                                is set and {@code asVarargsCollector} fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
+            if (c == null) {
+                throw new NullPointerException("c == null");
+            }
+
+            if (!c.isAccessible()) {
+                checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(),
+                        c.getName());
+            }
+
+            return createMethodHandleForConstructor(c);
+        }
+
+        /**
+         * Produces a method handle giving read access to a reflected field.
+         * The type of the method handle will have a return type of the field's
+         * value type.
+         * If the field is static, the method handle will take no arguments.
+         * Otherwise, its single argument will be the instance containing
+         * the field.
+         * If the field's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * <p>
+         * If the field is static, and
+         * if the returned method handle is invoked, the field's class will
+         * be initialized, if it has not already been initialized.
+         * @param f the reflected field
+         * @return a method handle which can load values from the reflected field
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
+            return findAccessor(f, f.getDeclaringClass(), f.getType(),
+                    Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET,
+                    !f.isAccessible() /* performAccessChecks */);
+        }
+
+        /**
+         * Produces a method handle giving write access to a reflected field.
+         * The type of the method handle will have a void return type.
+         * If the field is static, the method handle will take a single
+         * argument, of the field's value type, the value to be stored.
+         * Otherwise, the two arguments will be the instance containing
+         * the field, and the value to be stored.
+         * If the field's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * <p>
+         * If the field is static, and
+         * if the returned method handle is invoked, the field's class will
+         * be initialized, if it has not already been initialized.
+         * @param f the reflected field
+         * @return a method handle which can store values into the reflected field
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
+            return findAccessor(f, f.getDeclaringClass(), f.getType(),
+                    Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT,
+                    !f.isAccessible() /* performAccessChecks */);
+        }
+
+        // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
+        /**
+         * Produces a VarHandle giving access to a reflected field {@code f}
+         * of type {@code T} declared in a class of type {@code R}.
+         * The VarHandle's variable type is {@code T}.
+         * If the field is non-static the VarHandle has one coordinate type,
+         * {@code R}.  Otherwise, the field is static, and the VarHandle has no
+         * coordinate types.
+         * <p>
+         * Access checking is performed immediately on behalf of the lookup
+         * class, regardless of the value of the field's {@code accessible}
+         * flag.
+         * <p>
+         * If the field is static, and if the returned VarHandle is operated
+         * on, the field's declaring class will be initialized, if it has not
+         * already been initialized.
+         * <p>
+         * Certain access modes of the returned VarHandle are unsupported under
+         * the following conditions:
+         * <ul>
+         * <li>if the field is declared {@code final}, then the write, atomic
+         *     update, numeric atomic update, and bitwise atomic update access
+         *     modes are unsupported.
+         * <li>if the field type is anything other than {@code byte},
+         *     {@code short}, {@code char}, {@code int}, {@code long},
+         *     {@code float}, or {@code double} then numeric atomic update
+         *     access modes are unsupported.
+         * <li>if the field type is anything other than {@code boolean},
+         *     {@code byte}, {@code short}, {@code char}, {@code int} or
+         *     {@code long} then bitwise atomic update access modes are
+         *     unsupported.
+         * </ul>
+         * <p>
+         * If the field is declared {@code volatile} then the returned VarHandle
+         * will override access to the field (effectively ignore the
+         * {@code volatile} declaration) in accordance to its specified
+         * access modes.
+         * <p>
+         * If the field type is {@code float} or {@code double} then numeric
+         * and atomic update access modes compare values using their bitwise
+         * representation (see {@link Float#floatToRawIntBits} and
+         * {@link Double#doubleToRawLongBits}, respectively).
+         * @apiNote
+         * Bitwise comparison of {@code float} values or {@code double} values,
+         * as performed by the numeric and atomic update access modes, differ
+         * from the primitive {@code ==} operator and the {@link Float#equals}
+         * and {@link Double#equals} methods, specifically with respect to
+         * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
+         * Care should be taken when performing a compare and set or a compare
+         * and exchange operation with such values since the operation may
+         * unexpectedly fail.
+         * There are many possible NaN values that are considered to be
+         * {@code NaN} in Java, although no IEEE 754 floating-point operation
+         * provided by Java can distinguish between them.  Operation failure can
+         * occur if the expected or witness value is a NaN value and it is
+         * transformed (perhaps in a platform specific manner) into another NaN
+         * value, and thus has a different bitwise representation (see
+         * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
+         * details).
+         * The values {@code -0.0} and {@code +0.0} have different bitwise
+         * representations but are considered equal when using the primitive
+         * {@code ==} operator.  Operation failure can occur if, for example, a
+         * numeric algorithm computes an expected value to be say {@code -0.0}
+         * and previously computed the witness value to be say {@code +0.0}.
+         * @param f the reflected field, with a field of type {@code T}, and
+         * a declaring class of type {@code R}
+         * @return a VarHandle giving access to non-static fields or a static
+         * field
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         * @since 9
+         */
+        public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
+            final boolean isStatic = Modifier.isStatic(f.getModifiers());
+            final boolean performAccessChecks = true;
+            commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks);
+            return isStatic ? StaticFieldVarHandle.create(f) : FieldVarHandle.create(f);
+        }
+        // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
+
+        /**
+         * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
+         * created by this lookup object or a similar one.
+         * Security and access checks are performed to ensure that this lookup object
+         * is capable of reproducing the target method handle.
+         * This means that the cracking may fail if target is a direct method handle
+         * but was created by an unrelated lookup object.
+         * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
+         * and was created by a lookup object for a different class.
+         * @param target a direct method handle to crack into symbolic reference components
+         * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
+         * @exception NullPointerException if the target is {@code null}
+         * @see MethodHandleInfo
+         * @since 1.8
+         */
+        public MethodHandleInfo revealDirect(MethodHandle target) {
+            MethodHandleImpl directTarget = getMethodHandleImpl(target);
+            MethodHandleInfo info = directTarget.reveal();
+
+            try {
+                checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(),
+                        info.getName());
+            } catch (IllegalAccessException exception) {
+                throw new IllegalArgumentException("Unable to access memeber.", exception);
+            }
+
+            return info;
+        }
+
+        private boolean hasPrivateAccess() {
+            return (allowedModes & PRIVATE) != 0;
+        }
+
+        /** Check public/protected/private bits on the symbolic reference class and its member. */
+        void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)
+                throws IllegalAccessException {
+            int allowedModes = this.allowedModes;
+
+            if (Modifier.isProtected(mods) &&
+                    defc == Object.class &&
+                    "clone".equals(methName) &&
+                    refc.isArray()) {
+                // The JVM does this hack also.
+                // (See ClassVerifier::verify_invoke_instructions
+                // and LinkResolver::check_method_accessability.)
+                // Because the JVM does not allow separate methods on array types,
+                // there is no separate method for int[].clone.
+                // All arrays simply inherit Object.clone.
+                // But for access checking logic, we make Object.clone
+                // (normally protected) appear to be public.
+                // Later on, when the DirectMethodHandle is created,
+                // its leading argument will be restricted to the
+                // requested array type.
+                // N.B. The return type is not adjusted, because
+                // that is *not* the bytecode behavior.
+                mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
+            }
+
+            if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) {
+                // cannot "new" a protected ctor in a different package
+                mods ^= Modifier.PROTECTED;
+            }
+
+            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
+                return;  // common case
+            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
+            if ((requestedModes & allowedModes) != 0) {
+                if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes))
+                    return;
+            } else {
+                // Protected members can also be checked as if they were package-private.
+                if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
+                        && VerifyAccess.isSamePackage(defc, lookupClass()))
+                    return;
+            }
+
+            throwMakeAccessException(accessFailedMessage(refc, defc, mods), this);
+        }
+
+        String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) {
+            // check the class first:
+            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
+                    (defc == refc ||
+                            Modifier.isPublic(refc.getModifiers())));
+            if (!classOK && (allowedModes & PACKAGE) != 0) {
+                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
+                        (defc == refc ||
+                                VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
+            }
+            if (!classOK)
+                return "class is not public";
+            if (Modifier.isPublic(mods))
+                return "access to public member failed";  // (how?)
+            if (Modifier.isPrivate(mods))
+                return "member is private";
+            if (Modifier.isProtected(mods))
+                return "member is protected";
+            return "member is private to package";
+        }
+
+        // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false,
+        // as in upstream OpenJDK.
+        //
+        // private static final boolean ALLOW_NESTMATE_ACCESS = false;
+
+        // Android-changed: Match java language 9 behavior allowing special access if the reflected
+        // class (called 'refc', the class from which the method is being accessed) is an interface
+        // and is implemented by the caller.
+        private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
+            // Android-changed: No support for TRUSTED lookups. Also construct the
+            // IllegalAccessException by hand because the upstream code implicitly assumes
+            // that the lookupClass == specialCaller.
+            //
+            // if (allowedModes == TRUSTED)  return;
+            boolean isInterfaceLookup = (refc != null &&
+                                         refc.isInterface() &&
+                                         refc.isAssignableFrom(specialCaller));
+            if (!hasPrivateAccess() || (specialCaller != lookupClass() && !isInterfaceLookup)) {
+                throw new IllegalAccessException("no private access for invokespecial : "
+                        + specialCaller + ", from" + this);
+            }
+        }
+
+        private void throwMakeAccessException(String message, Object from) throws
+                IllegalAccessException{
+            message = message + ": "+ toString();
+            if (from != null)  message += ", from " + from;
+            throw new IllegalAccessException(message);
+        }
+
+        private void checkReturnType(Method method, MethodType methodType)
+                throws NoSuchMethodException {
+            if (method.getReturnType() != methodType.rtype()) {
+                throw new NoSuchMethodException(method.getName() + methodType);
+            }
+        }
+    }
+
+    /**
+     * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}.
+     */
+    private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) {
+        // Special case : We implement handles to constructors as transformers,
+        // so we must extract the underlying handle from the transformer.
+        if (target instanceof Transformers.Construct) {
+            target = ((Transformers.Construct) target).getConstructorHandle();
+        }
+
+        // Special case: Var-args methods are also implemented as Transformers,
+        // so we should get the underlying handle in that case as well.
+        if (target instanceof Transformers.VarargsCollector) {
+            target = target.asFixedArity();
+        }
+
+        if (target instanceof MethodHandleImpl) {
+            return (MethodHandleImpl) target;
+        }
+
+        throw new IllegalArgumentException(target + " is not a direct handle");
+    }
+
+    // Android-removed: unsupported @jvms tag in doc-comment.
+    /**
+     * Produces a method handle constructing arrays of a desired type,
+     * as if by the {@code anewarray} bytecode.
+     * The return type of the method handle will be the array type.
+     * The type of its sole argument will be {@code int}, which specifies the size of the array.
+     *
+     * <p> If the returned method handle is invoked with a negative
+     * array size, a {@code NegativeArraySizeException} will be thrown.
+     *
+     * @param arrayClass an array type
+     * @return a method handle which can create arrays of the given type
+     * @throws NullPointerException if the argument is {@code null}
+     * @throws IllegalArgumentException if {@code arrayClass} is not an array type
+     * @see java.lang.reflect.Array#newInstance(Class, int)
+     * @since 9
+     */
+    public static
+    MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
+        if (!arrayClass.isArray()) {
+            throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
+        }
+        // Android-changed: transformer based implementation.
+        // MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
+        // bindTo(arrayClass.getComponentType());
+        // return ani.asType(ani.type().changeReturnType(arrayClass))
+        return new Transformers.ArrayConstructor(arrayClass);
+    }
+
+    // Android-removed: unsupported @jvms tag in doc-comment.
+    /**
+     * Produces a method handle returning the length of an array,
+     * as if by the {@code arraylength} bytecode.
+     * The type of the method handle will have {@code int} as return type,
+     * and its sole argument will be the array type.
+     *
+     * <p> If the returned method handle is invoked with a {@code null}
+     * array reference, a {@code NullPointerException} will be thrown.
+     *
+     * @param arrayClass an array type
+     * @return a method handle which can retrieve the length of an array of the given array type
+     * @throws NullPointerException if the argument is {@code null}
+     * @throws IllegalArgumentException if arrayClass is not an array type
+     * @since 9
+     */
+    public static
+    MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
+        // Android-changed: transformer based implementation.
+        // return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
+        if (!arrayClass.isArray()) {
+            throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
+        }
+        return new Transformers.ArrayLength(arrayClass);
+    }
+
+    // BEGIN Android-added: method to check if a class is an array.
+    private static void checkClassIsArray(Class<?> c) {
+        if (!c.isArray()) {
+            throw new IllegalArgumentException("Not an array type: " + c);
+        }
+    }
+
+    private static void checkTypeIsViewable(Class<?> componentType) {
+        if (componentType == short.class ||
+            componentType == char.class ||
+            componentType == int.class ||
+            componentType == long.class ||
+            componentType == float.class ||
+            componentType == double.class) {
+            return;
+        }
+        throw new UnsupportedOperationException("Component type not supported: " + componentType);
+    }
+    // END Android-added: method to check if a class is an array.
+
+    /**
+     * Produces a method handle giving read access to elements of an array.
+     * The type of the method handle will have a return type of the array's
+     * element type.  Its first argument will be the array type,
+     * and the second will be {@code int}.
+     * @param arrayClass an array type
+     * @return a method handle which can load values from the given array type
+     * @throws NullPointerException if the argument is null
+     * @throws  IllegalArgumentException if arrayClass is not an array type
+     */
+    public static
+    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
+        checkClassIsArray(arrayClass);
+        final Class<?> componentType = arrayClass.getComponentType();
+        if (componentType.isPrimitive()) {
+            try {
+                return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
+                        "arrayElementGetter",
+                        MethodType.methodType(componentType, arrayClass, int.class));
+            } catch (NoSuchMethodException | IllegalAccessException exception) {
+                throw new AssertionError(exception);
+            }
+        }
+
+        return new Transformers.ReferenceArrayElementGetter(arrayClass);
+    }
+
+    /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; }
+    /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; }
+    /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; }
+    /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; }
+    /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; }
+    /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; }
+    /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; }
+    /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; }
+
+    /**
+     * Produces a method handle giving write access to elements of an array.
+     * The type of the method handle will have a void return type.
+     * Its last argument will be the array's element type.
+     * The first and second arguments will be the array type and int.
+     * @param arrayClass the class of an array
+     * @return a method handle which can store values into the array type
+     * @throws NullPointerException if the argument is null
+     * @throws IllegalArgumentException if arrayClass is not an array type
+     */
+    public static
+    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
+        checkClassIsArray(arrayClass);
+        final Class<?> componentType = arrayClass.getComponentType();
+        if (componentType.isPrimitive()) {
+            try {
+                return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
+                        "arrayElementSetter",
+                        MethodType.methodType(void.class, arrayClass, int.class, componentType));
+            } catch (NoSuchMethodException | IllegalAccessException exception) {
+                throw new AssertionError(exception);
+            }
+        }
+
+        return new Transformers.ReferenceArrayElementSetter(arrayClass);
+    }
+
+    /** @hide */
+    public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; }
+    /** @hide */
+    public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; }
+
+    // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods.
+    /**
+     * Produces a VarHandle giving access to elements of an array of type
+     * {@code arrayClass}.  The VarHandle's variable type is the component type
+     * of {@code arrayClass} and the list of coordinate types is
+     * {@code (arrayClass, int)}, where the {@code int} coordinate type
+     * corresponds to an argument that is an index into an array.
+     * <p>
+     * Certain access modes of the returned VarHandle are unsupported under
+     * the following conditions:
+     * <ul>
+     * <li>if the component type is anything other than {@code byte},
+     *     {@code short}, {@code char}, {@code int}, {@code long},
+     *     {@code float}, or {@code double} then numeric atomic update access
+     *     modes are unsupported.
+     * <li>if the field type is anything other than {@code boolean},
+     *     {@code byte}, {@code short}, {@code char}, {@code int} or
+     *     {@code long} then bitwise atomic update access modes are
+     *     unsupported.
+     * </ul>
+     * <p>
+     * If the component type is {@code float} or {@code double} then numeric
+     * and atomic update access modes compare values using their bitwise
+     * representation (see {@link Float#floatToRawIntBits} and
+     * {@link Double#doubleToRawLongBits}, respectively).
+     * @apiNote
+     * Bitwise comparison of {@code float} values or {@code double} values,
+     * as performed by the numeric and atomic update access modes, differ
+     * from the primitive {@code ==} operator and the {@link Float#equals}
+     * and {@link Double#equals} methods, specifically with respect to
+     * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
+     * Care should be taken when performing a compare and set or a compare
+     * and exchange operation with such values since the operation may
+     * unexpectedly fail.
+     * There are many possible NaN values that are considered to be
+     * {@code NaN} in Java, although no IEEE 754 floating-point operation
+     * provided by Java can distinguish between them.  Operation failure can
+     * occur if the expected or witness value is a NaN value and it is
+     * transformed (perhaps in a platform specific manner) into another NaN
+     * value, and thus has a different bitwise representation (see
+     * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
+     * details).
+     * The values {@code -0.0} and {@code +0.0} have different bitwise
+     * representations but are considered equal when using the primitive
+     * {@code ==} operator.  Operation failure can occur if, for example, a
+     * numeric algorithm computes an expected value to be say {@code -0.0}
+     * and previously computed the witness value to be say {@code +0.0}.
+     * @param arrayClass the class of an array, of type {@code T[]}
+     * @return a VarHandle giving access to elements of an array
+     * @throws NullPointerException if the arrayClass is null
+     * @throws IllegalArgumentException if arrayClass is not an array type
+     * @since 9
+     */
+    public static
+    VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
+        checkClassIsArray(arrayClass);
+        return ArrayElementVarHandle.create(arrayClass);
+    }
+
+    /**
+     * Produces a VarHandle giving access to elements of a {@code byte[]} array
+     * viewed as if it were a different primitive array type, such as
+     * {@code int[]} or {@code long[]}.
+     * The VarHandle's variable type is the component type of
+     * {@code viewArrayClass} and the list of coordinate types is
+     * {@code (byte[], int)}, where the {@code int} coordinate type
+     * corresponds to an argument that is an index into a {@code byte[]} array.
+     * The returned VarHandle accesses bytes at an index in a {@code byte[]}
+     * array, composing bytes to or from a value of the component type of
+     * {@code viewArrayClass} according to the given endianness.
+     * <p>
+     * The supported component types (variables types) are {@code short},
+     * {@code char}, {@code int}, {@code long}, {@code float} and
+     * {@code double}.
+     * <p>
+     * Access of bytes at a given index will result in an
+     * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
+     * or greater than the {@code byte[]} array length minus the size (in bytes)
+     * of {@code T}.
+     * <p>
+     * Access of bytes at an index may be aligned or misaligned for {@code T},
+     * with respect to the underlying memory address, {@code A} say, associated
+     * with the array and index.
+     * If access is misaligned then access for anything other than the
+     * {@code get} and {@code set} access modes will result in an
+     * {@code IllegalStateException}.  In such cases atomic access is only
+     * guaranteed with respect to the largest power of two that divides the GCD
+     * of {@code A} and the size (in bytes) of {@code T}.
+     * If access is aligned then following access modes are supported and are
+     * guaranteed to support atomic access:
+     * <ul>
+     * <li>read write access modes for all {@code T}, with the exception of
+     *     access modes {@code get} and {@code set} for {@code long} and
+     *     {@code double} on 32-bit platforms.
+     * <li>atomic update access modes for {@code int}, {@code long},
+     *     {@code float} or {@code double}.
+     *     (Future major platform releases of the JDK may support additional
+     *     types for certain currently unsupported access modes.)
+     * <li>numeric atomic update access modes for {@code int} and {@code long}.
+     *     (Future major platform releases of the JDK may support additional
+     *     numeric types for certain currently unsupported access modes.)
+     * <li>bitwise atomic update access modes for {@code int} and {@code long}.
+     *     (Future major platform releases of the JDK may support additional
+     *     numeric types for certain currently unsupported access modes.)
+     * </ul>
+     * <p>
+     * Misaligned access, and therefore atomicity guarantees, may be determined
+     * for {@code byte[]} arrays without operating on a specific array.  Given
+     * an {@code index}, {@code T} and it's corresponding boxed type,
+     * {@code T_BOX}, misalignment may be determined as follows:
+     * <pre>{@code
+     * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
+     * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
+     *     alignmentOffset(0, sizeOfT);
+     * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
+     * boolean isMisaligned = misalignedAtIndex != 0;
+     * }</pre>
+     * <p>
+     * If the variable type is {@code float} or {@code double} then atomic
+     * update access modes compare values using their bitwise representation
+     * (see {@link Float#floatToRawIntBits} and
+     * {@link Double#doubleToRawLongBits}, respectively).
+     * @param viewArrayClass the view array class, with a component type of
+     * type {@code T}
+     * @param byteOrder the endianness of the view array elements, as
+     * stored in the underlying {@code byte} array
+     * @return a VarHandle giving access to elements of a {@code byte[]} array
+     * viewed as if elements corresponding to the components type of the view
+     * array class
+     * @throws NullPointerException if viewArrayClass or byteOrder is null
+     * @throws IllegalArgumentException if viewArrayClass is not an array type
+     * @throws UnsupportedOperationException if the component type of
+     * viewArrayClass is not supported as a variable type
+     * @since 9
+     */
+    public static
+    VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
+                                     ByteOrder byteOrder) throws IllegalArgumentException {
+        checkClassIsArray(viewArrayClass);
+        checkTypeIsViewable(viewArrayClass.getComponentType());
+        return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder);
+    }
+
+    /**
+     * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
+     * viewed as if it were an array of elements of a different primitive
+     * component type to that of {@code byte}, such as {@code int[]} or
+     * {@code long[]}.
+     * The VarHandle's variable type is the component type of
+     * {@code viewArrayClass} and the list of coordinate types is
+     * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
+     * corresponds to an argument that is an index into a {@code byte[]} array.
+     * The returned VarHandle accesses bytes at an index in a
+     * {@code ByteBuffer}, composing bytes to or from a value of the component
+     * type of {@code viewArrayClass} according to the given endianness.
+     * <p>
+     * The supported component types (variables types) are {@code short},
+     * {@code char}, {@code int}, {@code long}, {@code float} and
+     * {@code double}.
+     * <p>
+     * Access will result in a {@code ReadOnlyBufferException} for anything
+     * other than the read access modes if the {@code ByteBuffer} is read-only.
+     * <p>
+     * Access of bytes at a given index will result in an
+     * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
+     * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
+     * {@code T}.
+     * <p>
+     * Access of bytes at an index may be aligned or misaligned for {@code T},
+     * with respect to the underlying memory address, {@code A} say, associated
+     * with the {@code ByteBuffer} and index.
+     * If access is misaligned then access for anything other than the
+     * {@code get} and {@code set} access modes will result in an
+     * {@code IllegalStateException}.  In such cases atomic access is only
+     * guaranteed with respect to the largest power of two that divides the GCD
+     * of {@code A} and the size (in bytes) of {@code T}.
+     * If access is aligned then following access modes are supported and are
+     * guaranteed to support atomic access:
+     * <ul>
+     * <li>read write access modes for all {@code T}, with the exception of
+     *     access modes {@code get} and {@code set} for {@code long} and
+     *     {@code double} on 32-bit platforms.
+     * <li>atomic update access modes for {@code int}, {@code long},
+     *     {@code float} or {@code double}.
+     *     (Future major platform releases of the JDK may support additional
+     *     types for certain currently unsupported access modes.)
+     * <li>numeric atomic update access modes for {@code int} and {@code long}.
+     *     (Future major platform releases of the JDK may support additional
+     *     numeric types for certain currently unsupported access modes.)
+     * <li>bitwise atomic update access modes for {@code int} and {@code long}.
+     *     (Future major platform releases of the JDK may support additional
+     *     numeric types for certain currently unsupported access modes.)
+     * </ul>
+     * <p>
+     * Misaligned access, and therefore atomicity guarantees, may be determined
+     * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
+     * {@code index}, {@code T} and it's corresponding boxed type,
+     * {@code T_BOX}, as follows:
+     * <pre>{@code
+     * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
+     * ByteBuffer bb = ...
+     * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
+     * boolean isMisaligned = misalignedAtIndex != 0;
+     * }</pre>
+     * <p>
+     * If the variable type is {@code float} or {@code double} then atomic
+     * update access modes compare values using their bitwise representation
+     * (see {@link Float#floatToRawIntBits} and
+     * {@link Double#doubleToRawLongBits}, respectively).
+     * @param viewArrayClass the view array class, with a component type of
+     * type {@code T}
+     * @param byteOrder the endianness of the view array elements, as
+     * stored in the underlying {@code ByteBuffer} (Note this overrides the
+     * endianness of a {@code ByteBuffer})
+     * @return a VarHandle giving access to elements of a {@code ByteBuffer}
+     * viewed as if elements corresponding to the components type of the view
+     * array class
+     * @throws NullPointerException if viewArrayClass or byteOrder is null
+     * @throws IllegalArgumentException if viewArrayClass is not an array type
+     * @throws UnsupportedOperationException if the component type of
+     * viewArrayClass is not supported as a variable type
+     * @since 9
+     */
+    public static
+    VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
+                                      ByteOrder byteOrder) throws IllegalArgumentException {
+        checkClassIsArray(viewArrayClass);
+        checkTypeIsViewable(viewArrayClass.getComponentType());
+        return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder);
+    }
+    // END Android-changed: OpenJDK 9+181 VarHandle API factory methods.
+
+    /// method handle invocation (reflective style)
+
+    /**
+     * Produces a method handle which will invoke any method handle of the
+     * given {@code type}, with a given number of trailing arguments replaced by
+     * a single trailing {@code Object[]} array.
+     * The resulting invoker will be a method handle with the following
+     * arguments:
+     * <ul>
+     * <li>a single {@code MethodHandle} target
+     * <li>zero or more leading values (counted by {@code leadingArgCount})
+     * <li>an {@code Object[]} array containing trailing arguments
+     * </ul>
+     * <p>
+     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
+     * the indicated {@code type}.
+     * That is, if the target is exactly of the given {@code type}, it will behave
+     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
+     * is used to convert the target to the required {@code type}.
+     * <p>
+     * The type of the returned invoker will not be the given {@code type}, but rather
+     * will have all parameters except the first {@code leadingArgCount}
+     * replaced by a single array of type {@code Object[]}, which will be
+     * the final parameter.
+     * <p>
+     * Before invoking its target, the invoker will spread the final array, apply
+     * reference casts as necessary, and unbox and widen primitive arguments.
+     * If, when the invoker is called, the supplied array argument does
+     * not have the correct number of elements, the invoker will throw
+     * an {@link IllegalArgumentException} instead of invoking the target.
+     * <p>
+     * This method is equivalent to the following code (though it may be more efficient):
+     * <blockquote><pre>{@code
+MethodHandle invoker = MethodHandles.invoker(type);
+int spreadArgCount = type.parameterCount() - leadingArgCount;
+invoker = invoker.asSpreader(Object[].class, spreadArgCount);
+return invoker;
+     * }</pre></blockquote>
+     * This method throws no reflective or security exceptions.
+     * @param type the desired target type
+     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
+     * @return a method handle suitable for invoking any method handle of the given type
+     * @throws NullPointerException if {@code type} is null
+     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
+     *                  the range from 0 to {@code type.parameterCount()} inclusive,
+     *                  or if the resulting method handle's type would have
+     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
+     */
+    static public
+    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
+        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
+            throw newIllegalArgumentException("bad argument count", leadingArgCount);
+
+        MethodHandle invoker = MethodHandles.invoker(type);
+        int spreadArgCount = type.parameterCount() - leadingArgCount;
+        invoker = invoker.asSpreader(Object[].class, spreadArgCount);
+        return invoker;
+    }
+
+    /**
+     * Produces a special <em>invoker method handle</em> which can be used to
+     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
+     * The resulting invoker will have a type which is
+     * exactly equal to the desired type, except that it will accept
+     * an additional leading argument of type {@code MethodHandle}.
+     * <p>
+     * This method is equivalent to the following code (though it may be more efficient):
+     * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
+     *
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * Invoker method handles can be useful when working with variable method handles
+     * of unknown types.
+     * For example, to emulate an {@code invokeExact} call to a variable method
+     * handle {@code M}, extract its type {@code T},
+     * look up the invoker method {@code X} for {@code T},
+     * and call the invoker method, as {@code X.invoke(T, A...)}.
+     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
+     * is unknown.)
+     * If spreading, collecting, or other argument transformations are required,
+     * they can be applied once to the invoker {@code X} and reused on many {@code M}
+     * method handle values, as long as they are compatible with the type of {@code X}.
+     * <p style="font-size:smaller;">
+     * <em>(Note:  The invoker method is not available via the Core Reflection API.
+     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
+     * on the declared {@code invokeExact} or {@code invoke} method will raise an
+     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
+     * <p>
+     * This method throws no reflective or security exceptions.
+     * @param type the desired target type
+     * @return a method handle suitable for invoking any method handle of the given type
+     * @throws IllegalArgumentException if the resulting method handle's type would have
+     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
+     */
+    static public
+    MethodHandle exactInvoker(MethodType type) {
+        return new Transformers.Invoker(type, true /* isExactInvoker */);
+    }
+
+    /**
+     * Produces a special <em>invoker method handle</em> which can be used to
+     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
+     * The resulting invoker will have a type which is
+     * exactly equal to the desired type, except that it will accept
+     * an additional leading argument of type {@code MethodHandle}.
+     * <p>
+     * Before invoking its target, if the target differs from the expected type,
+     * the invoker will apply reference casts as
+     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
+     * Similarly, the return value will be converted as necessary.
+     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
+     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
+     * <p>
+     * This method is equivalent to the following code (though it may be more efficient):
+     * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * A {@linkplain MethodType#genericMethodType general method type} is one which
+     * mentions only {@code Object} arguments and return values.
+     * An invoker for such a type is capable of calling any method handle
+     * of the same arity as the general type.
+     * <p style="font-size:smaller;">
+     * <em>(Note:  The invoker method is not available via the Core Reflection API.
+     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
+     * on the declared {@code invokeExact} or {@code invoke} method will raise an
+     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
+     * <p>
+     * This method throws no reflective or security exceptions.
+     * @param type the desired target type
+     * @return a method handle suitable for invoking any method handle convertible to the given type
+     * @throws IllegalArgumentException if the resulting method handle's type would have
+     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
+     */
+    static public
+    MethodHandle invoker(MethodType type) {
+        return new Transformers.Invoker(type, false /* isExactInvoker */);
+    }
+
+    // BEGIN Android-added: resolver for VarHandle accessor methods.
+    static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode,
+                                                                 MethodType type,
+                                                                 boolean isExactInvoker) {
+        Class<?> refc = VarHandle.class;
+        Method method;
+        try {
+            method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class);
+        } catch (NoSuchMethodException e) {
+            throw new InternalError("No method for AccessMode " + accessMode, e);
+        }
+        MethodType methodType = type.insertParameterTypes(0, VarHandle.class);
+        int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT
+                                  : MethodHandle.INVOKE_VAR_HANDLE;
+        return new MethodHandleImpl(method.getArtMethod(), kind, methodType);
+    }
+    // END Android-added: resolver for VarHandle accessor methods.
+
+    /**
+     * Produces a special <em>invoker method handle</em> which can be used to
+     * invoke a signature-polymorphic access mode method on any VarHandle whose
+     * associated access mode type is compatible with the given type.
+     * The resulting invoker will have a type which is exactly equal to the
+     * desired given type, except that it will accept an additional leading
+     * argument of type {@code VarHandle}.
+     *
+     * @param accessMode the VarHandle access mode
+     * @param type the desired target type
+     * @return a method handle suitable for invoking an access mode method of
+     *         any VarHandle whose access mode type is of the given type.
+     * @since 9
+     */
+    static public
+    MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
+        return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */);
+    }
+
+    /**
+     * Produces a special <em>invoker method handle</em> which can be used to
+     * invoke a signature-polymorphic access mode method on any VarHandle whose
+     * associated access mode type is compatible with the given type.
+     * The resulting invoker will have a type which is exactly equal to the
+     * desired given type, except that it will accept an additional leading
+     * argument of type {@code VarHandle}.
+     * <p>
+     * Before invoking its target, if the access mode type differs from the
+     * desired given type, the invoker will apply reference casts as necessary
+     * and box, unbox, or widen primitive values, as if by
+     * {@link MethodHandle#asType asType}.  Similarly, the return value will be
+     * converted as necessary.
+     * <p>
+     * This method is equivalent to the following code (though it may be more
+     * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
+     *
+     * @param accessMode the VarHandle access mode
+     * @param type the desired target type
+     * @return a method handle suitable for invoking an access mode method of
+     *         any VarHandle whose access mode type is convertible to the given
+     *         type.
+     * @since 9
+     */
+    static public
+    MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
+        return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */);
+    }
+
+    // Android-changed: Basic invokers are not supported.
+    //
+    // static /*non-public*/
+    // MethodHandle basicInvoker(MethodType type) {
+    //     return type.invokers().basicInvoker();
+    // }
+
+     /// method handle modification (creation from other method handles)
+
+    /**
+     * Produces a method handle which adapts the type of the
+     * given method handle to a new type by pairwise argument and return type conversion.
+     * The original type and new type must have the same number of arguments.
+     * The resulting method handle is guaranteed to report a type
+     * which is equal to the desired new type.
+     * <p>
+     * If the original type and new type are equal, returns target.
+     * <p>
+     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
+     * and some additional conversions are also applied if those conversions fail.
+     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
+     * if possible, before or instead of any conversions done by {@code asType}:
+     * <ul>
+     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
+     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
+     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
+     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
+     *     the boolean is converted to a byte value, 1 for true, 0 for false.
+     *     (This treatment follows the usage of the bytecode verifier.)
+     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
+     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
+     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
+     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
+     *     then a Java casting conversion (JLS 5.5) is applied.
+     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
+     *     widening and/or narrowing.)
+     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
+     *     conversion will be applied at runtime, possibly followed
+     *     by a Java casting conversion (JLS 5.5) on the primitive value,
+     *     possibly followed by a conversion from byte to boolean by testing
+     *     the low-order bit.
+     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
+     *     and if the reference is null at runtime, a zero value is introduced.
+     * </ul>
+     * @param target the method handle to invoke after arguments are retyped
+     * @param newType the expected type of the new method handle
+     * @return a method handle which delegates to the target after performing
+     *           any necessary argument conversions, and arranges for any
+     *           necessary return value conversions
+     * @throws NullPointerException if either argument is null
+     * @throws WrongMethodTypeException if the conversion cannot be made
+     * @see MethodHandle#asType
+     */
+    public static
+    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
+        explicitCastArgumentsChecks(target, newType);
+        // use the asTypeCache when possible:
+        MethodType oldType = target.type();
+        if (oldType == newType) return target;
+        if (oldType.explicitCastEquivalentToAsType(newType)) {
+            if (Transformers.Transformer.class.isAssignableFrom(target.getClass())) {
+                // The StackFrameReader and StackFrameWriter used to perform transforms on
+                // EmulatedStackFrames (in Transformers.java) do not how to perform asType()
+                // conversions, but we know here that an explicit cast transform is the same as
+                // having called asType() on the method handle.
+                return new Transformers.ExplicitCastArguments(target.asFixedArity(), newType);
+            } else {
+                // Runtime will perform asType() conversion during invocation.
+                return target.asFixedArity().asType(newType);
+            }
+        }
+        return new Transformers.ExplicitCastArguments(target, newType);
+    }
+
+    private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
+        if (target.type().parameterCount() != newType.parameterCount()) {
+            throw new WrongMethodTypeException("cannot explicitly cast " + target +
+                                               " to " + newType);
+        }
+    }
+
+    /**
+     * Produces a method handle which adapts the calling sequence of the
+     * given method handle to a new type, by reordering the arguments.
+     * The resulting method handle is guaranteed to report a type
+     * which is equal to the desired new type.
+     * <p>
+     * The given array controls the reordering.
+     * Call {@code #I} the number of incoming parameters (the value
+     * {@code newType.parameterCount()}, and call {@code #O} the number
+     * of outgoing parameters (the value {@code target.type().parameterCount()}).
+     * Then the length of the reordering array must be {@code #O},
+     * and each element must be a non-negative number less than {@code #I}.
+     * For every {@code N} less than {@code #O}, the {@code N}-th
+     * outgoing argument will be taken from the {@code I}-th incoming
+     * argument, where {@code I} is {@code reorder[N]}.
+     * <p>
+     * No argument or return value conversions are applied.
+     * The type of each incoming argument, as determined by {@code newType},
+     * must be identical to the type of the corresponding outgoing parameter
+     * or parameters in the target method handle.
+     * The return type of {@code newType} must be identical to the return
+     * type of the original target.
+     * <p>
+     * The reordering array need not specify an actual permutation.
+     * An incoming argument will be duplicated if its index appears
+     * more than once in the array, and an incoming argument will be dropped
+     * if its index does not appear in the array.
+     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
+     * incoming arguments which are not mentioned in the reordering array
+     * are may be any type, as determined only by {@code newType}.
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodType intfn1 = methodType(int.class, int.class);
+MethodType intfn2 = methodType(int.class, int.class, int.class);
+MethodHandle sub = ... (int x, int y) -> (x-y) ...;
+assert(sub.type().equals(intfn2));
+MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
+MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
+assert((int)rsub.invokeExact(1, 100) == 99);
+MethodHandle add = ... (int x, int y) -> (x+y) ...;
+assert(add.type().equals(intfn2));
+MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
+assert(twice.type().equals(intfn1));
+assert((int)twice.invokeExact(21) == 42);
+     * }</pre></blockquote>
+     * @param target the method handle to invoke after arguments are reordered
+     * @param newType the expected type of the new method handle
+     * @param reorder an index array which controls the reordering
+     * @return a method handle which delegates to the target after it
+     *           drops unused arguments and moves and/or duplicates the other arguments
+     * @throws NullPointerException if any argument is null
+     * @throws IllegalArgumentException if the index array length is not equal to
+     *                  the arity of the target, or if any index array element
+     *                  not a valid index for a parameter of {@code newType},
+     *                  or if two corresponding parameter types in
+     *                  {@code target.type()} and {@code newType} are not identical,
+     */
+    public static
+    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
+        reorder = reorder.clone();  // get a private copy
+        MethodType oldType = target.type();
+        permuteArgumentChecks(reorder, newType, oldType);
+
+        return new Transformers.PermuteArguments(newType, target, reorder);
+    }
+
+    // Android-changed: findFirstDupOrDrop is unused and removed.
+    // private static int findFirstDupOrDrop(int[] reorder, int newArity);
+
+    private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
+        if (newType.returnType() != oldType.returnType())
+            throw newIllegalArgumentException("return types do not match",
+                    oldType, newType);
+        if (reorder.length == oldType.parameterCount()) {
+            int limit = newType.parameterCount();
+            boolean bad = false;
+            for (int j = 0; j < reorder.length; j++) {
+                int i = reorder[j];
+                if (i < 0 || i >= limit) {
+                    bad = true; break;
+                }
+                Class<?> src = newType.parameterType(i);
+                Class<?> dst = oldType.parameterType(j);
+                if (src != dst)
+                    throw newIllegalArgumentException("parameter types do not match after reorder",
+                            oldType, newType);
+            }
+            if (!bad)  return true;
+        }
+        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
+    }
+
+    /**
+     * Produces a method handle of the requested return type which returns the given
+     * constant value every time it is invoked.
+     * <p>
+     * Before the method handle is returned, the passed-in value is converted to the requested type.
+     * If the requested type is primitive, widening primitive conversions are attempted,
+     * else reference conversions are attempted.
+     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
+     * @param type the return type of the desired method handle
+     * @param value the value to return
+     * @return a method handle of the given return type and no arguments, which always returns the given value
+     * @throws NullPointerException if the {@code type} argument is null
+     * @throws ClassCastException if the value cannot be converted to the required return type
+     * @throws IllegalArgumentException if the given type is {@code void.class}
+     */
+    public static
+    MethodHandle constant(Class<?> type, Object value) {
+        if (type.isPrimitive()) {
+            if (type == void.class)
+                throw newIllegalArgumentException("void type");
+            Wrapper w = Wrapper.forPrimitiveType(type);
+            value = w.convert(value, type);
+            if (w.zero().equals(value))
+                return zero(w, type);
+            return insertArguments(identity(type), 0, value);
+        } else {
+            if (value == null)
+                return zero(Wrapper.OBJECT, type);
+            return identity(type).bindTo(value);
+        }
+    }
+
+    /**
+     * Produces a method handle which returns its sole argument when invoked.
+     * @param type the type of the sole parameter and return value of the desired method handle
+     * @return a unary method handle which accepts and returns the given type
+     * @throws NullPointerException if the argument is null
+     * @throws IllegalArgumentException if the given type is {@code void.class}
+     */
+    public static
+    MethodHandle identity(Class<?> type) {
+        // Android-added: explicit non-null check.
+        Objects.requireNonNull(type);
+        Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
+        int pos = btw.ordinal();
+        MethodHandle ident = IDENTITY_MHS[pos];
+        if (ident == null) {
+            ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
+        }
+        if (ident.type().returnType() == type)
+            return ident;
+        // something like identity(Foo.class); do not bother to intern these
+        assert (btw == Wrapper.OBJECT);
+        return makeIdentity(type);
+    }
+
+    /**
+     * Produces a constant method handle of the requested return type which
+     * returns the default value for that type every time it is invoked.
+     * The resulting constant method handle will have no side effects.
+     * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
+     * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
+     * since {@code explicitCastArguments} converts {@code null} to default values.
+     * @param type the expected return type of the desired method handle
+     * @return a constant method handle that takes no arguments
+     *         and returns the default value of the given type (or void, if the type is void)
+     * @throws NullPointerException if the argument is null
+     * @see MethodHandles#constant
+     * @see MethodHandles#empty
+     * @see MethodHandles#explicitCastArguments
+     * @since 9
+     */
+    public static MethodHandle zero(Class<?> type) {
+        Objects.requireNonNull(type);
+        return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
+    }
+
+    private static MethodHandle identityOrVoid(Class<?> type) {
+        return type == void.class ? zero(type) : identity(type);
+    }
+
+    /**
+     * Produces a method handle of the requested type which ignores any arguments, does nothing,
+     * and returns a suitable default depending on the return type.
+     * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
+     * <p>The returned method handle is equivalent to
+     * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
+     *
+     * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
+     * {@code guardWithTest(pred, target, empty(target.type())}.
+     * @param type the type of the desired method handle
+     * @return a constant method handle of the given type, which returns a default value of the given return type
+     * @throws NullPointerException if the argument is null
+     * @see MethodHandles#zero
+     * @see MethodHandles#constant
+     * @since 9
+     */
+    public static  MethodHandle empty(MethodType type) {
+        Objects.requireNonNull(type);
+        return dropArguments(zero(type.returnType()), 0, type.parameterList());
+    }
+
+    private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
+    private static MethodHandle makeIdentity(Class<?> ptype) {
+        // Android-changed: Android implementation using identity() functions and transformers.
+        // MethodType mtype = methodType(ptype, ptype);
+        // LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
+        // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
+        if (ptype.isPrimitive()) {
+            try {
+                final MethodType mt = methodType(ptype, ptype);
+                return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity", mt);
+            } catch (NoSuchMethodException | IllegalAccessException e) {
+                throw new AssertionError(e);
+            }
+        } else {
+            return new Transformers.ReferenceIdentity(ptype);
+        }
+    }
+
+    // Android-added: helper methods for identity().
+    /** @hide */ public static byte identity(byte val) { return val; }
+    /** @hide */ public static boolean identity(boolean val) { return val; }
+    /** @hide */ public static char identity(char val) { return val; }
+    /** @hide */ public static short identity(short val) { return val; }
+    /** @hide */ public static int identity(int val) { return val; }
+    /** @hide */ public static long identity(long val) { return val; }
+    /** @hide */ public static float identity(float val) { return val; }
+    /** @hide */ public static double identity(double val) { return val; }
+
+    private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
+        int pos = btw.ordinal();
+        MethodHandle zero = ZERO_MHS[pos];
+        if (zero == null) {
+            zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
+        }
+        if (zero.type().returnType() == rtype)
+            return zero;
+        assert(btw == Wrapper.OBJECT);
+        return makeZero(rtype);
+    }
+    private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
+    private static MethodHandle makeZero(Class<?> rtype) {
+        // Android-changed: use Android specific implementation.
+        // MethodType mtype = methodType(rtype);
+        // LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
+        // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
+        return new Transformers.ZeroValue(rtype);
+    }
+
+    private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
+        // Simulate a CAS, to avoid racy duplication of results.
+        MethodHandle prev = cache[pos];
+        if (prev != null) return prev;
+        return cache[pos] = value;
+    }
+
+    /**
+     * Provides a target method handle with one or more <em>bound arguments</em>
+     * in advance of the method handle's invocation.
+     * The formal parameters to the target corresponding to the bound
+     * arguments are called <em>bound parameters</em>.
+     * Returns a new method handle which saves away the bound arguments.
+     * When it is invoked, it receives arguments for any non-bound parameters,
+     * binds the saved arguments to their corresponding parameters,
+     * and calls the original target.
+     * <p>
+     * The type of the new method handle will drop the types for the bound
+     * parameters from the original target type, since the new method handle
+     * will no longer require those arguments to be supplied by its callers.
+     * <p>
+     * Each given argument object must match the corresponding bound parameter type.
+     * If a bound parameter type is a primitive, the argument object
+     * must be a wrapper, and will be unboxed to produce the primitive value.
+     * <p>
+     * The {@code pos} argument selects which parameters are to be bound.
+     * It may range between zero and <i>N-L</i> (inclusively),
+     * where <i>N</i> is the arity of the target method handle
+     * and <i>L</i> is the length of the values array.
+     * @param target the method handle to invoke after the argument is inserted
+     * @param pos where to insert the argument (zero for the first)
+     * @param values the series of arguments to insert
+     * @return a method handle which inserts an additional argument,
+     *         before calling the original method handle
+     * @throws NullPointerException if the target or the {@code values} array is null
+     * @see MethodHandle#bindTo
+     */
+    public static
+    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
+        int insCount = values.length;
+        Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
+        if (insCount == 0)  {
+            return target;
+        }
+
+        // Throw ClassCastExceptions early if we can't cast any of the provided values
+        // to the required type.
+        for (int i = 0; i < insCount; i++) {
+            final Class<?> ptype = ptypes[pos + i];
+            if (!ptype.isPrimitive()) {
+                ptypes[pos + i].cast(values[i]);
+            } else {
+                // Will throw a ClassCastException if something terrible happens.
+                values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype);
+            }
+        }
+
+        return new Transformers.InsertArguments(target, pos, values);
+    }
+
+    // Android-changed: insertArgumentPrimitive is unused.
+    //
+    // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
+    //                                                          Class<?> ptype, Object value) {
+    //     Wrapper w = Wrapper.forPrimitiveType(ptype);
+    //     // perform unboxing and/or primitive conversion
+    //     value = w.convert(value, ptype);
+    //     switch (w) {
+    //     case INT:     return result.bindArgumentI(pos, (int)value);
+    //     case LONG:    return result.bindArgumentJ(pos, (long)value);
+    //     case FLOAT:   return result.bindArgumentF(pos, (float)value);
+    //     case DOUBLE:  return result.bindArgumentD(pos, (double)value);
+    //     default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
+    //     }
+    // }
+
+    private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
+        MethodType oldType = target.type();
+        int outargs = oldType.parameterCount();
+        int inargs  = outargs - insCount;
+        if (inargs < 0)
+            throw newIllegalArgumentException("too many values to insert");
+        if (pos < 0 || pos > inargs)
+            throw newIllegalArgumentException("no argument type to append");
+        return oldType.ptypes();
+    }
+
+    // Android-changed: inclusive language preference for 'placeholder'.
+    /**
+     * Produces a method handle which will discard some placeholder arguments
+     * before calling some other specified <i>target</i> method handle.
+     * The type of the new method handle will be the same as the target's type,
+     * except it will also include the placeholder argument types,
+     * at some given position.
+     * <p>
+     * The {@code pos} argument may range between zero and <i>N</i>,
+     * where <i>N</i> is the arity of the target.
+     * If {@code pos} is zero, the placeholder arguments will precede
+     * the target's real arguments; if {@code pos} is <i>N</i>
+     * they will come after.
+     * <p>
+     * <b>Example:</b>
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
+MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
+assertEquals(bigType, d0.type());
+assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
+     * }</pre></blockquote>
+     * <p>
+     * This method is also equivalent to the following code:
+     * <blockquote><pre>
+     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
+     * </pre></blockquote>
+     * @param target the method handle to invoke after the arguments are dropped
+     * @param valueTypes the type(s) of the argument(s) to drop
+     * @param pos position of first argument to drop (zero for the leftmost)
+     * @return a method handle which drops arguments of the given types,
+     *         before calling the original method handle
+     * @throws NullPointerException if the target is null,
+     *                              or if the {@code valueTypes} list or any of its elements is null
+     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
+     *                  or if {@code pos} is negative or greater than the arity of the target,
+     *                  or if the new method handle's type would have too many parameters
+     */
+    public static
+    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
+        return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
+    }
+
+    private static List<Class<?>> copyTypes(Object[] array) {
+        return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
+    }
+
+    private static
+    MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
+        MethodType oldType = target.type();  // get NPE
+        int dropped = dropArgumentChecks(oldType, pos, valueTypes);
+        MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
+        if (dropped == 0)  return target;
+        // Android-changed: transformer implementation.
+        // BoundMethodHandle result = target.rebind();
+        // LambdaForm lform = result.form;
+        // int insertFormArg = 1 + pos;
+        // for (Class<?> ptype : valueTypes) {
+        //     lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
+        // }
+        // result = result.copyWith(newType, lform);
+        // return result;
+        return new Transformers.DropArguments(newType, target, pos, dropped);
+    }
+
+    private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
+        int dropped = valueTypes.size();
+        MethodType.checkSlotCount(dropped);
+        int outargs = oldType.parameterCount();
+        int inargs  = outargs + dropped;
+        if (pos < 0 || pos > outargs)
+            throw newIllegalArgumentException("no argument type to remove"
+                    + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
+                    );
+        return dropped;
+    }
+
+    // Android-changed: inclusive language preference for 'placeholder'.
+    /**
+     * Produces a method handle which will discard some placeholder arguments
+     * before calling some other specified <i>target</i> method handle.
+     * The type of the new method handle will be the same as the target's type,
+     * except it will also include the placeholder argument types,
+     * at some given position.
+     * <p>
+     * The {@code pos} argument may range between zero and <i>N</i>,
+     * where <i>N</i> is the arity of the target.
+     * If {@code pos} is zero, the placeholder arguments will precede
+     * the target's real arguments; if {@code pos} is <i>N</i>
+     * they will come after.
+     * @apiNote
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle d0 = dropArguments(cat, 0, String.class);
+assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
+MethodHandle d1 = dropArguments(cat, 1, String.class);
+assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
+MethodHandle d2 = dropArguments(cat, 2, String.class);
+assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
+MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
+assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
+     * }</pre></blockquote>
+     * <p>
+     * This method is also equivalent to the following code:
+     * <blockquote><pre>
+     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
+     * </pre></blockquote>
+     * @param target the method handle to invoke after the arguments are dropped
+     * @param valueTypes the type(s) of the argument(s) to drop
+     * @param pos position of first argument to drop (zero for the leftmost)
+     * @return a method handle which drops arguments of the given types,
+     *         before calling the original method handle
+     * @throws NullPointerException if the target is null,
+     *                              or if the {@code valueTypes} array or any of its elements is null
+     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
+     *                  or if {@code pos} is negative or greater than the arity of the target,
+     *                  or if the new method handle's type would have
+     *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
+     */
+    public static
+    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
+        return dropArguments0(target, pos, copyTypes(valueTypes));
+    }
+
+    // private version which allows caller some freedom with error handling
+    private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
+                                      boolean nullOnFailure) {
+        newTypes = copyTypes(newTypes.toArray());
+        List<Class<?>> oldTypes = target.type().parameterList();
+        int match = oldTypes.size();
+        if (skip != 0) {
+            if (skip < 0 || skip > match) {
+                throw newIllegalArgumentException("illegal skip", skip, target);
+            }
+            oldTypes = oldTypes.subList(skip, match);
+            match -= skip;
+        }
+        List<Class<?>> addTypes = newTypes;
+        int add = addTypes.size();
+        if (pos != 0) {
+            if (pos < 0 || pos > add) {
+                throw newIllegalArgumentException("illegal pos", pos, newTypes);
+            }
+            addTypes = addTypes.subList(pos, add);
+            add -= pos;
+            assert(addTypes.size() == add);
+        }
+        // Do not add types which already match the existing arguments.
+        if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
+            if (nullOnFailure) {
+                return null;
+            }
+            throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
+        }
+        addTypes = addTypes.subList(match, add);
+        add -= match;
+        assert(addTypes.size() == add);
+        // newTypes:     (   P*[pos], M*[match], A*[add] )
+        // target: ( S*[skip],        M*[match]  )
+        MethodHandle adapter = target;
+        if (add > 0) {
+            adapter = dropArguments0(adapter, skip+ match, addTypes);
+        }
+        // adapter: (S*[skip],        M*[match], A*[add] )
+        if (pos > 0) {
+            adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
+        }
+        // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
+        return adapter;
+    }
+
+    // Android-changed: inclusive language preference for 'placeholder'.
+    /**
+     * Adapts a target method handle to match the given parameter type list. If necessary, adds placeholder arguments. Some
+     * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
+     * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
+     * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
+     * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
+     * {@link #dropArguments(MethodHandle, int, Class[])}.
+     * <p>
+     * The resulting handle will have the same return type as the target handle.
+     * <p>
+     * In more formal terms, assume these two type lists:<ul>
+     * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
+     * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
+     * {@code newTypes}.
+     * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
+     * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
+     * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
+     * sub-list.
+     * </ul>
+     * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
+     * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
+     * {@link #dropArguments(MethodHandle, int, Class[])}.
+     *
+     * @apiNote
+     * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
+     * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+...
+MethodHandle h0 = constant(boolean.class, true);
+MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
+MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
+MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
+if (h1.type().parameterCount() < h2.type().parameterCount())
+    h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
+else
+    h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
+MethodHandle h3 = guardWithTest(h0, h1, h2);
+assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
+     * }</pre></blockquote>
+     * @param target the method handle to adapt
+     * @param skip number of targets parameters to disregard (they will be unchanged)
+     * @param newTypes the list of types to match {@code target}'s parameter type list to
+     * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
+     * @return a possibly adapted method handle
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
+     *         or if {@code skip} is negative or greater than the arity of the target,
+     *         or if {@code pos} is negative or greater than the newTypes list size,
+     *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
+     *         {@code pos}.
+     * @since 9
+     */
+    public static
+    MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
+        Objects.requireNonNull(target);
+        Objects.requireNonNull(newTypes);
+        return dropArgumentsToMatch(target, skip, newTypes, pos, false);
+    }
+
+    /**
+     * Drop the return value of the target handle (if any).
+     * The returned method handle will have a {@code void} return type.
+     *
+     * @param target the method handle to adapt
+     * @return a possibly adapted method handle
+     * @throws NullPointerException if {@code target} is null
+     * @since 16
+     */
+    public static MethodHandle dropReturn(MethodHandle target) {
+        Objects.requireNonNull(target);
+        MethodType oldType = target.type();
+        Class<?> oldReturnType = oldType.returnType();
+        if (oldReturnType == void.class)
+            return target;
+
+        MethodType newType = oldType.changeReturnType(void.class);
+        // Android-changed: no support for BoundMethodHandle or LambdaForm.
+        // BoundMethodHandle result = target.rebind();
+        // LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true);
+        // result = result.copyWith(newType, lform);
+        // return result;
+        return target.asType(newType);
+    }
+
+    /**
+     * Adapts a target method handle by pre-processing
+     * one or more of its arguments, each with its own unary filter function,
+     * and then calling the target with each pre-processed argument
+     * replaced by the result of its corresponding filter function.
+     * <p>
+     * The pre-processing is performed by one or more method handles,
+     * specified in the elements of the {@code filters} array.
+     * The first element of the filter array corresponds to the {@code pos}
+     * argument of the target, and so on in sequence.
+     * The filter functions are invoked in left to right order.
+     * <p>
+     * Null arguments in the array are treated as identity functions,
+     * and the corresponding arguments left unchanged.
+     * (If there are no non-null elements in the array, the original target is returned.)
+     * Each filter is applied to the corresponding argument of the adapter.
+     * <p>
+     * If a filter {@code F} applies to the {@code N}th argument of
+     * the target, then {@code F} must be a method handle which
+     * takes exactly one argument.  The type of {@code F}'s sole argument
+     * replaces the corresponding argument type of the target
+     * in the resulting adapted method handle.
+     * The return type of {@code F} must be identical to the corresponding
+     * parameter type of the target.
+     * <p>
+     * It is an error if there are elements of {@code filters}
+     * (null or not)
+     * which do not correspond to argument positions in the target.
+     * <p><b>Example:</b>
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle upcase = lookup().findVirtual(String.class,
+  "toUpperCase", methodType(String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle f0 = filterArguments(cat, 0, upcase);
+assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
+MethodHandle f1 = filterArguments(cat, 1, upcase);
+assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
+MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
+assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
+     * }</pre></blockquote>
+     * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
+     * denotes the return type of both the {@code target} and resulting adapter.
+     * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
+     * of the parameters and arguments that precede and follow the filter position
+     * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
+     * values of the filtered parameters and arguments; they also represent the
+     * return types of the {@code filter[i]} handles. The latter accept arguments
+     * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
+     * the resulting adapter.
+     * <blockquote><pre>{@code
+     * T target(P... p, A[i]... a[i], B... b);
+     * A[i] filter[i](V[i]);
+     * T adapter(P... p, V[i]... v[i], B... b) {
+     *   return target(p..., filter[i](v[i])..., b...);
+     * }
+     * }</pre></blockquote>
+     * <p>
+     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
+     * variable-arity method handle}, even if the original target method handle was.
+     *
+     * @param target the method handle to invoke after arguments are filtered
+     * @param pos the position of the first argument to filter
+     * @param filters method handles to call initially on filtered arguments
+     * @return method handle which incorporates the specified argument filtering logic
+     * @throws NullPointerException if the target is null
+     *                              or if the {@code filters} array is null
+     * @throws IllegalArgumentException if a non-null element of {@code filters}
+     *          does not match a corresponding argument type of target as described above,
+     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
+     *          or if the resulting method handle's type would have
+     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
+     */
+    public static
+    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
+        filterArgumentsCheckArity(target, pos, filters);
+        MethodHandle adapter = target;
+        // Android-changed: transformer implementation.
+        // process filters in reverse order so that the invocation of
+        // the resulting adapter will invoke the filters in left-to-right order
+        // for (int i = filters.length - 1; i >= 0; --i) {
+        //     MethodHandle filter = filters[i];
+        //     if (filter == null)  continue;  // ignore null elements of filters
+        //     adapter = filterArgument(adapter, pos + i, filter);
+        // }
+        // return adapter;
+        boolean hasNonNullFilter = false;
+        for (int i = 0; i < filters.length; ++i) {
+            MethodHandle filter = filters[i];
+            if (filter != null) {
+                hasNonNullFilter = true;
+                filterArgumentChecks(target, i + pos, filter);
+            }
+        }
+        if (!hasNonNullFilter) {
+            return target;
+        }
+        return new Transformers.FilterArguments(target, pos, filters);
+    }
+
+    /*non-public*/ static
+    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
+        filterArgumentChecks(target, pos, filter);
+        // Android-changed: use Transformer implementation.
+        // MethodType targetType = target.type();
+        // MethodType filterType = filter.type();
+        // BoundMethodHandle result = target.rebind();
+        // Class<?> newParamType = filterType.parameterType(0);
+        // LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
+        // MethodType newType = targetType.changeParameterType(pos, newParamType);
+        // result = result.copyWithExtendL(newType, lform, filter);
+        // return result;
+        return new Transformers.FilterArguments(target, pos, filter);
+    }
+
+    private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
+        MethodType targetType = target.type();
+        int maxPos = targetType.parameterCount();
+        if (pos + filters.length > maxPos)
+            throw newIllegalArgumentException("too many filters");
+    }
+
+    private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
+        MethodType targetType = target.type();
+        MethodType filterType = filter.type();
+        if (filterType.parameterCount() != 1
+            || filterType.returnType() != targetType.parameterType(pos))
+            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
+    }
+
+    /**
+     * Adapts a target method handle by pre-processing
+     * a sub-sequence of its arguments with a filter (another method handle).
+     * The pre-processed arguments are replaced by the result (if any) of the
+     * filter function.
+     * The target is then called on the modified (usually shortened) argument list.
+     * <p>
+     * If the filter returns a value, the target must accept that value as
+     * its argument in position {@code pos}, preceded and/or followed by
+     * any arguments not passed to the filter.
+     * If the filter returns void, the target must accept all arguments
+     * not passed to the filter.
+     * No arguments are reordered, and a result returned from the filter
+     * replaces (in order) the whole subsequence of arguments originally
+     * passed to the adapter.
+     * <p>
+     * The argument types (if any) of the filter
+     * replace zero or one argument types of the target, at position {@code pos},
+     * in the resulting adapted method handle.
+     * The return type of the filter (if any) must be identical to the
+     * argument type of the target at position {@code pos}, and that target argument
+     * is supplied by the return value of the filter.
+     * <p>
+     * In all cases, {@code pos} must be greater than or equal to zero, and
+     * {@code pos} must also be less than or equal to the target's arity.
+     * <p><b>Example:</b>
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle deepToString = publicLookup()
+  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
+
+MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
+assertEquals("[strange]", (String) ts1.invokeExact("strange"));
+
+MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
+assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
+
+MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
+MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
+assertEquals("[top, [up, down], strange]",
+             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
+
+MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
+assertEquals("[top, [up, down], [strange]]",
+             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
+
+MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
+assertEquals("[top, [[up, down, strange], charm], bottom]",
+             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
+     * }</pre></blockquote>
+     * <p> Here is pseudocode for the resulting adapter:
+     * <blockquote><pre>{@code
+     * T target(A...,V,C...);
+     * V filter(B...);
+     * T adapter(A... a,B... b,C... c) {
+     *   V v = filter(b...);
+     *   return target(a...,v,c...);
+     * }
+     * // and if the filter has no arguments:
+     * T target2(A...,V,C...);
+     * V filter2();
+     * T adapter2(A... a,C... c) {
+     *   V v = filter2();
+     *   return target2(a...,v,c...);
+     * }
+     * // and if the filter has a void return:
+     * T target3(A...,C...);
+     * void filter3(B...);
+     * void adapter3(A... a,B... b,C... c) {
+     *   filter3(b...);
+     *   return target3(a...,c...);
+     * }
+     * }</pre></blockquote>
+     * <p>
+     * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
+     * one which first "folds" the affected arguments, and then drops them, in separate
+     * steps as follows:
+     * <blockquote><pre>{@code
+     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
+     * mh = MethodHandles.foldArguments(mh, coll); //step 1
+     * }</pre></blockquote>
+     * If the target method handle consumes no arguments besides than the result
+     * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
+     * is equivalent to {@code filterReturnValue(coll, mh)}.
+     * If the filter method handle {@code coll} consumes one argument and produces
+     * a non-void result, then {@code collectArguments(mh, N, coll)}
+     * is equivalent to {@code filterArguments(mh, N, coll)}.
+     * Other equivalences are possible but would require argument permutation.
+     *
+     * @param target the method handle to invoke after filtering the subsequence of arguments
+     * @param pos the position of the first adapter argument to pass to the filter,
+     *            and/or the target argument which receives the result of the filter
+     * @param filter method handle to call on the subsequence of arguments
+     * @return method handle which incorporates the specified argument subsequence filtering logic
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if the return type of {@code filter}
+     *          is non-void and is not the same as the {@code pos} argument of the target,
+     *          or if {@code pos} is not between 0 and the target's arity, inclusive,
+     *          or if the resulting method handle's type would have
+     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
+     * @see MethodHandles#foldArguments
+     * @see MethodHandles#filterArguments
+     * @see MethodHandles#filterReturnValue
+     */
+    public static
+    MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
+        MethodType newType = collectArgumentsChecks(target, pos, filter);
+        return new Transformers.CollectArguments(target, filter, pos, newType);
+    }
+
+    private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
+        MethodType targetType = target.type();
+        MethodType filterType = filter.type();
+        Class<?> rtype = filterType.returnType();
+        List<Class<?>> filterArgs = filterType.parameterList();
+        if (rtype == void.class) {
+            return targetType.insertParameterTypes(pos, filterArgs);
+        }
+        if (rtype != targetType.parameterType(pos)) {
+            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
+        }
+        return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
+    }
+
+    /**
+     * Adapts a target method handle by post-processing
+     * its return value (if any) with a filter (another method handle).
+     * The result of the filter is returned from the adapter.
+     * <p>
+     * If the target returns a value, the filter must accept that value as
+     * its only argument.
+     * If the target returns void, the filter must accept no arguments.
+     * <p>
+     * The return type of the filter
+     * replaces the return type of the target
+     * in the resulting adapted method handle.
+     * The argument type of the filter (if any) must be identical to the
+     * return type of the target.
+     * <p><b>Example:</b>
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle length = lookup().findVirtual(String.class,
+  "length", methodType(int.class));
+System.out.println((String) cat.invokeExact("x", "y")); // xy
+MethodHandle f0 = filterReturnValue(cat, length);
+System.out.println((int) f0.invokeExact("x", "y")); // 2
+     * }</pre></blockquote>
+     * <p>Here is pseudocode for the resulting adapter. In the code,
+     * {@code T}/{@code t} represent the result type and value of the
+     * {@code target}; {@code V}, the result type of the {@code filter}; and
+     * {@code A}/{@code a}, the types and values of the parameters and arguments
+     * of the {@code target} as well as the resulting adapter.
+     * <blockquote><pre>{@code
+     * T target(A...);
+     * V filter(T);
+     * V adapter(A... a) {
+     *   T t = target(a...);
+     *   return filter(t);
+     * }
+     * // and if the target has a void return:
+     * void target2(A...);
+     * V filter2();
+     * V adapter2(A... a) {
+     *   target2(a...);
+     *   return filter2();
+     * }
+     * // and if the filter has a void return:
+     * T target3(A...);
+     * void filter3(V);
+     * void adapter3(A... a) {
+     *   T t = target3(a...);
+     *   filter3(t);
+     * }
+     * }</pre></blockquote>
+     * <p>
+     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
+     * variable-arity method handle}, even if the original target method handle was.
+     * @param target the method handle to invoke before filtering the return value
+     * @param filter method handle to call on the return value
+     * @return method handle which incorporates the specified return value filtering logic
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if the argument list of {@code filter}
+     *          does not match the return type of target as described above
+     */
+    public static
+    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
+        MethodType targetType = target.type();
+        MethodType filterType = filter.type();
+        filterReturnValueChecks(targetType, filterType);
+        // Android-changed: use a transformer.
+        // BoundMethodHandle result = target.rebind();
+        // BasicType rtype = BasicType.basicType(filterType.returnType());
+        // LambdaForm lform = result.editor().filterReturnForm(rtype, false);
+        // MethodType newType = targetType.changeReturnType(filterType.returnType());
+        // result = result.copyWithExtendL(newType, lform, filter);
+        // return result;
+        return new Transformers.FilterReturnValue(target, filter);
+    }
+
+    private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
+        Class<?> rtype = targetType.returnType();
+        int filterValues = filterType.parameterCount();
+        if (filterValues == 0
+                ? (rtype != void.class)
+                : (rtype != filterType.parameterType(0) || filterValues != 1))
+            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
+    }
+
+    /**
+     * Adapts a target method handle by pre-processing
+     * some of its arguments, and then calling the target with
+     * the result of the pre-processing, inserted into the original
+     * sequence of arguments.
+     * <p>
+     * The pre-processing is performed by {@code combiner}, a second method handle.
+     * Of the arguments passed to the adapter, the first {@code N} arguments
+     * are copied to the combiner, which is then called.
+     * (Here, {@code N} is defined as the parameter count of the combiner.)
+     * After this, control passes to the target, with any result
+     * from the combiner inserted before the original {@code N} incoming
+     * arguments.
+     * <p>
+     * If the combiner returns a value, the first parameter type of the target
+     * must be identical with the return type of the combiner, and the next
+     * {@code N} parameter types of the target must exactly match the parameters
+     * of the combiner.
+     * <p>
+     * If the combiner has a void return, no result will be inserted,
+     * and the first {@code N} parameter types of the target
+     * must exactly match the parameters of the combiner.
+     * <p>
+     * The resulting adapter is the same type as the target, except that the
+     * first parameter type is dropped,
+     * if it corresponds to the result of the combiner.
+     * <p>
+     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
+     * that either the combiner or the target does not wish to receive.
+     * If some of the incoming arguments are destined only for the combiner,
+     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
+     * arguments will not need to be live on the stack on entry to the
+     * target.)
+     * <p><b>Example:</b>
+     * <blockquote><pre>{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
+  "println", methodType(void.class, String.class))
+    .bindTo(System.out);
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
+MethodHandle catTrace = foldArguments(cat, trace);
+// also prints "boo":
+assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
+     * }</pre></blockquote>
+     * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
+     * represents the result type of the {@code target} and resulting adapter.
+     * {@code V}/{@code v} represent the type and value of the parameter and argument
+     * of {@code target} that precedes the folding position; {@code V} also is
+     * the result type of the {@code combiner}. {@code A}/{@code a} denote the
+     * types and values of the {@code N} parameters and arguments at the folding
+     * position. {@code B}/{@code b} represent the types and values of the
+     * {@code target} parameters and arguments that follow the folded parameters
+     * and arguments.
+     * <blockquote><pre>{@code
+     * // there are N arguments in A...
+     * T target(V, A[N]..., B...);
+     * V combiner(A...);
+     * T adapter(A... a, B... b) {
+     *   V v = combiner(a...);
+     *   return target(v, a..., b...);
+     * }
+     * // and if the combiner has a void return:
+     * T target2(A[N]..., B...);
+     * void combiner2(A...);
+     * T adapter2(A... a, B... b) {
+     *   combiner2(a...);
+     *   return target2(a..., b...);
+     * }
+     * }</pre></blockquote>
+     * <p>
+     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
+     * variable-arity method handle}, even if the original target method handle was.
+     * @param target the method handle to invoke after arguments are combined
+     * @param combiner method handle to call initially on the incoming arguments
+     * @return method handle which incorporates the specified argument folding logic
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if {@code combiner}'s return type
+     *          is non-void and not the same as the first argument type of
+     *          the target, or if the initial {@code N} argument types
+     *          of the target
+     *          (skipping one matching the {@code combiner}'s return type)
+     *          are not identical with the argument types of {@code combiner}
+     */
+    public static
+    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
+        return foldArguments(target, 0, combiner);
+    }
+
+    /**
+     * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
+     * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
+     * before the folded arguments.
+     * <p>
+     * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
+     * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
+     * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
+     * 0.
+     *
+     * @apiNote Example:
+     * <blockquote><pre>{@code
+    import static java.lang.invoke.MethodHandles.*;
+    import static java.lang.invoke.MethodType.*;
+    ...
+    MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
+    "println", methodType(void.class, String.class))
+    .bindTo(System.out);
+    MethodHandle cat = lookup().findVirtual(String.class,
+    "concat", methodType(String.class, String.class));
+    assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
+    MethodHandle catTrace = foldArguments(cat, 1, trace);
+    // also prints "jum":
+    assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
+     * }</pre></blockquote>
+     * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
+     * represents the result type of the {@code target} and resulting adapter.
+     * {@code V}/{@code v} represent the type and value of the parameter and argument
+     * of {@code target} that precedes the folding position; {@code V} also is
+     * the result type of the {@code combiner}. {@code A}/{@code a} denote the
+     * types and values of the {@code N} parameters and arguments at the folding
+     * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
+     * and values of the {@code target} parameters and arguments that precede and
+     * follow the folded parameters and arguments starting at {@code pos},
+     * respectively.
+     * <blockquote><pre>{@code
+     * // there are N arguments in A...
+     * T target(Z..., V, A[N]..., B...);
+     * V combiner(A...);
+     * T adapter(Z... z, A... a, B... b) {
+     *   V v = combiner(a...);
+     *   return target(z..., v, a..., b...);
+     * }
+     * // and if the combiner has a void return:
+     * T target2(Z..., A[N]..., B...);
+     * void combiner2(A...);
+     * T adapter2(Z... z, A... a, B... b) {
+     *   combiner2(a...);
+     *   return target2(z..., a..., b...);
+     * }
+     * }</pre></blockquote>
+     * <p>
+     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
+     * variable-arity method handle}, even if the original target method handle was.
+     *
+     * @param target the method handle to invoke after arguments are combined
+     * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
+     *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
+     * @param combiner method handle to call initially on the incoming arguments
+     * @return method handle which incorporates the specified argument folding logic
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if either of the following two conditions holds:
+     *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
+     *              {@code pos} of the target signature;
+     *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
+     *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
+     *
+     * @see #foldArguments(MethodHandle, MethodHandle)
+     * @since 9
+     */
+    public static
+    MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
+        MethodType targetType = target.type();
+        MethodType combinerType = combiner.type();
+        Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
+        // Android-changed: // Android-changed: transformer implementation.
+        // BoundMethodHandle result = target.rebind();
+        // boolean dropResult = rtype == void.class;
+        // LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
+        // MethodType newType = targetType;
+        // if (!dropResult) {
+        //     newType = newType.dropParameterTypes(pos, pos + 1);
+        // }
+        // result = result.copyWithExtendL(newType, lform, combiner);
+        // return result;
+
+        return new Transformers.FoldArguments(target, pos, combiner);
+    }
+
+    private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
+        int foldArgs   = combinerType.parameterCount();
+        Class<?> rtype = combinerType.returnType();
+        int foldVals = rtype == void.class ? 0 : 1;
+        int afterInsertPos = foldPos + foldVals;
+        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
+        if (ok) {
+            for (int i = 0; i < foldArgs; i++) {
+                if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
+                    ok = false;
+                    break;
+                }
+            }
+        }
+        if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
+            ok = false;
+        if (!ok)
+            throw misMatchedTypes("target and combiner types", targetType, combinerType);
+        return rtype;
+    }
+
+    /**
+     * Makes a method handle which adapts a target method handle,
+     * by guarding it with a test, a boolean-valued method handle.
+     * If the guard fails, a fallback handle is called instead.
+     * All three method handles must have the same corresponding
+     * argument and return types, except that the return type
+     * of the test must be boolean, and the test is allowed
+     * to have fewer arguments than the other two method handles.
+     * <p> Here is pseudocode for the resulting adapter:
+     * <blockquote><pre>{@code
+     * boolean test(A...);
+     * T target(A...,B...);
+     * T fallback(A...,B...);
+     * T adapter(A... a,B... b) {
+     *   if (test(a...))
+     *     return target(a..., b...);
+     *   else
+     *     return fallback(a..., b...);
+     * }
+     * }</pre></blockquote>
+     * Note that the test arguments ({@code a...} in the pseudocode) cannot
+     * be modified by execution of the test, and so are passed unchanged
+     * from the caller to the target or fallback as appropriate.
+     * @param test method handle used for test, must return boolean
+     * @param target method handle to call if test passes
+     * @param fallback method handle to call if test fails
+     * @return method handle which incorporates the specified if/then/else logic
+     * @throws NullPointerException if any argument is null
+     * @throws IllegalArgumentException if {@code test} does not return boolean,
+     *          or if all three method types do not match (with the return
+     *          type of {@code test} changed to match that of the target).
+     */
+    public static
+    MethodHandle guardWithTest(MethodHandle test,
+                               MethodHandle target,
+                               MethodHandle fallback) {
+        MethodType gtype = test.type();
+        MethodType ttype = target.type();
+        MethodType ftype = fallback.type();
+        if (!ttype.equals(ftype))
+            throw misMatchedTypes("target and fallback types", ttype, ftype);
+        if (gtype.returnType() != boolean.class)
+            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
+        List<Class<?>> targs = ttype.parameterList();
+        List<Class<?>> gargs = gtype.parameterList();
+        if (!targs.equals(gargs)) {
+            int gpc = gargs.size(), tpc = targs.size();
+            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
+                throw misMatchedTypes("target and test types", ttype, gtype);
+            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
+            gtype = test.type();
+        }
+
+        return new Transformers.GuardWithTest(test, target, fallback);
+    }
+
+    static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
+        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
+    }
+
+    /**
+     * Makes a method handle which adapts a target method handle,
+     * by running it inside an exception handler.
+     * If the target returns normally, the adapter returns that value.
+     * If an exception matching the specified type is thrown, the fallback
+     * handle is called instead on the exception, plus the original arguments.
+     * <p>
+     * The target and handler must have the same corresponding
+     * argument and return types, except that handler may omit trailing arguments
+     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
+     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
+     * <p>
+     * Here is pseudocode for the resulting adapter. In the code, {@code T}
+     * represents the return type of the {@code target} and {@code handler},
+     * and correspondingly that of the resulting adapter; {@code A}/{@code a},
+     * the types and values of arguments to the resulting handle consumed by
+     * {@code handler}; and {@code B}/{@code b}, those of arguments to the
+     * resulting handle discarded by {@code handler}.
+     * <blockquote><pre>{@code
+     * T target(A..., B...);
+     * T handler(ExType, A...);
+     * T adapter(A... a, B... b) {
+     *   try {
+     *     return target(a..., b...);
+     *   } catch (ExType ex) {
+     *     return handler(ex, a...);
+     *   }
+     * }
+     * }</pre></blockquote>
+     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
+     * be modified by execution of the target, and so are passed unchanged
+     * from the caller to the handler, if the handler is invoked.
+     * <p>
+     * The target and handler must return the same type, even if the handler
+     * always throws.  (This might happen, for instance, because the handler
+     * is simulating a {@code finally} clause).
+     * To create such a throwing handler, compose the handler creation logic
+     * with {@link #throwException throwException},
+     * in order to create a method handle of the correct return type.
+     * @param target method handle to call
+     * @param exType the type of exception which the handler will catch
+     * @param handler method handle to call if a matching exception is thrown
+     * @return method handle which incorporates the specified try/catch logic
+     * @throws NullPointerException if any argument is null
+     * @throws IllegalArgumentException if {@code handler} does not accept
+     *          the given exception type, or if the method handle types do
+     *          not match in their return types and their
+     *          corresponding parameters
+     * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
+     */
+    public static
+    MethodHandle catchException(MethodHandle target,
+                                Class<? extends Throwable> exType,
+                                MethodHandle handler) {
+        MethodType ttype = target.type();
+        MethodType htype = handler.type();
+        if (!Throwable.class.isAssignableFrom(exType))
+            throw new ClassCastException(exType.getName());
+        if (htype.parameterCount() < 1 ||
+            !htype.parameterType(0).isAssignableFrom(exType))
+            throw newIllegalArgumentException("handler does not accept exception type "+exType);
+        if (htype.returnType() != ttype.returnType())
+            throw misMatchedTypes("target and handler return types", ttype, htype);
+        handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
+        if (handler == null) {
+            throw misMatchedTypes("target and handler types", ttype, htype);
+        }
+        // Android-changed: use Transformer implementation.
+        // return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
+        return new Transformers.CatchException(target, handler, exType);
+    }
+
+    /**
+     * Produces a method handle which will throw exceptions of the given {@code exType}.
+     * The method handle will accept a single argument of {@code exType},
+     * and immediately throw it as an exception.
+     * The method type will nominally specify a return of {@code returnType}.
+     * The return type may be anything convenient:  It doesn't matter to the
+     * method handle's behavior, since it will never return normally.
+     * @param returnType the return type of the desired method handle
+     * @param exType the parameter type of the desired method handle
+     * @return method handle which can throw the given exceptions
+     * @throws NullPointerException if either argument is null
+     */
+    public static
+    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
+        if (!Throwable.class.isAssignableFrom(exType))
+            throw new ClassCastException(exType.getName());
+        // Android-changed: use Transformer implementation.
+        // return MethodHandleImpl.throwException(methodType(returnType, exType));
+        return new Transformers.AlwaysThrow(returnType, exType);
+    }
+
+    /**
+     * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
+     * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
+     * delivers the loop's result, which is the return value of the resulting handle.
+     * <p>
+     * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
+     * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
+     * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
+     * terms of method handles, each clause will specify up to four independent actions:<ul>
+     * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
+     * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
+     * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
+     * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
+     * </ul>
+     * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
+     * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
+     * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
+     * <p>
+     * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
+     * this case. See below for a detailed description.
+     * <p>
+     * <em>Parameters optional everywhere:</em>
+     * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
+     * As an exception, the init functions cannot take any {@code v} parameters,
+     * because those values are not yet computed when the init functions are executed.
+     * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
+     * In fact, any clause function may take no arguments at all.
+     * <p>
+     * <em>Loop parameters:</em>
+     * A clause function may take all the iteration variable values it is entitled to, in which case
+     * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
+     * with their types and values notated as {@code (A...)} and {@code (a...)}.
+     * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
+     * (Since init functions do not accept iteration variables {@code v}, any parameter to an
+     * init function is automatically a loop parameter {@code a}.)
+     * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
+     * These loop parameters act as loop-invariant values visible across the whole loop.
+     * <p>
+     * <em>Parameters visible everywhere:</em>
+     * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
+     * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
+     * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
+     * Most clause functions will not need all of this information, but they will be formally connected to it
+     * as if by {@link #dropArguments}.
+     * <a id="astar"></a>
+     * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
+     * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
+     * In that notation, the general form of an init function parameter list
+     * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
+     * <p>
+     * <em>Checking clause structure:</em>
+     * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
+     * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
+     * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
+     * met by the inputs to the loop combinator.
+     * <p>
+     * <em>Effectively identical sequences:</em>
+     * <a id="effid"></a>
+     * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
+     * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
+     * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
+     * as a whole if the set contains a longest list, and all members of the set are effectively identical to
+     * that longest list.
+     * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
+     * and the same is true if more sequences of the form {@code (V... A*)} are added.
+     * <p>
+     * <em>Step 0: Determine clause structure.</em><ol type="a">
+     * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
+     * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
+     * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
+     * four. Padding takes place by appending elements to the array.
+     * <li>Clauses with all {@code null}s are disregarded.
+     * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
+     * </ol>
+     * <p>
+     * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
+     * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
+     * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
+     * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
+     * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
+     * iteration variable type.
+     * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
+     * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
+     * </ol>
+     * <p>
+     * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
+     * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
+     * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
+     * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
+     * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
+     * (These types will be checked in step 2, along with all the clause function types.)
+     * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
+     * <li>All of the collected parameter lists must be effectively identical.
+     * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
+     * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
+     * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
+     * the "internal parameter list".
+     * </ul>
+     * <p>
+     * <em>Step 1C: Determine loop return type.</em><ol type="a">
+     * <li>Examine fini function return types, disregarding omitted fini functions.
+     * <li>If there are no fini functions, the loop return type is {@code void}.
+     * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
+     * type.
+     * </ol>
+     * <p>
+     * <em>Step 1D: Check other types.</em><ol type="a">
+     * <li>There must be at least one non-omitted pred function.
+     * <li>Every non-omitted pred function must have a {@code boolean} return type.
+     * </ol>
+     * <p>
+     * <em>Step 2: Determine parameter lists.</em><ol type="a">
+     * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
+     * <li>The parameter list for init functions will be adjusted to the external parameter list.
+     * (Note that their parameter lists are already effectively identical to this list.)
+     * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
+     * effectively identical to the internal parameter list {@code (V... A...)}.
+     * </ol>
+     * <p>
+     * <em>Step 3: Fill in omitted functions.</em><ol type="a">
+     * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
+     * type.
+     * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
+     * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
+     * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
+     * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
+     * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
+     * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
+     * loop return type.
+     * </ol>
+     * <p>
+     * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
+     * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
+     * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
+     * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
+     * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
+     * pad out the end of the list.
+     * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
+     * </ol>
+     * <p>
+     * <em>Final observations.</em><ol type="a">
+     * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
+     * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
+     * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
+     * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
+     * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
+     * <li>Each pair of init and step functions agrees in their return type {@code V}.
+     * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
+     * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
+     * </ol>
+     * <p>
+     * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
+     * <ul>
+     * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
+     * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
+     * (Only one {@code Pn} has to be non-{@code null}.)
+     * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
+     * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
+     * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
+     * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
+     * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
+     * the resulting loop handle's parameter types {@code (A...)}.
+     * </ul>
+     * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
+     * which is natural if most of the loop computation happens in the steps.  For some loops,
+     * the burden of computation might be heaviest in the pred functions, and so the pred functions
+     * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
+     * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
+     * where the init functions will need the extra parameters.  For such reasons, the rules for
+     * determining these parameters are as symmetric as possible, across all clause parts.
+     * In general, the loop parameters function as common invariant values across the whole
+     * loop, while the iteration variables function as common variant values, or (if there is
+     * no step function) as internal loop invariant temporaries.
+     * <p>
+     * <em>Loop execution.</em><ol type="a">
+     * <li>When the loop is called, the loop input values are saved in locals, to be passed to
+     * every clause function. These locals are loop invariant.
+     * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
+     * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
+     * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
+     * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
+     * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
+     * (in argument order).
+     * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
+     * returns {@code false}.
+     * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
+     * sequence {@code (v...)} of loop variables.
+     * The updated value is immediately visible to all subsequent function calls.
+     * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
+     * (of type {@code R}) is returned from the loop as a whole.
+     * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
+     * except by throwing an exception.
+     * </ol>
+     * <p>
+     * <em>Usage tips.</em>
+     * <ul>
+     * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
+     * sometimes a step function only needs to observe the current value of its own variable.
+     * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
+     * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
+     * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
+     * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
+     * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
+     * <li>If some of the clause functions are virtual methods on an instance, the instance
+     * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
+     * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
+     * will be the first iteration variable value, and it will be easy to use virtual
+     * methods as clause parts, since all of them will take a leading instance reference matching that value.
+     * </ul>
+     * <p>
+     * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
+     * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
+     * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
+     * <blockquote><pre>{@code
+     * V... init...(A...);
+     * boolean pred...(V..., A...);
+     * V... step...(V..., A...);
+     * R fini...(V..., A...);
+     * R loop(A... a) {
+     *   V... v... = init...(a...);
+     *   for (;;) {
+     *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
+     *       v = s(v..., a...);
+     *       if (!p(v..., a...)) {
+     *         return f(v..., a...);
+     *       }
+     *     }
+     *   }
+     * }
+     * }</pre></blockquote>
+     * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
+     * to their full length, even though individual clause functions may neglect to take them all.
+     * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
+     *
+     * @apiNote Example:
+     * <blockquote><pre>{@code
+     * // iterative implementation of the factorial function as a loop handle
+     * static int one(int k) { return 1; }
+     * static int inc(int i, int acc, int k) { return i + 1; }
+     * static int mult(int i, int acc, int k) { return i * acc; }
+     * static boolean pred(int i, int acc, int k) { return i < k; }
+     * static int fin(int i, int acc, int k) { return acc; }
+     * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
+     * // null initializer for counter, should initialize to 0
+     * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
+     * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
+     * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
+     * assertEquals(120, loop.invoke(5));
+     * }</pre></blockquote>
+     * The same example, dropping arguments and using combinators:
+     * <blockquote><pre>{@code
+     * // simplified implementation of the factorial function as a loop handle
+     * static int inc(int i) { return i + 1; } // drop acc, k
+     * static int mult(int i, int acc) { return i * acc; } //drop k
+     * static boolean cmp(int i, int k) { return i < k; }
+     * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
+     * // null initializer for counter, should initialize to 0
+     * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
+     * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
+     * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
+     * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
+     * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
+     * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
+     * assertEquals(720, loop.invoke(6));
+     * }</pre></blockquote>
+     * A similar example, using a helper object to hold a loop parameter:
+     * <blockquote><pre>{@code
+     * // instance-based implementation of the factorial function as a loop handle
+     * static class FacLoop {
+     *   final int k;
+     *   FacLoop(int k) { this.k = k; }
+     *   int inc(int i) { return i + 1; }
+     *   int mult(int i, int acc) { return i * acc; }
+     *   boolean pred(int i) { return i < k; }
+     *   int fin(int i, int acc) { return acc; }
+     * }
+     * // assume MH_FacLoop is a handle to the constructor
+     * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
+     * // null initializer for counter, should initialize to 0
+     * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
+     * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
+     * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
+     * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
+     * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
+     * assertEquals(5040, loop.invoke(7));
+     * }</pre></blockquote>
+     *
+     * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
+     *
+     * @return a method handle embodying the looping behavior as defined by the arguments.
+     *
+     * @throws IllegalArgumentException in case any of the constraints described above is violated.
+     *
+     * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @since 9
+     */
+    public static MethodHandle loop(MethodHandle[]... clauses) {
+        // Step 0: determine clause structure.
+        loopChecks0(clauses);
+
+        List<MethodHandle> init = new ArrayList<>();
+        List<MethodHandle> step = new ArrayList<>();
+        List<MethodHandle> pred = new ArrayList<>();
+        List<MethodHandle> fini = new ArrayList<>();
+
+        Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
+            init.add(clause[0]); // all clauses have at least length 1
+            step.add(clause.length <= 1 ? null : clause[1]);
+            pred.add(clause.length <= 2 ? null : clause[2]);
+            fini.add(clause.length <= 3 ? null : clause[3]);
+        });
+
+        assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
+        final int nclauses = init.size();
+
+        // Step 1A: determine iteration variables (V...).
+        final List<Class<?>> iterationVariableTypes = new ArrayList<>();
+        for (int i = 0; i < nclauses; ++i) {
+            MethodHandle in = init.get(i);
+            MethodHandle st = step.get(i);
+            if (in == null && st == null) {
+                iterationVariableTypes.add(void.class);
+            } else if (in != null && st != null) {
+                loopChecks1a(i, in, st);
+                iterationVariableTypes.add(in.type().returnType());
+            } else {
+                iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
+            }
+        }
+        final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
+                collect(Collectors.toList());
+
+        // Step 1B: determine loop parameters (A...).
+        final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
+        loopChecks1b(init, commonSuffix);
+
+        // Step 1C: determine loop return type.
+        // Step 1D: check other types.
+        // local variable required here; see JDK-8223553
+        Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
+                .map(MethodType::returnType);
+        final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
+        loopChecks1cd(pred, fini, loopReturnType);
+
+        // Step 2: determine parameter lists.
+        final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
+        commonParameterSequence.addAll(commonSuffix);
+        loopChecks2(step, pred, fini, commonParameterSequence);
+
+        // Step 3: fill in omitted functions.
+        for (int i = 0; i < nclauses; ++i) {
+            Class<?> t = iterationVariableTypes.get(i);
+            if (init.get(i) == null) {
+                init.set(i, empty(methodType(t, commonSuffix)));
+            }
+            if (step.get(i) == null) {
+                step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
+            }
+            if (pred.get(i) == null) {
+                pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
+            }
+            if (fini.get(i) == null) {
+                fini.set(i, empty(methodType(t, commonParameterSequence)));
+            }
+        }
+
+        // Step 4: fill in missing parameter types.
+        // Also convert all handles to fixed-arity handles.
+        List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
+        List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
+        List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
+        List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
+
+        assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
+                allMatch(pl -> pl.equals(commonSuffix));
+        assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
+                allMatch(pl -> pl.equals(commonParameterSequence));
+
+        // Android-changed: transformer implementation.
+        // return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
+        return new Transformers.Loop(loopReturnType,
+                                     commonSuffix,
+                                     finit.toArray(MethodHandle[]::new),
+                                     fstep.toArray(MethodHandle[]::new),
+                                     fpred.toArray(MethodHandle[]::new),
+                                     ffini.toArray(MethodHandle[]::new));
+    }
+
+    private static void loopChecks0(MethodHandle[][] clauses) {
+        if (clauses == null || clauses.length == 0) {
+            throw newIllegalArgumentException("null or no clauses passed");
+        }
+        if (Stream.of(clauses).anyMatch(Objects::isNull)) {
+            throw newIllegalArgumentException("null clauses are not allowed");
+        }
+        if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
+            throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
+        }
+    }
+
+    private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
+        if (in.type().returnType() != st.type().returnType()) {
+            throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
+                    st.type().returnType());
+        }
+    }
+
+    private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
+        final List<Class<?>> empty = List.of();
+        final List<Class<?>> longest = mhs.filter(Objects::nonNull).
+                // take only those that can contribute to a common suffix because they are longer than the prefix
+                        map(MethodHandle::type).
+                        filter(t -> t.parameterCount() > skipSize).
+                        map(MethodType::parameterList).
+                        reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
+        return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
+    }
+
+    private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
+        final List<Class<?>> empty = List.of();
+        return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
+    }
+
+    private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
+        final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
+        final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
+        return longestParameterList(Arrays.asList(longest1, longest2));
+    }
+
+    private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
+        if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
+                anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
+            throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
+                    " (common suffix: " + commonSuffix + ")");
+        }
+    }
+
+    private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
+        if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
+                anyMatch(t -> t != loopReturnType)) {
+            throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
+                    loopReturnType + ")");
+        }
+
+        if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
+            throw newIllegalArgumentException("no predicate found", pred);
+        }
+        if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
+                anyMatch(t -> t != boolean.class)) {
+            throw newIllegalArgumentException("predicates must have boolean return type", pred);
+        }
+    }
+
+    private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
+        if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
+                anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
+            throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
+                    "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
+        }
+    }
+
+    private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
+        return hs.stream().map(h -> {
+            int pc = h.type().parameterCount();
+            int tpsize = targetParams.size();
+            return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
+        }).collect(Collectors.toList());
+    }
+
+    private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
+        return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
+    }
+
+    /**
+     * Constructs a {@code while} loop from an initializer, a body, and a predicate.
+     * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
+     * <p>
+     * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
+     * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
+     * evaluates to {@code true}).
+     * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
+     * <p>
+     * The {@code init} handle describes the initial value of an additional optional loop-local variable.
+     * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
+     * and updated with the value returned from its invocation. The result of loop execution will be
+     * the final value of the additional loop-local variable (if present).
+     * <p>
+     * The following rules hold for these argument handles:<ul>
+     * <li>The {@code body} handle must not be {@code null}; its type must be of the form
+     * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
+     * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
+     * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
+     * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
+     * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
+     * It will constrain the parameter lists of the other loop parts.
+     * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
+     * list {@code (A...)} is called the <em>external parameter list</em>.
+     * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
+     * additional state variable of the loop.
+     * The body must both accept and return a value of this type {@code V}.
+     * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
+     * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
+     * <a href="MethodHandles.html#effid">effectively identical</a>
+     * to the external parameter list {@code (A...)}.
+     * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
+     * {@linkplain #empty default value}.
+     * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
+     * Its parameter list (either empty or of the form {@code (V A*)}) must be
+     * effectively identical to the internal parameter list.
+     * </ul>
+     * <p>
+     * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
+     * <li>The loop handle's result type is the result type {@code V} of the body.
+     * <li>The loop handle's parameter types are the types {@code (A...)},
+     * from the external parameter list.
+     * </ul>
+     * <p>
+     * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
+     * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
+     * passed to the loop.
+     * <blockquote><pre>{@code
+     * V init(A...);
+     * boolean pred(V, A...);
+     * V body(V, A...);
+     * V whileLoop(A... a...) {
+     *   V v = init(a...);
+     *   while (pred(v, a...)) {
+     *     v = body(v, a...);
+     *   }
+     *   return v;
+     * }
+     * }</pre></blockquote>
+     *
+     * @apiNote Example:
+     * <blockquote><pre>{@code
+     * // implement the zip function for lists as a loop handle
+     * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
+     * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
+     * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
+     *   zip.add(a.next());
+     *   zip.add(b.next());
+     *   return zip;
+     * }
+     * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
+     * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
+     * List<String> a = Arrays.asList("a", "b", "c", "d");
+     * List<String> b = Arrays.asList("e", "f", "g", "h");
+     * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
+     * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
+     * }</pre></blockquote>
+     *
+     *
+     * @apiNote The implementation of this method can be expressed as follows:
+     * <blockquote><pre>{@code
+     * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
+     *     MethodHandle fini = (body.type().returnType() == void.class
+     *                         ? null : identity(body.type().returnType()));
+     *     MethodHandle[]
+     *         checkExit = { null, null, pred, fini },
+     *         varBody   = { init, body };
+     *     return loop(checkExit, varBody);
+     * }
+     * }</pre></blockquote>
+     *
+     * @param init optional initializer, providing the initial value of the loop variable.
+     *             May be {@code null}, implying a default initial value.  See above for other constraints.
+     * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
+     *             above for other constraints.
+     * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
+     *             See above for other constraints.
+     *
+     * @return a method handle implementing the {@code while} loop as described by the arguments.
+     * @throws IllegalArgumentException if the rules for the arguments are violated.
+     * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
+     *
+     * @see #loop(MethodHandle[][])
+     * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @since 9
+     */
+    public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
+        whileLoopChecks(init, pred, body);
+        MethodHandle fini = identityOrVoid(body.type().returnType());
+        MethodHandle[] checkExit = { null, null, pred, fini };
+        MethodHandle[] varBody = { init, body };
+        return loop(checkExit, varBody);
+    }
+
+    /**
+     * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
+     * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
+     * <p>
+     * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
+     * method will, in each iteration, first execute its body and then evaluate the predicate.
+     * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
+     * <p>
+     * The {@code init} handle describes the initial value of an additional optional loop-local variable.
+     * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
+     * and updated with the value returned from its invocation. The result of loop execution will be
+     * the final value of the additional loop-local variable (if present).
+     * <p>
+     * The following rules hold for these argument handles:<ul>
+     * <li>The {@code body} handle must not be {@code null}; its type must be of the form
+     * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
+     * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
+     * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
+     * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
+     * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
+     * It will constrain the parameter lists of the other loop parts.
+     * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
+     * list {@code (A...)} is called the <em>external parameter list</em>.
+     * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
+     * additional state variable of the loop.
+     * The body must both accept and return a value of this type {@code V}.
+     * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
+     * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
+     * <a href="MethodHandles.html#effid">effectively identical</a>
+     * to the external parameter list {@code (A...)}.
+     * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
+     * {@linkplain #empty default value}.
+     * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
+     * Its parameter list (either empty or of the form {@code (V A*)}) must be
+     * effectively identical to the internal parameter list.
+     * </ul>
+     * <p>
+     * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
+     * <li>The loop handle's result type is the result type {@code V} of the body.
+     * <li>The loop handle's parameter types are the types {@code (A...)},
+     * from the external parameter list.
+     * </ul>
+     * <p>
+     * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
+     * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
+     * passed to the loop.
+     * <blockquote><pre>{@code
+     * V init(A...);
+     * boolean pred(V, A...);
+     * V body(V, A...);
+     * V doWhileLoop(A... a...) {
+     *   V v = init(a...);
+     *   do {
+     *     v = body(v, a...);
+     *   } while (pred(v, a...));
+     *   return v;
+     * }
+     * }</pre></blockquote>
+     *
+     * @apiNote Example:
+     * <blockquote><pre>{@code
+     * // int i = 0; while (i < limit) { ++i; } return i; => limit
+     * static int zero(int limit) { return 0; }
+     * static int step(int i, int limit) { return i + 1; }
+     * static boolean pred(int i, int limit) { return i < limit; }
+     * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
+     * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
+     * assertEquals(23, loop.invoke(23));
+     * }</pre></blockquote>
+     *
+     *
+     * @apiNote The implementation of this method can be expressed as follows:
+     * <blockquote><pre>{@code
+     * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
+     *     MethodHandle fini = (body.type().returnType() == void.class
+     *                         ? null : identity(body.type().returnType()));
+     *     MethodHandle[] clause = { init, body, pred, fini };
+     *     return loop(clause);
+     * }
+     * }</pre></blockquote>
+     *
+     * @param init optional initializer, providing the initial value of the loop variable.
+     *             May be {@code null}, implying a default initial value.  See above for other constraints.
+     * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
+     *             See above for other constraints.
+     * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
+     *             above for other constraints.
+     *
+     * @return a method handle implementing the {@code while} loop as described by the arguments.
+     * @throws IllegalArgumentException if the rules for the arguments are violated.
+     * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
+     *
+     * @see #loop(MethodHandle[][])
+     * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @since 9
+     */
+    public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
+        whileLoopChecks(init, pred, body);
+        MethodHandle fini = identityOrVoid(body.type().returnType());
+        MethodHandle[] clause = {init, body, pred, fini };
+        return loop(clause);
+    }
+
+    private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
+        Objects.requireNonNull(pred);
+        Objects.requireNonNull(body);
+        MethodType bodyType = body.type();
+        Class<?> returnType = bodyType.returnType();
+        List<Class<?>> innerList = bodyType.parameterList();
+        List<Class<?>> outerList = innerList;
+        if (returnType == void.class) {
+            // OK
+        } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
+            // leading V argument missing => error
+            MethodType expected = bodyType.insertParameterTypes(0, returnType);
+            throw misMatchedTypes("body function", bodyType, expected);
+        } else {
+            outerList = innerList.subList(1, innerList.size());
+        }
+        MethodType predType = pred.type();
+        if (predType.returnType() != boolean.class ||
+                !predType.effectivelyIdenticalParameters(0, innerList)) {
+            throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
+        }
+        if (init != null) {
+            MethodType initType = init.type();
+            if (initType.returnType() != returnType ||
+                    !initType.effectivelyIdenticalParameters(0, outerList)) {
+                throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
+            }
+        }
+    }
+
+    /**
+     * Constructs a loop that runs a given number of iterations.
+     * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
+     * <p>
+     * The number of iterations is determined by the {@code iterations} handle evaluation result.
+     * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
+     * It will be initialized to 0 and incremented by 1 in each iteration.
+     * <p>
+     * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
+     * of that type is also present.  This variable is initialized using the optional {@code init} handle,
+     * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
+     * <p>
+     * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
+     * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
+     * iteration variable.
+     * The result of the loop handle execution will be the final {@code V} value of that variable
+     * (or {@code void} if there is no {@code V} variable).
+     * <p>
+     * The following rules hold for the argument handles:<ul>
+     * <li>The {@code iterations} handle must not be {@code null}, and must return
+     * the type {@code int}, referred to here as {@code I} in parameter type lists.
+     * <li>The {@code body} handle must not be {@code null}; its type must be of the form
+     * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
+     * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
+     * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
+     * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
+     * <li>The parameter list {@code (V I A...)} of the body contributes to a list
+     * of types called the <em>internal parameter list</em>.
+     * It will constrain the parameter lists of the other loop parts.
+     * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
+     * with no additional {@code A} types, then the internal parameter list is extended by
+     * the argument types {@code A...} of the {@code iterations} handle.
+     * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
+     * list {@code (A...)} is called the <em>external parameter list</em>.
+     * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
+     * additional state variable of the loop.
+     * The body must both accept a leading parameter and return a value of this type {@code V}.
+     * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
+     * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
+     * <a href="MethodHandles.html#effid">effectively identical</a>
+     * to the external parameter list {@code (A...)}.
+     * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
+     * {@linkplain #empty default value}.
+     * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
+     * effectively identical to the external parameter list {@code (A...)}.
+     * </ul>
+     * <p>
+     * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
+     * <li>The loop handle's result type is the result type {@code V} of the body.
+     * <li>The loop handle's parameter types are the types {@code (A...)},
+     * from the external parameter list.
+     * </ul>
+     * <p>
+     * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
+     * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
+     * arguments passed to the loop.
+     * <blockquote><pre>{@code
+     * int iterations(A...);
+     * V init(A...);
+     * V body(V, int, A...);
+     * V countedLoop(A... a...) {
+     *   int end = iterations(a...);
+     *   V v = init(a...);
+     *   for (int i = 0; i < end; ++i) {
+     *     v = body(v, i, a...);
+     *   }
+     *   return v;
+     * }
+     * }</pre></blockquote>
+     *
+     * @apiNote Example with a fully conformant body method:
+     * <blockquote><pre>{@code
+     * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
+     * // => a variation on a well known theme
+     * static String step(String v, int counter, String init) { return "na " + v; }
+     * // assume MH_step is a handle to the method above
+     * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
+     * MethodHandle start = MethodHandles.identity(String.class);
+     * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
+     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
+     * }</pre></blockquote>
+     *
+     * @apiNote Example with the simplest possible body method type,
+     * and passing the number of iterations to the loop invocation:
+     * <blockquote><pre>{@code
+     * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
+     * // => a variation on a well known theme
+     * static String step(String v, int counter ) { return "na " + v; }
+     * // assume MH_step is a handle to the method above
+     * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
+     * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
+     * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
+     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
+     * }</pre></blockquote>
+     *
+     * @apiNote Example that treats the number of iterations, string to append to, and string to append
+     * as loop parameters:
+     * <blockquote><pre>{@code
+     * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
+     * // => a variation on a well known theme
+     * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
+     * // assume MH_step is a handle to the method above
+     * MethodHandle count = MethodHandles.identity(int.class);
+     * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
+     * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
+     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
+     * }</pre></blockquote>
+     *
+     * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
+     * to enforce a loop type:
+     * <blockquote><pre>{@code
+     * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
+     * // => a variation on a well known theme
+     * static String step(String v, int counter, String pre) { return pre + " " + v; }
+     * // assume MH_step is a handle to the method above
+     * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
+     * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
+     * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
+     * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
+     * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
+     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
+     * }</pre></blockquote>
+     *
+     * @apiNote The implementation of this method can be expressed as follows:
+     * <blockquote><pre>{@code
+     * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
+     *     return countedLoop(empty(iterations.type()), iterations, init, body);
+     * }
+     * }</pre></blockquote>
+     *
+     * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
+     *                   result type must be {@code int}. See above for other constraints.
+     * @param init optional initializer, providing the initial value of the loop variable.
+     *             May be {@code null}, implying a default initial value.  See above for other constraints.
+     * @param body body of the loop, which may not be {@code null}.
+     *             It controls the loop parameters and result type in the standard case (see above for details).
+     *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
+     *             and may accept any number of additional types.
+     *             See above for other constraints.
+     *
+     * @return a method handle representing the loop.
+     * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
+     * @throws IllegalArgumentException if any argument violates the rules formulated above.
+     *
+     * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
+     * @since 9
+     */
+    public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
+        return countedLoop(empty(iterations.type()), iterations, init, body);
+    }
+
+    /**
+     * Constructs a loop that counts over a range of numbers.
+     * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
+     * <p>
+     * The loop counter {@code i} is a loop iteration variable of type {@code int}.
+     * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
+     * values of the loop counter.
+     * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
+     * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
+     * <p>
+     * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
+     * of that type is also present.  This variable is initialized using the optional {@code init} handle,
+     * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
+     * <p>
+     * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
+     * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
+     * iteration variable.
+     * The result of the loop handle execution will be the final {@code V} value of that variable
+     * (or {@code void} if there is no {@code V} variable).
+     * <p>
+     * The following rules hold for the argument handles:<ul>
+     * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
+     * the common type {@code int}, referred to here as {@code I} in parameter type lists.
+     * <li>The {@code body} handle must not be {@code null}; its type must be of the form
+     * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
+     * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
+     * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
+     * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
+     * <li>The parameter list {@code (V I A...)} of the body contributes to a list
+     * of types called the <em>internal parameter list</em>.
+     * It will constrain the parameter lists of the other loop parts.
+     * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
+     * with no additional {@code A} types, then the internal parameter list is extended by
+     * the argument types {@code A...} of the {@code end} handle.
+     * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
+     * list {@code (A...)} is called the <em>external parameter list</em>.
+     * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
+     * additional state variable of the loop.
+     * The body must both accept a leading parameter and return a value of this type {@code V}.
+     * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
+     * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
+     * <a href="MethodHandles.html#effid">effectively identical</a>
+     * to the external parameter list {@code (A...)}.
+     * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
+     * {@linkplain #empty default value}.
+     * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
+     * effectively identical to the external parameter list {@code (A...)}.
+     * <li>Likewise, the parameter list of {@code end} must be effectively identical
+     * to the external parameter list.
+     * </ul>
+     * <p>
+     * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
+     * <li>The loop handle's result type is the result type {@code V} of the body.
+     * <li>The loop handle's parameter types are the types {@code (A...)},
+     * from the external parameter list.
+     * </ul>
+     * <p>
+     * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
+     * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
+     * arguments passed to the loop.
+     * <blockquote><pre>{@code
+     * int start(A...);
+     * int end(A...);
+     * V init(A...);
+     * V body(V, int, A...);
+     * V countedLoop(A... a...) {
+     *   int e = end(a...);
+     *   int s = start(a...);
+     *   V v = init(a...);
+     *   for (int i = s; i < e; ++i) {
+     *     v = body(v, i, a...);
+     *   }
+     *   return v;
+     * }
+     * }</pre></blockquote>
+     *
+     * @apiNote The implementation of this method can be expressed as follows:
+     * <blockquote><pre>{@code
+     * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
+     *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
+     *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
+     *     // the following semantics:
+     *     // MH_increment: (int limit, int counter) -> counter + 1
+     *     // MH_predicate: (int limit, int counter) -> counter < limit
+     *     Class<?> counterType = start.type().returnType();  // int
+     *     Class<?> returnType = body.type().returnType();
+     *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
+     *     if (returnType != void.class) {  // ignore the V variable
+     *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
+     *         pred = dropArguments(pred, 1, returnType);  // ditto
+     *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
+     *     }
+     *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
+     *     MethodHandle[]
+     *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
+     *         bodyClause = { init, body },            // v = init(); v = body(v, i)
+     *         indexVar   = { start, incr };           // i = start(); i = i + 1
+     *     return loop(loopLimit, bodyClause, indexVar);
+     * }
+     * }</pre></blockquote>
+     *
+     * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
+     *              See above for other constraints.
+     * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
+     *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
+     * @param init optional initializer, providing the initial value of the loop variable.
+     *             May be {@code null}, implying a default initial value.  See above for other constraints.
+     * @param body body of the loop, which may not be {@code null}.
+     *             It controls the loop parameters and result type in the standard case (see above for details).
+     *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
+     *             and may accept any number of additional types.
+     *             See above for other constraints.
+     *
+     * @return a method handle representing the loop.
+     * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
+     * @throws IllegalArgumentException if any argument violates the rules formulated above.
+     *
+     * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
+     * @since 9
+     */
+    public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
+        countedLoopChecks(start, end, init, body);
+        Class<?> counterType = start.type().returnType();  // int, but who's counting?
+        Class<?> limitType   = end.type().returnType();    // yes, int again
+        Class<?> returnType  = body.type().returnType();
+        // Android-changed: getConstantHandle is in MethodHandles.
+        // MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
+        // MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
+        MethodHandle incr = getConstantHandle(MH_countedLoopStep);
+        MethodHandle pred = getConstantHandle(MH_countedLoopPred);
+        MethodHandle retv = null;
+        if (returnType != void.class) {
+            incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
+            pred = dropArguments(pred, 1, returnType);  // ditto
+            retv = dropArguments(identity(returnType), 0, counterType);
+        }
+        body = dropArguments(body, 0, counterType);  // ignore the limit variable
+        MethodHandle[]
+            loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
+            bodyClause = { init, body },            // v = init(); v = body(v, i)
+            indexVar   = { start, incr };           // i = start(); i = i + 1
+        return loop(loopLimit, bodyClause, indexVar);
+    }
+
+    private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
+        Objects.requireNonNull(start);
+        Objects.requireNonNull(end);
+        Objects.requireNonNull(body);
+        Class<?> counterType = start.type().returnType();
+        if (counterType != int.class) {
+            MethodType expected = start.type().changeReturnType(int.class);
+            throw misMatchedTypes("start function", start.type(), expected);
+        } else if (end.type().returnType() != counterType) {
+            MethodType expected = end.type().changeReturnType(counterType);
+            throw misMatchedTypes("end function", end.type(), expected);
+        }
+        MethodType bodyType = body.type();
+        Class<?> returnType = bodyType.returnType();
+        List<Class<?>> innerList = bodyType.parameterList();
+        // strip leading V value if present
+        int vsize = (returnType == void.class ? 0 : 1);
+        if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
+            // argument list has no "V" => error
+            MethodType expected = bodyType.insertParameterTypes(0, returnType);
+            throw misMatchedTypes("body function", bodyType, expected);
+        } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
+            // missing I type => error
+            MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
+            throw misMatchedTypes("body function", bodyType, expected);
+        }
+        List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
+        if (outerList.isEmpty()) {
+            // special case; take lists from end handle
+            outerList = end.type().parameterList();
+            innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
+        }
+        MethodType expected = methodType(counterType, outerList);
+        if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
+            throw misMatchedTypes("start parameter types", start.type(), expected);
+        }
+        if (end.type() != start.type() &&
+            !end.type().effectivelyIdenticalParameters(0, outerList)) {
+            throw misMatchedTypes("end parameter types", end.type(), expected);
+        }
+        if (init != null) {
+            MethodType initType = init.type();
+            if (initType.returnType() != returnType ||
+                !initType.effectivelyIdenticalParameters(0, outerList)) {
+                throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
+            }
+        }
+    }
+
+    /**
+     * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
+     * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
+     * <p>
+     * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
+     * Each value it produces will be stored in a loop iteration variable of type {@code T}.
+     * <p>
+     * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
+     * of that type is also present.  This variable is initialized using the optional {@code init} handle,
+     * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
+     * <p>
+     * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
+     * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
+     * iteration variable.
+     * The result of the loop handle execution will be the final {@code V} value of that variable
+     * (or {@code void} if there is no {@code V} variable).
+     * <p>
+     * The following rules hold for the argument handles:<ul>
+     * <li>The {@code body} handle must not be {@code null}; its type must be of the form
+     * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
+     * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
+     * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
+     * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
+     * <li>The parameter list {@code (V T A...)} of the body contributes to a list
+     * of types called the <em>internal parameter list</em>.
+     * It will constrain the parameter lists of the other loop parts.
+     * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
+     * with no additional {@code A} types, then the internal parameter list is extended by
+     * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
+     * single type {@code Iterable} is added and constitutes the {@code A...} list.
+     * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
+     * list {@code (A...)} is called the <em>external parameter list</em>.
+     * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
+     * additional state variable of the loop.
+     * The body must both accept a leading parameter and return a value of this type {@code V}.
+     * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
+     * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
+     * <a href="MethodHandles.html#effid">effectively identical</a>
+     * to the external parameter list {@code (A...)}.
+     * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
+     * {@linkplain #empty default value}.
+     * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
+     * type {@code java.util.Iterator} or a subtype thereof.
+     * The iterator it produces when the loop is executed will be assumed
+     * to yield values which can be converted to type {@code T}.
+     * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
+     * effectively identical to the external parameter list {@code (A...)}.
+     * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
+     * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
+     * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
+     * handle parameter is adjusted to accept the leading {@code A} type, as if by
+     * the {@link MethodHandle#asType asType} conversion method.
+     * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
+     * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
+     * </ul>
+     * <p>
+     * The type {@code T} may be either a primitive or reference.
+     * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
+     * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
+     * as if by the {@link MethodHandle#asType asType} conversion method.
+     * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
+     * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
+     * <p>
+     * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
+     * <li>The loop handle's result type is the result type {@code V} of the body.
+     * <li>The loop handle's parameter types are the types {@code (A...)},
+     * from the external parameter list.
+     * </ul>
+     * <p>
+     * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
+     * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
+     * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
+     * <blockquote><pre>{@code
+     * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
+     * V init(A...);
+     * V body(V,T,A...);
+     * V iteratedLoop(A... a...) {
+     *   Iterator<T> it = iterator(a...);
+     *   V v = init(a...);
+     *   while (it.hasNext()) {
+     *     T t = it.next();
+     *     v = body(v, t, a...);
+     *   }
+     *   return v;
+     * }
+     * }</pre></blockquote>
+     *
+     * @apiNote Example:
+     * <blockquote><pre>{@code
+     * // get an iterator from a list
+     * static List<String> reverseStep(List<String> r, String e) {
+     *   r.add(0, e);
+     *   return r;
+     * }
+     * static List<String> newArrayList() { return new ArrayList<>(); }
+     * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
+     * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
+     * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
+     * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
+     * assertEquals(reversedList, (List<String>) loop.invoke(list));
+     * }</pre></blockquote>
+     *
+     * @apiNote The implementation of this method can be expressed approximately as follows:
+     * <blockquote><pre>{@code
+     * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
+     *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
+     *     Class<?> returnType = body.type().returnType();
+     *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
+     *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
+     *     MethodHandle retv = null, step = body, startIter = iterator;
+     *     if (returnType != void.class) {
+     *         // the simple thing first:  in (I V A...), drop the I to get V
+     *         retv = dropArguments(identity(returnType), 0, Iterator.class);
+     *         // body type signature (V T A...), internal loop types (I V A...)
+     *         step = swapArguments(body, 0, 1);  // swap V <-> T
+     *     }
+     *     if (startIter == null)  startIter = MH_getIter;
+     *     MethodHandle[]
+     *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
+     *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
+     *     return loop(iterVar, bodyClause);
+     * }
+     * }</pre></blockquote>
+     *
+     * @param iterator an optional handle to return the iterator to start the loop.
+     *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
+     *                 See above for other constraints.
+     * @param init optional initializer, providing the initial value of the loop variable.
+     *             May be {@code null}, implying a default initial value.  See above for other constraints.
+     * @param body body of the loop, which may not be {@code null}.
+     *             It controls the loop parameters and result type in the standard case (see above for details).
+     *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
+     *             and may accept any number of additional types.
+     *             See above for other constraints.
+     *
+     * @return a method handle embodying the iteration loop functionality.
+     * @throws NullPointerException if the {@code body} handle is {@code null}.
+     * @throws IllegalArgumentException if any argument violates the above requirements.
+     *
+     * @since 9
+     */
+    public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
+        Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
+        Class<?> returnType = body.type().returnType();
+        // Android-changed: getConstantHandle is in MethodHandles.
+        // MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
+        // MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
+        MethodHandle hasNext = getConstantHandle(MH_iteratePred);
+        MethodHandle nextRaw = getConstantHandle(MH_iterateNext);
+        MethodHandle startIter;
+        MethodHandle nextVal;
+        {
+            MethodType iteratorType;
+            if (iterator == null) {
+                // derive argument type from body, if available, else use Iterable
+                // Android-changed: getConstantHandle is in MethodHandles.
+                // startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
+                startIter = getConstantHandle(MH_initIterator);
+                iteratorType = startIter.type().changeParameterType(0, iterableType);
+            } else {
+                // force return type to the internal iterator class
+                iteratorType = iterator.type().changeReturnType(Iterator.class);
+                startIter = iterator;
+            }
+            Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
+            MethodType nextValType = nextRaw.type().changeReturnType(ttype);
+
+            // perform the asType transforms under an exception transformer, as per spec.:
+            try {
+                startIter = startIter.asType(iteratorType);
+                nextVal = nextRaw.asType(nextValType);
+            } catch (WrongMethodTypeException ex) {
+                throw new IllegalArgumentException(ex);
+            }
+        }
+
+        MethodHandle retv = null, step = body;
+        if (returnType != void.class) {
+            // the simple thing first:  in (I V A...), drop the I to get V
+            retv = dropArguments(identity(returnType), 0, Iterator.class);
+            // body type signature (V T A...), internal loop types (I V A...)
+            step = swapArguments(body, 0, 1);  // swap V <-> T
+        }
+
+        MethodHandle[]
+            iterVar    = { startIter, null, hasNext, retv },
+            bodyClause = { init, filterArgument(step, 0, nextVal) };
+        return loop(iterVar, bodyClause);
+    }
+
+    private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
+        Objects.requireNonNull(body);
+        MethodType bodyType = body.type();
+        Class<?> returnType = bodyType.returnType();
+        List<Class<?>> internalParamList = bodyType.parameterList();
+        // strip leading V value if present
+        int vsize = (returnType == void.class ? 0 : 1);
+        if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
+            // argument list has no "V" => error
+            MethodType expected = bodyType.insertParameterTypes(0, returnType);
+            throw misMatchedTypes("body function", bodyType, expected);
+        } else if (internalParamList.size() <= vsize) {
+            // missing T type => error
+            MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
+            throw misMatchedTypes("body function", bodyType, expected);
+        }
+        List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
+        Class<?> iterableType = null;
+        if (iterator != null) {
+            // special case; if the body handle only declares V and T then
+            // the external parameter list is obtained from iterator handle
+            if (externalParamList.isEmpty()) {
+                externalParamList = iterator.type().parameterList();
+            }
+            MethodType itype = iterator.type();
+            if (!Iterator.class.isAssignableFrom(itype.returnType())) {
+                throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
+            }
+            if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
+                MethodType expected = methodType(itype.returnType(), externalParamList);
+                throw misMatchedTypes("iterator parameters", itype, expected);
+            }
+        } else {
+            if (externalParamList.isEmpty()) {
+                // special case; if the iterator handle is null and the body handle
+                // only declares V and T then the external parameter list consists
+                // of Iterable
+                externalParamList = Arrays.asList(Iterable.class);
+                iterableType = Iterable.class;
+            } else {
+                // special case; if the iterator handle is null and the external
+                // parameter list is not empty then the first parameter must be
+                // assignable to Iterable
+                iterableType = externalParamList.get(0);
+                if (!Iterable.class.isAssignableFrom(iterableType)) {
+                    throw newIllegalArgumentException(
+                            "inferred first loop argument must inherit from Iterable: " + iterableType);
+                }
+            }
+        }
+        if (init != null) {
+            MethodType initType = init.type();
+            if (initType.returnType() != returnType ||
+                    !initType.effectivelyIdenticalParameters(0, externalParamList)) {
+                throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
+            }
+        }
+        return iterableType;  // help the caller a bit
+    }
+
+    /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
+        // there should be a better way to uncross my wires
+        int arity = mh.type().parameterCount();
+        int[] order = new int[arity];
+        for (int k = 0; k < arity; k++)  order[k] = k;
+        order[i] = j; order[j] = i;
+        Class<?>[] types = mh.type().parameterArray();
+        Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
+        MethodType swapType = methodType(mh.type().returnType(), types);
+        return permuteArguments(mh, swapType, order);
+    }
+
+    /**
+     * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
+     * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
+     * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
+     * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
+     * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
+     * {@code try-finally} handle.
+     * <p>
+     * The {@code cleanup} handle will be passed one or two additional leading arguments.
+     * The first is the exception thrown during the
+     * execution of the {@code target} handle, or {@code null} if no exception was thrown.
+     * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
+     * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
+     * The second argument is not present if the {@code target} handle has a {@code void} return type.
+     * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
+     * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
+     * <p>
+     * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
+     * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
+     * two extra leading parameters:<ul>
+     * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
+     * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
+     * the result from the execution of the {@code target} handle.
+     * This parameter is not present if the {@code target} returns {@code void}.
+     * </ul>
+     * <p>
+     * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
+     * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
+     * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
+     * the cleanup.
+     * <blockquote><pre>{@code
+     * V target(A..., B...);
+     * V cleanup(Throwable, V, A...);
+     * V adapter(A... a, B... b) {
+     *   V result = (zero value for V);
+     *   Throwable throwable = null;
+     *   try {
+     *     result = target(a..., b...);
+     *   } catch (Throwable t) {
+     *     throwable = t;
+     *     throw t;
+     *   } finally {
+     *     result = cleanup(throwable, result, a...);
+     *   }
+     *   return result;
+     * }
+     * }</pre></blockquote>
+     * <p>
+     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
+     * be modified by execution of the target, and so are passed unchanged
+     * from the caller to the cleanup, if it is invoked.
+     * <p>
+     * The target and cleanup must return the same type, even if the cleanup
+     * always throws.
+     * To create such a throwing cleanup, compose the cleanup logic
+     * with {@link #throwException throwException},
+     * in order to create a method handle of the correct return type.
+     * <p>
+     * Note that {@code tryFinally} never converts exceptions into normal returns.
+     * In rare cases where exceptions must be converted in that way, first wrap
+     * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
+     * to capture an outgoing exception, and then wrap with {@code tryFinally}.
+     * <p>
+     * It is recommended that the first parameter type of {@code cleanup} be
+     * declared {@code Throwable} rather than a narrower subtype.  This ensures
+     * {@code cleanup} will always be invoked with whatever exception that
+     * {@code target} throws.  Declaring a narrower type may result in a
+     * {@code ClassCastException} being thrown by the {@code try-finally}
+     * handle if the type of the exception thrown by {@code target} is not
+     * assignable to the first parameter type of {@code cleanup}.  Note that
+     * various exception types of {@code VirtualMachineError},
+     * {@code LinkageError}, and {@code RuntimeException} can in principle be
+     * thrown by almost any kind of Java code, and a finally clause that
+     * catches (say) only {@code IOException} would mask any of the others
+     * behind a {@code ClassCastException}.
+     *
+     * @param target the handle whose execution is to be wrapped in a {@code try} block.
+     * @param cleanup the handle that is invoked in the finally block.
+     *
+     * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
+     * @throws NullPointerException if any argument is null
+     * @throws IllegalArgumentException if {@code cleanup} does not accept
+     *          the required leading arguments, or if the method handle types do
+     *          not match in their return types and their
+     *          corresponding trailing parameters
+     *
+     * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
+     * @since 9
+     */
+    public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
+        List<Class<?>> targetParamTypes = target.type().parameterList();
+        Class<?> rtype = target.type().returnType();
+
+        tryFinallyChecks(target, cleanup);
+
+        // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
+        // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
+        // target parameter list.
+        cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
+
+        // Ensure that the intrinsic type checks the instance thrown by the
+        // target against the first parameter of cleanup
+        cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
+
+        // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
+        // Android-changed: use Transformer implementation.
+        // return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
+        return new Transformers.TryFinally(target.asFixedArity(), cleanup.asFixedArity());
+    }
+
+    private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
+        Class<?> rtype = target.type().returnType();
+        if (rtype != cleanup.type().returnType()) {
+            throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
+        }
+        MethodType cleanupType = cleanup.type();
+        if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
+            throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
+        }
+        if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
+            throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
+        }
+        // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
+        // target parameter list.
+        int cleanupArgIndex = rtype == void.class ? 1 : 2;
+        if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
+            throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
+                    cleanup.type(), target.type());
+        }
+    }
+
+    /**
+     * Creates a table switch method handle, which can be used to switch over a set of target
+     * method handles, based on a given target index, called selector.
+     * <p>
+     * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)},
+     * and where {@code N} is the number of target method handles, the table switch method
+     * handle will invoke the n-th target method handle from the list of target method handles.
+     * <p>
+     * For a selector value that does not fall in the range {@code [0, N)}, the table switch
+     * method handle will invoke the given fallback method handle.
+     * <p>
+     * All method handles passed to this method must have the same type, with the additional
+     * requirement that the leading parameter be of type {@code int}. The leading parameter
+     * represents the selector.
+     * <p>
+     * Any trailing parameters present in the type will appear on the returned table switch
+     * method handle as well. Any arguments assigned to these parameters will be forwarded,
+     * together with the selector value, to the selected method handle when invoking it.
+     *
+     * @apiNote Example:
+     * The cases each drop the {@code selector} value they are given, and take an additional
+     * {@code String} argument, which is concatenated (using {@link String#concat(String)})
+     * to a specific constant label string for each case:
+     * <blockquote><pre>{@code
+     * MethodHandles.Lookup lookup = MethodHandles.lookup();
+     * MethodHandle caseMh = lookup.findVirtual(String.class, "concat",
+     *         MethodType.methodType(String.class, String.class));
+     * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class);
+     *
+     * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: ");
+     * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: ");
+     * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: ");
+     *
+     * MethodHandle mhSwitch = MethodHandles.tableSwitch(
+     *     caseDefault,
+     *     case0,
+     *     case1
+     * );
+     *
+     * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data"));
+     * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data"));
+     * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data"));
+     * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data"));
+     * }</pre></blockquote>
+     *
+     * @param fallback the fallback method handle that is called when the selector is not
+     *                 within the range {@code [0, N)}.
+     * @param targets array of target method handles.
+     * @return the table switch method handle.
+     * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any
+     *                              any of the elements of the {@code targets} array are
+     *                              {@code null}.
+     * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading
+     *                                  parameter of the fallback handle or any of the target
+     *                                  handles is not {@code int}, or if the types of
+     *                                  the fallback handle and all of target handles are
+     *                                  not the same.
+     */
+    public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) {
+        Objects.requireNonNull(fallback);
+        Objects.requireNonNull(targets);
+        targets = targets.clone();
+        MethodType type = tableSwitchChecks(fallback, targets);
+        // Android-changed: use a Transformer for the implementation.
+        // return MethodHandleImpl.makeTableSwitch(type, fallback, targets);
+        return new Transformers.TableSwitch(type, fallback, targets);
+    }
+
+    private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) {
+        if (caseActions.length == 0)
+            throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions));
+
+        MethodType expectedType = defaultCase.type();
+
+        if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class)
+            throw new IllegalArgumentException(
+                "Case actions must have int as leading parameter: " + Arrays.toString(caseActions));
+
+        for (MethodHandle mh : caseActions) {
+            Objects.requireNonNull(mh);
+            // Android-changed: MethodType's not interned.
+            // if (mh.type() != expectedType)
+            if (!mh.type().equals(expectedType))
+                throw new IllegalArgumentException(
+                    "Case actions must have the same type: " + Arrays.toString(caseActions));
+        }
+
+        return expectedType;
+    }
+
+    // BEGIN Android-added: Code from OpenJDK's MethodHandleImpl.
+
+    /**
+     * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
+     * MethodHandle) counting loops}.
+     *
+     * @param limit the upper bound of the parameter, statically bound at loop creation time.
+     * @param counter the counter parameter, passed in during loop execution.
+     *
+     * @return whether the counter has reached the limit.
+     * @hide
+     */
+    public static boolean countedLoopPredicate(int limit, int counter) {
+        return counter < limit;
+    }
+
+    /**
+     * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
+     * MethodHandle) counting loops} to increment the counter.
+     *
+     * @param limit the upper bound of the loop counter (ignored).
+     * @param counter the loop counter.
+     *
+     * @return the loop counter incremented by 1.
+     * @hide
+     */
+    public static int countedLoopStep(int limit, int counter) {
+        return counter + 1;
+    }
+
+    /**
+     * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
+     *
+     * @param it the {@link Iterable} over which the loop iterates.
+     *
+     * @return an {@link Iterator} over the argument's elements.
+     * @hide
+     */
+    public static Iterator<?> initIterator(Iterable<?> it) {
+        return it.iterator();
+    }
+
+    /**
+     * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
+     *
+     * @param it the iterator to be checked.
+     *
+     * @return {@code true} iff there are more elements to iterate over.
+     * @hide
+     */
+    public static boolean iteratePredicate(Iterator<?> it) {
+        return it.hasNext();
+    }
+
+    /**
+     * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
+     * MethodHandles#iteratedLoop iterating loops}.
+     *
+     * @param it the iterator.
+     *
+     * @return the next element from the iterator.
+     * @hide
+     */
+    public static Object iterateNext(Iterator<?> it) {
+        return it.next();
+    }
+
+    // Indexes into constant method handles:
+    static final int
+        MH_cast                  =  0,
+        MH_selectAlternative     =  1,
+        MH_copyAsPrimitiveArray  =  2,
+        MH_fillNewTypedArray     =  3,
+        MH_fillNewArray          =  4,
+        MH_arrayIdentity         =  5,
+        MH_countedLoopPred       =  6,
+        MH_countedLoopStep       =  7,
+        MH_initIterator          =  8,
+        MH_iteratePred           =  9,
+        MH_iterateNext           = 10,
+        MH_Array_newInstance     = 11,
+        MH_LIMIT                 = 12;
+
+    static MethodHandle getConstantHandle(int idx) {
+        MethodHandle handle = HANDLES[idx];
+        if (handle != null) {
+            return handle;
+        }
+        return setCachedHandle(idx, makeConstantHandle(idx));
+    }
+
+    private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
+        // Simulate a CAS, to avoid racy duplication of results.
+        MethodHandle prev = HANDLES[idx];
+        if (prev != null) {
+            return prev;
+        }
+        HANDLES[idx] = method;
+        return method;
+    }
+
+    // Local constant method handles:
+    private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
+
+    private static MethodHandle makeConstantHandle(int idx) {
+        try {
+            // Android-added: local IMPL_LOOKUP.
+            final Lookup IMPL_LOOKUP = MethodHandles.Lookup.IMPL_LOOKUP;
+            switch (idx) {
+                // Android-removed: not-used.
+                /*
+                case MH_cast:
+                    return IMPL_LOOKUP.findVirtual(Class.class, "cast",
+                            MethodType.methodType(Object.class, Object.class));
+                case MH_copyAsPrimitiveArray:
+                    return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray",
+                            MethodType.methodType(Object.class, Wrapper.class, Object[].class));
+                case MH_arrayIdentity:
+                    return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity",
+                            MethodType.methodType(Object[].class, Object[].class));
+                case MH_fillNewArray:
+                    return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray",
+                            MethodType.methodType(Object[].class, Integer.class, Object[].class));
+                case MH_fillNewTypedArray:
+                    return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray",
+                            MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class));
+                case MH_selectAlternative:
+                    return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
+                            MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
+                */
+                case MH_countedLoopPred:
+                    // Android-changed: methods moved to this file.
+                    // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
+                    //         MethodType.methodType(boolean.class, int.class, int.class));
+                    return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopPredicate",
+                            MethodType.methodType(boolean.class, int.class, int.class));
+                case MH_countedLoopStep:
+                    // Android-changed: methods moved to this file.
+                    // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
+                    //         MethodType.methodType(int.class, int.class, int.class));
+                    return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopStep",
+                            MethodType.methodType(int.class, int.class, int.class));
+                case MH_initIterator:
+                    // Android-changed: methods moved to this file.
+                    // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
+                    //         MethodType.methodType(Iterator.class, Iterable.class));
+                    return IMPL_LOOKUP.findStatic(MethodHandles.class, "initIterator",
+                            MethodType.methodType(Iterator.class, Iterable.class));
+                case MH_iteratePred:
+                    // Android-changed: methods moved to this file.
+                    // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
+                    //         MethodType.methodType(boolean.class, Iterator.class));
+                    return IMPL_LOOKUP.findStatic(MethodHandles.class, "iteratePredicate",
+                            MethodType.methodType(boolean.class, Iterator.class));
+                case MH_iterateNext:
+                    // Android-changed: methods moved to this file.
+                    // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
+                    //         MethodType.methodType(Object.class, Iterator.class));
+                    return IMPL_LOOKUP.findStatic(MethodHandles.class, "iterateNext",
+                            MethodType.methodType(Object.class, Iterator.class));
+                // Android-removed: not-used.
+                /*
+                case MH_Array_newInstance:
+                    return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
+                            MethodType.methodType(Object.class, Class.class, int.class));
+                */
+            }
+        } catch (ReflectiveOperationException ex) {
+            throw newInternalError(ex);
+        }
+
+        throw newInternalError("Unknown function index: " + idx);
+    }
+    // END Android-added: Code from OpenJDK's MethodHandleImpl.
+}
diff --git a/android-35/java/lang/invoke/MethodType.java b/android-35/java/lang/invoke/MethodType.java
new file mode 100644
index 0000000..b23b51c
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodType.java
@@ -0,0 +1,1404 @@
+/*
+ * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import sun.invoke.util.Wrapper;
+import java.lang.ref.WeakReference;
+import java.lang.ref.Reference;
+import java.lang.ref.ReferenceQueue;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.List;
+import java.util.Objects;
+import java.util.concurrent.ConcurrentMap;
+import java.util.concurrent.ConcurrentHashMap;
+import sun.invoke.util.BytecodeDescriptor;
+import static java.lang.invoke.MethodHandleStatics.*;
+
+/**
+ * A method type represents the arguments and return type accepted and
+ * returned by a method handle, or the arguments and return type passed
+ * and expected  by a method handle caller.  Method types must be properly
+ * matched between a method handle and all its callers,
+ * and the JVM's operations enforce this matching at, specifically
+ * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
+ * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
+ * of {@code invokedynamic} instructions.
+ * <p>
+ * The structure is a return type accompanied by any number of parameter types.
+ * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
+ * (For ease of exposition, we treat {@code void} as if it were a type.
+ * In fact, it denotes the absence of a return type.)
+ * <p>
+ * All instances of {@code MethodType} are immutable.
+ * Two instances are completely interchangeable if they compare equal.
+ * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
+ * <p>
+ * This type can be created only by factory methods.
+ * All factory methods may cache values, though caching is not guaranteed.
+ * Some factory methods are static, while others are virtual methods which
+ * modify precursor method types, e.g., by changing a selected parameter.
+ * <p>
+ * Factory methods which operate on groups of parameter types
+ * are systematically presented in two versions, so that both Java arrays and
+ * Java lists can be used to work with groups of parameter types.
+ * The query methods {@code parameterArray} and {@code parameterList}
+ * also provide a choice between arrays and lists.
+ * <p>
+ * {@code MethodType} objects are sometimes derived from bytecode instructions
+ * such as {@code invokedynamic}, specifically from the type descriptor strings associated
+ * with the instructions in a class file's constant pool.
+ * <p>
+ * Like classes and strings, method types can also be represented directly
+ * in a class file's constant pool as constants.
+ * A method type may be loaded by an {@code ldc} instruction which refers
+ * to a suitable {@code CONSTANT_MethodType} constant pool entry.
+ * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
+ * (For full details on method type constants,
+ * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
+ * <p>
+ * When the JVM materializes a {@code MethodType} from a descriptor string,
+ * all classes named in the descriptor must be accessible, and will be loaded.
+ * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
+ * This loading may occur at any time before the {@code MethodType} object is first derived.
+ * @author John Rose, JSR 292 EG
+ */
+public final
+class MethodType
+        implements TypeDescriptor.OfMethod<Class<?>, MethodType>,
+                   java.io.Serializable {
+    private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
+
+    // The rtype and ptypes fields define the structural identity of the method type:
+    private final Class<?>   rtype;
+    private final Class<?>[] ptypes;
+
+    // The remaining fields are caches of various sorts:
+    private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
+    private @Stable MethodType wrapAlt;  // alternative wrapped/unwrapped version
+    // Android-removed: Cache of higher order adapters.
+    // We're not dynamically generating any adapters at this point.
+    // private @Stable Invokers invokers;   // cache of handy higher-order adapters
+    private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
+
+    /**
+     * Check the given parameters for validity and store them into the final fields.
+     */
+    private MethodType(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
+        checkRtype(rtype);
+        checkPtypes(ptypes);
+        this.rtype = rtype;
+        // defensively copy the array passed in by the user
+        this.ptypes = trusted ? ptypes : Arrays.copyOf(ptypes, ptypes.length);
+    }
+
+    /**
+     * Construct a temporary unchecked instance of MethodType for use only as a key to the intern table.
+     * Does not check the given parameters for validity, and must be discarded after it is used as a searching key.
+     * The parameters are reversed for this constructor, so that is is not accidentally used.
+     */
+    private MethodType(Class<?>[] ptypes, Class<?> rtype) {
+        this.rtype = rtype;
+        this.ptypes = ptypes;
+    }
+
+    /*trusted*/ MethodTypeForm form() { return form; }
+    // Android-changed: Make rtype()/ptypes() public @hide for implementation use.
+    // /*trusted*/ Class<?> rtype() { return rtype; }
+    // /*trusted*/ Class<?>[] ptypes() { return ptypes; }
+    /*trusted*/ /** @hide */ public Class<?> rtype() { return rtype; }
+    /*trusted*/ /** @hide */ public Class<?>[] ptypes() { return ptypes; }
+
+    // Android-removed: Implementation methods unused on Android.
+    // void setForm(MethodTypeForm f) { form = f; }
+
+    /** This number, mandated by the JVM spec as 255,
+     *  is the maximum number of <em>slots</em>
+     *  that any Java method can receive in its argument list.
+     *  It limits both JVM signatures and method type objects.
+     *  The longest possible invocation will look like
+     *  {@code staticMethod(arg1, arg2, ..., arg255)} or
+     *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
+     */
+    /*non-public*/ static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
+
+    /** This number is the maximum arity of a method handle, 254.
+     *  It is derived from the absolute JVM-imposed arity by subtracting one,
+     *  which is the slot occupied by the method handle itself at the
+     *  beginning of the argument list used to invoke the method handle.
+     *  The longest possible invocation will look like
+     *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
+     */
+    // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
+    /*non-public*/ static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
+
+    /** This number is the maximum arity of a method handle invoker, 253.
+     *  It is derived from the absolute JVM-imposed arity by subtracting two,
+     *  which are the slots occupied by invoke method handle, and the
+     *  target method handle, which are both at the beginning of the argument
+     *  list used to invoke the target method handle.
+     *  The longest possible invocation will look like
+     *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
+     */
+    /*non-public*/ static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
+
+    private static void checkRtype(Class<?> rtype) {
+        Objects.requireNonNull(rtype);
+    }
+    private static void checkPtype(Class<?> ptype) {
+        Objects.requireNonNull(ptype);
+        if (ptype == void.class)
+            throw newIllegalArgumentException("parameter type cannot be void");
+    }
+    /** Return number of extra slots (count of long/double args). */
+    private static int checkPtypes(Class<?>[] ptypes) {
+        int slots = 0;
+        for (Class<?> ptype : ptypes) {
+            checkPtype(ptype);
+            if (ptype == double.class || ptype == long.class) {
+                slots++;
+            }
+        }
+        checkSlotCount(ptypes.length + slots);
+        return slots;
+    }
+    static void checkSlotCount(int count) {
+        assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
+        // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
+        if ((count & MAX_JVM_ARITY) != count)
+            throw newIllegalArgumentException("bad parameter count "+count);
+    }
+    private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
+        if (num instanceof Integer)  num = "bad index: "+num;
+        return new IndexOutOfBoundsException(num.toString());
+    }
+
+    static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
+
+    static final Class<?>[] NO_PTYPES = {};
+
+    /**
+     * Finds or creates an instance of the given method type.
+     * @param rtype  the return type
+     * @param ptypes the parameter types
+     * @return a method type with the given components
+     * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
+     * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
+     */
+    public static
+    MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
+        return makeImpl(rtype, ptypes, false);
+    }
+
+    /**
+     * Finds or creates a method type with the given components.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param rtype  the return type
+     * @param ptypes the parameter types
+     * @return a method type with the given components
+     * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
+     * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
+     */
+    public static
+    MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
+        boolean notrust = false;  // random List impl. could return evil ptypes array
+        return makeImpl(rtype, listToArray(ptypes), notrust);
+    }
+
+    private static Class<?>[] listToArray(List<Class<?>> ptypes) {
+        // sanity check the size before the toArray call, since size might be huge
+        checkSlotCount(ptypes.size());
+        return ptypes.toArray(NO_PTYPES);
+    }
+
+    /**
+     * Finds or creates a method type with the given components.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * The leading parameter type is prepended to the remaining array.
+     * @param rtype  the return type
+     * @param ptype0 the first parameter type
+     * @param ptypes the remaining parameter types
+     * @return a method type with the given components
+     * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
+     * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
+     */
+    public static
+    MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
+        Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
+        ptypes1[0] = ptype0;
+        System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
+        return makeImpl(rtype, ptypes1, true);
+    }
+
+    /**
+     * Finds or creates a method type with the given components.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * The resulting method has no parameter types.
+     * @param rtype  the return type
+     * @return a method type with the given return value
+     * @throws NullPointerException if {@code rtype} is null
+     */
+    public static
+    MethodType methodType(Class<?> rtype) {
+        return makeImpl(rtype, NO_PTYPES, true);
+    }
+
+    /**
+     * Finds or creates a method type with the given components.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * The resulting method has the single given parameter type.
+     * @param rtype  the return type
+     * @param ptype0 the parameter type
+     * @return a method type with the given return value and parameter type
+     * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
+     * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
+     */
+    public static
+    MethodType methodType(Class<?> rtype, Class<?> ptype0) {
+        return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
+    }
+
+    /**
+     * Finds or creates a method type with the given components.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * The resulting method has the same parameter types as {@code ptypes},
+     * and the specified return type.
+     * @param rtype  the return type
+     * @param ptypes the method type which supplies the parameter types
+     * @return a method type with the given components
+     * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
+     */
+    public static
+    MethodType methodType(Class<?> rtype, MethodType ptypes) {
+        return makeImpl(rtype, ptypes.ptypes, true);
+    }
+
+    /**
+     * Sole factory method to find or create an interned method type.
+     * @param rtype desired return type
+     * @param ptypes desired parameter types
+     * @param trusted whether the ptypes can be used without cloning
+     * @return the unique method type of the desired structure
+     */
+    /*trusted*/ static
+    MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
+        MethodType mt = internTable.get(new MethodType(ptypes, rtype));
+        if (mt != null)
+            return mt;
+        if (ptypes.length == 0) {
+            ptypes = NO_PTYPES; trusted = true;
+        }
+        mt = new MethodType(rtype, ptypes, trusted);
+        // promote the object to the Real Thing, and reprobe
+        mt.form = MethodTypeForm.findForm(mt);
+        return internTable.add(mt);
+    }
+    private static final MethodType[] objectOnlyTypes = new MethodType[20];
+
+    /**
+     * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * All parameters and the return type will be {@code Object},
+     * except the final array parameter if any, which will be {@code Object[]}.
+     * @param objectArgCount number of parameters (excluding the final array parameter if any)
+     * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
+     * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
+     * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
+     * @see #genericMethodType(int)
+     */
+    public static
+    MethodType genericMethodType(int objectArgCount, boolean finalArray) {
+        MethodType mt;
+        checkSlotCount(objectArgCount);
+        int ivarargs = (!finalArray ? 0 : 1);
+        int ootIndex = objectArgCount*2 + ivarargs;
+        if (ootIndex < objectOnlyTypes.length) {
+            mt = objectOnlyTypes[ootIndex];
+            if (mt != null)  return mt;
+        }
+        Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
+        Arrays.fill(ptypes, Object.class);
+        if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
+        mt = makeImpl(Object.class, ptypes, true);
+        if (ootIndex < objectOnlyTypes.length) {
+            objectOnlyTypes[ootIndex] = mt;     // cache it here also!
+        }
+        return mt;
+    }
+
+    /**
+     * Finds or creates a method type whose components are all {@code Object}.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * All parameters and the return type will be Object.
+     * @param objectArgCount number of parameters
+     * @return a generally applicable method type, for all calls of the given argument count
+     * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
+     * @see #genericMethodType(int, boolean)
+     */
+    public static
+    MethodType genericMethodType(int objectArgCount) {
+        return genericMethodType(objectArgCount, false);
+    }
+
+    /**
+     * Finds or creates a method type with a single different parameter type.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param num    the index (zero-based) of the parameter type to change
+     * @param nptype a new parameter type to replace the old one with
+     * @return the same type, except with the selected parameter changed
+     * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
+     * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
+     * @throws NullPointerException if {@code nptype} is null
+     */
+    public MethodType changeParameterType(int num, Class<?> nptype) {
+        if (parameterType(num) == nptype)  return this;
+        checkPtype(nptype);
+        Class<?>[] nptypes = ptypes.clone();
+        nptypes[num] = nptype;
+        return makeImpl(rtype, nptypes, true);
+    }
+
+    /**
+     * Finds or creates a method type with additional parameter types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param num    the position (zero-based) of the inserted parameter type(s)
+     * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
+     * @return the same type, except with the selected parameter(s) inserted
+     * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
+     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
+     *                                  or if the resulting method type would have more than 255 parameter slots
+     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
+     */
+    public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
+        int len = ptypes.length;
+        if (num < 0 || num > len)
+            throw newIndexOutOfBoundsException(num);
+        int ins = checkPtypes(ptypesToInsert);
+        checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
+        int ilen = ptypesToInsert.length;
+        if (ilen == 0)  return this;
+        Class<?>[] nptypes = Arrays.copyOfRange(ptypes, 0, len+ilen);
+        System.arraycopy(nptypes, num, nptypes, num+ilen, len-num);
+        System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
+        return makeImpl(rtype, nptypes, true);
+    }
+
+    /**
+     * Finds or creates a method type with additional parameter types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
+     * @return the same type, except with the selected parameter(s) appended
+     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
+     *                                  or if the resulting method type would have more than 255 parameter slots
+     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
+     */
+    public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
+        return insertParameterTypes(parameterCount(), ptypesToInsert);
+    }
+
+    /**
+     * Finds or creates a method type with additional parameter types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param num    the position (zero-based) of the inserted parameter type(s)
+     * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
+     * @return the same type, except with the selected parameter(s) inserted
+     * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
+     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
+     *                                  or if the resulting method type would have more than 255 parameter slots
+     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
+     */
+    public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
+        return insertParameterTypes(num, listToArray(ptypesToInsert));
+    }
+
+    /**
+     * Finds or creates a method type with additional parameter types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
+     * @return the same type, except with the selected parameter(s) appended
+     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
+     *                                  or if the resulting method type would have more than 255 parameter slots
+     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
+     */
+    public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
+        return insertParameterTypes(parameterCount(), ptypesToInsert);
+    }
+
+     /**
+     * Finds or creates a method type with modified parameter types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param start  the position (zero-based) of the first replaced parameter type(s)
+     * @param end    the position (zero-based) after the last replaced parameter type(s)
+     * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
+     * @return the same type, except with the selected parameter(s) replaced
+     * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
+     *                                  or if {@code end} is negative or greater than {@code parameterCount()}
+     *                                  or if {@code start} is greater than {@code end}
+     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
+     *                                  or if the resulting method type would have more than 255 parameter slots
+     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
+     */
+    /*non-public*/ MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
+        if (start == end)
+            return insertParameterTypes(start, ptypesToInsert);
+        int len = ptypes.length;
+        if (!(0 <= start && start <= end && end <= len))
+            throw newIndexOutOfBoundsException("start="+start+" end="+end);
+        int ilen = ptypesToInsert.length;
+        if (ilen == 0)
+            return dropParameterTypes(start, end);
+        return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
+    }
+
+    /** Replace the last arrayLength parameter types with the component type of arrayType.
+     * @param arrayType any array type
+     * @param pos position at which to spread
+     * @param arrayLength the number of parameter types to change
+     * @return the resulting type
+     */
+    /*non-public*/ MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
+        assert(parameterCount() >= arrayLength);
+        int spreadPos = pos;
+        if (arrayLength == 0)  return this;  // nothing to change
+        if (arrayType == Object[].class) {
+            if (isGeneric())  return this;  // nothing to change
+            if (spreadPos == 0) {
+                // no leading arguments to preserve; go generic
+                MethodType res = genericMethodType(arrayLength);
+                if (rtype != Object.class) {
+                    res = res.changeReturnType(rtype);
+                }
+                return res;
+            }
+        }
+        Class<?> elemType = arrayType.getComponentType();
+        assert(elemType != null);
+        for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
+            if (ptypes[i] != elemType) {
+                Class<?>[] fixedPtypes = ptypes.clone();
+                Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
+                return methodType(rtype, fixedPtypes);
+            }
+        }
+        return this;  // arguments check out; no change
+    }
+
+    /** Return the leading parameter type, which must exist and be a reference.
+     *  @return the leading parameter type, after error checks
+     */
+    /*non-public*/ Class<?> leadingReferenceParameter() {
+        Class<?> ptype;
+        if (ptypes.length == 0 ||
+            (ptype = ptypes[0]).isPrimitive())
+            throw newIllegalArgumentException("no leading reference parameter");
+        return ptype;
+    }
+
+    /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
+     * @param arrayType any array type
+     * @param pos position at which to insert parameters
+     * @param arrayLength the number of parameter types to insert
+     * @return the resulting type
+     */
+    /*non-public*/ MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
+        assert(parameterCount() >= 1);
+        assert(pos < ptypes.length);
+        assert(ptypes[pos].isAssignableFrom(arrayType));
+        MethodType res;
+        if (arrayType == Object[].class) {
+            res = genericMethodType(arrayLength);
+            if (rtype != Object.class) {
+                res = res.changeReturnType(rtype);
+            }
+        } else {
+            Class<?> elemType = arrayType.getComponentType();
+            assert(elemType != null);
+            res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
+        }
+        if (ptypes.length == 1) {
+            return res;
+        } else {
+            // insert after (if need be), then before
+            if (pos < ptypes.length - 1) {
+                res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
+            }
+            return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
+        }
+    }
+
+    /**
+     * Finds or creates a method type with some parameter types omitted.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param start  the index (zero-based) of the first parameter type to remove
+     * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
+     * @return the same type, except with the selected parameter(s) removed
+     * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
+     *                                  or if {@code end} is negative or greater than {@code parameterCount()}
+     *                                  or if {@code start} is greater than {@code end}
+     */
+    public MethodType dropParameterTypes(int start, int end) {
+        int len = ptypes.length;
+        if (!(0 <= start && start <= end && end <= len))
+            throw newIndexOutOfBoundsException("start="+start+" end="+end);
+        if (start == end)  return this;
+        Class<?>[] nptypes;
+        if (start == 0) {
+            if (end == len) {
+                // drop all parameters
+                nptypes = NO_PTYPES;
+            } else {
+                // drop initial parameter(s)
+                nptypes = Arrays.copyOfRange(ptypes, end, len);
+            }
+        } else {
+            if (end == len) {
+                // drop trailing parameter(s)
+                nptypes = Arrays.copyOfRange(ptypes, 0, start);
+            } else {
+                int tail = len - end;
+                nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
+                System.arraycopy(ptypes, end, nptypes, start, tail);
+            }
+        }
+        return makeImpl(rtype, nptypes, true);
+    }
+
+    /**
+     * Finds or creates a method type with a different return type.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * @param nrtype a return parameter type to replace the old one with
+     * @return the same type, except with the return type change
+     * @throws NullPointerException if {@code nrtype} is null
+     */
+    public MethodType changeReturnType(Class<?> nrtype) {
+        if (returnType() == nrtype)  return this;
+        return makeImpl(nrtype, ptypes, true);
+    }
+
+    /**
+     * Reports if this type contains a primitive argument or return value.
+     * The return type {@code void} counts as a primitive.
+     * @return true if any of the types are primitives
+     */
+    public boolean hasPrimitives() {
+        return form.hasPrimitives();
+    }
+
+    /**
+     * Reports if this type contains a wrapper argument or return value.
+     * Wrappers are types which box primitive values, such as {@link Integer}.
+     * The reference type {@code java.lang.Void} counts as a wrapper,
+     * if it occurs as a return type.
+     * @return true if any of the types are wrappers
+     */
+    public boolean hasWrappers() {
+        return unwrap() != this;
+    }
+
+    /**
+     * Erases all reference types to {@code Object}.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * All primitive types (including {@code void}) will remain unchanged.
+     * @return a version of the original type with all reference types replaced
+     */
+    public MethodType erase() {
+        return form.erasedType();
+    }
+
+    // BEGIN Android-removed: Implementation methods unused on Android.
+    /*
+    /**
+     * Erases all reference types to {@code Object}, and all subword types to {@code int}.
+     * This is the reduced type polymorphism used by private methods
+     * such as {@link MethodHandle#invokeBasic invokeBasic}.
+     * @return a version of the original type with all reference and subword types replaced
+     *
+    /*non-public* MethodType basicType() {
+        return form.basicType();
+    }
+
+    /**
+     * @return a version of the original type with MethodHandle prepended as the first argument
+     *
+    /*non-public* MethodType invokerType() {
+        return insertParameterTypes(0, MethodHandle.class);
+    }
+    */
+    // END Android-removed: Implementation methods unused on Android.
+
+    /**
+     * Converts all types, both reference and primitive, to {@code Object}.
+     * Convenience method for {@link #genericMethodType(int) genericMethodType}.
+     * The expression {@code type.wrap().erase()} produces the same value
+     * as {@code type.generic()}.
+     * @return a version of the original type with all types replaced
+     */
+    public MethodType generic() {
+        return genericMethodType(parameterCount());
+    }
+
+    /*non-public*/ boolean isGeneric() {
+        return this == erase() && !hasPrimitives();
+    }
+
+    /**
+     * Converts all primitive types to their corresponding wrapper types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * All reference types (including wrapper types) will remain unchanged.
+     * A {@code void} return type is changed to the type {@code java.lang.Void}.
+     * The expression {@code type.wrap().erase()} produces the same value
+     * as {@code type.generic()}.
+     * @return a version of the original type with all primitive types replaced
+     */
+    public MethodType wrap() {
+        return hasPrimitives() ? wrapWithPrims(this) : this;
+    }
+
+    /**
+     * Converts all wrapper types to their corresponding primitive types.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * All primitive types (including {@code void}) will remain unchanged.
+     * A return type of {@code java.lang.Void} is changed to {@code void}.
+     * @return a version of the original type with all wrapper types replaced
+     */
+    public MethodType unwrap() {
+        MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
+        return unwrapWithNoPrims(noprims);
+    }
+
+    private static MethodType wrapWithPrims(MethodType pt) {
+        assert(pt.hasPrimitives());
+        MethodType wt = pt.wrapAlt;
+        if (wt == null) {
+            // fill in lazily
+            wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
+            assert(wt != null);
+            pt.wrapAlt = wt;
+        }
+        return wt;
+    }
+
+    private static MethodType unwrapWithNoPrims(MethodType wt) {
+        assert(!wt.hasPrimitives());
+        MethodType uwt = wt.wrapAlt;
+        if (uwt == null) {
+            // fill in lazily
+            uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
+            if (uwt == null)
+                uwt = wt;    // type has no wrappers or prims at all
+            wt.wrapAlt = uwt;
+        }
+        return uwt;
+    }
+
+    /**
+     * Returns the parameter type at the specified index, within this method type.
+     * @param num the index (zero-based) of the desired parameter type
+     * @return the selected parameter type
+     * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
+     */
+    public Class<?> parameterType(int num) {
+        return ptypes[num];
+    }
+    /**
+     * Returns the number of parameter types in this method type.
+     * @return the number of parameter types
+     */
+    public int parameterCount() {
+        return ptypes.length;
+    }
+    /**
+     * Returns the return type of this method type.
+     * @return the return type
+     */
+    public Class<?> returnType() {
+        return rtype;
+    }
+
+    /**
+     * Presents the parameter types as a list (a convenience method).
+     * The list will be immutable.
+     * @return the parameter types (as an immutable list)
+     */
+    public List<Class<?>> parameterList() {
+        return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
+    }
+
+    /**
+     * Returns the last parameter type of this method type.
+     * If this type has no parameters, the sentinel value
+     * {@code void.class} is returned instead.
+     * @apiNote
+     * <p>
+     * The sentinel value is chosen so that reflective queries can be
+     * made directly against the result value.
+     * The sentinel value cannot be confused with a real parameter,
+     * since {@code void} is never acceptable as a parameter type.
+     * For variable arity invocation modes, the expression
+     * {@link Class#getComponentType lastParameterType().getComponentType()}
+     * is useful to query the type of the "varargs" parameter.
+     * @return the last parameter type if any, else {@code void.class}
+     * @since 10
+     */
+    public Class<?> lastParameterType() {
+        int len = ptypes.length;
+        return len == 0 ? void.class : ptypes[len-1];
+    }
+
+    /**
+     * Presents the parameter types as an array (a convenience method).
+     * Changes to the array will not result in changes to the type.
+     * @return the parameter types (as a fresh copy if necessary)
+     */
+    public Class<?>[] parameterArray() {
+        return ptypes.clone();
+    }
+
+    /**
+     * Compares the specified object with this type for equality.
+     * That is, it returns <tt>true</tt> if and only if the specified object
+     * is also a method type with exactly the same parameters and return type.
+     * @param x object to compare
+     * @see Object#equals(Object)
+     */
+    @Override
+    public boolean equals(Object x) {
+        return this == x || x instanceof MethodType && equals((MethodType)x);
+    }
+
+    private boolean equals(MethodType that) {
+        return this.rtype == that.rtype
+            && Arrays.equals(this.ptypes, that.ptypes);
+    }
+
+    /**
+     * Returns the hash code value for this method type.
+     * It is defined to be the same as the hashcode of a List
+     * whose elements are the return type followed by the
+     * parameter types.
+     * @return the hash code value for this method type
+     * @see Object#hashCode()
+     * @see #equals(Object)
+     * @see List#hashCode()
+     */
+    @Override
+    public int hashCode() {
+      int hashCode = 31 + rtype.hashCode();
+      for (Class<?> ptype : ptypes)
+          hashCode = 31*hashCode + ptype.hashCode();
+      return hashCode;
+    }
+
+    /**
+     * Returns a string representation of the method type,
+     * of the form {@code "(PT0,PT1...)RT"}.
+     * The string representation of a method type is a
+     * parenthesis enclosed, comma separated list of type names,
+     * followed immediately by the return type.
+     * <p>
+     * Each type is represented by its
+     * {@link java.lang.Class#getSimpleName simple name}.
+     */
+    @Override
+    public String toString() {
+        StringBuilder sb = new StringBuilder();
+        sb.append("(");
+        for (int i = 0; i < ptypes.length; i++) {
+            if (i > 0)  sb.append(",");
+            sb.append(ptypes[i].getSimpleName());
+        }
+        sb.append(")");
+        sb.append(rtype.getSimpleName());
+        return sb.toString();
+    }
+
+    /** True if my parameter list is effectively identical to the given full list,
+     *  after skipping the given number of my own initial parameters.
+     *  In other words, after disregarding {@code skipPos} parameters,
+     *  my remaining parameter list is no longer than the {@code fullList}, and
+     *  is equal to the same-length initial sublist of {@code fullList}.
+     */
+    /*non-public*/
+    boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
+        int myLen = ptypes.length, fullLen = fullList.size();
+        if (skipPos > myLen || myLen - skipPos > fullLen)
+            return false;
+        List<Class<?>> myList = Arrays.asList(ptypes);
+        if (skipPos != 0) {
+            myList = myList.subList(skipPos, myLen);
+            myLen -= skipPos;
+        }
+        if (fullLen == myLen)
+            return myList.equals(fullList);
+        else
+            return myList.equals(fullList.subList(0, myLen));
+    }
+
+    // BEGIN Android-removed: Implementation methods unused on Android.
+    /*
+    /** True if the old return type can always be viewed (w/o casting) under new return type,
+     *  and the new parameters can be viewed (w/o casting) under the old parameter types.
+     *
+    /*non-public*
+    boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
+        if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
+            return false;
+        return parametersAreViewableAs(newType, keepInterfaces);
+    }
+    /** True if the new parameters can be viewed (w/o casting) under the old parameter types. *
+    /*non-public*
+    boolean parametersAreViewableAs(MethodType newType, boolean keepInterfaces) {
+        if (form == newType.form && form.erasedType == this)
+            return true;  // my reference parameters are all Object
+        if (ptypes == newType.ptypes)
+            return true;
+        int argc = parameterCount();
+        if (argc != newType.parameterCount())
+            return false;
+        for (int i = 0; i < argc; i++) {
+            if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
+                return false;
+        }
+        return true;
+    }
+    */
+    // END Android-removed: Implementation methods unused on Android.
+
+    /*non-public*/
+    boolean isConvertibleTo(MethodType newType) {
+        // Android-removed: use of MethodTypeForm does not apply to Android implementation.
+        // MethodTypeForm oldForm = this.form();
+        // MethodTypeForm newForm = newType.form();
+        // if (oldForm == newForm)
+        //     // same parameter count, same primitive/object mix
+        //     return true;
+        if (!canConvert(returnType(), newType.returnType()))
+            return false;
+        Class<?>[] srcTypes = newType.ptypes;
+        Class<?>[] dstTypes = ptypes;
+        if (srcTypes == dstTypes)
+            return true;
+        int argc;
+        if ((argc = srcTypes.length) != dstTypes.length)
+            return false;
+        if (argc <= 1) {
+            if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
+                return false;
+            return true;
+        }
+        // Android-removed: use of MethodTypeForm does not apply to Android implementation.
+        // if ((oldForm.primitiveParameterCount() == 0 && oldForm.erasedType == this) ||
+        //     (newForm.primitiveParameterCount() == 0 && newForm.erasedType == newType)) {
+        //     // Somewhat complicated test to avoid a loop of 2 or more trips.
+        //     // If either type has only Object parameters, we know we can convert.
+        //     assert(canConvertParameters(srcTypes, dstTypes));
+        //     return true;
+        // }
+        return canConvertParameters(srcTypes, dstTypes);
+    }
+
+    /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
+     *  If the type conversion is impossible for either, the result should be false.
+     */
+    /*non-public*/
+    boolean explicitCastEquivalentToAsType(MethodType newType) {
+        if (this == newType)  return true;
+        if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
+            return false;
+        }
+        Class<?>[] srcTypes = newType.ptypes;
+        Class<?>[] dstTypes = ptypes;
+        if (dstTypes == srcTypes) {
+            return true;
+        }
+        assert(dstTypes.length == srcTypes.length);
+        for (int i = 0; i < dstTypes.length; i++) {
+            if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
+     *  and with the same effect.
+     *  MHs.eCA has the following "upgrades" to MH.asType:
+     *  1. interfaces are unchecked (that is, treated as if aliased to Object)
+     *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
+     *  2a. the full matrix of primitive-to-primitive conversions is supported
+     *      Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
+     *      are not supported by asType, but anything supported by asType is equivalent
+     *      with MHs.eCE.
+     *  2b. conversion of void->primitive means explicit cast has to insert zero/false/null.
+     *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
+     *  3b. unboxing of null is permitted (creates a zero primitive value)
+     * Other than interfaces, reference-to-reference conversions are the same.
+     * Boxing primitives to references is the same for both operators.
+     */
+    private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
+        if (src == dst || dst == Object.class || dst == void.class)  return true;
+        if (src.isPrimitive()) {
+            // Could be a prim/prim conversion, where casting is a strict superset.
+            // Or a boxing conversion, which is always to an exact wrapper class.
+            return canConvert(src, dst);
+        } else if (dst.isPrimitive()) {
+            // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
+            return false;
+        } else {
+            // R->R always works, but we have to avoid a check-cast to an interface.
+            return !dst.isInterface() || dst.isAssignableFrom(src);
+        }
+    }
+
+    private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
+        for (int i = 0; i < srcTypes.length; i++) {
+            if (!canConvert(srcTypes[i], dstTypes[i])) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    /*non-public*/
+    static boolean canConvert(Class<?> src, Class<?> dst) {
+        // short-circuit a few cases:
+        if (src == dst || src == Object.class || dst == Object.class)  return true;
+        // the remainder of this logic is documented in MethodHandle.asType
+        if (src.isPrimitive()) {
+            // can force void to an explicit null, a la reflect.Method.invoke
+            // can also force void to a primitive zero, by analogy
+            if (src == void.class)  return true;  //or !dst.isPrimitive()?
+            Wrapper sw = Wrapper.forPrimitiveType(src);
+            if (dst.isPrimitive()) {
+                // P->P must widen
+                return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
+            } else {
+                // P->R must box and widen
+                return dst.isAssignableFrom(sw.wrapperType());
+            }
+        } else if (dst.isPrimitive()) {
+            // any value can be dropped
+            if (dst == void.class)  return true;
+            Wrapper dw = Wrapper.forPrimitiveType(dst);
+            // R->P must be able to unbox (from a dynamically chosen type) and widen
+            // For example:
+            //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
+            //   Character/Comparable/Object -> dw:Character -> char
+            //   Boolean/Comparable/Object -> dw:Boolean -> boolean
+            // This means that dw must be cast-compatible with src.
+            if (src.isAssignableFrom(dw.wrapperType())) {
+                return true;
+            }
+            // The above does not work if the source reference is strongly typed
+            // to a wrapper whose primitive must be widened.  For example:
+            //   Byte -> unbox:byte -> short/int/long/float/double
+            //   Character -> unbox:char -> int/long/float/double
+            if (Wrapper.isWrapperType(src) &&
+                dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
+                // can unbox from src and then widen to dst
+                return true;
+            }
+            // We have already covered cases which arise due to runtime unboxing
+            // of a reference type which covers several wrapper types:
+            //   Object -> cast:Integer -> unbox:int -> long/float/double
+            //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
+            // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
+            // subclass of Number which wraps a value that can convert to char.
+            // Since there is none, we don't need an extra check here to cover char or boolean.
+            return false;
+        } else {
+            // R->R always works, since null is always valid dynamically
+            return true;
+        }
+    }
+
+    /// Queries which have to do with the bytecode architecture
+
+    /** Reports the number of JVM stack slots required to invoke a method
+     * of this type.  Note that (for historical reasons) the JVM requires
+     * a second stack slot to pass long and double arguments.
+     * So this method returns {@link #parameterCount() parameterCount} plus the
+     * number of long and double parameters (if any).
+     * <p>
+     * This method is included for the benefit of applications that must
+     * generate bytecodes that process method handles and invokedynamic.
+     * @return the number of JVM stack slots for this type's parameters
+     */
+    /*non-public*/ int parameterSlotCount() {
+        return form.parameterSlotCount();
+    }
+
+    // BEGIN Android-removed: Cache of higher order adapters.
+    /*
+    /*non-public* Invokers invokers() {
+        Invokers inv = invokers;
+        if (inv != null)  return inv;
+        invokers = inv = new Invokers(this);
+        return inv;
+    }
+    */
+    // END Android-removed: Cache of higher order adapters.
+
+    // BEGIN Android-removed: Implementation methods unused on Android.
+    /*
+    /** Reports the number of JVM stack slots which carry all parameters including and after
+     * the given position, which must be in the range of 0 to
+     * {@code parameterCount} inclusive.  Successive parameters are
+     * more shallowly stacked, and parameters are indexed in the bytecodes
+     * according to their trailing edge.  Thus, to obtain the depth
+     * in the outgoing call stack of parameter {@code N}, obtain
+     * the {@code parameterSlotDepth} of its trailing edge
+     * at position {@code N+1}.
+     * <p>
+     * Parameters of type {@code long} and {@code double} occupy
+     * two stack slots (for historical reasons) and all others occupy one.
+     * Therefore, the number returned is the number of arguments
+     * <em>including</em> and <em>after</em> the given parameter,
+     * <em>plus</em> the number of long or double arguments
+     * at or after after the argument for the given parameter.
+     * <p>
+     * This method is included for the benefit of applications that must
+     * generate bytecodes that process method handles and invokedynamic.
+     * @param num an index (zero-based, inclusive) within the parameter types
+     * @return the index of the (shallowest) JVM stack slot transmitting the
+     *         given parameter
+     * @throws IllegalArgumentException if {@code num} is negative or greater than {@code parameterCount()}
+     *
+    /*non-public* int parameterSlotDepth(int num) {
+        if (num < 0 || num > ptypes.length)
+            parameterType(num);  // force a range check
+        return form.parameterToArgSlot(num-1);
+    }
+
+    /** Reports the number of JVM stack slots required to receive a return value
+     * from a method of this type.
+     * If the {@link #returnType() return type} is void, it will be zero,
+     * else if the return type is long or double, it will be two, else one.
+     * <p>
+     * This method is included for the benefit of applications that must
+     * generate bytecodes that process method handles and invokedynamic.
+     * @return the number of JVM stack slots (0, 1, or 2) for this type's return value
+     * Will be removed for PFD.
+     *
+    /*non-public* int returnSlotCount() {
+        return form.returnSlotCount();
+    }
+    */
+    // END Android-removed: Implementation methods unused on Android.
+
+    /**
+     * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
+     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
+     * Any class or interface name embedded in the descriptor string
+     * will be resolved by calling {@link ClassLoader#loadClass(java.lang.String)}
+     * on the given loader (or if it is null, on the system class loader).
+     * <p>
+     * Note that it is possible to encounter method types which cannot be
+     * constructed by this method, because their component types are
+     * not all reachable from a common class loader.
+     * <p>
+     * This method is included for the benefit of applications that must
+     * generate bytecodes that process method handles and {@code invokedynamic}.
+     * @param descriptor a bytecode-level type descriptor string "(T...)T"
+     * @param loader the class loader in which to look up the types
+     * @return a method type matching the bytecode-level type descriptor
+     * @throws NullPointerException if the string is null
+     * @throws IllegalArgumentException if the string is not well-formed
+     * @throws TypeNotPresentException if a named type cannot be found
+     */
+    public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
+        throws IllegalArgumentException, TypeNotPresentException
+    {
+        if (!descriptor.startsWith("(") ||  // also generates NPE if needed
+            descriptor.indexOf(')') < 0 ||
+            descriptor.indexOf('.') >= 0)
+            throw newIllegalArgumentException("not a method descriptor: "+descriptor);
+        List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
+        Class<?> rtype = types.remove(types.size() - 1);
+        checkSlotCount(types.size());
+        Class<?>[] ptypes = listToArray(types);
+        return makeImpl(rtype, ptypes, true);
+    }
+
+    /**
+     * Produces a bytecode descriptor representation of the method type.
+     * <p>
+     * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
+     * Two distinct classes which share a common name but have different class loaders
+     * will appear identical when viewed within descriptor strings.
+     * <p>
+     * This method is included for the benefit of applications that must
+     * generate bytecodes that process method handles and {@code invokedynamic}.
+     * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
+     * because the latter requires a suitable class loader argument.
+     * @return the bytecode type descriptor representation
+     */
+    public String toMethodDescriptorString() {
+        String desc = methodDescriptor;
+        if (desc == null) {
+            desc = BytecodeDescriptor.unparse(this);
+            methodDescriptor = desc;
+        }
+        return desc;
+    }
+
+    // Android-changed: Remove MethodTypeDesc from javadoc until MethodTypeDesc is added.
+    /**
+     * Returns a descriptor string for this method type.
+     *
+     * <p>
+     * If this method type can be <a href="#descriptor">described nominally</a>,
+     * then the result is a method type descriptor (JVMS {@jvms 4.3.3}).
+     * <p>
+     * If this method type cannot be <a href="#descriptor">described nominally</a>
+     * and the result is a string of the form:
+     * <blockquote>{@code "(<parameter-descriptors>)<return-descriptor>"}</blockquote>
+     * where {@code <parameter-descriptors>} is the concatenation of the
+     * {@linkplain Class#descriptorString() descriptor string} of all
+     * of the parameter types and the {@linkplain Class#descriptorString() descriptor string}
+     * of the return type.
+     *
+     * @return the descriptor string for this method type
+     * @since 12
+     * @jvms 4.3.3 Method Descriptors
+     * @see <a href="#descriptor">Nominal Descriptor for {@code MethodType}</a>
+     */
+    @Override
+    public String descriptorString() {
+        return toMethodDescriptorString();
+    }
+
+    /*non-public*/
+    static String toFieldDescriptorString(Class<?> cls) {
+        return BytecodeDescriptor.unparse(cls);
+    }
+
+    /// Serialization.
+
+    /**
+     * There are no serializable fields for {@code MethodType}.
+     */
+    private static final java.io.ObjectStreamField[] serialPersistentFields = { };
+
+    /**
+     * Save the {@code MethodType} instance to a stream.
+     *
+     * @serialData
+     * For portability, the serialized format does not refer to named fields.
+     * Instead, the return type and parameter type arrays are written directly
+     * from the {@code writeObject} method, using two calls to {@code s.writeObject}
+     * as follows:
+     * <blockquote><pre>{@code
+s.writeObject(this.returnType());
+s.writeObject(this.parameterArray());
+     * }</pre></blockquote>
+     * <p>
+     * The deserialized field values are checked as if they were
+     * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
+     * For example, null values, or {@code void} parameter types,
+     * will lead to exceptions during deserialization.
+     * @param s the stream to write the object to
+     * @throws java.io.IOException if there is a problem writing the object
+     */
+    private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
+        s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
+        s.writeObject(returnType());
+        s.writeObject(parameterArray());
+    }
+
+    /**
+     * Reconstitute the {@code MethodType} instance from a stream (that is,
+     * deserialize it).
+     * This instance is a scratch object with bogus final fields.
+     * It provides the parameters to the factory method called by
+     * {@link #readResolve readResolve}.
+     * After that call it is discarded.
+     * @param s the stream to read the object from
+     * @throws java.io.IOException if there is a problem reading the object
+     * @throws ClassNotFoundException if one of the component classes cannot be resolved
+     * @see #MethodType()
+     * @see #readResolve
+     * @see #writeObject
+     */
+    private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
+        s.defaultReadObject();  // requires serialPersistentFields to be an empty array
+
+        Class<?>   returnType     = (Class<?>)   s.readObject();
+        Class<?>[] parameterArray = (Class<?>[]) s.readObject();
+
+        // Probably this object will never escape, but let's check
+        // the field values now, just to be sure.
+        checkRtype(returnType);
+        checkPtypes(parameterArray);
+
+        parameterArray = parameterArray.clone();  // make sure it is unshared
+        MethodType_init(returnType, parameterArray);
+    }
+
+    /**
+     * For serialization only.
+     * Sets the final fields to null, pending {@code Unsafe.putObject}.
+     */
+    private MethodType() {
+        this.rtype = null;
+        this.ptypes = null;
+    }
+    private void MethodType_init(Class<?> rtype, Class<?>[] ptypes) {
+        // In order to communicate these values to readResolve, we must
+        // store them into the implementation-specific final fields.
+        checkRtype(rtype);
+        checkPtypes(ptypes);
+        UNSAFE.putObject(this, rtypeOffset, rtype);
+        UNSAFE.putObject(this, ptypesOffset, ptypes);
+    }
+
+    // Support for resetting final fields while deserializing
+    private static final long rtypeOffset, ptypesOffset;
+    static {
+        try {
+            rtypeOffset = UNSAFE.objectFieldOffset
+                (MethodType.class.getDeclaredField("rtype"));
+            ptypesOffset = UNSAFE.objectFieldOffset
+                (MethodType.class.getDeclaredField("ptypes"));
+        } catch (Exception ex) {
+            throw new Error(ex);
+        }
+    }
+
+    /**
+     * Resolves and initializes a {@code MethodType} object
+     * after serialization.
+     * @return the fully initialized {@code MethodType} object
+     */
+    private Object readResolve() {
+        // Do not use a trusted path for deserialization:
+        //return makeImpl(rtype, ptypes, true);
+        // Verify all operands, and make sure ptypes is unshared:
+        return methodType(rtype, ptypes);
+    }
+
+    /**
+     * Simple implementation of weak concurrent intern set.
+     *
+     * @param <T> interned type
+     */
+    private static class ConcurrentWeakInternSet<T> {
+
+        private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
+        private final ReferenceQueue<T> stale;
+
+        public ConcurrentWeakInternSet() {
+            this.map = new ConcurrentHashMap<>();
+            this.stale = new ReferenceQueue<>();
+        }
+
+        /**
+         * Get the existing interned element.
+         * This method returns null if no element is interned.
+         *
+         * @param elem element to look up
+         * @return the interned element
+         */
+        public T get(T elem) {
+            if (elem == null) throw new NullPointerException();
+            expungeStaleElements();
+
+            WeakEntry<T> value = map.get(new WeakEntry<>(elem));
+            if (value != null) {
+                T res = value.get();
+                if (res != null) {
+                    return res;
+                }
+            }
+            return null;
+        }
+
+        /**
+         * Interns the element.
+         * Always returns non-null element, matching the one in the intern set.
+         * Under the race against another add(), it can return <i>different</i>
+         * element, if another thread beats us to interning it.
+         *
+         * @param elem element to add
+         * @return element that was actually added
+         */
+        public T add(T elem) {
+            if (elem == null) throw new NullPointerException();
+
+            // Playing double race here, and so spinloop is required.
+            // First race is with two concurrent updaters.
+            // Second race is with GC purging weak ref under our feet.
+            // Hopefully, we almost always end up with a single pass.
+            T interned;
+            WeakEntry<T> e = new WeakEntry<>(elem, stale);
+            do {
+                expungeStaleElements();
+                WeakEntry<T> exist = map.putIfAbsent(e, e);
+                interned = (exist == null) ? elem : exist.get();
+            } while (interned == null);
+            return interned;
+        }
+
+        private void expungeStaleElements() {
+            Reference<? extends T> reference;
+            while ((reference = stale.poll()) != null) {
+                map.remove(reference);
+            }
+        }
+
+        private static class WeakEntry<T> extends WeakReference<T> {
+
+            public final int hashcode;
+
+            public WeakEntry(T key, ReferenceQueue<T> queue) {
+                super(key, queue);
+                hashcode = key.hashCode();
+            }
+
+            public WeakEntry(T key) {
+                super(key);
+                hashcode = key.hashCode();
+            }
+
+            @Override
+            public boolean equals(Object obj) {
+                if (obj instanceof WeakEntry) {
+                    Object that = ((WeakEntry) obj).get();
+                    Object mine = get();
+                    return (that == null || mine == null) ? (this == obj) : mine.equals(that);
+                }
+                return false;
+            }
+
+            @Override
+            public int hashCode() {
+                return hashcode;
+            }
+
+        }
+    }
+
+}
diff --git a/android-35/java/lang/invoke/MethodTypeForm.java b/android-35/java/lang/invoke/MethodTypeForm.java
new file mode 100644
index 0000000..6f6c2a8
--- /dev/null
+++ b/android-35/java/lang/invoke/MethodTypeForm.java
@@ -0,0 +1,439 @@
+/*
+ * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import sun.invoke.util.Wrapper;
+import java.lang.ref.SoftReference;
+import static java.lang.invoke.MethodHandleStatics.*;
+
+/**
+ * Shared information for a group of method types, which differ
+ * only by reference types, and therefore share a common erasure
+ * and wrapping.
+ * <p>
+ * For an empirical discussion of the structure of method types,
+ * see <a href="http://groups.google.com/group/jvm-languages/browse_thread/thread/ac9308ae74da9b7e/">
+ * the thread "Avoiding Boxing" on jvm-languages</a>.
+ * There are approximately 2000 distinct erased method types in the JDK.
+ * There are a little over 10 times that number of unerased types.
+ * No more than half of these are likely to be loaded at once.
+ * @author John Rose
+ */
+final class MethodTypeForm {
+    final int[] argToSlotTable, slotToArgTable;
+    final long argCounts;               // packed slot & value counts
+    final long primCounts;              // packed prim & double counts
+    final MethodType erasedType;        // the canonical erasure
+    final MethodType basicType;         // the canonical erasure, with primitives simplified
+
+    // BEGIN Android-removed: Cached adaptors / lambda forms.
+    // The upstream caching mechanism will not work on Android because of fundamental differences
+    // in the Android runtime/implementation of MethodHandle. LambdaForm is not supported on
+    // Android for similar reasons.
+    /*
+    // Cached adapter information:
+    @Stable final SoftReference<MethodHandle>[] methodHandles;
+    // Indexes into methodHandles:
+    static final int
+            MH_BASIC_INV      =  0,  // cached instance of MH.invokeBasic
+            MH_NF_INV         =  1,  // cached helper for LF.NamedFunction
+            MH_UNINIT_CS      =  2,  // uninitialized call site
+            MH_LIMIT          =  3;
+
+    // Cached lambda form information, for basic types only:
+    final @Stable SoftReference<LambdaForm>[] lambdaForms;
+    // Indexes into lambdaForms:
+    static final int
+            LF_INVVIRTUAL              =  0,  // DMH invokeVirtual
+            LF_INVSTATIC               =  1,
+            LF_INVSPECIAL              =  2,
+            LF_NEWINVSPECIAL           =  3,
+            LF_INVINTERFACE            =  4,
+            LF_INVSTATIC_INIT          =  5,  // DMH invokeStatic with <clinit> barrier
+            LF_INTERPRET               =  6,  // LF interpreter
+            LF_REBIND                  =  7,  // BoundMethodHandle
+            LF_DELEGATE                =  8,  // DelegatingMethodHandle
+            LF_DELEGATE_BLOCK_INLINING =  9,  // Counting DelegatingMethodHandle w/ @DontInline
+            LF_EX_LINKER               = 10,  // invokeExact_MT (for invokehandle)
+            LF_EX_INVOKER              = 11,  // MHs.invokeExact
+            LF_GEN_LINKER              = 12,  // generic invoke_MT (for invokehandle)
+            LF_GEN_INVOKER             = 13,  // generic MHs.invoke
+            LF_CS_LINKER               = 14,  // linkToCallSite_CS
+            LF_MH_LINKER               = 15,  // linkToCallSite_MH
+            LF_GWC                     = 16,  // guardWithCatch (catchException)
+            LF_GWT                     = 17,  // guardWithTest
+            LF_LIMIT                   = 18;
+    */
+    // END Android-removed: Cached adaptors / lambda forms.
+
+    /** Return the type corresponding uniquely (1-1) to this MT-form.
+     *  It might have any primitive returns or arguments, but will have no references except Object.
+     */
+    public MethodType erasedType() {
+        return erasedType;
+    }
+
+    /** Return the basic type derived from the erased type of this MT-form.
+     *  A basic type is erased (all references Object) and also has all primitive
+     *  types (except int, long, float, double, void) normalized to int.
+     *  Such basic types correspond to low-level JVM calling sequences.
+     */
+    public MethodType basicType() {
+        return basicType;
+    }
+
+    private boolean assertIsBasicType() {
+        // primitives must be flattened also
+        assert(erasedType == basicType)
+                : "erasedType: " + erasedType + " != basicType: " + basicType;
+        return true;
+    }
+
+    // BEGIN Android-removed: Cached adaptors / lambda forms.
+    /*
+    public MethodHandle cachedMethodHandle(int which) {
+        assert(assertIsBasicType());
+        SoftReference<MethodHandle> entry = methodHandles[which];
+        return (entry != null) ? entry.get() : null;
+    }
+
+    synchronized public MethodHandle setCachedMethodHandle(int which, MethodHandle mh) {
+        // Simulate a CAS, to avoid racy duplication of results.
+        SoftReference<MethodHandle> entry = methodHandles[which];
+        if (entry != null) {
+            MethodHandle prev = entry.get();
+            if (prev != null) {
+                return prev;
+            }
+        }
+        methodHandles[which] = new SoftReference<>(mh);
+        return mh;
+    }
+
+    public LambdaForm cachedLambdaForm(int which) {
+        assert(assertIsBasicType());
+        SoftReference<LambdaForm> entry = lambdaForms[which];
+        return (entry != null) ? entry.get() : null;
+    }
+
+    synchronized public LambdaForm setCachedLambdaForm(int which, LambdaForm form) {
+        // Simulate a CAS, to avoid racy duplication of results.
+        SoftReference<LambdaForm> entry = lambdaForms[which];
+        if (entry != null) {
+            LambdaForm prev = entry.get();
+            if (prev != null) {
+                return prev;
+            }
+        }
+        lambdaForms[which] = new SoftReference<>(form);
+        return form;
+    }
+    */
+    // END Android-removed: Cached adaptors / lambda forms.
+
+    /**
+     * Build an MTF for a given type, which must have all references erased to Object.
+     * This MTF will stand for that type and all un-erased variations.
+     * Eagerly compute some basic properties of the type, common to all variations.
+     */
+    @SuppressWarnings({"rawtypes", "unchecked"})
+    protected MethodTypeForm(MethodType erasedType) {
+        this.erasedType = erasedType;
+
+        Class<?>[] ptypes = erasedType.ptypes();
+        int ptypeCount = ptypes.length;
+        int pslotCount = ptypeCount;            // temp. estimate
+        int rtypeCount = 1;                     // temp. estimate
+        int rslotCount = 1;                     // temp. estimate
+
+        int[] argToSlotTab = null, slotToArgTab = null;
+
+        // Walk the argument types, looking for primitives.
+        int pac = 0, lac = 0, prc = 0, lrc = 0;
+        Class<?>[] epts = ptypes;
+        Class<?>[] bpts = epts;
+        for (int i = 0; i < epts.length; i++) {
+            Class<?> pt = epts[i];
+            if (pt != Object.class) {
+                ++pac;
+                Wrapper w = Wrapper.forPrimitiveType(pt);
+                if (w.isDoubleWord())  ++lac;
+                if (w.isSubwordOrInt() && pt != int.class) {
+                    if (bpts == epts)
+                        bpts = bpts.clone();
+                    bpts[i] = int.class;
+                }
+            }
+        }
+        pslotCount += lac;                  // #slots = #args + #longs
+        Class<?> rt = erasedType.returnType();
+        Class<?> bt = rt;
+        if (rt != Object.class) {
+            ++prc;          // even void.class counts as a prim here
+            Wrapper w = Wrapper.forPrimitiveType(rt);
+            if (w.isDoubleWord())  ++lrc;
+            if (w.isSubwordOrInt() && rt != int.class)
+                bt = int.class;
+            // adjust #slots, #args
+            if (rt == void.class)
+                rtypeCount = rslotCount = 0;
+            else
+                rslotCount += lrc;
+        }
+        if (epts == bpts && bt == rt) {
+            this.basicType = erasedType;
+        } else {
+            this.basicType = MethodType.makeImpl(bt, bpts, true);
+            // fill in rest of data from the basic type:
+            MethodTypeForm that = this.basicType.form();
+            assert(this != that);
+            this.primCounts = that.primCounts;
+            this.argCounts = that.argCounts;
+            this.argToSlotTable = that.argToSlotTable;
+            this.slotToArgTable = that.slotToArgTable;
+            // Android-removed: Cached adaptors / lambda forms.
+            // this.methodHandles = null;
+            // this.lambdaForms = null;
+            return;
+        }
+        if (lac != 0) {
+            int slot = ptypeCount + lac;
+            slotToArgTab = new int[slot+1];
+            argToSlotTab = new int[1+ptypeCount];
+            argToSlotTab[0] = slot;  // argument "-1" is past end of slots
+            for (int i = 0; i < epts.length; i++) {
+                Class<?> pt = epts[i];
+                Wrapper w = Wrapper.forBasicType(pt);
+                if (w.isDoubleWord())  --slot;
+                --slot;
+                slotToArgTab[slot] = i+1; // "+1" see argSlotToParameter note
+                argToSlotTab[1+i]  = slot;
+            }
+            assert(slot == 0);  // filled the table
+        } else if (pac != 0) {
+            // have primitives but no long primitives; share slot counts with generic
+            assert(ptypeCount == pslotCount);
+            MethodTypeForm that = MethodType.genericMethodType(ptypeCount).form();
+            assert(this != that);
+            slotToArgTab = that.slotToArgTable;
+            argToSlotTab = that.argToSlotTable;
+        } else {
+            int slot = ptypeCount; // first arg is deepest in stack
+            slotToArgTab = new int[slot+1];
+            argToSlotTab = new int[1+ptypeCount];
+            argToSlotTab[0] = slot;  // argument "-1" is past end of slots
+            for (int i = 0; i < ptypeCount; i++) {
+                --slot;
+                slotToArgTab[slot] = i+1; // "+1" see argSlotToParameter note
+                argToSlotTab[1+i]  = slot;
+            }
+        }
+        this.primCounts = pack(lrc, prc, lac, pac);
+        this.argCounts = pack(rslotCount, rtypeCount, pslotCount, ptypeCount);
+        this.argToSlotTable = argToSlotTab;
+        this.slotToArgTable = slotToArgTab;
+
+        if (pslotCount >= 256)  throw newIllegalArgumentException("too many arguments");
+
+        // Initialize caches, but only for basic types
+        assert(basicType == erasedType);
+        // Android-removed: Cached adaptors / lambda forms.
+        // this.lambdaForms   = new SoftReference[LF_LIMIT];
+        // this.methodHandles = new SoftReference[MH_LIMIT];
+    }
+
+    private static long pack(int a, int b, int c, int d) {
+        assert(((a|b|c|d) & ~0xFFFF) == 0);
+        long hw = ((a << 16) | b), lw = ((c << 16) | d);
+        return (hw << 32) | lw;
+    }
+    private static char unpack(long packed, int word) { // word==0 => return a, ==3 => return d
+        assert(word <= 3);
+        return (char)(packed >> ((3-word) * 16));
+    }
+
+    public int parameterCount() {                      // # outgoing values
+        return unpack(argCounts, 3);
+    }
+    public int parameterSlotCount() {                  // # outgoing interpreter slots
+        return unpack(argCounts, 2);
+    }
+    public int returnCount() {                         // = 0 (V), or 1
+        return unpack(argCounts, 1);
+    }
+    public int returnSlotCount() {                     // = 0 (V), 2 (J/D), or 1
+        return unpack(argCounts, 0);
+    }
+    public int primitiveParameterCount() {
+        return unpack(primCounts, 3);
+    }
+    public int longPrimitiveParameterCount() {
+        return unpack(primCounts, 2);
+    }
+    public int primitiveReturnCount() {                // = 0 (obj), or 1
+        return unpack(primCounts, 1);
+    }
+    public int longPrimitiveReturnCount() {            // = 1 (J/D), or 0
+        return unpack(primCounts, 0);
+    }
+    public boolean hasPrimitives() {
+        return primCounts != 0;
+    }
+    public boolean hasNonVoidPrimitives() {
+        if (primCounts == 0)  return false;
+        if (primitiveParameterCount() != 0)  return true;
+        return (primitiveReturnCount() != 0 && returnCount() != 0);
+    }
+    public boolean hasLongPrimitives() {
+        return (longPrimitiveParameterCount() | longPrimitiveReturnCount()) != 0;
+    }
+    public int parameterToArgSlot(int i) {
+        return argToSlotTable[1+i];
+    }
+    public int argSlotToParameter(int argSlot) {
+        // Note:  Empty slots are represented by zero in this table.
+        // Valid arguments slots contain incremented entries, so as to be non-zero.
+        // We return -1 the caller to mean an empty slot.
+        return slotToArgTable[argSlot] - 1;
+    }
+
+    static MethodTypeForm findForm(MethodType mt) {
+        MethodType erased = canonicalize(mt, ERASE, ERASE);
+        if (erased == null) {
+            // It is already erased.  Make a new MethodTypeForm.
+            return new MethodTypeForm(mt);
+        } else {
+            // Share the MethodTypeForm with the erased version.
+            return erased.form();
+        }
+    }
+
+    /** Codes for {@link #canonicalize(java.lang.Class, int)}.
+     * ERASE means change every reference to {@code Object}.
+     * WRAP means convert primitives (including {@code void} to their
+     * corresponding wrapper types.  UNWRAP means the reverse of WRAP.
+     * INTS means convert all non-void primitive types to int or long,
+     * according to size.  LONGS means convert all non-void primitives
+     * to long, regardless of size.  RAW_RETURN means convert a type
+     * (assumed to be a return type) to int if it is smaller than an int,
+     * or if it is void.
+     */
+    public static final int NO_CHANGE = 0, ERASE = 1, WRAP = 2, UNWRAP = 3, INTS = 4, LONGS = 5, RAW_RETURN = 6;
+
+    /** Canonicalize the types in the given method type.
+     * If any types change, intern the new type, and return it.
+     * Otherwise return null.
+     */
+    public static MethodType canonicalize(MethodType mt, int howRet, int howArgs) {
+        Class<?>[] ptypes = mt.ptypes();
+        Class<?>[] ptc = MethodTypeForm.canonicalizeAll(ptypes, howArgs);
+        Class<?> rtype = mt.returnType();
+        Class<?> rtc = MethodTypeForm.canonicalize(rtype, howRet);
+        if (ptc == null && rtc == null) {
+            // It is already canonical.
+            return null;
+        }
+        // Find the erased version of the method type:
+        if (rtc == null)  rtc = rtype;
+        if (ptc == null)  ptc = ptypes;
+        return MethodType.makeImpl(rtc, ptc, true);
+    }
+
+    /** Canonicalize the given return or param type.
+     *  Return null if the type is already canonicalized.
+     */
+    static Class<?> canonicalize(Class<?> t, int how) {
+        Class<?> ct;
+        if (t == Object.class) {
+            // no change, ever
+        } else if (!t.isPrimitive()) {
+            switch (how) {
+                case UNWRAP:
+                    ct = Wrapper.asPrimitiveType(t);
+                    if (ct != t)  return ct;
+                    break;
+                case RAW_RETURN:
+                case ERASE:
+                    return Object.class;
+            }
+        } else if (t == void.class) {
+            // no change, usually
+            switch (how) {
+                case RAW_RETURN:
+                    return int.class;
+                case WRAP:
+                    return Void.class;
+            }
+        } else {
+            // non-void primitive
+            switch (how) {
+                case WRAP:
+                    return Wrapper.asWrapperType(t);
+                case INTS:
+                    if (t == int.class || t == long.class)
+                        return null;  // no change
+                    if (t == double.class)
+                        return long.class;
+                    return int.class;
+                case LONGS:
+                    if (t == long.class)
+                        return null;  // no change
+                    return long.class;
+                case RAW_RETURN:
+                    if (t == int.class || t == long.class ||
+                        t == float.class || t == double.class)
+                        return null;  // no change
+                    // everything else returns as an int
+                    return int.class;
+            }
+        }
+        // no change; return null to signify
+        return null;
+    }
+
+    /** Canonicalize each param type in the given array.
+     *  Return null if all types are already canonicalized.
+     */
+    static Class<?>[] canonicalizeAll(Class<?>[] ts, int how) {
+        Class<?>[] cs = null;
+        for (int imax = ts.length, i = 0; i < imax; i++) {
+            Class<?> c = canonicalize(ts[i], how);
+            if (c == void.class)
+                c = null;  // a Void parameter was unwrapped to void; ignore
+            if (c != null) {
+                if (cs == null)
+                    cs = ts.clone();
+                cs[i] = c;
+            }
+        }
+        return cs;
+    }
+
+    @Override
+    public String toString() {
+        return "Form"+erasedType;
+    }
+}
diff --git a/android-35/java/lang/invoke/MutableCallSite.java b/android-35/java/lang/invoke/MutableCallSite.java
new file mode 100644
index 0000000..305579f
--- /dev/null
+++ b/android-35/java/lang/invoke/MutableCallSite.java
@@ -0,0 +1,282 @@
+/*
+ * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+// Android-changed: removed references to MutableCallSite.syncAll().
+/**
+ * A {@code MutableCallSite} is a {@link CallSite} whose target variable
+ * behaves like an ordinary field.
+ * An {@code invokedynamic} instruction linked to a {@code MutableCallSite} delegates
+ * all calls to the site's current target.
+ * The {@linkplain CallSite#dynamicInvoker dynamic invoker} of a mutable call site
+ * also delegates each call to the site's current target.
+ * <p>
+ * Here is an example of a mutable call site which introduces a
+ * state variable into a method handle chain.
+ * <!-- JavaDocExamplesTest.testMutableCallSite -->
+ * <blockquote><pre>{@code
+MutableCallSite name = new MutableCallSite(MethodType.methodType(String.class));
+MethodHandle MH_name = name.dynamicInvoker();
+MethodType MT_str1 = MethodType.methodType(String.class);
+MethodHandle MH_upcase = MethodHandles.lookup()
+    .findVirtual(String.class, "toUpperCase", MT_str1);
+MethodHandle worker1 = MethodHandles.filterReturnValue(MH_name, MH_upcase);
+name.setTarget(MethodHandles.constant(String.class, "Rocky"));
+assertEquals("ROCKY", (String) worker1.invokeExact());
+name.setTarget(MethodHandles.constant(String.class, "Fred"));
+assertEquals("FRED", (String) worker1.invokeExact());
+// (mutation can be continued indefinitely)
+ * }</pre></blockquote>
+ * <p>
+ * The same call site may be used in several places at once.
+ * <blockquote><pre>{@code
+MethodType MT_str2 = MethodType.methodType(String.class, String.class);
+MethodHandle MH_cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle MH_dear = MethodHandles.insertArguments(MH_cat, 1, ", dear?");
+MethodHandle worker2 = MethodHandles.filterReturnValue(MH_name, MH_dear);
+assertEquals("Fred, dear?", (String) worker2.invokeExact());
+name.setTarget(MethodHandles.constant(String.class, "Wilma"));
+assertEquals("WILMA", (String) worker1.invokeExact());
+assertEquals("Wilma, dear?", (String) worker2.invokeExact());
+ * }</pre></blockquote>
+ * <p>
+ * <em>Non-synchronization of target values:</em>
+ * A write to a mutable call site's target does not force other threads
+ * to become aware of the updated value.  Threads which do not perform
+ * suitable synchronization actions relative to the updated call site
+ * may cache the old target value and delay their use of the new target
+ * value indefinitely.
+ * (This is a normal consequence of the Java Memory Model as applied
+ * to object fields.)
+ * <p>
+ * For target values which will be frequently updated, consider using
+ * a {@linkplain VolatileCallSite volatile call site} instead.
+ * @author John Rose, JSR 292 EG
+ */
+public class MutableCallSite extends CallSite {
+    /**
+     * Creates a blank call site object with the given method type.
+     * The initial target is set to a method handle of the given type
+     * which will throw an {@link IllegalStateException} if called.
+     * <p>
+     * The type of the call site is permanently set to the given type.
+     * <p>
+     * Before this {@code CallSite} object is returned from a bootstrap method,
+     * or invoked in some other manner,
+     * it is usually provided with a more useful target method,
+     * via a call to {@link CallSite#setTarget(MethodHandle) setTarget}.
+     * @param type the method type that this call site will have
+     * @throws NullPointerException if the proposed type is null
+     */
+    public MutableCallSite(MethodType type) {
+        super(type);
+    }
+
+    /**
+     * Creates a call site object with an initial target method handle.
+     * The type of the call site is permanently set to the initial target's type.
+     * @param target the method handle that will be the initial target of the call site
+     * @throws NullPointerException if the proposed target is null
+     */
+    public MutableCallSite(MethodHandle target) {
+        super(target);
+    }
+
+    /**
+     * Returns the target method of the call site, which behaves
+     * like a normal field of the {@code MutableCallSite}.
+     * <p>
+     * The interactions of {@code getTarget} with memory are the same
+     * as of a read from an ordinary variable, such as an array element or a
+     * non-volatile, non-final field.
+     * <p>
+     * In particular, the current thread may choose to reuse the result
+     * of a previous read of the target from memory, and may fail to see
+     * a recent update to the target by another thread.
+     *
+     * @return the linkage state of this call site, a method handle which can change over time
+     * @see #setTarget
+     */
+    @Override public final MethodHandle getTarget() {
+        return target;
+    }
+
+    /**
+     * Updates the target method of this call site, as a normal variable.
+     * The type of the new target must agree with the type of the old target.
+     * <p>
+     * The interactions with memory are the same
+     * as of a write to an ordinary variable, such as an array element or a
+     * non-volatile, non-final field.
+     * <p>
+     * In particular, unrelated threads may fail to see the updated target
+     * until they perform a read from memory.
+     * Stronger guarantees can be created by putting appropriate operations
+     * into the bootstrap method and/or the target methods used
+     * at any given call site.
+     *
+     * @param newTarget the new target
+     * @throws NullPointerException if the proposed new target is null
+     * @throws WrongMethodTypeException if the proposed new target
+     *         has a method type that differs from the previous target
+     * @see #getTarget
+     */
+    @Override public void setTarget(MethodHandle newTarget) {
+        checkTargetChange(this.target, newTarget);
+        setTargetNormal(newTarget);
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    @Override
+    public final MethodHandle dynamicInvoker() {
+        return makeDynamicInvoker();
+    }
+
+    // BEGIN Android-removed: syncAll() implementation is incomplete.
+    /**
+     * Performs a synchronization operation on each call site in the given array,
+     * forcing all other threads to throw away any cached values previously
+     * loaded from the target of any of the call sites.
+     * <p>
+     * This operation does not reverse any calls that have already started
+     * on an old target value.
+     * (Java supports {@linkplain java.lang.Object#wait() forward time travel} only.)
+     * <p>
+     * The overall effect is to force all future readers of each call site's target
+     * to accept the most recently stored value.
+     * ("Most recently" is reckoned relative to the {@code syncAll} itself.)
+     * Conversely, the {@code syncAll} call may block until all readers have
+     * (somehow) decached all previous versions of each call site's target.
+     * <p>
+     * To avoid race conditions, calls to {@code setTarget} and {@code syncAll}
+     * should generally be performed under some sort of mutual exclusion.
+     * Note that reader threads may observe an updated target as early
+     * as the {@code setTarget} call that install the value
+     * (and before the {@code syncAll} that confirms the value).
+     * On the other hand, reader threads may observe previous versions of
+     * the target until the {@code syncAll} call returns
+     * (and after the {@code setTarget} that attempts to convey the updated version).
+     * <p>
+     * This operation is likely to be expensive and should be used sparingly.
+     * If possible, it should be buffered for batch processing on sets of call sites.
+     * <p>
+     * If {@code sites} contains a null element,
+     * a {@code NullPointerException} will be raised.
+     * In this case, some non-null elements in the array may be
+     * processed before the method returns abnormally.
+     * Which elements these are (if any) is implementation-dependent.
+     *
+     * <h1>Java Memory Model details</h1>
+     * In terms of the Java Memory Model, this operation performs a synchronization
+     * action which is comparable in effect to the writing of a volatile variable
+     * by the current thread, and an eventual volatile read by every other thread
+     * that may access one of the affected call sites.
+     * <p>
+     * The following effects are apparent, for each individual call site {@code S}:
+     * <ul>
+     * <li>A new volatile variable {@code V} is created, and written by the current thread.
+     *     As defined by the JMM, this write is a global synchronization event.
+     * <li>As is normal with thread-local ordering of write events,
+     *     every action already performed by the current thread is
+     *     taken to happen before the volatile write to {@code V}.
+     *     (In some implementations, this means that the current thread
+     *     performs a global release operation.)
+     * <li>Specifically, the write to the current target of {@code S} is
+     *     taken to happen before the volatile write to {@code V}.
+     * <li>The volatile write to {@code V} is placed
+     *     (in an implementation specific manner)
+     *     in the global synchronization order.
+     * <li>Consider an arbitrary thread {@code T} (other than the current thread).
+     *     If {@code T} executes a synchronization action {@code A}
+     *     after the volatile write to {@code V} (in the global synchronization order),
+     *     it is therefore required to see either the current target
+     *     of {@code S}, or a later write to that target,
+     *     if it executes a read on the target of {@code S}.
+     *     (This constraint is called "synchronization-order consistency".)
+     * <li>The JMM specifically allows optimizing compilers to elide
+     *     reads or writes of variables that are known to be useless.
+     *     Such elided reads and writes have no effect on the happens-before
+     *     relation.  Regardless of this fact, the volatile {@code V}
+     *     will not be elided, even though its written value is
+     *     indeterminate and its read value is not used.
+     * </ul>
+     * Because of the last point, the implementation behaves as if a
+     * volatile read of {@code V} were performed by {@code T}
+     * immediately after its action {@code A}.  In the local ordering
+     * of actions in {@code T}, this read happens before any future
+     * read of the target of {@code S}.  It is as if the
+     * implementation arbitrarily picked a read of {@code S}'s target
+     * by {@code T}, and forced a read of {@code V} to precede it,
+     * thereby ensuring communication of the new target value.
+     * <p>
+     * As long as the constraints of the Java Memory Model are obeyed,
+     * implementations may delay the completion of a {@code syncAll}
+     * operation while other threads ({@code T} above) continue to
+     * use previous values of {@code S}'s target.
+     * However, implementations are (as always) encouraged to avoid
+     * livelock, and to eventually require all threads to take account
+     * of the updated target.
+     *
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * For performance reasons, {@code syncAll} is not a virtual method
+     * on a single call site, but rather applies to a set of call sites.
+     * Some implementations may incur a large fixed overhead cost
+     * for processing one or more synchronization operations,
+     * but a small incremental cost for each additional call site.
+     * In any case, this operation is likely to be costly, since
+     * other threads may have to be somehow interrupted
+     * in order to make them notice the updated target value.
+     * However, it may be observed that a single call to synchronize
+     * several sites has the same formal effect as many calls,
+     * each on just one of the sites.
+     *
+     * <p style="font-size:smaller;">
+     * <em>Implementation Note:</em>
+     * Simple implementations of {@code MutableCallSite} may use
+     * a volatile variable for the target of a mutable call site.
+     * In such an implementation, the {@code syncAll} method can be a no-op,
+     * and yet it will conform to the JMM behavior documented above.
+     *
+     * @param sites an array of call sites to be synchronized
+     * @throws NullPointerException if the {@code sites} array reference is null
+     *                              or the array contains a null
+     *
+    public static void syncAll(MutableCallSite[] sites) {
+        if (sites.length == 0)  return;
+        STORE_BARRIER.lazySet(0);
+        for (int i = 0; i < sites.length; i++) {
+            sites[i].getClass();  // trigger NPE on first null
+        }
+        // FIXME: NYI
+    }
+    private static final AtomicInteger STORE_BARRIER = new AtomicInteger();
+    */
+    // END Android-removed: syncAll() implementation is incomplete.
+}
diff --git a/android-35/java/lang/invoke/SerializedLambda.java b/android-35/java/lang/invoke/SerializedLambda.java
new file mode 100644
index 0000000..55ec670
--- /dev/null
+++ b/android-35/java/lang/invoke/SerializedLambda.java
@@ -0,0 +1,82 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.lang.invoke;
+
+import java.io.Serializable;
+
+public final class SerializedLambda implements Serializable {
+
+    public SerializedLambda(Class<?> capturingClass,
+                            String functionalInterfaceClass,
+                            String functionalInterfaceMethodName,
+                            String functionalInterfaceMethodSignature,
+                            int implMethodKind,
+                            String implClass,
+                            String implMethodName,
+                            String implMethodSignature,
+                            String instantiatedMethodType,
+                            Object[] capturedArgs) { }
+
+    public String getCapturingClass() { return null; }
+
+    public String getFunctionalInterfaceClass() {
+        return null;
+    }
+
+    public String getFunctionalInterfaceMethodName() {
+        return null;
+    }
+
+    public String getFunctionalInterfaceMethodSignature() { return null; }
+
+    public String getImplClass() {
+        return null;
+    }
+
+    public String getImplMethodName() {
+        return null;
+    }
+
+    public String getImplMethodSignature() {
+        return null;
+    }
+
+    public int getImplMethodKind() {
+        return 0;
+    }
+
+    public final String getInstantiatedMethodType() {
+        return null;
+    }
+
+    public int getCapturedArgCount() {
+        return 0;
+    }
+
+    public Object getCapturedArg(int i) {
+        return null;
+    }
+
+}
diff --git a/android-35/java/lang/invoke/Stable.java b/android-35/java/lang/invoke/Stable.java
new file mode 100644
index 0000000..a0a413e
--- /dev/null
+++ b/android-35/java/lang/invoke/Stable.java
@@ -0,0 +1,73 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import java.lang.annotation.*;
+
+/**
+ * A field may be annotated as stable if all of its component variables
+ * changes value at most once.
+ * A field's value counts as its component value.
+ * If the field is typed as an array, then all the non-null components
+ * of the array, of depth up to the rank of the field's array type,
+ * also count as component values.
+ * By extension, any variable (either array or field) which has annotated
+ * as stable is called a stable variable, and its non-null or non-zero
+ * value is called a stable value.
+ * <p>
+ * Since all fields begin with a default value of null for references
+ * (resp., zero for primitives), it follows that this annotation indicates
+ * that the first non-null (resp., non-zero) value stored in the field
+ * will never be changed.
+ * <p>
+ * If the field is not of an array type, there are no array elements,
+ * then the value indicated as stable is simply the value of the field.
+ * If the dynamic type of the field value is an array but the static type
+ * is not, the components of the array are <em>not</em> regarded as stable.
+ * <p>
+ * If the field is an array type, then both the field value and
+ * all the components of the field value (if the field value is non-null)
+ * are indicated to be stable.
+ * If the field type is an array type with rank {@code N > 1},
+ * then each component of the field value (if the field value is non-null),
+ * is regarded as a stable array of rank {@code N-1}.
+ * <p>
+ * Fields which are declared {@code final} may also be annotated as stable.
+ * Since final fields already behave as stable values, such an annotation
+ * indicates no additional information, unless the type of the field is
+ * an array type.
+ * <p>
+ * It is (currently) undefined what happens if a field annotated as stable
+ * is given a third value.  In practice, if the JVM relies on this annotation
+ * to promote a field reference to a constant, it may be that the Java memory
+ * model would appear to be broken, if such a constant (the second value of the field)
+ * is used as the value of the field even after the field value has changed.
+ */
+/* package-private */
+@Target(ElementType.FIELD)
+@Retention(RetentionPolicy.RUNTIME)
+@interface Stable {
+}
diff --git a/android-35/java/lang/invoke/StaticFieldVarHandle.java b/android-35/java/lang/invoke/StaticFieldVarHandle.java
new file mode 100644
index 0000000..e5faeb7
--- /dev/null
+++ b/android-35/java/lang/invoke/StaticFieldVarHandle.java
@@ -0,0 +1,38 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package java.lang.invoke;
+
+import java.lang.reflect.Field;
+import java.lang.reflect.Modifier;
+
+/**
+ * A VarHandle that's associated with a static field.
+ * @hide
+ */
+final class StaticFieldVarHandle extends FieldVarHandle {
+    private final Class declaringClass;
+
+    private StaticFieldVarHandle(Field staticField) {
+        super(staticField);
+        declaringClass = staticField.getDeclaringClass();
+    }
+
+    static StaticFieldVarHandle create(Field staticField) {
+        assert Modifier.isStatic(staticField.getModifiers());
+        return new StaticFieldVarHandle(staticField);
+    }
+}
diff --git a/android-35/java/lang/invoke/Transformers.java b/android-35/java/lang/invoke/Transformers.java
new file mode 100644
index 0000000..57e0967
--- /dev/null
+++ b/android-35/java/lang/invoke/Transformers.java
@@ -0,0 +1,3151 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  The Android Open Source
+ * Project designates this particular file as subject to the "Classpath"
+ * exception as provided by The Android Open Source Project in the LICENSE
+ * file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package java.lang.invoke;
+
+import static dalvik.system.EmulatedStackFrame.StackFrameAccessor.copyNext;
+
+import dalvik.system.EmulatedStackFrame;
+import dalvik.system.EmulatedStackFrame.Range;
+import dalvik.system.EmulatedStackFrame.RandomOrderStackFrameReader;
+import dalvik.system.EmulatedStackFrame.StackFrameAccessor;
+import dalvik.system.EmulatedStackFrame.StackFrameReader;
+import dalvik.system.EmulatedStackFrame.StackFrameWriter;
+
+import sun.invoke.util.Wrapper;
+import sun.misc.Unsafe;
+
+import java.lang.reflect.Array;
+import java.lang.reflect.Method;
+import java.lang.reflect.Modifier;
+import java.util.ArrayList;
+import java.util.List;
+
+/** @hide Public for testing only. */
+public class Transformers {
+    private Transformers() {}
+
+    static {
+        try {
+            TRANSFORM_INTERNAL =
+                    MethodHandle.class.getDeclaredMethod(
+                            "transformInternal", EmulatedStackFrame.class);
+        } catch (NoSuchMethodException nsme) {
+            throw new AssertionError();
+        }
+    }
+
+    /**
+     * Method reference to the private {@code MethodHandle.transformInternal} method. This is cached
+     * here because it's the point of entry for all transformers.
+     */
+    private static final Method TRANSFORM_INTERNAL;
+
+    /** @hide */
+    public abstract static class Transformer extends MethodHandle implements Cloneable {
+        protected Transformer(MethodType type) {
+            super(TRANSFORM_INTERNAL.getArtMethod(), MethodHandle.INVOKE_TRANSFORM, type);
+        }
+
+        protected Transformer(MethodType type, int invokeKind) {
+            super(TRANSFORM_INTERNAL.getArtMethod(), invokeKind, type);
+        }
+
+        @Override
+        public Object clone() throws CloneNotSupportedException {
+            return super.clone();
+        }
+
+        /**
+         * Performs a MethodHandle.invoke() call with arguments held in an
+         * EmulatedStackFrame.
+         * @param target the method handle to invoke
+         * @param stackFrame the stack frame containing arguments for the invocation
+         */
+        protected static void invokeFromTransform(MethodHandle target,
+                                                  EmulatedStackFrame stackFrame) throws Throwable {
+            if (target instanceof Transformer) {
+                ((Transformer) target).transform(stackFrame);
+            } else {
+                final MethodHandle adaptedTarget = target.asType(stackFrame.getMethodType());
+                adaptedTarget.invokeExactWithFrame(stackFrame);
+            }
+        }
+
+        /**
+         * Performs a MethodHandle.invokeExact() call with arguments held in an
+         * EmulatedStackFrame.
+         * @param target the method handle to invoke
+         * @param stackFrame the stack frame containing arguments for the invocation
+         */
+        protected void invokeExactFromTransform(MethodHandle target,
+                                                EmulatedStackFrame stackFrame) throws Throwable {
+            if (target instanceof Transformer) {
+                ((Transformer) target).transform(stackFrame);
+            } else {
+                target.invokeExactWithFrame(stackFrame);
+            }
+        }
+    }
+
+    /** Implements {@code MethodHandles.throwException}. */
+    static class AlwaysThrow extends Transformer {
+        private final Class<? extends Throwable> exceptionType;
+
+        AlwaysThrow(Class<?> nominalReturnType, Class<? extends Throwable> exType) {
+            super(MethodType.methodType(nominalReturnType, exType));
+            this.exceptionType = exType;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            throw emulatedStackFrame.getReference(0, exceptionType);
+        }
+    }
+
+    /** Implements {@code MethodHandles.dropArguments}. */
+    static class DropArguments extends Transformer {
+        private final MethodHandle delegate;
+        private final EmulatedStackFrame.Range range1;
+        private final EmulatedStackFrame.Range range2;
+
+        DropArguments(MethodType type, MethodHandle delegate, int startPos, int numDropped) {
+            super(type);
+
+            this.delegate = delegate;
+
+            // We pre-calculate the ranges of values we have to copy through to the delegate
+            // handle at the time of instantiation so that the actual invoke is performant.
+            this.range1 = EmulatedStackFrame.Range.of(type, 0, startPos);
+            this.range2 = EmulatedStackFrame.Range.from(type, startPos + numDropped);
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            EmulatedStackFrame calleeFrame = EmulatedStackFrame.create(delegate.type());
+
+            emulatedStackFrame.copyRangeTo(
+                    calleeFrame, range1, 0 /* referencesStart */, 0 /* stackFrameStart */);
+            emulatedStackFrame.copyRangeTo(
+                    calleeFrame, range2, range1.numReferences, range1.numBytes);
+
+            invokeFromTransform(delegate, calleeFrame);
+            calleeFrame.copyReturnValueTo(emulatedStackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandles.catchException}. */
+    static class CatchException extends Transformer {
+        private final MethodHandle target;
+        private final MethodHandle handler;
+        private final Class<?> exType;
+
+        private final EmulatedStackFrame.Range handlerArgsRange;
+
+        CatchException(MethodHandle target, MethodHandle handler, Class<?> exType) {
+            super(target.type());
+
+            this.target = target;
+            this.handler = handler;
+            this.exType = exType;
+
+            // We only copy the first "count" args, dropping others if required. Note that
+            // we subtract one because the first handler arg is the exception thrown by the
+            // target.
+            handlerArgsRange =
+                    EmulatedStackFrame.Range.of(
+                            target.type(), 0, (handler.type().parameterCount() - 1));
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            try {
+                invokeFromTransform(target, emulatedStackFrame);
+            } catch (Throwable th) {
+                if (th.getClass() == exType) {
+                    // We've gotten an exception of the appropriate type, so we need to call
+                    // the handler. Create a new frame of the appropriate size.
+                    EmulatedStackFrame fallback = EmulatedStackFrame.create(handler.type());
+
+                    // The first argument to the handler is the actual exception.
+                    fallback.setReference(0, th);
+
+                    // We then copy other arguments that need to be passed through to the handler.
+                    // Note that we might drop arguments at the end, if needed. Note that
+                    // referencesStart == 1 because the first argument is the exception type.
+                    emulatedStackFrame.copyRangeTo(
+                            fallback,
+                            handlerArgsRange,
+                            1 /* referencesStart */,
+                            0 /* stackFrameStart */);
+
+                    // Perform the invoke and return the appropriate value.
+                    invokeFromTransform(handler, fallback);
+                    fallback.copyReturnValueTo(emulatedStackFrame);
+                } else {
+                    // The exception is not of the expected type, we throw it.
+                    throw th;
+                }
+            }
+        }
+    }
+
+    /** Implements {@code MethodHandles.tryFinally}. */
+    static class TryFinally extends Transformer {
+        /** The target handle to try. */
+        private final MethodHandle target;
+
+        /** The cleanup handle to invoke after the target. */
+        private final MethodHandle cleanup;
+
+        TryFinally(MethodHandle target, MethodHandle cleanup) {
+            super(target.type());
+            this.target = target;
+            this.cleanup = cleanup;
+        }
+
+        @Override
+        protected void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            Throwable throwable = null;
+            try {
+                invokeExactFromTransform(target, callerFrame);
+            } catch (Throwable t) {
+                throwable = t;
+                throw t;
+            } finally {
+                final EmulatedStackFrame cleanupFrame = prepareCleanupFrame(callerFrame, throwable);
+                invokeExactFromTransform(cleanup, cleanupFrame);
+                if (cleanup.type().returnType() != void.class) {
+                    cleanupFrame.copyReturnValueTo(callerFrame);
+                }
+            }
+        }
+
+        /** Prepares the frame used to invoke the cleanup handle. */
+        private EmulatedStackFrame prepareCleanupFrame(final EmulatedStackFrame callerFrame,
+                                                       final Throwable throwable) {
+            final EmulatedStackFrame cleanupFrame = EmulatedStackFrame.create(cleanup.type());
+            final StackFrameWriter cleanupWriter = new StackFrameWriter();
+            cleanupWriter.attach(cleanupFrame);
+
+            // The first argument to `cleanup` is (any) pending exception kind.
+            cleanupWriter.putNextReference(throwable, Throwable.class);
+            int added = 1;
+
+            // The second argument to `cleanup` is the result from `target` (if not void).
+            Class<?> targetReturnType = target.type().returnType();
+            StackFrameReader targetReader = new StackFrameReader();
+            targetReader.attach(callerFrame);
+            if (targetReturnType != void.class) {
+                targetReader.makeReturnValueAccessor();
+                copyNext(targetReader, cleanupWriter, targetReturnType);
+                added += 1;
+                // Reset `targetReader` to reference the arguments in `callerFrame`.
+                targetReader.attach(callerFrame);
+            }
+
+            // The final arguments from the invocation of target. As many are copied as the cleanup
+            // handle expects (it may be fewer than the arguments provided to target).
+            Class<?> [] cleanupTypes = cleanup.type().parameterArray();
+            for (; added != cleanupTypes.length; ++added) {
+                copyNext(targetReader, cleanupWriter, cleanupTypes[added]);
+            }
+            return cleanupFrame;
+        }
+    }
+
+    /** Implements {@code MethodHandles.GuardWithTest}. */
+    static class GuardWithTest extends Transformer {
+        private final MethodHandle test;
+        private final MethodHandle target;
+        private final MethodHandle fallback;
+
+        private final EmulatedStackFrame.Range testArgsRange;
+
+        GuardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback) {
+            super(target.type());
+
+            this.test = test;
+            this.target = target;
+            this.fallback = fallback;
+
+            // The test method might have a subset of the arguments of the handle / target.
+            testArgsRange =
+                    EmulatedStackFrame.Range.of(target.type(), 0, test.type().parameterCount());
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            EmulatedStackFrame testFrame = EmulatedStackFrame.create(test.type());
+            emulatedStackFrame.copyRangeTo(testFrame, testArgsRange, 0, 0);
+
+            // We know that the return value for test is going to be boolean.class.
+            StackFrameReader reader = new StackFrameReader();
+            reader.attach(testFrame);
+            reader.makeReturnValueAccessor();
+            invokeFromTransform(test, testFrame);
+            final boolean testResult = (boolean) reader.nextBoolean();
+            if (testResult) {
+                invokeFromTransform(target, emulatedStackFrame);
+            } else {
+                invokeFromTransform(fallback, emulatedStackFrame);
+            }
+        }
+    }
+
+    /** Implements {@code MethodHandles.arrayElementGetter}. */
+    static class ReferenceArrayElementGetter extends Transformer {
+        private final Class<?> arrayClass;
+
+        ReferenceArrayElementGetter(Class<?> arrayClass) {
+            super(
+                    MethodType.methodType(
+                            arrayClass.getComponentType(), new Class<?>[] {arrayClass, int.class}));
+            this.arrayClass = arrayClass;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(emulatedStackFrame);
+
+            // Read the array object and the index from the stack frame.
+            final Object[] array = (Object[]) reader.nextReference(arrayClass);
+            final int index = reader.nextInt();
+
+            // Write the array element back to the stack frame.
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(emulatedStackFrame);
+            writer.makeReturnValueAccessor();
+            writer.putNextReference(array[index], arrayClass.getComponentType());
+        }
+    }
+
+    /** Implements {@code MethodHandles.arrayElementSetter}. */
+    static class ReferenceArrayElementSetter extends Transformer {
+        private final Class<?> arrayClass;
+
+        ReferenceArrayElementSetter(Class<?> arrayClass) {
+            super(
+                    MethodType.methodType(
+                            void.class,
+                            new Class<?>[] {arrayClass, int.class, arrayClass.getComponentType()}));
+            this.arrayClass = arrayClass;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(emulatedStackFrame);
+
+            // Read the array object, index and the value to write from the stack frame.
+            final Object[] array = (Object[]) reader.nextReference(arrayClass);
+            final int index = reader.nextInt();
+            final Object value = reader.nextReference(arrayClass.getComponentType());
+
+            array[index] = value;
+        }
+    }
+
+    /** Implements {@code MethodHandles.identity}. */
+    static class ReferenceIdentity extends Transformer {
+        private final Class<?> type;
+
+        ReferenceIdentity(Class<?> type) {
+            super(MethodType.methodType(type, type));
+            this.type = type;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(emulatedStackFrame);
+
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(emulatedStackFrame);
+            writer.makeReturnValueAccessor();
+            writer.putNextReference(reader.nextReference(type), type);
+        }
+    }
+
+    /** Implements {@code MethodHandles.makeZero}. */
+    static class ZeroValue extends Transformer {
+        public ZeroValue(Class<?> type) {
+            super(MethodType.methodType(type));
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            // Return-value is zero-initialized in emulatedStackFrame.
+        }
+    }
+
+    /** Implements {@code MethodHandles.arrayConstructor}. */
+    static class ArrayConstructor extends Transformer {
+        private final Class<?> componentType;
+
+        ArrayConstructor(Class<?> arrayType) {
+            super(MethodType.methodType(arrayType, int.class));
+            componentType = arrayType.getComponentType();
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(emulatedStackFrame);
+            final int length = reader.nextInt();
+            final Object array = Array.newInstance(componentType, length);
+            emulatedStackFrame.setReturnValueTo(array);
+        }
+    }
+
+    /** Implements {@code MethodHandles.arrayLength}. */
+    static class ArrayLength extends Transformer {
+        private final Class<?> arrayType;
+
+        ArrayLength(Class<?> arrayType) {
+            super(MethodType.methodType(int.class, arrayType));
+            this.arrayType = arrayType;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(emulatedStackFrame);
+            final Object arrayObject = reader.nextReference(arrayType);
+
+            int length;
+            switch (Wrapper.basicTypeChar(arrayType.getComponentType())) {
+                case 'L':
+                    length = ((Object[]) arrayObject).length;
+                    break;
+                case 'Z':
+                    length = ((boolean[]) arrayObject).length;
+                    break;
+                case 'B':
+                    length = ((byte[]) arrayObject).length;
+                    break;
+                case 'C':
+                    length = ((char[]) arrayObject).length;
+                    break;
+                case 'S':
+                    length = ((short[]) arrayObject).length;
+                    break;
+                case 'I':
+                    length = ((int[]) arrayObject).length;
+                    break;
+                case 'J':
+                    length = ((long[]) arrayObject).length;
+                    break;
+                case 'F':
+                    length = ((float[]) arrayObject).length;
+                    break;
+                case 'D':
+                    length = ((double[]) arrayObject).length;
+                    break;
+                default:
+                    throw new IllegalStateException("Unsupported type: " + arrayType);
+            }
+
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(emulatedStackFrame).makeReturnValueAccessor();
+            writer.putNextInt(length);
+        }
+    }
+
+    /** Implements {@code MethodHandles.createMethodHandleForConstructor}. */
+    static class Construct extends Transformer {
+        private final MethodHandle constructorHandle;
+        private final EmulatedStackFrame.Range callerRange;
+
+        Construct(MethodHandle constructorHandle, MethodType returnedType) {
+            super(returnedType);
+            this.constructorHandle = constructorHandle;
+            this.callerRange = EmulatedStackFrame.Range.all(type());
+        }
+
+        MethodHandle getConstructorHandle() {
+            return constructorHandle;
+        }
+
+        private static boolean isAbstract(Class<?> klass) {
+            return (klass.getModifiers() & Modifier.ABSTRACT) == Modifier.ABSTRACT;
+        }
+
+        private static void checkInstantiable(Class<?> klass) throws InstantiationException {
+            if (isAbstract(klass)) {
+                String s = klass.isInterface() ? "interface " : "abstract class ";
+                throw new InstantiationException("Can't instantiate " + s + klass);
+            }
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final Class<?> receiverType = constructorHandle.type().parameterType(0);
+            checkInstantiable(receiverType);
+
+            // Allocate memory for receiver.
+            Object receiver = Unsafe.getUnsafe().allocateInstance(receiverType);
+
+            // The MethodHandle type for the caller has the form of
+            // {rtype=T,ptypes=A1..An}. The constructor MethodHandle is of
+            // the form {rtype=void,ptypes=T,A1...An}. So the frame for
+            // the constructor needs to have a slot with the receiver
+            // in position 0.
+            EmulatedStackFrame constructorFrame =
+                    EmulatedStackFrame.create(constructorHandle.type());
+            constructorFrame.setReference(0, receiver);
+            emulatedStackFrame.copyRangeTo(constructorFrame, callerRange, 1, 0);
+            invokeExactFromTransform(constructorHandle, constructorFrame);
+
+            // Set return result for caller.
+            emulatedStackFrame.setReturnValueTo(receiver);
+        }
+    }
+
+    /** Implements {@code MethodHandle.bindTo}. */
+    static class BindTo extends Transformer {
+        private final MethodHandle delegate;
+        private final Object receiver;
+
+        private final EmulatedStackFrame.Range range;
+
+        BindTo(MethodHandle delegate, Object receiver) {
+            super(delegate.type().dropParameterTypes(0, 1));
+
+            this.delegate = delegate;
+            this.receiver = receiver;
+
+            this.range = EmulatedStackFrame.Range.all(this.type());
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            // Create a new emulated stack frame with the full type (including the leading
+            // receiver reference).
+            EmulatedStackFrame stackFrame = EmulatedStackFrame.create(delegate.type());
+
+            // The first reference argument must be the receiver.
+            stackFrame.setReference(0, receiver);
+            // Copy all other arguments.
+            emulatedStackFrame.copyRangeTo(
+                    stackFrame, range, 1 /* referencesStart */, 0 /* stackFrameStart */);
+
+            // Perform the invoke.
+            invokeFromTransform(delegate, stackFrame);
+            stackFrame.copyReturnValueTo(emulatedStackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandle.filterReturnValue}. */
+    static class FilterReturnValue extends Transformer {
+        private final MethodHandle target;
+        private final MethodHandle filter;
+
+        private final EmulatedStackFrame.Range allArgs;
+
+        FilterReturnValue(MethodHandle target, MethodHandle filter) {
+            super(MethodType.methodType(filter.type().rtype(), target.type().ptypes()));
+
+            this.target = target;
+            this.filter = filter;
+
+            allArgs = EmulatedStackFrame.Range.all(type());
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            // Create a new frame with the target's type and copy all arguments over.
+            // This frame differs in return type with |emulatedStackFrame| but will have
+            // the same parameter shapes.
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+            emulatedStackFrame.copyRangeTo(targetFrame, allArgs, 0, 0);
+            invokeFromTransform(target, targetFrame);
+
+            // Create an emulated frame for the filter and move the return value from
+            // target to the argument of the filter.
+            final EmulatedStackFrame filterFrame = EmulatedStackFrame.create(filter.type());
+            final Class<?> filterArgumentType = target.type().rtype();
+            if (filterArgumentType != void.class) {
+                final StackFrameReader returnValueReader = new StackFrameReader();
+                returnValueReader.attach(targetFrame).makeReturnValueAccessor();
+
+                final StackFrameWriter filterWriter = new StackFrameWriter();
+                filterWriter.attach(filterFrame);
+                StackFrameAccessor.copyNext(returnValueReader, filterWriter, filterArgumentType);
+            }
+
+            // Invoke the filter and copy its return value back to the original frame.
+            invokeExactFromTransform(filter, filterFrame);
+            filterFrame.copyReturnValueTo(emulatedStackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandles.permuteArguments}. */
+    static class PermuteArguments extends Transformer {
+        private final MethodHandle target;
+        private final int[] reorder;
+
+        PermuteArguments(MethodType type, MethodHandle target, int[] reorder) {
+            super(type);
+
+            this.target = target;
+            this.reorder = reorder;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            final RandomOrderStackFrameReader reader = new RandomOrderStackFrameReader();
+            reader.attach(emulatedStackFrame);
+
+            final EmulatedStackFrame calleeFrame = EmulatedStackFrame.create(target.type());
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(calleeFrame);
+
+            final Class<?> [] ptypes = emulatedStackFrame.getMethodType().parameterArray();
+            for (int i = 0; i < reorder.length; ++i) {
+                final int readerIndex = reorder[i];
+                reader.moveTo(readerIndex);
+                StackFrameAccessor.copyNext(reader, writer, ptypes[readerIndex]);
+            }
+
+            invokeFromTransform(target, calleeFrame);
+            calleeFrame.copyReturnValueTo(emulatedStackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandle.asVarargsCollector}. */
+    static class VarargsCollector extends Transformer {
+        final MethodHandle target;
+        private final Class<?> arrayType;
+
+        VarargsCollector(MethodHandle target) {
+            super(target.type());
+
+            Class<?>[] parameterTypes = target.type().ptypes();
+            if (!lastParameterTypeIsAnArray(parameterTypes)) {
+                throw new IllegalArgumentException("target does not have array as last parameter");
+            }
+            this.target = target;
+            this.arrayType = parameterTypes[parameterTypes.length - 1];
+        }
+
+        private static boolean lastParameterTypeIsAnArray(Class<?>[] parameterTypes) {
+            if (parameterTypes.length == 0) return false;
+            return parameterTypes[parameterTypes.length - 1].isArray();
+        }
+
+        @Override
+        public boolean isVarargsCollector() {
+            return true;
+        }
+
+        @Override
+        public MethodHandle asFixedArity() {
+            return target;
+        }
+
+        @Override
+        MethodHandle asTypeUncached(MethodType newType) {
+            // asType() behavior is specialized per:
+            //
+            // https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/invoke/MethodHandle.html#asVarargsCollector(java.lang.Class)
+            //
+            // "The behavior of asType is also specialized for variable arity adapters, to maintain
+            //  the invariant that plain, inexact invoke is always equivalent to an asType call to
+            //  adjust the target type, followed by invokeExact. Therefore, a variable arity
+            //  adapter responds to an asType request by building a fixed arity collector, if and
+            //  only if the adapter and requested type differ either in arity or trailing argument
+            //  type. The resulting fixed arity collector has its type further adjusted
+            //  (if necessary) to the requested type by pairwise conversion, as if by another
+            //  application of asType."
+            final MethodType currentType = type();
+            final MethodHandle currentFixedArity = asFixedArity();
+            if (currentType.parameterCount() == newType.parameterCount()
+                    && currentType
+                            .lastParameterType()
+                            .isAssignableFrom(newType.lastParameterType())) {
+                return asTypeCache = currentFixedArity.asType(newType);
+            }
+
+            final int arrayLength = newType.parameterCount() - currentType.parameterCount() + 1;
+            if (arrayLength < 0) {
+                // arrayType is definitely array per VarargsCollector constructor.
+                throwWrongMethodTypeException(currentType, newType);
+            }
+
+            MethodHandle collector = null;
+            try {
+                collector = currentFixedArity.asCollector(arrayType, arrayLength).asType(newType);
+            } catch (IllegalArgumentException ex) {
+                throwWrongMethodTypeException(currentType, newType);
+            }
+            return asTypeCache = collector;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            MethodType callerFrameType = callerFrame.getMethodType();
+            Class<?>[] callerPTypes = callerFrameType.ptypes();
+            Class<?>[] targetPTypes = type().ptypes();
+
+            int lastTargetIndex = targetPTypes.length - 1;
+            if (callerPTypes.length == targetPTypes.length
+                    && targetPTypes[lastTargetIndex].isAssignableFrom(
+                            callerPTypes[lastTargetIndex])) {
+                // Caller frame matches target frame in the arity array parameter. Invoke
+                // immediately, and let the invoke() dispatch perform any necessary conversions
+                // on the other parameters present.
+                invokeFromTransform(target, callerFrame);
+                return;
+            }
+
+            if (callerPTypes.length < targetPTypes.length - 1) {
+                // Too few arguments to be compatible with variable arity invocation.
+                throwWrongMethodTypeException(callerFrameType, type());
+            }
+
+            if (!MethodType.canConvert(type().rtype(), callerFrameType.rtype())) {
+                // Incompatible return type.
+                throwWrongMethodTypeException(callerFrameType, type());
+            }
+
+            Class<?> elementType = targetPTypes[lastTargetIndex].getComponentType();
+            if (!arityArgumentsConvertible(callerPTypes, lastTargetIndex, elementType)) {
+                // Wrong types to be compatible with variable arity invocation.
+                throwWrongMethodTypeException(callerFrameType, type());
+            }
+
+            // Allocate targetFrame.
+            MethodType targetFrameType = makeTargetFrameType(callerFrameType, type());
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(targetFrameType);
+            prepareFrame(callerFrame, targetFrame);
+
+            // Invoke target.
+            invokeExactFromTransform(target, targetFrame);
+
+            // Copy return value to the caller's frame.
+            targetFrame.copyReturnValueTo(callerFrame);
+        }
+
+        @Override
+        public MethodHandle withVarargs(boolean makeVarargs) {
+            return makeVarargs ? this : target;
+        }
+
+        private static void throwWrongMethodTypeException(MethodType from, MethodType to) {
+            throw new WrongMethodTypeException("Cannot convert " + from + " to " + to);
+        }
+
+        private static boolean arityArgumentsConvertible(
+                Class<?>[] ptypes, int arityStart, Class<?> elementType) {
+            if (ptypes.length - 1 == arityStart) {
+                if (ptypes[arityStart].isArray()
+                        && ptypes[arityStart].getComponentType() == elementType) {
+                    // The last ptype is in the same position as the arity
+                    // array and has the same type.
+                    return true;
+                }
+            }
+
+            for (int i = arityStart; i < ptypes.length; ++i) {
+                if (!MethodType.canConvert(ptypes[i], elementType)) {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        private static Object referenceArray(
+                StackFrameReader reader,
+                Class<?>[] ptypes,
+                Class<?> elementType,
+                int offset,
+                int length) {
+            Object arityArray = Array.newInstance(elementType, length);
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                Object o = null;
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'L':
+                        o = reader.nextReference(argumentType);
+                        break;
+                    case 'I':
+                        o = reader.nextInt();
+                        break;
+                    case 'J':
+                        o = reader.nextLong();
+                        break;
+                    case 'B':
+                        o = reader.nextByte();
+                        break;
+                    case 'S':
+                        o = reader.nextShort();
+                        break;
+                    case 'C':
+                        o = reader.nextChar();
+                        break;
+                    case 'Z':
+                        o = reader.nextBoolean();
+                        break;
+                    case 'F':
+                        o = reader.nextFloat();
+                        break;
+                    case 'D':
+                        o = reader.nextDouble();
+                        break;
+                }
+                Array.set(arityArray, i, elementType.cast(o));
+            }
+            return arityArray;
+        }
+
+        private static Object intArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            int[] arityArray = new int[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'I':
+                        arityArray[i] = reader.nextInt();
+                        break;
+                    case 'S':
+                        arityArray[i] = reader.nextShort();
+                        break;
+                    case 'B':
+                        arityArray[i] = reader.nextByte();
+                        break;
+                    default:
+                        arityArray[i] = (Integer) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object longArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            long[] arityArray = new long[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'J':
+                        arityArray[i] = reader.nextLong();
+                        break;
+                    case 'I':
+                        arityArray[i] = reader.nextInt();
+                        break;
+                    case 'S':
+                        arityArray[i] = reader.nextShort();
+                        break;
+                    case 'B':
+                        arityArray[i] = reader.nextByte();
+                        break;
+                    default:
+                        arityArray[i] = (Long) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object byteArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            byte[] arityArray = new byte[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'B':
+                        arityArray[i] = reader.nextByte();
+                        break;
+                    default:
+                        arityArray[i] = (Byte) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object shortArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            short[] arityArray = new short[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'S':
+                        arityArray[i] = reader.nextShort();
+                        break;
+                    case 'B':
+                        arityArray[i] = reader.nextByte();
+                        break;
+                    default:
+                        arityArray[i] = (Short) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object charArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            char[] arityArray = new char[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'C':
+                        arityArray[i] = reader.nextChar();
+                        break;
+                    default:
+                        arityArray[i] = (Character) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object booleanArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            boolean[] arityArray = new boolean[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'Z':
+                        arityArray[i] = reader.nextBoolean();
+                        break;
+                    default:
+                        arityArray[i] = (Boolean) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object floatArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            float[] arityArray = new float[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'F':
+                        arityArray[i] = reader.nextFloat();
+                        break;
+                    case 'J':
+                        arityArray[i] = reader.nextLong();
+                        break;
+                    case 'I':
+                        arityArray[i] = reader.nextInt();
+                        break;
+                    case 'S':
+                        arityArray[i] = reader.nextShort();
+                        break;
+                    case 'B':
+                        arityArray[i] = reader.nextByte();
+                        break;
+                    default:
+                        arityArray[i] = (Float) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object doubleArray(
+                StackFrameReader reader, Class<?> ptypes[], int offset, int length) {
+            double[] arityArray = new double[length];
+            for (int i = 0; i < length; ++i) {
+                Class<?> argumentType = ptypes[i + offset];
+                switch (Wrapper.basicTypeChar(argumentType)) {
+                    case 'D':
+                        arityArray[i] = reader.nextDouble();
+                        break;
+                    case 'F':
+                        arityArray[i] = reader.nextFloat();
+                        break;
+                    case 'J':
+                        arityArray[i] = reader.nextLong();
+                        break;
+                    case 'I':
+                        arityArray[i] = reader.nextInt();
+                        break;
+                    case 'S':
+                        arityArray[i] = reader.nextShort();
+                        break;
+                    case 'B':
+                        arityArray[i] = reader.nextByte();
+                        break;
+                    default:
+                        arityArray[i] = (Double) reader.nextReference(argumentType);
+                        break;
+                }
+            }
+            return arityArray;
+        }
+
+        private static Object makeArityArray(
+                MethodType callerFrameType,
+                StackFrameReader callerFrameReader,
+                int indexOfArityArray,
+                Class<?> arityArrayType) {
+            int arityArrayLength = callerFrameType.ptypes().length - indexOfArityArray;
+            Class<?> elementType = arityArrayType.getComponentType();
+            Class<?>[] callerPTypes = callerFrameType.ptypes();
+
+            char elementBasicType = Wrapper.basicTypeChar(elementType);
+            switch (elementBasicType) {
+                case 'L':
+                    return referenceArray(
+                            callerFrameReader,
+                            callerPTypes,
+                            elementType,
+                            indexOfArityArray,
+                            arityArrayLength);
+                case 'I':
+                    return intArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'J':
+                    return longArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'B':
+                    return byteArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'S':
+                    return shortArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'C':
+                    return charArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'Z':
+                    return booleanArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'F':
+                    return floatArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+                case 'D':
+                    return doubleArray(
+                            callerFrameReader, callerPTypes,
+                            indexOfArityArray, arityArrayLength);
+            }
+            throw new InternalError("Unexpected type: " + elementType);
+        }
+
+        public static Object collectArguments(
+                char basicComponentType,
+                Class<?> componentType,
+                StackFrameReader reader,
+                Class<?>[] types,
+                int startIdx,
+                int length) {
+            switch (basicComponentType) {
+                case 'L':
+                    return referenceArray(reader, types, componentType, startIdx, length);
+                case 'I':
+                    return intArray(reader, types, startIdx, length);
+                case 'J':
+                    return longArray(reader, types, startIdx, length);
+                case 'B':
+                    return byteArray(reader, types, startIdx, length);
+                case 'S':
+                    return shortArray(reader, types, startIdx, length);
+                case 'C':
+                    return charArray(reader, types, startIdx, length);
+                case 'Z':
+                    return booleanArray(reader, types, startIdx, length);
+                case 'F':
+                    return floatArray(reader, types, startIdx, length);
+                case 'D':
+                    return doubleArray(reader, types, startIdx, length);
+            }
+            throw new InternalError("Unexpected type: " + basicComponentType);
+        }
+
+        private static void copyParameter(
+                StackFrameReader reader, StackFrameWriter writer, Class<?> ptype) {
+            switch (Wrapper.basicTypeChar(ptype)) {
+                case 'L':
+                    writer.putNextReference(reader.nextReference(ptype), ptype);
+                    break;
+                case 'I':
+                    writer.putNextInt(reader.nextInt());
+                    break;
+                case 'J':
+                    writer.putNextLong(reader.nextLong());
+                    break;
+                case 'B':
+                    writer.putNextByte(reader.nextByte());
+                    break;
+                case 'S':
+                    writer.putNextShort(reader.nextShort());
+                    break;
+                case 'C':
+                    writer.putNextChar(reader.nextChar());
+                    break;
+                case 'Z':
+                    writer.putNextBoolean(reader.nextBoolean());
+                    break;
+                case 'F':
+                    writer.putNextFloat(reader.nextFloat());
+                    break;
+                case 'D':
+                    writer.putNextDouble(reader.nextDouble());
+                    break;
+                default:
+                    throw new InternalError("Unexpected type: " + ptype);
+            }
+        }
+
+        private static void prepareFrame(
+                EmulatedStackFrame callerFrame, EmulatedStackFrame targetFrame) {
+            StackFrameWriter targetWriter = new StackFrameWriter();
+            targetWriter.attach(targetFrame);
+            StackFrameReader callerReader = new StackFrameReader();
+            callerReader.attach(callerFrame);
+
+            // Copy parameters from |callerFrame| to |targetFrame| leaving room for arity array.
+            MethodType targetMethodType = targetFrame.getMethodType();
+            int indexOfArityArray = targetMethodType.ptypes().length - 1;
+            for (int i = 0; i < indexOfArityArray; ++i) {
+                Class<?> ptype = targetMethodType.ptypes()[i];
+                copyParameter(callerReader, targetWriter, ptype);
+            }
+
+            // Add arity array as last parameter in |targetFrame|.
+            Class<?> arityArrayType = targetMethodType.ptypes()[indexOfArityArray];
+            Object arityArray =
+                    makeArityArray(
+                            callerFrame.getMethodType(),
+                            callerReader,
+                            indexOfArityArray,
+                            arityArrayType);
+            targetWriter.putNextReference(arityArray, arityArrayType);
+        }
+
+        /**
+         * Computes the frame type to invoke the target method handle with. This is the same as the
+         * caller frame type, but with the trailing argument being the array type that is the
+         * trailing argument in the target method handle.
+         *
+         * <p>Suppose the targetType is (T0, T1, T2[])RT and the callerType is (C0, C1, C2, C3)RC
+         * then the constructed type is (C0, C1, T2[])RC.
+         */
+        private static MethodType makeTargetFrameType(
+                MethodType callerType, MethodType targetType) {
+            final int ptypesLength = targetType.ptypes().length;
+            final Class<?>[] ptypes = new Class<?>[ptypesLength];
+            // Copy types from caller types to new methodType.
+            System.arraycopy(callerType.ptypes(), 0, ptypes, 0, ptypesLength - 1);
+            // Set the last element in the type array to be the
+            // varargs array of the target.
+            ptypes[ptypesLength - 1] = targetType.ptypes()[ptypesLength - 1];
+            return MethodType.methodType(callerType.rtype(), ptypes);
+        }
+    }
+
+    /** Implements {@code MethodHandles.invoker} and {@code MethodHandles.exactInvoker}. */
+    static class Invoker extends Transformer {
+        private final MethodType targetType;
+        private final boolean isExactInvoker;
+        private final EmulatedStackFrame.Range copyRange;
+
+        Invoker(MethodType targetType, boolean isExactInvoker) {
+            super(targetType.insertParameterTypes(0, MethodHandle.class));
+            this.targetType = targetType;
+            this.isExactInvoker = isExactInvoker;
+            copyRange = EmulatedStackFrame.Range.from(type(), 1);
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame emulatedStackFrame) throws Throwable {
+            // The first argument to the stack frame is the handle that needs to be invoked.
+            MethodHandle target = emulatedStackFrame.getReference(0, MethodHandle.class);
+
+            // All other arguments must be copied to the target frame.
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(targetType);
+            emulatedStackFrame.copyRangeTo(targetFrame, copyRange, 0, 0);
+
+            // Finally, invoke the handle and copy the return value.
+            if (isExactInvoker) {
+                invokeExactFromTransform(target, targetFrame);
+            } else {
+                invokeFromTransform(target, targetFrame);
+            }
+            targetFrame.copyReturnValueTo(emulatedStackFrame);
+        }
+
+        /**
+         * Checks whether two method types are compatible as an exact match. The exact match is
+         * based on the erased form (all reference types treated as Object).
+         *
+         * @param callsiteType the MethodType associated with the invocation.
+         * @param targetType the MethodType of the MethodHandle being invoked.
+         * @return true if {@code callsiteType} and {@code targetType} are an exact match.
+         */
+        private static boolean exactMatch(MethodType callsiteType, MethodType targetType) {
+            final int parameterCount = callsiteType.parameterCount();
+            if (callsiteType.parameterCount() != targetType.parameterCount()) {
+                return false;
+            }
+
+            for (int i = 0; i < parameterCount; ++i) {
+                Class argumentType = callsiteType.parameterType(i);
+                Class parameterType = targetType.parameterType(i);
+                if (!exactMatch(argumentType, parameterType)) {
+                    return false;
+                }
+            }
+            // Check return type, noting it's always okay to discard the return value.
+            return callsiteType.returnType() == Void.TYPE
+                    || exactMatch(callsiteType.returnType(), targetType.returnType());
+        }
+
+        /**
+         * Checks whether two types are an exact match. The exact match is based on the erased types
+         * so any two reference types match, but primitive types must be the same.
+         *
+         * @param lhs first class to compare.
+         * @param rhs second class to compare.
+         * @return true if both classes satisfy the exact match criteria.
+         */
+        private static boolean exactMatch(Class lhs, Class rhs) {
+            if (lhs.isPrimitive() || rhs.isPrimitive()) {
+                return lhs == rhs;
+            }
+            return true; // Both types are references, compatibility is checked at the point of use.
+        }
+    }
+
+    /** Implements {@code MethodHandle.asSpreader}. */
+    static class Spreader extends Transformer {
+        /** The method handle we're delegating to. */
+        private final MethodHandle target;
+
+        /**
+         * The offset of the trailing array argument in the list of arguments to this transformer.
+         * The array argument is always the last argument.
+         */
+        private final int arrayOffset;
+
+        /** The component type of the array. */
+        private final Class<?> componentType;
+
+        /**
+         * The number of input arguments that will be present in the array. In other words, this is
+         * the expected array length.
+         */
+        private final int numArrayArgs;
+
+        /**
+         * Range of arguments to copy verbatim from the input frame, This will cover all arguments
+         * that aren't a part of the trailing array.
+         */
+        private final Range leadingRange;
+        private final Range trailingRange;
+
+        Spreader(MethodHandle target, MethodType spreaderType, int spreadArgPos, int numArrayArgs) {
+            super(spreaderType);
+            this.target = target;
+            arrayOffset = spreadArgPos;
+            componentType = spreaderType.ptypes()[arrayOffset].getComponentType();
+            if (componentType == null) {
+                throw new AssertionError("Argument " + spreadArgPos + " must be an array.");
+            }
+            this.numArrayArgs = numArrayArgs;
+            // Copy all args except the spreader array.
+            leadingRange = EmulatedStackFrame.Range.of(spreaderType, 0, arrayOffset);
+            trailingRange = EmulatedStackFrame.Range.from(spreaderType, arrayOffset + 1);
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            // Get the array reference and check that its length is as expected.
+            final Class<?> arrayType = type().parameterType(arrayOffset);
+            final Object arrayObj = callerFrame.getReference(arrayOffset, arrayType);
+
+            // The incoming array may be null if the expected number of array arguments is zero.
+            final int arrayLength =
+                (numArrayArgs == 0 && arrayObj == null) ? 0 : Array.getLength(arrayObj);
+            if (arrayLength != numArrayArgs) {
+                throw new IllegalArgumentException(
+                        "Invalid array length " + arrayLength + " expected " + numArrayArgs);
+            }
+
+            // Create a new stack frame for the callee.
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+
+            // Copy ranges not affected by the spreading.
+            callerFrame.copyRangeTo(targetFrame, leadingRange, 0, 0);
+            if (componentType.isPrimitive()) {
+                final int elementBytes = EmulatedStackFrame.getSize(componentType);
+                final int spreadBytes = elementBytes * arrayLength;
+                callerFrame.copyRangeTo(targetFrame, trailingRange,
+                    leadingRange.numReferences, leadingRange.numBytes + spreadBytes);
+            } else {
+                callerFrame.copyRangeTo(targetFrame, trailingRange,
+                    leadingRange.numReferences + numArrayArgs, leadingRange.numBytes);
+            }
+
+            if (arrayLength != 0) {
+                StackFrameWriter writer = new StackFrameWriter();
+                writer.attach(targetFrame,
+                              arrayOffset,
+                              leadingRange.numReferences,
+                              leadingRange.numBytes);
+                spreadArray(arrayType, arrayObj, writer);
+            }
+
+            invokeExactFromTransform(target, targetFrame);
+            targetFrame.copyReturnValueTo(callerFrame);
+        }
+
+        private void spreadArray(Class<?> arrayType, Object arrayObj, StackFrameWriter writer) {
+            final Class<?> componentType = arrayType.getComponentType();
+            switch (Wrapper.basicTypeChar(componentType)) {
+                case 'L':
+                {
+                    final Object[] array = (Object[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextReference(array[i], componentType);
+                    }
+                    break;
+                }
+                case 'I':
+                {
+                    final int[] array = (int[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextInt(array[i]);
+                    }
+                    break;
+                }
+                case 'J':
+                {
+                    final long[] array = (long[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextLong(array[i]);
+                    }
+                    break;
+                }
+                case 'B':
+                {
+                    final byte[] array = (byte[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextByte(array[i]);
+                    }
+                    break;
+                }
+                case 'S':
+                {
+                    final short[] array = (short[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextShort(array[i]);
+                    }
+                    break;
+                }
+                case 'C':
+                {
+                    final char[] array = (char[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextChar(array[i]);
+                    }
+                    break;
+                }
+                case 'Z':
+                {
+                    final boolean[] array = (boolean[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextBoolean(array[i]);
+                    }
+                    break;
+                }
+                case 'F':
+                {
+                    final float[] array = (float[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextFloat(array[i]);
+                    }
+                    break;
+                }
+                case 'D':
+                {
+                    final double[] array = (double[]) arrayObj;
+                    for (int i = 0; i < array.length; ++i) {
+                        writer.putNextDouble(array[i]);
+                    }
+                    break;
+                }
+            }
+        }
+    }
+
+    /** Implements {@code MethodHandle.asCollector}. */
+    static class Collector extends Transformer {
+        private final MethodHandle target;
+
+        /**
+         * The array start is the position in the target outputs of the array collecting arguments
+         * and the position in the source inputs where collection starts.
+         */
+        private final int arrayOffset;
+
+        /**
+         * The array length is the number of arguments to be collected.
+         */
+        private final int arrayLength;
+
+        /** The type of the array. */
+        private final Class arrayType;
+
+        /**
+         * Range of arguments to copy verbatim from the start of the input frame.
+         */
+        private final Range leadingRange;
+
+        /**
+         * Range of arguments to copy verbatim from the end of the input frame.
+         */
+        private final Range trailingRange;
+
+        Collector(MethodHandle delegate, Class<?> arrayType, int start, int length) {
+            super(delegate.type().asCollectorType(arrayType, start, length));
+            this.target = delegate;
+            this.arrayOffset = start;
+            this.arrayLength = length;
+            this.arrayType = arrayType;
+
+            // Build ranges of arguments to be copied.
+            leadingRange = EmulatedStackFrame.Range.of(type(), 0, arrayOffset);
+            trailingRange = EmulatedStackFrame.Range.from(type(), arrayOffset + arrayLength);
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            // Create a new stack frame for the callee.
+            final EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+
+            // Copy arguments before the collector array.
+            callerFrame.copyRangeTo(targetFrame, leadingRange, 0, 0);
+
+            // Copy arguments after the collector array.
+            callerFrame.copyRangeTo(targetFrame, trailingRange,
+                leadingRange.numReferences + 1, leadingRange.numBytes);
+
+            // Collect arguments between arrayOffset and arrayOffset + arrayLength.
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(targetFrame, arrayOffset, leadingRange.numReferences, leadingRange.numBytes);
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(callerFrame, arrayOffset, leadingRange.numReferences, leadingRange.numBytes);
+
+            final char arrayTypeChar = Wrapper.basicTypeChar(arrayType.getComponentType());
+            switch (arrayTypeChar) {
+                case 'L':
+                    {
+                        // Reference arrays are the only case where the component type of the
+                        // array we construct might differ from the type of the reference we read
+                        // from the stack frame.
+                        final Class<?> targetType = target.type().ptypes()[arrayOffset];
+                        final Class<?> arrayComponentType = arrayType.getComponentType();
+                        Object[] arr =
+                                (Object[]) Array.newInstance(arrayComponentType, arrayLength);
+                        for (int i = 0; i < arrayLength; ++i) {
+                            arr[i] = reader.nextReference(arrayComponentType);
+                        }
+                        writer.putNextReference(arr, targetType);
+                        break;
+                    }
+                case 'I':
+                    {
+                        int[] array = new int[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextInt();
+                        }
+                        writer.putNextReference(array, int[].class);
+                        break;
+                    }
+                case 'J':
+                    {
+                        long[] array = new long[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextLong();
+                        }
+                        writer.putNextReference(array, long[].class);
+                        break;
+                    }
+                case 'B':
+                    {
+                        byte[] array = new byte[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextByte();
+                        }
+                        writer.putNextReference(array, byte[].class);
+                        break;
+                    }
+                case 'S':
+                    {
+                        short[] array = new short[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextShort();
+                        }
+                        writer.putNextReference(array, short[].class);
+                        break;
+                    }
+                case 'C':
+                    {
+                        char[] array = new char[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextChar();
+                        }
+                        writer.putNextReference(array, char[].class);
+                        break;
+                    }
+                case 'Z':
+                    {
+                        boolean[] array = new boolean[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextBoolean();
+                        }
+                        writer.putNextReference(array, boolean[].class);
+                        break;
+                    }
+                case 'F':
+                    {
+                        float[] array = new float[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextFloat();
+                        }
+                        writer.putNextReference(array, float[].class);
+                        break;
+                    }
+                case 'D':
+                    {
+                        double[] array = new double[arrayLength];
+                        for (int i = 0; i < arrayLength; ++i) {
+                            array[i] = reader.nextDouble();
+                        }
+                        writer.putNextReference(array, double[].class);
+                        break;
+                    }
+            }
+
+            invokeFromTransform(target, targetFrame);
+            targetFrame.copyReturnValueTo(callerFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandles.filterArguments}. */
+    static class FilterArguments extends Transformer {
+        /** The target handle. */
+        private final MethodHandle target;
+        /** Index of the first argument to filter */
+        private final int pos;
+        /** The list of filters to apply */
+        private final MethodHandle[] filters;
+
+        FilterArguments(MethodHandle target, int pos, MethodHandle... filters) {
+            super(deriveType(target, pos, filters));
+
+            this.target = target;
+            this.pos = pos;
+            this.filters = filters;
+        }
+
+        private static MethodType deriveType(MethodHandle target, int pos, MethodHandle[] filters) {
+            final Class<?>[] filterArgs = new Class<?>[filters.length];
+            for (int i = 0; i < filters.length; ++i) {
+                MethodHandle filter = filters[i];
+                if (filter != null) {
+                    filterArgs[i] = filter.type().parameterType(0);
+                } else {
+                    // null filters are treated as identity functions.
+                    filterArgs[i] = target.type().parameterType(i);
+                }
+            }
+
+            return target.type().replaceParameterTypes(pos, pos + filters.length, filterArgs);
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame stackFrame) throws Throwable {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(stackFrame);
+
+            EmulatedStackFrame transformedFrame = EmulatedStackFrame.create(target.type());
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(transformedFrame);
+
+            final Class<?>[] ptypes = target.type().ptypes();
+            for (int i = 0; i < ptypes.length; ++i) {
+                // Check whether the current argument has a filter associated with it.
+                // If it has no filter, no further action need be taken.
+                final Class<?> ptype = ptypes[i];
+                final MethodHandle filter;
+                if (i < pos) {
+                    filter = null;
+                } else if (i >= pos + filters.length) {
+                    filter = null;
+                } else {
+                    filter = filters[i - pos];
+                }
+
+                if (filter != null) {
+                    // Note that filter.type() must be (ptype)ptype - this is checked before
+                    // this transformer is created.
+                    EmulatedStackFrame filterFrame = EmulatedStackFrame.create(filter.type());
+
+                    //  Copy the next argument from the stack frame to the filter frame.
+                    final StackFrameWriter filterWriter = new StackFrameWriter();
+                    filterWriter.attach(filterFrame);
+                    copyNext(reader, filterWriter, filter.type().ptypes()[0]);
+
+                    invokeFromTransform(filter, filterFrame);
+
+                    // Copy the argument back from the filter frame to the stack frame.
+                    final StackFrameReader filterReader = new StackFrameReader();
+                    filterReader.attach(filterFrame);
+                    filterReader.makeReturnValueAccessor();
+                    copyNext(filterReader, writer, ptype);
+                } else {
+                    // There's no filter associated with this frame, just copy the next argument
+                    // over.
+                    copyNext(reader, writer, ptype);
+                }
+            }
+
+            invokeFromTransform(target, transformedFrame);
+            transformedFrame.copyReturnValueTo(stackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandles.collectArguments}. */
+    static class CollectArguments extends Transformer {
+        private final MethodHandle target;
+        private final MethodHandle collector;
+        private final int pos;
+
+        /** The range of input arguments we copy to the collector. */
+        private final Range collectorRange;
+
+        /**
+         * The first range of arguments we copy to the target. These are arguments in the range [0,
+         * pos). Note that arg[pos] is the return value of the filter.
+         */
+        private final Range range1;
+
+        /**
+         * The second range of arguments we copy to the target. These are arguments in the range
+         * (pos, N], where N is the number of target arguments.
+         */
+        private final Range range2;
+
+        private final int referencesOffset;
+        private final int stackFrameOffset;
+
+        CollectArguments(
+                MethodHandle target, MethodHandle collector, int pos, MethodType adapterType) {
+            super(adapterType);
+
+            this.target = target;
+            this.collector = collector;
+            this.pos = pos;
+
+            final int numFilterArgs = collector.type().parameterCount();
+            collectorRange = Range.of(type(), pos, pos + numFilterArgs);
+
+            range1 = Range.of(type(), 0, pos);
+            this.range2 = Range.from(type(), pos + numFilterArgs);
+
+            // Calculate the number of primitive bytes (or references) we copy to the
+            // target frame based on the return value of the combiner.
+            final Class<?> collectorRType = collector.type().rtype();
+            if (collectorRType == void.class) {
+                stackFrameOffset = 0;
+                referencesOffset = 0;
+            } else if (collectorRType.isPrimitive()) {
+                stackFrameOffset = EmulatedStackFrame.getSize(collectorRType);
+                referencesOffset = 0;
+            } else {
+                stackFrameOffset = 0;
+                referencesOffset = 1;
+            }
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame stackFrame) throws Throwable {
+            // First invoke the collector.
+            EmulatedStackFrame filterFrame = EmulatedStackFrame.create(collector.type());
+            stackFrame.copyRangeTo(filterFrame, collectorRange, 0, 0);
+            invokeFromTransform(collector, filterFrame);
+
+            // Start constructing the target frame.
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+            stackFrame.copyRangeTo(targetFrame, range1, 0, 0);
+
+            // If one of these offsets is not zero, we have a return value to copy.
+            if (referencesOffset != 0 || stackFrameOffset != 0) {
+                final StackFrameReader reader = new StackFrameReader();
+                reader.attach(filterFrame).makeReturnValueAccessor();
+                final StackFrameWriter writer = new StackFrameWriter();
+                writer.attach(targetFrame, pos, range1.numReferences, range1.numBytes);
+                copyNext(reader, writer, target.type().ptypes()[pos]);
+            }
+
+            stackFrame.copyRangeTo(
+                    targetFrame,
+                    range2,
+                    range1.numReferences + referencesOffset,
+                    range1.numBytes + stackFrameOffset);
+
+            invokeFromTransform(target, targetFrame);
+            targetFrame.copyReturnValueTo(stackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandles.foldArguments}. */
+    static class FoldArguments extends Transformer {
+        private final MethodHandle target;
+        private final MethodHandle combiner;
+        private final int position;
+
+        /** The range of arguments in our frame passed to the combiner. */
+        private final Range combinerArgs;
+
+        /** The range of arguments in our frame copied to the start of the target frame. */
+        private final Range leadingArgs;
+
+        /** The range of arguments in our frame copied to the end of the target frame. */
+        private final Range trailingArgs;
+
+        private final int referencesOffset;
+        private final int stackFrameOffset;
+
+        FoldArguments(MethodHandle target, int position, MethodHandle combiner) {
+            super(deriveType(target, position, combiner));
+
+            this.target = target;
+            this.combiner = combiner;
+            this.position = position;
+
+            this.combinerArgs =
+                    Range.of(type(), position, position + combiner.type().parameterCount());
+            this.leadingArgs = Range.of(type(), 0, position);
+            this.trailingArgs = Range.from(type(), position);
+
+            final Class<?> combinerRType = combiner.type().rtype();
+            if (combinerRType == void.class) {
+                stackFrameOffset = 0;
+                referencesOffset = 0;
+            } else if (combinerRType.isPrimitive()) {
+                stackFrameOffset = EmulatedStackFrame.getSize(combinerRType);
+                referencesOffset = 0;
+            } else {
+                // combinerRType is a reference.
+                stackFrameOffset = 0;
+                referencesOffset = 1;
+            }
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame stackFrame) throws Throwable {
+            // First construct the combiner frame and invoke the combiner.
+            EmulatedStackFrame combinerFrame = EmulatedStackFrame.create(combiner.type());
+            stackFrame.copyRangeTo(combinerFrame, combinerArgs, 0, 0);
+            invokeExactFromTransform(combiner, combinerFrame);
+
+            // Create the stack frame for the target and copy leading arguments to it.
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+            stackFrame.copyRangeTo(targetFrame, leadingArgs, 0, 0);
+
+            // If one of these offsets is not zero, we have to slot the return value from the
+            // combiner into the target frame.
+            if (referencesOffset != 0 || stackFrameOffset != 0) {
+                final StackFrameReader reader = new StackFrameReader();
+                reader.attach(combinerFrame).makeReturnValueAccessor();
+                final StackFrameWriter writer = new StackFrameWriter();
+                writer.attach(targetFrame,
+                              position,
+                              leadingArgs.numReferences,
+                              leadingArgs.numBytes);
+                copyNext(reader, writer, target.type().ptypes()[position]);
+            }
+
+            // Copy the arguments provided to the combiner to the tail of the target frame.
+            stackFrame.copyRangeTo(
+                targetFrame,
+                trailingArgs,
+                leadingArgs.numReferences + referencesOffset,
+                leadingArgs.numBytes + stackFrameOffset);
+
+            // Call the target and propagate return value.
+            invokeExactFromTransform(target, targetFrame);
+            targetFrame.copyReturnValueTo(stackFrame);
+        }
+
+        private static MethodType deriveType(MethodHandle target,
+                                             int position,
+                                             MethodHandle combiner) {
+            if (combiner.type().rtype() == void.class) {
+                return target.type();
+            }
+            return target.type().dropParameterTypes(position, position + 1);
+        }
+    }
+
+    /** Implements {@code MethodHandles.insertArguments}. */
+    static class InsertArguments extends Transformer {
+        private final MethodHandle target;
+        private final int pos;
+        private final Object[] values;
+
+        private final Range range1;
+        private final Range range2;
+
+        InsertArguments(MethodHandle target, int pos, Object[] values) {
+            super(target.type().dropParameterTypes(pos, pos + values.length));
+            this.target = target;
+            this.pos = pos;
+            this.values = values;
+
+            final MethodType type = type();
+            range1 = EmulatedStackFrame.Range.of(type, 0, pos);
+            range2 = Range.of(type, pos, type.parameterCount());
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame stackFrame) throws Throwable {
+            EmulatedStackFrame calleeFrame = EmulatedStackFrame.create(target.type());
+
+            // Copy all arguments before |pos|.
+            stackFrame.copyRangeTo(calleeFrame, range1, 0, 0);
+
+            // Attach a stack frame writer so that we can copy the next |values.length|
+            // arguments.
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(calleeFrame, pos, range1.numReferences, range1.numBytes);
+
+            // Copy all the arguments supplied in |values|.
+            int referencesCopied = 0;
+            int bytesCopied = 0;
+            final Class<?>[] ptypes = target.type().ptypes();
+            for (int i = 0; i < values.length; ++i) {
+                final Class<?> ptype = ptypes[i + pos];
+                final char typeChar = Wrapper.basicTypeChar(ptype);
+                if (typeChar == 'L') {
+                    writer.putNextReference(values[i], ptype);
+                    referencesCopied++;
+                } else {
+                    switch (typeChar) {
+                        case 'Z':
+                            writer.putNextBoolean((boolean) values[i]);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) values[i]);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) values[i]);
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) values[i]);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) values[i]);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) values[i]);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) values[i]);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) values[i]);
+                            break;
+                    }
+                    bytesCopied += EmulatedStackFrame.getSize(ptype);
+                }
+            }
+
+            // Copy all remaining arguments.
+            if (range2 != null) {
+                stackFrame.copyRangeTo(
+                        calleeFrame,
+                        range2,
+                        range1.numReferences + referencesCopied,
+                        range1.numBytes + bytesCopied);
+            }
+
+            invokeFromTransform(target, calleeFrame);
+            calleeFrame.copyReturnValueTo(stackFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandle.asType}. */
+    static class AsTypeAdapter extends Transformer {
+        private final MethodHandle target;
+
+        AsTypeAdapter(MethodHandle target, MethodType type) {
+            super(type);
+            this.target = target;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            final EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+            final StackFrameReader reader = new StackFrameReader();
+            final StackFrameWriter writer = new StackFrameWriter();
+
+            // Adapt arguments
+            reader.attach(callerFrame);
+            writer.attach(targetFrame);
+            adaptArguments(reader, writer);
+
+            // Invoke target
+            invokeFromTransform(target, targetFrame);
+
+            if (callerFrame.getMethodType().rtype() != void.class) {
+                // Adapt return value
+                reader.attach(targetFrame).makeReturnValueAccessor();
+                writer.attach(callerFrame).makeReturnValueAccessor();
+                adaptReturnValue(reader, writer);
+            }
+        }
+
+        private void adaptArguments(final StackFrameReader reader, final StackFrameWriter writer) {
+            final Class<?>[] fromTypes = type().ptypes();
+            final Class<?>[] toTypes = target.type().ptypes();
+            for (int i = 0; i < fromTypes.length; ++i) {
+                adaptArgument(reader, fromTypes[i], writer, toTypes[i]);
+            }
+        }
+
+        private void adaptReturnValue(
+                final StackFrameReader reader, final StackFrameWriter writer) {
+            final Class<?> fromType = target.type().rtype();
+            final Class<?> toType = type().rtype();
+            adaptArgument(reader, fromType, writer, toType);
+        }
+
+        private void throwWrongMethodTypeException() throws WrongMethodTypeException {
+            throw new WrongMethodTypeException(
+                    "Cannot convert from " + type() + " to " + target.type());
+        }
+
+        private static void throwClassCastException(Class from, Class to)
+                throws ClassCastException {
+            throw new ClassCastException("Cannot cast from " + from + " to " + to);
+        }
+
+        private void writePrimitiveByteAs(final StackFrameWriter writer, char baseType, byte value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'B':
+                    writer.putNextByte(value);
+                    return;
+                case 'S':
+                    writer.putNextShort((short) value);
+                    return;
+                case 'I':
+                    writer.putNextInt((int) value);
+                    return;
+                case 'J':
+                    writer.putNextLong((long) value);
+                    return;
+                case 'F':
+                    writer.putNextFloat((float) value);
+                    return;
+                case 'D':
+                    writer.putNextDouble((double) value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private void writePrimitiveShortAs(
+                final StackFrameWriter writer, char baseType, short value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'S':
+                    writer.putNextShort(value);
+                    return;
+                case 'I':
+                    writer.putNextInt((int) value);
+                    return;
+                case 'J':
+                    writer.putNextLong((long) value);
+                    return;
+                case 'F':
+                    writer.putNextFloat((float) value);
+                    return;
+                case 'D':
+                    writer.putNextDouble((double) value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private void writePrimitiveCharAs(final StackFrameWriter writer, char baseType, char value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'C':
+                    writer.putNextChar(value);
+                    return;
+                case 'I':
+                    writer.putNextInt((int) value);
+                    return;
+                case 'J':
+                    writer.putNextLong((long) value);
+                    return;
+                case 'F':
+                    writer.putNextFloat((float) value);
+                    return;
+                case 'D':
+                    writer.putNextDouble((double) value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private void writePrimitiveIntAs(final StackFrameWriter writer, char baseType, int value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'I':
+                    writer.putNextInt(value);
+                    return;
+                case 'J':
+                    writer.putNextLong((long) value);
+                    return;
+                case 'F':
+                    writer.putNextFloat((float) value);
+                    return;
+                case 'D':
+                    writer.putNextDouble((double) value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+            throwWrongMethodTypeException();
+        }
+
+        private void writePrimitiveLongAs(final StackFrameWriter writer, char baseType, long value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'J':
+                    writer.putNextLong(value);
+                    return;
+                case 'F':
+                    writer.putNextFloat((float) value);
+                    return;
+                case 'D':
+                    writer.putNextDouble((double) value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private void writePrimitiveFloatAs(
+                final StackFrameWriter writer, char baseType, float value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'F':
+                    writer.putNextFloat(value);
+                    return;
+                case 'D':
+                    writer.putNextDouble((double) value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private void writePrimitiveDoubleAs(
+                final StackFrameWriter writer, char baseType, double value)
+                throws WrongMethodTypeException {
+            switch (baseType) {
+                case 'D':
+                    writer.putNextDouble(value);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private void writePrimitiveVoidAs(final StackFrameWriter writer, char baseType) {
+            switch (baseType) {
+                case 'Z':
+                    writer.putNextBoolean(false);
+                    return;
+                case 'B':
+                    writer.putNextByte((byte) 0);
+                    return;
+                case 'S':
+                    writer.putNextShort((short) 0);
+                    return;
+                case 'C':
+                    writer.putNextChar((char) 0);
+                    return;
+                case 'I':
+                    writer.putNextInt(0);
+                    return;
+                case 'J':
+                    writer.putNextLong(0L);
+                    return;
+                case 'F':
+                    writer.putNextFloat(0.0f);
+                    return;
+                case 'D':
+                    writer.putNextDouble(0.0);
+                    return;
+                default:
+                    throwWrongMethodTypeException();
+            }
+        }
+
+        private static Class getBoxedPrimitiveClass(char baseType) {
+            switch (baseType) {
+                case 'Z':
+                    return Boolean.class;
+                case 'B':
+                    return Byte.class;
+                case 'S':
+                    return Short.class;
+                case 'C':
+                    return Character.class;
+                case 'I':
+                    return Integer.class;
+                case 'J':
+                    return Long.class;
+                case 'F':
+                    return Float.class;
+                case 'D':
+                    return Double.class;
+                default:
+                    return null;
+            }
+        }
+
+        private void adaptArgument(
+                final StackFrameReader reader,
+                final Class<?> from,
+                final StackFrameWriter writer,
+                final Class<?> to) {
+            if (from.equals(to)) {
+                StackFrameAccessor.copyNext(reader, writer, from);
+                return;
+            }
+
+            if (to.isPrimitive()) {
+                if (from.isPrimitive()) {
+                    final char fromBaseType = Wrapper.basicTypeChar(from);
+                    final char toBaseType = Wrapper.basicTypeChar(to);
+                    switch (fromBaseType) {
+                        case 'B':
+                            writePrimitiveByteAs(writer, toBaseType, reader.nextByte());
+                            return;
+                        case 'S':
+                            writePrimitiveShortAs(writer, toBaseType, reader.nextShort());
+                            return;
+                        case 'C':
+                            writePrimitiveCharAs(writer, toBaseType, reader.nextChar());
+                            return;
+                        case 'I':
+                            writePrimitiveIntAs(writer, toBaseType, reader.nextInt());
+                            return;
+                        case 'J':
+                            writePrimitiveLongAs(writer, toBaseType, reader.nextLong());
+                            return;
+                        case 'F':
+                            writePrimitiveFloatAs(writer, toBaseType, reader.nextFloat());
+                            return;
+                        case 'V':
+                            writePrimitiveVoidAs(writer, toBaseType);
+                            return;
+                        default:
+                            throwWrongMethodTypeException();
+                    }
+                } else {
+                    final Object value = reader.nextReference(Object.class);
+                    if (to == void.class) {
+                        return;
+                    }
+                    if (value == null) {
+                        throw new NullPointerException();
+                    }
+                    if (!Wrapper.isWrapperType(value.getClass())) {
+                        throwClassCastException(value.getClass(), to);
+                    }
+                    final Wrapper fromWrapper = Wrapper.forWrapperType(value.getClass());
+                    final Wrapper toWrapper = Wrapper.forPrimitiveType(to);
+                    if (!toWrapper.isConvertibleFrom(fromWrapper)) {
+                        throwClassCastException(from, to);
+                    }
+
+                    final char toChar = toWrapper.basicTypeChar();
+                    switch (fromWrapper.basicTypeChar()) {
+                        case 'Z':
+                            writer.putNextBoolean(((Boolean) value).booleanValue());
+                            return;
+                        case 'B':
+                            writePrimitiveByteAs(writer, toChar, ((Byte) value).byteValue());
+                            return;
+                        case 'S':
+                            writePrimitiveShortAs(writer, toChar, ((Short) value).shortValue());
+                            return;
+                        case 'C':
+                            writePrimitiveCharAs(writer, toChar, ((Character) value).charValue());
+                            return;
+                        case 'I':
+                            writePrimitiveIntAs(writer, toChar, ((Integer) value).intValue());
+                            return;
+                        case 'J':
+                            writePrimitiveLongAs(writer, toChar, ((Long) value).longValue());
+                            return;
+                        case 'F':
+                            writePrimitiveFloatAs(writer, toChar, ((Float) value).floatValue());
+                            return;
+                        case 'D':
+                            writePrimitiveDoubleAs(writer, toChar, ((Double) value).doubleValue());
+                            return;
+                        default:
+                            throw new IllegalStateException();
+                    }
+                }
+            } else {
+                if (from.isPrimitive()) {
+                    // Boxing conversion
+                    final char fromBaseType = Wrapper.basicTypeChar(from);
+                    final Class fromBoxed = getBoxedPrimitiveClass(fromBaseType);
+                    // 'to' maybe a super class of the boxed `from` type, e.g. Number.
+                    if (fromBoxed != null && !to.isAssignableFrom(fromBoxed)) {
+                        throwWrongMethodTypeException();
+                    }
+
+                    Object boxed;
+                    switch (fromBaseType) {
+                        case 'Z':
+                            boxed = Boolean.valueOf(reader.nextBoolean());
+                            break;
+                        case 'B':
+                            boxed = Byte.valueOf(reader.nextByte());
+                            break;
+                        case 'S':
+                            boxed = Short.valueOf(reader.nextShort());
+                            break;
+                        case 'C':
+                            boxed = Character.valueOf(reader.nextChar());
+                            break;
+                        case 'I':
+                            boxed = Integer.valueOf(reader.nextInt());
+                            break;
+                        case 'J':
+                            boxed = Long.valueOf(reader.nextLong());
+                            break;
+                        case 'F':
+                            boxed = Float.valueOf(reader.nextFloat());
+                            break;
+                        case 'D':
+                            boxed = Double.valueOf(reader.nextDouble());
+                            break;
+                        case 'V':
+                            boxed = null;
+                            break;
+                        default:
+                            throw new IllegalStateException();
+                    }
+                    writer.putNextReference(boxed, to);
+                    return;
+                } else {
+                    // Cast
+                    Object value = reader.nextReference(Object.class);
+                    if (value != null && !to.isAssignableFrom(value.getClass())) {
+                        throwClassCastException(value.getClass(), to);
+                    }
+                    writer.putNextReference(value, to);
+                }
+            }
+        }
+    }
+
+    /** Implements {@code MethodHandles.explicitCastArguments}. */
+    static class ExplicitCastArguments extends Transformer {
+        private final MethodHandle target;
+
+        ExplicitCastArguments(MethodHandle target, MethodType type) {
+            super(type);
+            this.target = target;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            // Create a new stack frame for the target.
+            EmulatedStackFrame targetFrame = EmulatedStackFrame.create(target.type());
+
+            explicitCastArguments(callerFrame, targetFrame);
+            invokeFromTransform(target, targetFrame);
+            explicitCastReturnValue(callerFrame, targetFrame);
+        }
+
+        private void explicitCastArguments(
+                final EmulatedStackFrame callerFrame, final EmulatedStackFrame targetFrame) {
+            final StackFrameReader reader = new StackFrameReader();
+            reader.attach(callerFrame);
+            final StackFrameWriter writer = new StackFrameWriter();
+            writer.attach(targetFrame);
+
+            final Class<?>[] fromTypes = type().ptypes();
+            final Class<?>[] toTypes = target.type().ptypes();
+            for (int i = 0; i < fromTypes.length; ++i) {
+                explicitCast(reader, fromTypes[i], writer, toTypes[i]);
+            }
+        }
+
+        private void explicitCastReturnValue(
+                final EmulatedStackFrame callerFrame, final EmulatedStackFrame targetFrame) {
+            Class<?> from = target.type().rtype();
+            Class<?> to = type().rtype();
+            if (to != void.class) {
+                final StackFrameWriter writer = new StackFrameWriter();
+                writer.attach(callerFrame);
+                writer.makeReturnValueAccessor();
+                if (from == void.class) {
+                    if (to.isPrimitive()) {
+                        unboxNull(writer, to);
+                    } else {
+                        writer.putNextReference(null, to);
+                    }
+                } else {
+                    final StackFrameReader reader = new StackFrameReader();
+                    reader.attach(targetFrame);
+                    reader.makeReturnValueAccessor();
+                    explicitCast(reader, target.type().rtype(), writer, type().rtype());
+                }
+            }
+        }
+
+        private static void throwUnexpectedType(final Class<?> unexpectedType) {
+            throw new InternalError("Unexpected type: " + unexpectedType);
+        }
+
+        @SuppressWarnings("unchecked")
+        private static void badCast(final Class<?> from, final Class<?> to) {
+            throw new ClassCastException("Cannot cast " + from.getName() + " to " + to.getName());
+        }
+
+        /**
+         * Converts byte value to boolean according to {@link
+         * java.lang.invoke.MethodHandles#explicitCast()}
+         */
+        private static boolean toBoolean(byte value) {
+            return (value & 1) == 1;
+        }
+
+        private static byte readPrimitiveAsByte(
+                final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (byte) reader.nextByte();
+                case 'C':
+                    return (byte) reader.nextChar();
+                case 'S':
+                    return (byte) reader.nextShort();
+                case 'I':
+                    return (byte) reader.nextInt();
+                case 'J':
+                    return (byte) reader.nextLong();
+                case 'F':
+                    return (byte) reader.nextFloat();
+                case 'D':
+                    return (byte) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? (byte) 1 : (byte) 0;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static char readPrimitiveAsChar(
+                final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (char) reader.nextByte();
+                case 'C':
+                    return (char) reader.nextChar();
+                case 'S':
+                    return (char) reader.nextShort();
+                case 'I':
+                    return (char) reader.nextInt();
+                case 'J':
+                    return (char) reader.nextLong();
+                case 'F':
+                    return (char) reader.nextFloat();
+                case 'D':
+                    return (char) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? (char) 1 : (char) 0;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static short readPrimitiveAsShort(
+                final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (short) reader.nextByte();
+                case 'C':
+                    return (short) reader.nextChar();
+                case 'S':
+                    return (short) reader.nextShort();
+                case 'I':
+                    return (short) reader.nextInt();
+                case 'J':
+                    return (short) reader.nextLong();
+                case 'F':
+                    return (short) reader.nextFloat();
+                case 'D':
+                    return (short) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? (short) 1 : (short) 0;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static int readPrimitiveAsInt(final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (int) reader.nextByte();
+                case 'C':
+                    return (int) reader.nextChar();
+                case 'S':
+                    return (int) reader.nextShort();
+                case 'I':
+                    return (int) reader.nextInt();
+                case 'J':
+                    return (int) reader.nextLong();
+                case 'F':
+                    return (int) reader.nextFloat();
+                case 'D':
+                    return (int) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? 1 : 0;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static long readPrimitiveAsLong(
+                final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (long) reader.nextByte();
+                case 'C':
+                    return (long) reader.nextChar();
+                case 'S':
+                    return (long) reader.nextShort();
+                case 'I':
+                    return (long) reader.nextInt();
+                case 'J':
+                    return (long) reader.nextLong();
+                case 'F':
+                    return (long) reader.nextFloat();
+                case 'D':
+                    return (long) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? 1L : 0L;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static float readPrimitiveAsFloat(
+                final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (float) reader.nextByte();
+                case 'C':
+                    return (float) reader.nextChar();
+                case 'S':
+                    return (float) reader.nextShort();
+                case 'I':
+                    return (float) reader.nextInt();
+                case 'J':
+                    return (float) reader.nextLong();
+                case 'F':
+                    return (float) reader.nextFloat();
+                case 'D':
+                    return (float) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? 1.0f : 0.0f;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static double readPrimitiveAsDouble(
+                final StackFrameReader reader, final Class<?> from) {
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'B':
+                    return (double) reader.nextByte();
+                case 'C':
+                    return (double) reader.nextChar();
+                case 'S':
+                    return (double) reader.nextShort();
+                case 'I':
+                    return (double) reader.nextInt();
+                case 'J':
+                    return (double) reader.nextLong();
+                case 'F':
+                    return (double) reader.nextFloat();
+                case 'D':
+                    return (double) reader.nextDouble();
+                case 'Z':
+                    return reader.nextBoolean() ? 1.0 : 0.0;
+                default:
+                    throwUnexpectedType(from);
+                    return 0;
+            }
+        }
+
+        private static void explicitCastPrimitives(
+                final StackFrameReader reader,
+                final Class<?> from,
+                final StackFrameWriter writer,
+                final Class<?> to) {
+            switch (Wrapper.basicTypeChar(to)) {
+                case 'B':
+                    writer.putNextByte(readPrimitiveAsByte(reader, from));
+                    break;
+                case 'C':
+                    writer.putNextChar(readPrimitiveAsChar(reader, from));
+                    break;
+                case 'S':
+                    writer.putNextShort(readPrimitiveAsShort(reader, from));
+                    break;
+                case 'I':
+                    writer.putNextInt(readPrimitiveAsInt(reader, from));
+                    break;
+                case 'J':
+                    writer.putNextLong(readPrimitiveAsLong(reader, from));
+                    break;
+                case 'F':
+                    writer.putNextFloat(readPrimitiveAsFloat(reader, from));
+                    break;
+                case 'D':
+                    writer.putNextDouble(readPrimitiveAsDouble(reader, from));
+                    break;
+                case 'Z':
+                    writer.putNextBoolean(toBoolean(readPrimitiveAsByte(reader, from)));
+                    break;
+                default:
+                    throwUnexpectedType(to);
+                    break;
+            }
+        }
+
+        private static void unboxNull(final StackFrameWriter writer, final Class<?> to) {
+            switch (Wrapper.basicTypeChar(to)) {
+                case 'Z':
+                    writer.putNextBoolean(false);
+                    break;
+                case 'B':
+                    writer.putNextByte((byte) 0);
+                    break;
+                case 'C':
+                    writer.putNextChar((char) 0);
+                    break;
+                case 'S':
+                    writer.putNextShort((short) 0);
+                    break;
+                case 'I':
+                    writer.putNextInt((int) 0);
+                    break;
+                case 'J':
+                    writer.putNextLong((long) 0);
+                    break;
+                case 'F':
+                    writer.putNextFloat((float) 0);
+                    break;
+                case 'D':
+                    writer.putNextDouble((double) 0);
+                    break;
+                default:
+                    throwUnexpectedType(to);
+                    break;
+            }
+        }
+
+        private static void unboxNonNull(
+                final Object ref,
+                final StackFrameWriter writer,
+                final Class<?> to) {
+            final Class<?> from = ref.getClass();
+            final Class<?> unboxedFromType = Wrapper.asPrimitiveType(from);
+            switch (Wrapper.basicTypeChar(unboxedFromType)) {
+                case 'Z':
+                    boolean z = (boolean) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean(z);
+                            break;
+                        case 'B':
+                            writer.putNextByte(z ? (byte) 1 : (byte) 0);
+                            break;
+                        case 'S':
+                            writer.putNextShort(z ? (short) 1 : (short) 0);
+                            break;
+                        case 'C':
+                            writer.putNextChar(z ? (char) 1 : (char) 0);
+                            break;
+                        case 'I':
+                            writer.putNextInt(z ? 1 : 0);
+                            break;
+                        case 'J':
+                            writer.putNextLong(z ? 1l : 0l);
+                            break;
+                        case 'F':
+                            writer.putNextFloat(z ? 1.0f : 0.0f);
+                            break;
+                        case 'D':
+                            writer.putNextDouble(z ? 1.0 : 0.0);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                case 'B':
+                    byte b = (byte) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'B':
+                            writer.putNextByte(b);
+                            break;
+                        case 'Z':
+                            writer.putNextBoolean(toBoolean(b));
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) b);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) b);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) b);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) b);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) b);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) b);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                case 'S':
+                    short s = (short) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean((s & 1) == 1);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) s);
+                            break;
+                        case 'S':
+                            writer.putNextShort(s);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) s);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) s);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) s);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) s);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) s);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                case 'C':
+                    char c = (char) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean((c & (char) 1) == (char) 1);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) c);
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) c);
+                            break;
+                        case 'C':
+                            writer.putNextChar(c);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) c);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) c);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) c);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) c);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                case 'I':
+                    int i = (int) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean((i & 1) == 1);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) i);
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) i);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) i);
+                            break;
+                        case 'I':
+                            writer.putNextInt(i);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) i);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) i);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) i);
+                            break;
+                        default:
+                            badCast(from, to);
+                    }
+                    break;
+                case 'J':
+                    long j = (long) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean((j & 1l) == 1l);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) j);
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) j);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) j);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) j);
+                            break;
+                        case 'J':
+                            writer.putNextLong(j);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) j);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) j);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                case 'F':
+                    float f = (float) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean(((byte) f & 1) != 0);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) f);
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) f);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) f);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) f);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) f);
+                            break;
+                        case 'F':
+                            writer.putNextFloat(f);
+                            break;
+                        case 'D':
+                            writer.putNextDouble((double) f);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                case 'D':
+                    double d = (double) ref;
+                    switch (Wrapper.basicTypeChar(to)) {
+                        case 'Z':
+                            writer.putNextBoolean(((byte) d & 1) != 0);
+                            break;
+                        case 'B':
+                            writer.putNextByte((byte) d);
+                            break;
+                        case 'S':
+                            writer.putNextShort((short) d);
+                            break;
+                        case 'C':
+                            writer.putNextChar((char) d);
+                            break;
+                        case 'I':
+                            writer.putNextInt((int) d);
+                            break;
+                        case 'J':
+                            writer.putNextLong((long) d);
+                            break;
+                        case 'F':
+                            writer.putNextFloat((float) d);
+                            break;
+                        case 'D':
+                            writer.putNextDouble(d);
+                            break;
+                        default:
+                            badCast(from, to);
+                            break;
+                    }
+                    break;
+                default:
+                    badCast(from, to);
+                    break;
+            }
+        }
+
+        private static void unbox(
+                final Object ref,
+                final StackFrameWriter writer,
+                final Class<?> to) {
+            if (ref == null) {
+                unboxNull(writer, to);
+            } else {
+                unboxNonNull(ref, writer, to);
+            }
+        }
+
+        private static void box(
+                final StackFrameReader reader,
+                final Class<?> from,
+                final StackFrameWriter writer,
+                final Class<?> to) {
+            Object boxed = null;
+            switch (Wrapper.basicTypeChar(from)) {
+                case 'Z':
+                    boxed = Boolean.valueOf(reader.nextBoolean());
+                    break;
+                case 'B':
+                    boxed = Byte.valueOf(reader.nextByte());
+                    break;
+                case 'C':
+                    boxed = Character.valueOf(reader.nextChar());
+                    break;
+                case 'S':
+                    boxed = Short.valueOf(reader.nextShort());
+                    break;
+                case 'I':
+                    boxed = Integer.valueOf(reader.nextInt());
+                    break;
+                case 'J':
+                    boxed = Long.valueOf(reader.nextLong());
+                    break;
+                case 'F':
+                    boxed = Float.valueOf(reader.nextFloat());
+                    break;
+                case 'D':
+                    boxed = Double.valueOf(reader.nextDouble());
+                    break;
+                default:
+                    throwUnexpectedType(from);
+                    break;
+            }
+            writer.putNextReference(to.cast(boxed), to);
+        }
+
+        private static void explicitCast(
+                final StackFrameReader reader,
+                final Class<?> from,
+                final StackFrameWriter writer,
+                final Class<?> to) {
+            if (from.equals(to)) {
+                StackFrameAccessor.copyNext(reader, writer, from);
+                return;
+            }
+
+            if (from.isPrimitive()) {
+                if (to.isPrimitive()) {
+                    // |from| and |to| are primitive types.
+                    explicitCastPrimitives(reader, from, writer, to);
+                } else {
+                    // |from| is a primitive type, |to| is a reference type.
+                    box(reader, from, writer, to);
+                }
+            } else {
+                // |from| is a reference type.
+                Object ref = reader.nextReference(from);
+                if (to.isPrimitive()) {
+                    // |from| is a reference type, |to| is a primitive type,
+                    unbox(ref, writer, to);
+                } else if (to.isInterface()) {
+                    // Pass from without a cast according to description for
+                    // {@link java.lang.invoke.MethodHandles#explicitCastArguments()}.
+                    writer.putNextReference(ref, to);
+                } else {
+                    // |to| and from |from| are reference types, perform class cast check.
+                    writer.putNextReference(to.cast(ref), to);
+                }
+            }
+        }
+    }
+
+    /** Implements {@code MethodHandles.loop}. */
+    static class Loop extends Transformer {
+
+        /** Loop variable initialization methods. */
+        final MethodHandle[] inits;
+
+        /** Loop variable step methods. */
+        final MethodHandle[] steps;
+
+        /** Loop variable predicate methods. */
+        final MethodHandle[] preds;
+
+        /** Loop return value calculating methods. */
+        final MethodHandle[] finis;
+
+        /** Synthetic method type for frame used to hold loop variables. */
+        final MethodType loopVarsType;
+
+        /** Range of loop variables in the frame used for loop variables. */
+        final Range loopVarsRange;
+
+        /** Range of suffix variables in the caller frame. */
+        final Range suffixRange;
+
+        public Loop(Class<?> loopReturnType,
+                    List<Class<?>> commonSuffix,
+                    MethodHandle[] finit,
+                    MethodHandle[] fstep,
+                    MethodHandle[] fpred,
+                    MethodHandle[] ffini) {
+            super(MethodType.methodType(loopReturnType, commonSuffix));
+
+            inits = finit;
+            steps = fstep;
+            preds = fpred;
+            finis = ffini;
+
+            loopVarsType = deduceLoopVarsType(finit);
+            loopVarsRange = EmulatedStackFrame.Range.all(loopVarsType);
+            suffixRange = EmulatedStackFrame.Range.all(type());
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            final EmulatedStackFrame loopVarsFrame = EmulatedStackFrame.create(loopVarsType);
+            final StackFrameWriter loopVarsWriter = new StackFrameWriter();
+
+            init(callerFrame, loopVarsFrame, loopVarsWriter);
+
+            for (;;) {
+                loopVarsWriter.attach(loopVarsFrame);
+                for (int i = 0; i < steps.length; ++i) {
+                    // Future optimization opportunity: there is a good deal of StackFrame
+                    // allocation here, one is allocated per MH invocation. Consider caching
+                    // frames <method-type:stack-frame> and passing the cache on the stack.
+                    doStep(steps[i], callerFrame, loopVarsFrame, loopVarsWriter);
+                    boolean keepGoing = doPredicate(preds[i], callerFrame, loopVarsFrame);
+                    if (!keepGoing) {
+                        doFinish(finis[i], callerFrame, loopVarsFrame);
+                        return;
+                    }
+                }
+            }
+        }
+
+        private static MethodType deduceLoopVarsType(final MethodHandle[] inits) {
+            List<Class<?>> loopVarTypes = new ArrayList(inits.length);
+            for (MethodHandle init : inits) {
+                Class<?> returnType = init.type().returnType();
+                if (returnType != void.class) {
+                    loopVarTypes.add(returnType);
+                }
+            }
+            return MethodType.methodType(void.class, loopVarTypes);
+        }
+
+        private void init(final EmulatedStackFrame callerFrame,
+                          final EmulatedStackFrame loopVarsFrame,
+                          final StackFrameWriter loopVarsWriter) throws Throwable {
+            loopVarsWriter.attach(loopVarsFrame);
+            for (MethodHandle init : inits) {
+                EmulatedStackFrame initFrame = EmulatedStackFrame.create(init.type());
+                callerFrame.copyRangeTo(initFrame, suffixRange, 0, 0);
+
+                invokeExactFromTransform(init, initFrame);
+
+                final Class<?> loopVarType = init.type().returnType();
+                if (loopVarType != void.class) {
+                    StackFrameReader initReader = new StackFrameReader();
+                    initReader.attach(initFrame).makeReturnValueAccessor();
+                    copyNext(initReader, loopVarsWriter, loopVarType);
+                }
+            }
+        }
+
+        /**
+         * Creates a frame for invoking a method of specified type.
+         *
+         * The frame arguments are the loop variables followed by the arguments provided to the
+         * loop MethodHandle.
+         *
+         * @param mt the type of the method to be invoked.
+         * @param callerFrame the frame invoking the loop MethodHandle.
+         * @param loopVarsFrame the frame holding loop variables.
+         * @return an EmulatedStackFrame initialized with the required arguments.
+         */
+        private EmulatedStackFrame prepareFrame(final MethodType mt,
+                                                final EmulatedStackFrame callerFrame,
+                                                final EmulatedStackFrame loopVarsFrame) {
+            EmulatedStackFrame frame = EmulatedStackFrame.create(mt);
+
+            // Copy loop variables.
+            loopVarsFrame.copyRangeTo(frame, loopVarsRange, 0, 0);
+
+            // Copy arguments provided in the loop invoke().
+            callerFrame.copyRangeTo(frame,
+                                    suffixRange,
+                                    loopVarsRange.numReferences,
+                                    loopVarsRange.numBytes);
+            return frame;
+        }
+
+        private void doStep(final MethodHandle step,
+                            final EmulatedStackFrame callerFrame,
+                            final EmulatedStackFrame loopVarsFrame,
+                            final StackFrameWriter loopVarsWriter) throws Throwable {
+            final EmulatedStackFrame stepFrame =
+                prepareFrame(step.type(), callerFrame, loopVarsFrame);
+            invokeExactFromTransform(step, stepFrame);
+
+            final Class<?> loopVarType = step.type().returnType();
+            if (loopVarType != void.class) {
+                final StackFrameReader stepReader = new StackFrameReader();
+                stepReader.attach(stepFrame).makeReturnValueAccessor();
+                copyNext(stepReader, loopVarsWriter, loopVarType);
+            }
+        }
+
+        private boolean doPredicate(final MethodHandle pred,
+                                    final EmulatedStackFrame callerFrame,
+                                    final EmulatedStackFrame loopVarsFrame) throws Throwable {
+            final EmulatedStackFrame predFrame =
+                    prepareFrame(pred.type(), callerFrame, loopVarsFrame);
+            invokeExactFromTransform(pred, predFrame);
+
+            final StackFrameReader predReader = new StackFrameReader();
+            predReader.attach(predFrame).makeReturnValueAccessor();
+            return predReader.nextBoolean();
+        }
+
+        private void doFinish(final MethodHandle fini,
+                              final EmulatedStackFrame callerFrame,
+                              final EmulatedStackFrame loopVarsFrame) throws Throwable {
+            final EmulatedStackFrame finiFrame =
+                    prepareFrame(fini.type(), callerFrame, loopVarsFrame);
+            invokeExactFromTransform(fini, finiFrame);
+            finiFrame.copyReturnValueTo(callerFrame);
+        }
+    }
+
+    /** Implements {@code MethodHandles.tableSwitch}. */
+    static class TableSwitch extends Transformer {
+        private final MethodHandle fallback;
+        private final MethodHandle[] targets;
+
+        TableSwitch(MethodType type, MethodHandle fallback, MethodHandle[] targets) {
+            super(type);
+            this.fallback = fallback;
+            this.targets = targets;
+        }
+
+        @Override
+        public void transform(EmulatedStackFrame callerFrame) throws Throwable {
+            final MethodHandle selected = selectMethodHandle(callerFrame);
+            invokeExactFromTransform(selected, callerFrame);
+        }
+
+        private MethodHandle selectMethodHandle(EmulatedStackFrame callerFrame) {
+            StackFrameReader reader = new StackFrameReader();
+            reader.attach(callerFrame);
+            final int index = reader.nextInt();
+
+            if (index >= 0 && index < targets.length) {
+                return targets[index];
+            } else {
+                return fallback;
+            }
+        }
+    }
+}
diff --git a/android-35/java/lang/invoke/TypeDescriptor.java b/android-35/java/lang/invoke/TypeDescriptor.java
new file mode 100644
index 0000000..ac18908
--- /dev/null
+++ b/android-35/java/lang/invoke/TypeDescriptor.java
@@ -0,0 +1,197 @@
+/*
+ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.lang.invoke;
+
+import java.util.List;
+
+/**
+ * An entity that has a type descriptor.
+ *
+ * @since 12
+ */
+public interface TypeDescriptor {
+    /**
+     * Returns the descriptor string for this {@code TypeDescriptor} object.
+     *
+     * If this {@code TypeDescriptor} object can be described in nominal form,
+     * then this method returns a type descriptor as specified in JVMS {@jvms 4.3}.
+     * The result descriptor string can be used to produce
+     * a {@code java.lang.constant.ConstantDesc nominal descriptor}.
+     *
+     * Otherwise, the result string is not a type descriptor.
+     * No {@code java.lang.constant.ConstantDesc nominal descriptor}
+     * can be produced from the result string.
+     *
+     * @return the descriptor string for this {@code TypeDescriptor} object
+     * @jvms 4.3.2 Field Descriptors
+     * @jvms 4.3.3 Method Descriptors
+     */
+    String descriptorString();
+
+
+    // Android-changed: Remove Class#describeConstable from javadoc until MethodType is updated
+    /**
+     * An entity that has a field type descriptor.
+     * Field descriptors conforming to JVMS {@jvms 4.3.2} can be described
+     *
+     * @param <F> the class implementing {@linkplain TypeDescriptor.OfField}
+     * @jvms 4.3.2 Field Descriptors
+     * @since 12
+     */
+    interface OfField<F extends TypeDescriptor.OfField<F>> extends TypeDescriptor {
+        /**
+         * Does this field descriptor describe an array type?
+         * @return whether this field descriptor describes an array type
+         */
+        boolean isArray();
+
+        /**
+         * Does this field descriptor describe a primitive type (including void.)
+         *
+         * @return whether this field descriptor describes a primitive type
+         */
+        boolean isPrimitive();
+
+        /**
+         * If this field descriptor describes an array type, return
+         * a descriptor for its component type, otherwise return {@code null}.
+         * @return the component type, or {@code null} if this field descriptor does
+         * not describe an array type
+         */
+        F componentType();
+
+        /**
+         * Return a descriptor for the array type whose component type is described by this
+         * descriptor
+         * @return the descriptor for the array type
+         */
+        F arrayType();
+    }
+
+
+    // Android-changed: Remove MethodType#describeConstable from javadoc until MethodType is updated
+    /**
+     * An entity that has a method type descriptor
+     * Method descriptors conforming to JVMS {@jvms 4.3.3} can be described
+     *
+     * @param <F> the type representing field type descriptors
+     * @param <M> the class implementing {@linkplain TypeDescriptor.OfMethod}
+     * @jvms 4.3.2 Field Descriptors
+     * @jvms 4.3.3 Method Descriptors
+     * @since 12
+     */
+    interface OfMethod<F extends TypeDescriptor.OfField<F>, M extends TypeDescriptor.OfMethod<F, M>>
+            extends TypeDescriptor {
+
+        /**
+         * Return the number of parameters in the method type
+         * @return the number of parameters
+         */
+        int parameterCount();
+
+        /**
+         * Return a field descriptor describing the requested parameter of the method type
+         * described by this descriptor
+         * @param i the index of the parameter
+         * @return a field descriptor for the requested parameter type
+         * @throws IndexOutOfBoundsException if the index is outside the half-open
+         * range {[0, parameterCount)}
+         */
+        F parameterType(int i);
+
+        /**
+         * Return a field descriptor describing the return type of the method type described
+         * by this descriptor
+         * @return a field descriptor for the return type
+         */
+        F returnType();
+
+        /**
+         * Return an array of field descriptors for the parameter types of the method type
+         * described by this descriptor
+         * @return field descriptors for the parameter types
+         */
+        F[] parameterArray();
+
+        /**
+         * Return an immutable list of field descriptors for the parameter types of the method type
+         * described by this descriptor
+         * @return field descriptors for the parameter types
+         */
+        List<F> parameterList();
+
+        /**
+         * Return a method descriptor that is identical to this one, except that the return
+         * type has been changed to the specified type
+         *
+         * @param newReturn a field descriptor for the new return type
+         * @throws NullPointerException if any argument is {@code null}
+         * @return the new method descriptor
+         */
+        M changeReturnType(F newReturn);
+
+        /**
+         * Return a method descriptor that is identical to this one,
+         * except that a single parameter type has been changed to the specified type.
+         *
+         * @param index the index of the parameter to change
+         * @param paramType a field descriptor describing the new parameter type
+         * @return the new method descriptor
+         * @throws NullPointerException if any argument is {@code null}
+         * @throws IndexOutOfBoundsException if the index is outside the half-open
+         * range {[0, parameterCount)}
+         */
+        M changeParameterType(int index, F paramType);
+
+        /**
+         * Return a method descriptor that is identical to this one,
+         * except that a range of parameter types have been removed.
+         *
+         * @param start the index of the first parameter to remove
+         * @param end the index after the last parameter to remove
+         * @return the new method descriptor
+         *
+         * @throws IndexOutOfBoundsException if {@code start} is outside the half-open
+         * range {@code [0, parameterCount)}, or {@code end} is outside the closed range
+         * {@code [0, parameterCount]}, or if {@code start > end}
+         */
+        M dropParameterTypes(int start, int end);
+
+        /**
+         * Return a method descriptor that is identical to this one,
+         * except that a range of additional parameter types have been inserted.
+         *
+         * @param pos the index at which to insert the first inserted parameter
+         * @param paramTypes field descriptors describing the new parameter types
+         *                   to insert
+         * @return the new method descriptor
+         * @throws NullPointerException if any argument is {@code null}
+         * @throws IndexOutOfBoundsException if {@code pos} is outside the closed
+         * range {[0, parameterCount]}
+         */
+        @SuppressWarnings("unchecked")
+        M insertParameterTypes(int pos, F... paramTypes);
+    }
+}
diff --git a/android-35/java/lang/invoke/VarHandle.java b/android-35/java/lang/invoke/VarHandle.java
new file mode 100644
index 0000000..9bd81b4
--- /dev/null
+++ b/android-35/java/lang/invoke/VarHandle.java
@@ -0,0 +1,2528 @@
+/*
+ * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import dalvik.system.VMRuntime;
+import jdk.internal.vm.annotation.IntrinsicCandidate;
+import java.lang.constant.ClassDesc;
+import java.lang.constant.Constable;
+import java.lang.constant.ConstantDesc;
+import java.lang.constant.ConstantDescs;
+import java.lang.constant.DirectMethodHandleDesc;
+import java.lang.constant.DynamicConstantDesc;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.EnumSet;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+import java.util.Objects;
+
+/**
+ * A VarHandle is a dynamically strongly typed reference to a variable, or to a
+ * parametrically-defined family of variables, including static fields,
+ * non-static fields, array elements, or components of an off-heap data
+ * structure.  Access to such variables is supported under various
+ * <em>access modes</em>, including plain read/write access, volatile
+ * read/write access, and compare-and-set.
+ *
+ * <p>VarHandles are immutable and have no visible state.  VarHandles cannot be
+ * subclassed by the user.
+ *
+ * <p>A VarHandle has:
+ * <ul>
+ * <li>a {@link #varType variable type} T, the type of every variable referenced
+ * by this VarHandle; and
+ * <li>a list of {@link #coordinateTypes coordinate types}
+ * {@code CT1, CT2, ..., CTn}, the types of <em>coordinate expressions</em> that
+ * jointly locate a variable referenced by this VarHandle.
+ * </ul>
+ * Variable and coordinate types may be primitive or reference, and are
+ * represented by {@code Class} objects.  The list of coordinate types may be
+ * empty.
+ *
+ * <p>Factory methods that produce or {@link java.lang.invoke.MethodHandles.Lookup
+ * lookup} VarHandle instances document the supported variable type and the list
+ * of coordinate types.
+ *
+ * <p>Each access mode is associated with one <em>access mode method</em>, a
+ * <a href="MethodHandle.html#sigpoly">signature polymorphic</a> method named
+ * for the access mode.  When an access mode method is invoked on a VarHandle
+ * instance, the initial arguments to the invocation are coordinate expressions
+ * that indicate in precisely which object the variable is to be accessed.
+ * Trailing arguments to the invocation represent values of importance to the
+ * access mode.  For example, the various compare-and-set or compare-and-exchange
+ * access modes require two trailing arguments for the variable's expected value
+ * and new value.
+ *
+ * <p>The arity and types of arguments to the invocation of an access mode
+ * method are not checked statically.  Instead, each access mode method
+ * specifies an {@link #accessModeType(AccessMode) access mode type},
+ * represented as an instance of {@link MethodType}, that serves as a kind of
+ * method signature against which the arguments are checked dynamically.  An
+ * access mode type gives formal parameter types in terms of the coordinate
+ * types of a VarHandle instance and the types for values of importance to the
+ * access mode.  An access mode type also gives a return type, often in terms of
+ * the variable type of a VarHandle instance.  When an access mode method is
+ * invoked on a VarHandle instance, the symbolic type descriptor at the
+ * call site, the run time types of arguments to the invocation, and the run
+ * time type of the return value, must <a href="#invoke">match</a> the types
+ * given in the access mode type.  A runtime exception will be thrown if the
+ * match fails.
+ *
+ * For example, the access mode method {@link #compareAndSet} specifies that if
+ * its receiver is a VarHandle instance with coordinate types
+ * {@code CT1, ..., CTn} and variable type {@code T}, then its access mode type
+ * is {@code (CT1 c1, ..., CTn cn, T expectedValue, T newValue)boolean}.
+ * Suppose that a VarHandle instance can access array elements, and that its
+ * coordinate types are {@code String[]} and {@code int} while its variable type
+ * is {@code String}.  The access mode type for {@code compareAndSet} on this
+ * VarHandle instance would be
+ * {@code (String[] c1, int c2, String expectedValue, String newValue)boolean}.
+ * Such a VarHandle instance may be produced by the
+ * {@link MethodHandles#arrayElementVarHandle(Class) array factory method} and
+ * access array elements as follows:
+ * <pre> {@code
+ * String[] sa = ...
+ * VarHandle avh = MethodHandles.arrayElementVarHandle(String[].class);
+ * boolean r = avh.compareAndSet(sa, 10, "expected", "new");
+ * }</pre>
+ *
+ * <p>Access modes control atomicity and consistency properties.
+ * <em>Plain</em> read ({@code get}) and write ({@code set})
+ * accesses are guaranteed to be bitwise atomic only for references
+ * and for primitive values of at most 32 bits, and impose no observable
+ * ordering constraints with respect to threads other than the
+ * executing thread. <em>Opaque</em> operations are bitwise atomic and
+ * coherently ordered with respect to accesses to the same variable.
+ * In addition to obeying Opaque properties, <em>Acquire</em> mode
+ * reads and their subsequent accesses are ordered after matching
+ * <em>Release</em> mode writes and their previous accesses.  In
+ * addition to obeying Acquire and Release properties, all
+ * <em>Volatile</em> operations are totally ordered with respect to
+ * each other.
+ *
+ * <p>Access modes are grouped into the following categories:
+ * <ul>
+ * <li>read access modes that get the value of a variable under specified
+ * memory ordering effects.
+ * The set of corresponding access mode methods belonging to this group
+ * consists of the methods
+ * {@link #get get},
+ * {@link #getVolatile getVolatile},
+ * {@link #getAcquire getAcquire},
+ * {@link #getOpaque getOpaque}.
+ * <li>write access modes that set the value of a variable under specified
+ * memory ordering effects.
+ * The set of corresponding access mode methods belonging to this group
+ * consists of the methods
+ * {@link #set set},
+ * {@link #setVolatile setVolatile},
+ * {@link #setRelease setRelease},
+ * {@link #setOpaque setOpaque}.
+ * <li>atomic update access modes that, for example, atomically compare and set
+ * the value of a variable under specified memory ordering effects.
+ * The set of corresponding access mode methods belonging to this group
+ * consists of the methods
+ * {@link #compareAndSet compareAndSet},
+ * {@link #weakCompareAndSetPlain weakCompareAndSetPlain},
+ * {@link #weakCompareAndSet weakCompareAndSet},
+ * {@link #weakCompareAndSetAcquire weakCompareAndSetAcquire},
+ * {@link #weakCompareAndSetRelease weakCompareAndSetRelease},
+ * {@link #compareAndExchangeAcquire compareAndExchangeAcquire},
+ * {@link #compareAndExchange compareAndExchange},
+ * {@link #compareAndExchangeRelease compareAndExchangeRelease},
+ * {@link #getAndSet getAndSet},
+ * {@link #getAndSetAcquire getAndSetAcquire},
+ * {@link #getAndSetRelease getAndSetRelease}.
+ * <li>numeric atomic update access modes that, for example, atomically get and
+ * set with addition the value of a variable under specified memory ordering
+ * effects.
+ * The set of corresponding access mode methods belonging to this group
+ * consists of the methods
+ * {@link #getAndAdd getAndAdd},
+ * {@link #getAndAddAcquire getAndAddAcquire},
+ * {@link #getAndAddRelease getAndAddRelease},
+ * <li>bitwise atomic update access modes that, for example, atomically get and
+ * bitwise OR the value of a variable under specified memory ordering
+ * effects.
+ * The set of corresponding access mode methods belonging to this group
+ * consists of the methods
+ * {@link #getAndBitwiseOr getAndBitwiseOr},
+ * {@link #getAndBitwiseOrAcquire getAndBitwiseOrAcquire},
+ * {@link #getAndBitwiseOrRelease getAndBitwiseOrRelease},
+ * {@link #getAndBitwiseAnd getAndBitwiseAnd},
+ * {@link #getAndBitwiseAndAcquire getAndBitwiseAndAcquire},
+ * {@link #getAndBitwiseAndRelease getAndBitwiseAndRelease},
+ * {@link #getAndBitwiseXor getAndBitwiseXor},
+ * {@link #getAndBitwiseXorAcquire getAndBitwiseXorAcquire},
+ * {@link #getAndBitwiseXorRelease getAndBitwiseXorRelease}.
+ * </ul>
+ *
+ * <p>Factory methods that produce or {@link java.lang.invoke.MethodHandles.Lookup
+ * lookup} VarHandle instances document the set of access modes that are
+ * supported, which may also include documenting restrictions based on the
+ * variable type and whether a variable is read-only.  If an access mode is not
+ * supported then the corresponding access mode method will on invocation throw
+ * an {@code UnsupportedOperationException}.  Factory methods should document
+ * any additional undeclared exceptions that may be thrown by access mode
+ * methods.
+ * The {@link #get get} access mode is supported for all
+ * VarHandle instances and the corresponding method never throws
+ * {@code UnsupportedOperationException}.
+ * If a VarHandle references a read-only variable (for example a {@code final}
+ * field) then write, atomic update, numeric atomic update, and bitwise atomic
+ * update access modes are not supported and corresponding methods throw
+ * {@code UnsupportedOperationException}.
+ * Read/write access modes (if supported), with the exception of
+ * {@code get} and {@code set}, provide atomic access for
+ * reference types and all primitive types.
+ * Unless stated otherwise in the documentation of a factory method, the access
+ * modes {@code get} and {@code set} (if supported) provide atomic access for
+ * reference types and all primitives types, with the exception of {@code long}
+ * and {@code double} on 32-bit platforms.
+ *
+ * <p>Access modes will override any memory ordering effects specified at
+ * the declaration site of a variable.  For example, a VarHandle accessing
+ * a field using the {@code get} access mode will access the field as
+ * specified <em>by its access mode</em> even if that field is declared
+ * {@code volatile}.  When mixed access is performed extreme care should be
+ * taken since the Java Memory Model may permit surprising results.
+ *
+ * <p>In addition to supporting access to variables under various access modes,
+ * a set of static methods, referred to as memory fence methods, is also
+ * provided for fine-grained control of memory ordering.
+ *
+ * The Java Language Specification permits other threads to observe operations
+ * as if they were executed in orders different than are apparent in program
+ * source code, subject to constraints arising, for example, from the use of
+ * locks, {@code volatile} fields or VarHandles.  The static methods,
+ * {@link #fullFence fullFence}, {@link #acquireFence acquireFence},
+ * {@link #releaseFence releaseFence}, {@link #loadLoadFence loadLoadFence} and
+ * {@link #storeStoreFence storeStoreFence}, can also be used to impose
+ * constraints.  Their specifications, as is the case for certain access modes,
+ * are phrased in terms of the lack of "reorderings" -- observable ordering
+ * effects that might otherwise occur if the fence was not present.  More
+ * precise phrasing of the specification of access mode methods and memory fence
+ * methods may accompany future updates of the Java Language Specification.
+ *
+ * <h1>Compiling invocation of access mode methods</h1>
+ * A Java method call expression naming an access mode method can invoke a
+ * VarHandle from Java source code.  From the viewpoint of source code, these
+ * methods can take any arguments and their polymorphic result (if expressed)
+ * can be cast to any return type.  Formally this is accomplished by giving the
+ * access mode methods variable arity {@code Object} arguments and
+ * {@code Object} return types (if the return type is polymorphic), but they
+ * have an additional quality called <em>signature polymorphism</em> which
+ * connects this freedom of invocation directly to the JVM execution stack.
+ * <p>
+ * As is usual with virtual methods, source-level calls to access mode methods
+ * compile to an {@code invokevirtual} instruction.  More unusually, the
+ * compiler must record the actual argument types, and may not perform method
+ * invocation conversions on the arguments.  Instead, it must generate
+ * instructions to push them on the stack according to their own unconverted
+ * types.  The VarHandle object itself will be pushed on the stack before the
+ * arguments.  The compiler then generates an {@code invokevirtual} instruction
+ * that invokes the access mode method with a symbolic type descriptor which
+ * describes the argument and return types.
+ * <p>
+ * To issue a complete symbolic type descriptor, the compiler must also
+ * determine the return type (if polymorphic).  This is based on a cast on the
+ * method invocation expression, if there is one, or else {@code Object} if the
+ * invocation is an expression, or else {@code void} if the invocation is a
+ * statement.  The cast may be to a primitive type (but not {@code void}).
+ * <p>
+ * As a corner case, an uncasted {@code null} argument is given a symbolic type
+ * descriptor of {@code java.lang.Void}.  The ambiguity with the type
+ * {@code Void} is harmless, since there are no references of type {@code Void}
+ * except the null reference.
+ *
+ *
+ * <h1><a id="invoke">Performing invocation of access mode methods</a></h1>
+ * The first time an {@code invokevirtual} instruction is executed it is linked
+ * by symbolically resolving the names in the instruction and verifying that
+ * the method call is statically legal.  This also holds for calls to access mode
+ * methods.  In this case, the symbolic type descriptor emitted by the compiler
+ * is checked for correct syntax, and names it contains are resolved.  Thus, an
+ * {@code invokevirtual} instruction which invokes an access mode method will
+ * always link, as long as the symbolic type descriptor is syntactically
+ * well-formed and the types exist.
+ * <p>
+ * When the {@code invokevirtual} is executed after linking, the receiving
+ * VarHandle's access mode type is first checked by the JVM to ensure that it
+ * matches the symbolic type descriptor.  If the type
+ * match fails, it means that the access mode method which the caller is
+ * invoking is not present on the individual VarHandle being invoked.
+ *
+ * <p>
+ * Invocation of an access mode method behaves as if an invocation of
+ * {@link MethodHandle#invoke}, where the receiving method handle accepts the
+ * VarHandle instance as the leading argument.  More specifically, the
+ * following, where {@code {access-mode}} corresponds to the access mode method
+ * name:
+ * <pre> {@code
+ * VarHandle vh = ..
+ * R r = (R) vh.{access-mode}(p1, p2, ..., pN);
+ * }</pre>
+ * behaves as if:
+ * <pre> {@code
+ * VarHandle vh = ..
+ * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
+ * MethodHandle mh = MethodHandles.varHandleExactInvoker(
+ *                       am,
+ *                       vh.accessModeType(am));
+ *
+ * R r = (R) mh.invoke(vh, p1, p2, ..., pN)
+ * }</pre>
+ * (modulo access mode methods do not declare throwing of {@code Throwable}).
+ * This is equivalent to:
+ * <pre> {@code
+ * MethodHandle mh = MethodHandles.lookup().findVirtual(
+ *                       VarHandle.class,
+ *                       "{access-mode}",
+ *                       MethodType.methodType(R, p1, p2, ..., pN));
+ *
+ * R r = (R) mh.invokeExact(vh, p1, p2, ..., pN)
+ * }</pre>
+ * where the desired method type is the symbolic type descriptor and a
+ * {@link MethodHandle#invokeExact} is performed, since before invocation of the
+ * target, the handle will apply reference casts as necessary and box, unbox, or
+ * widen primitive values, as if by {@link MethodHandle#asType asType} (see also
+ * {@link MethodHandles#varHandleInvoker}).
+ *
+ * More concisely, such behaviour is equivalent to:
+ * <pre> {@code
+ * VarHandle vh = ..
+ * VarHandle.AccessMode am = VarHandle.AccessMode.valueFromMethodName("{access-mode}");
+ * MethodHandle mh = vh.toMethodHandle(am);
+ *
+ * R r = (R) mh.invoke(p1, p2, ..., pN)
+ * }</pre>
+ * Where, in this case, the method handle is bound to the VarHandle instance.
+ *
+ *
+ * <h1>Invocation checking</h1>
+ * In typical programs, VarHandle access mode type matching will usually
+ * succeed.  But if a match fails, the JVM will throw a
+ * {@link WrongMethodTypeException}.
+ * <p>
+ * Thus, an access mode type mismatch which might show up as a linkage error
+ * in a statically typed program can show up as a dynamic
+ * {@code WrongMethodTypeException} in a program which uses VarHandles.
+ * <p>
+ * Because access mode types contain "live" {@code Class} objects, method type
+ * matching takes into account both type names and class loaders.
+ * Thus, even if a VarHandle {@code VH} is created in one class loader
+ * {@code L1} and used in another {@code L2}, VarHandle access mode method
+ * calls are type-safe, because the caller's symbolic type descriptor, as
+ * resolved in {@code L2}, is matched against the original callee method's
+ * symbolic type descriptor, as resolved in {@code L1}.  The resolution in
+ * {@code L1} happens when {@code VH} is created and its access mode types are
+ * assigned, while the resolution in {@code L2} happens when the
+ * {@code invokevirtual} instruction is linked.
+ * <p>
+ * Apart from type descriptor checks, a VarHandles's capability to
+ * access it's variables is unrestricted.
+ * If a VarHandle is formed on a non-public variable by a class that has access
+ * to that variable, the resulting VarHandle can be used in any place by any
+ * caller who receives a reference to it.
+ * <p>
+ * Unlike with the Core Reflection API, where access is checked every time a
+ * reflective method is invoked, VarHandle access checking is performed
+ * <a href="MethodHandles.Lookup.html#access">when the VarHandle is
+ * created</a>.
+ * Thus, VarHandles to non-public variables, or to variables in non-public
+ * classes, should generally be kept secret.  They should not be passed to
+ * untrusted code unless their use from the untrusted code would be harmless.
+ *
+ *
+ * <h1>VarHandle creation</h1>
+ * Java code can create a VarHandle that directly accesses any field that is
+ * accessible to that code.  This is done via a reflective, capability-based
+ * API called {@link java.lang.invoke.MethodHandles.Lookup
+ * MethodHandles.Lookup}.
+ * For example, a VarHandle for a non-static field can be obtained
+ * from {@link java.lang.invoke.MethodHandles.Lookup#findVarHandle
+ * Lookup.findVarHandle}.
+ * There is also a conversion method from Core Reflection API objects,
+ * {@link java.lang.invoke.MethodHandles.Lookup#unreflectVarHandle
+ * Lookup.unreflectVarHandle}.
+ * <p>
+ * Access to protected field members is restricted to receivers only of the
+ * accessing class, or one of its subclasses, and the accessing class must in
+ * turn be a subclass (or package sibling) of the protected member's defining
+ * class.  If a VarHandle refers to a protected non-static field of a declaring
+ * class outside the current package, the receiver argument will be narrowed to
+ * the type of the accessing class.
+ *
+ * <h1>Interoperation between VarHandles and the Core Reflection API</h1>
+ * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup
+ * Lookup} API, any field represented by a Core Reflection API object
+ * can be converted to a behaviorally equivalent VarHandle.
+ * For example, a reflective {@link java.lang.reflect.Field Field} can
+ * be converted to a VarHandle using
+ * {@link java.lang.invoke.MethodHandles.Lookup#unreflectVarHandle
+ * Lookup.unreflectVarHandle}.
+ * The resulting VarHandles generally provide more direct and efficient
+ * access to the underlying fields.
+ * <p>
+ * As a special case, when the Core Reflection API is used to view the
+ * signature polymorphic access mode methods in this class, they appear as
+ * ordinary non-polymorphic methods.  Their reflective appearance, as viewed by
+ * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
+ * is unaffected by their special status in this API.
+ * For example, {@link java.lang.reflect.Method#getModifiers
+ * Method.getModifiers}
+ * will report exactly those modifier bits required for any similarly
+ * declared method, including in this case {@code native} and {@code varargs}
+ * bits.
+ * <p>
+ * As with any reflected method, these methods (when reflected) may be invoked
+ * directly via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke},
+ * via JNI, or indirectly via
+ * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
+ * However, such reflective calls do not result in access mode method
+ * invocations.  Such a call, if passed the required argument (a single one, of
+ * type {@code Object[]}), will ignore the argument and will throw an
+ * {@code UnsupportedOperationException}.
+ * <p>
+ * Since {@code invokevirtual} instructions can natively invoke VarHandle
+ * access mode methods under any symbolic type descriptor, this reflective view
+ * conflicts with the normal presentation of these methods via bytecodes.
+ * Thus, these native methods, when reflectively viewed by
+ * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
+ * <p>
+ * In order to obtain an invoker method for a particular access mode type,
+ * use {@link java.lang.invoke.MethodHandles#varHandleExactInvoker} or
+ * {@link java.lang.invoke.MethodHandles#varHandleInvoker}.  The
+ * {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
+ * API is also able to return a method handle to call an access mode method for
+ * any specified access mode type and is equivalent in behaviour to
+ * {@link java.lang.invoke.MethodHandles#varHandleInvoker}.
+ *
+ * <h1>Interoperation between VarHandles and Java generics</h1>
+ * A VarHandle can be obtained for a variable, such as a field, which is
+ * declared with Java generic types.  As with the Core Reflection API, the
+ * VarHandle's variable type will be constructed from the erasure of the
+ * source-level type.  When a VarHandle access mode method is invoked, the
+ * types
+ * of its arguments or the return value cast type may be generic types or type
+ * instances.  If this occurs, the compiler will replace those types by their
+ * erasures when it constructs the symbolic type descriptor for the
+ * {@code invokevirtual} instruction.
+ *
+ * @see MethodHandle
+ * @see MethodHandles
+ * @see MethodType
+ * @since 9
+ */
+public abstract class VarHandle {
+    // Android-added: Using sun.misc.Unsafe for fence implementation.
+    private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
+
+    // BEGIN Android-removed: No VarForm in Android implementation.
+    /*
+    final VarForm vform;
+
+    VarHandle(VarForm vform) {
+        this.vform = vform;
+    }
+    */
+    // END Android-removed: No VarForm in Android implementation.
+
+    // BEGIN Android-added: fields for common metadata.
+    /** The target type for accesses. */
+    private final Class<?> varType;
+
+    /** This VarHandle's first coordinate, or null if this VarHandle has no coordinates. */
+    private final Class<?> coordinateType0;
+
+    /** This VarHandle's second coordinate, or null if this VarHandle has less than two
+     * coordinates. */
+    private final Class<?> coordinateType1;
+
+    /** BitMask of supported access mode indexed by AccessMode.ordinal(). */
+    private final int accessModesBitMask;
+    // END Android-added: fields for common metadata.
+
+    // Plain accessors
+
+    /**
+     * Returns the value of a variable, with memory semantics of reading as
+     * if the variable was declared non-{@code volatile}.  Commonly referred to
+     * as plain read access.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code get}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET)} on this VarHandle.
+     *
+     * <p>This access mode is supported by all VarHandle instances and never
+     * throws {@code UnsupportedOperationException}.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the value of the
+     * variable
+     * , statically represented using {@code Object}.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object get(Object... args);
+
+    /**
+     * Sets the value of a variable to the {@code newValue}, with memory
+     * semantics of setting as if the variable was declared non-{@code volatile}
+     * and non-{@code final}.  Commonly referred to as plain write access.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}
+     *
+     * <p>The symbolic type descriptor at the call site of {@code set}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.SET)} on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    void set(Object... args);
+
+
+    // Volatile accessors
+
+    /**
+     * Returns the value of a variable, with memory semantics of reading as if
+     * the variable was declared {@code volatile}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getVolatile}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_VOLATILE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the value of the
+     * variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getVolatile(Object... args);
+
+    /**
+     * Sets the value of a variable to the {@code newValue}, with memory
+     * semantics of setting as if the variable was declared {@code volatile}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code setVolatile}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.SET_VOLATILE)} on this
+     * VarHandle.
+     *
+     * @apiNote
+     * Ignoring the many semantic differences from C and C++, this method has
+     * memory ordering effects compatible with {@code memory_order_seq_cst}.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    void setVolatile(Object... args);
+
+
+    /**
+     * Returns the value of a variable, accessed in program order, but with no
+     * assurance of memory ordering effects with respect to other threads.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getOpaque}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_OPAQUE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the value of the
+     * variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getOpaque(Object... args);
+
+    /**
+     * Sets the value of a variable to the {@code newValue}, in program order,
+     * but with no assurance of memory ordering effects with respect to other
+     * threads.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code setOpaque}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.SET_OPAQUE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    void setOpaque(Object... args);
+
+
+    // Lazy accessors
+
+    /**
+     * Returns the value of a variable, and ensures that subsequent loads and
+     * stores are not reordered before this access.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_ACQUIRE)} on this
+     * VarHandle.
+     *
+     * @apiNote
+     * Ignoring the many semantic differences from C and C++, this method has
+     * memory ordering effects compatible with {@code memory_order_acquire}
+     * ordering.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the value of the
+     * variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAcquire(Object... args);
+
+    /**
+     * Sets the value of a variable to the {@code newValue}, and ensures that
+     * prior loads and stores are not reordered after this access.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)void}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code setRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.SET_RELEASE)} on this
+     * VarHandle.
+     *
+     * @apiNote
+     * Ignoring the many semantic differences from C and C++, this method has
+     * memory ordering effects compatible with {@code memory_order_release}
+     * ordering.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    void setRelease(Object... args);
+
+
+    // Compare and set accessors
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #setVolatile} if the variable's current value,
+     * referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * compareAndSet} must match the access mode type that is the result of
+     * calling {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_SET)} on
+     * this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return {@code true} if successful, otherwise {@code false} if the
+     * witness value was not the same as the {@code expectedValue}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    boolean compareAndSet(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #setVolatile} if the variable's current value,
+     * referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * compareAndExchange}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE)}
+     * on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the witness value, which
+     * will be the same as the {@code expectedValue} if successful
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type is not
+     * compatible with the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type is compatible with the
+     * caller's symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object compareAndExchange(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #set} if the variable's current value,
+     * referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * compareAndExchangeAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE_ACQUIRE)} on
+     * this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the witness value, which
+     * will be the same as the {@code expectedValue} if successful
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #set(Object...)
+     * @see #getAcquire(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object compareAndExchangeAcquire(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #setRelease} if the variable's current value,
+     * referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * compareAndExchangeRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.COMPARE_AND_EXCHANGE_RELEASE)}
+     * on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the witness value, which
+     * will be the same as the {@code expectedValue} if successful
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setRelease(Object...)
+     * @see #get(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object compareAndExchangeRelease(Object... args);
+
+    // Weak (spurious failures allowed)
+
+    /**
+     * Possibly atomically sets the value of a variable to the {@code newValue}
+     * with the semantics of {@link #set} if the variable's current value,
+     * referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>This operation may fail spuriously (typically, due to memory
+     * contention) even if the witness value does match the expected value.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * weakCompareAndSetPlain} must match the access mode type that is the result of
+     * calling {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_PLAIN)}
+     * on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return {@code true} if successful, otherwise {@code false} if the
+     * witness value was not the same as the {@code expectedValue} or if this
+     * operation spuriously failed.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #set(Object...)
+     * @see #get(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    boolean weakCompareAndSetPlain(Object... args);
+
+    /**
+     * Possibly atomically sets the value of a variable to the {@code newValue}
+     * with the memory semantics of {@link #setVolatile} if the variable's
+     * current value, referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>This operation may fail spuriously (typically, due to memory
+     * contention) even if the witness value does match the expected value.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * weakCompareAndSet} must match the access mode type that is the
+     * result of calling {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET)}
+     * on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return {@code true} if successful, otherwise {@code false} if the
+     * witness value was not the same as the {@code expectedValue} or if this
+     * operation spuriously failed.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    boolean weakCompareAndSet(Object... args);
+
+    /**
+     * Possibly atomically sets the value of a variable to the {@code newValue}
+     * with the semantics of {@link #set} if the variable's current value,
+     * referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>This operation may fail spuriously (typically, due to memory
+     * contention) even if the witness value does match the expected value.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * weakCompareAndSetAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_ACQUIRE)}
+     * on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return {@code true} if successful, otherwise {@code false} if the
+     * witness value was not the same as the {@code expectedValue} or if this
+     * operation spuriously failed.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #set(Object...)
+     * @see #getAcquire(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    boolean weakCompareAndSetAcquire(Object... args);
+
+    /**
+     * Possibly atomically sets the value of a variable to the {@code newValue}
+     * with the semantics of {@link #setRelease} if the variable's current
+     * value, referred to as the <em>witness value</em>, {@code ==} the
+     * {@code expectedValue}, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>This operation may fail spuriously (typically, due to memory
+     * contention) even if the witness value does match the expected value.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)boolean}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code
+     * weakCompareAndSetRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.WEAK_COMPARE_AND_SET_RELEASE)}
+     * on this VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T expectedValue, T newValue)}
+     * , statically represented using varargs.
+     * @return {@code true} if successful, otherwise {@code false} if the
+     * witness value was not the same as the {@code expectedValue} or if this
+     * operation spuriously failed.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setRelease(Object...)
+     * @see #get(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    boolean weakCompareAndSetRelease(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #setVolatile} and returns the variable's
+     * previous value, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndSet}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndSet(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #set} and returns the variable's
+     * previous value, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndSetAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET_ACQUIRE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndSetAcquire(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the {@code newValue} with the
+     * memory semantics of {@link #setRelease} and returns the variable's
+     * previous value, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T newValue)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndSetRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_SET_RELEASE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T newValue)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndSetRelease(Object... args);
+
+    // Primitive adders
+    // Throw UnsupportedOperationException for refs
+
+    /**
+     * Atomically adds the {@code value} to the current value of a variable with
+     * the memory semantics of {@link #setVolatile}, and returns the variable's
+     * previous value, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndAdd}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T value)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndAdd(Object... args);
+
+    /**
+     * Atomically adds the {@code value} to the current value of a variable with
+     * the memory semantics of {@link #set}, and returns the variable's
+     * previous value, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndAddAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD_ACQUIRE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T value)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndAddAcquire(Object... args);
+
+    /**
+     * Atomically adds the {@code value} to the current value of a variable with
+     * the memory semantics of {@link #setRelease}, and returns the variable's
+     * previous value, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T value)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndAddRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_ADD_RELEASE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T value)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndAddRelease(Object... args);
+
+
+    // Bitwise operations
+    // Throw UnsupportedOperationException for refs
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise OR between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #setVolatile} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical OR is performed instead of a bitwise OR.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOr}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseOr(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise OR between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #set} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical OR is performed instead of a bitwise OR.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOrAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR_ACQUIRE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #set(Object...)
+     * @see #getAcquire(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseOrAcquire(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise OR between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #setRelease} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical OR is performed instead of a bitwise OR.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseOrRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_OR_RELEASE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setRelease(Object...)
+     * @see #get(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseOrRelease(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise AND between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #setVolatile} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical AND is performed instead of a bitwise AND.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAnd}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseAnd(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise AND between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #set} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical AND is performed instead of a bitwise AND.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAndAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND_ACQUIRE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #set(Object...)
+     * @see #getAcquire(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseAndAcquire(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise AND between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #setRelease} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical AND is performed instead of a bitwise AND.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseAndRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_AND_RELEASE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setRelease(Object...)
+     * @see #get(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseAndRelease(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise XOR between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #setVolatile} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #getVolatile}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical XOR is performed instead of a bitwise XOR.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXor}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setVolatile(Object...)
+     * @see #getVolatile(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseXor(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise XOR between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #set} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #getAcquire}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical XOR is performed instead of a bitwise XOR.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXorAcquire}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR_ACQUIRE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #set(Object...)
+     * @see #getAcquire(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseXorAcquire(Object... args);
+
+    /**
+     * Atomically sets the value of a variable to the result of
+     * bitwise XOR between the variable's current value and the {@code mask}
+     * with the memory semantics of {@link #setRelease} and returns the
+     * variable's previous value, as accessed with the memory semantics of
+     * {@link #get}.
+     *
+     * <p>If the variable type is the non-integral {@code boolean} type then a
+     * logical XOR is performed instead of a bitwise XOR.
+     *
+     * <p>The method signature is of the form {@code (CT1 ct1, ..., CTn ctn, T mask)T}.
+     *
+     * <p>The symbolic type descriptor at the call site of {@code getAndBitwiseXorRelease}
+     * must match the access mode type that is the result of calling
+     * {@code accessModeType(VarHandle.AccessMode.GET_AND_BITWISE_XOR_RELEASE)} on this
+     * VarHandle.
+     *
+     * @param args the signature-polymorphic parameter list of the form
+     * {@code (CT1 ct1, ..., CTn ctn, T mask)}
+     * , statically represented using varargs.
+     * @return the signature-polymorphic result that is the previous value of
+     * the variable
+     * , statically represented using {@code Object}.
+     * @throws UnsupportedOperationException if the access mode is unsupported
+     * for this VarHandle.
+     * @throws WrongMethodTypeException if the access mode type does not
+     * match the caller's symbolic type descriptor.
+     * @throws ClassCastException if the access mode type matches the caller's
+     * symbolic type descriptor, but a reference cast fails.
+     * @see #setRelease(Object...)
+     * @see #get(Object...)
+     */
+    public final native
+    @MethodHandle.PolymorphicSignature
+    @IntrinsicCandidate
+    Object getAndBitwiseXorRelease(Object... args);
+
+
+    // Android-changed: remove unused return type in AccessType constructor.
+    enum AccessType {
+        GET,
+        SET,
+        COMPARE_AND_SET,
+        COMPARE_AND_EXCHANGE,
+        GET_AND_UPDATE,
+        // Android-added: Finer grained access types.
+        // These are used to help categorize the access modes that a VarHandle supports.
+        GET_AND_UPDATE_BITWISE,
+        GET_AND_UPDATE_NUMERIC;
+
+        MethodType accessModeType(Class<?> receiver, Class<?> value,
+                                  Class<?>... intermediate) {
+            Class<?>[] ps;
+            int i;
+            switch (this) {
+                case GET:
+                    ps = allocateParameters(0, receiver, intermediate);
+                    fillParameters(ps, receiver, intermediate);
+                    return MethodType.methodType(value, ps);
+                case SET:
+                    ps = allocateParameters(1, receiver, intermediate);
+                    i = fillParameters(ps, receiver, intermediate);
+                    ps[i] = value;
+                    return MethodType.methodType(void.class, ps);
+                case COMPARE_AND_SET:
+                    ps = allocateParameters(2, receiver, intermediate);
+                    i = fillParameters(ps, receiver, intermediate);
+                    ps[i++] = value;
+                    ps[i] = value;
+                    return MethodType.methodType(boolean.class, ps);
+                case COMPARE_AND_EXCHANGE:
+                    ps = allocateParameters(2, receiver, intermediate);
+                    i = fillParameters(ps, receiver, intermediate);
+                    ps[i++] = value;
+                    ps[i] = value;
+                    return MethodType.methodType(value, ps);
+                case GET_AND_UPDATE:
+                case GET_AND_UPDATE_BITWISE:
+                case GET_AND_UPDATE_NUMERIC:
+                    ps = allocateParameters(1, receiver, intermediate);
+                    i = fillParameters(ps, receiver, intermediate);
+                    ps[i] = value;
+                    return MethodType.methodType(value, ps);
+                default:
+                    throw new InternalError("Unknown AccessType");
+            }
+        }
+
+        private static Class<?>[] allocateParameters(int values,
+                                                     Class<?> receiver, Class<?>... intermediate) {
+            int size = ((receiver != null) ? 1 : 0) + intermediate.length + values;
+            return new Class<?>[size];
+        }
+
+        private static int fillParameters(Class<?>[] ps,
+                                          Class<?> receiver, Class<?>... intermediate) {
+            int i = 0;
+            if (receiver != null)
+                ps[i++] = receiver;
+            for (int j = 0; j < intermediate.length; j++)
+                ps[i++] = intermediate[j];
+            return i;
+        }
+    }
+
+    /**
+     * The set of access modes that specify how a variable, referenced by a
+     * VarHandle, is accessed.
+     */
+    public enum AccessMode {
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#get VarHandle.get}
+         */
+        GET("get", AccessType.GET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#set VarHandle.set}
+         */
+        SET("set", AccessType.SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getVolatile VarHandle.getVolatile}
+         */
+        GET_VOLATILE("getVolatile", AccessType.GET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#setVolatile VarHandle.setVolatile}
+         */
+        SET_VOLATILE("setVolatile", AccessType.SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAcquire VarHandle.getAcquire}
+         */
+        GET_ACQUIRE("getAcquire", AccessType.GET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#setRelease VarHandle.setRelease}
+         */
+        SET_RELEASE("setRelease", AccessType.SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getOpaque VarHandle.getOpaque}
+         */
+        GET_OPAQUE("getOpaque", AccessType.GET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#setOpaque VarHandle.setOpaque}
+         */
+        SET_OPAQUE("setOpaque", AccessType.SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#compareAndSet VarHandle.compareAndSet}
+         */
+        COMPARE_AND_SET("compareAndSet", AccessType.COMPARE_AND_SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#compareAndExchange VarHandle.compareAndExchange}
+         */
+        COMPARE_AND_EXCHANGE("compareAndExchange", AccessType.COMPARE_AND_EXCHANGE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#compareAndExchangeAcquire VarHandle.compareAndExchangeAcquire}
+         */
+        COMPARE_AND_EXCHANGE_ACQUIRE("compareAndExchangeAcquire", AccessType.COMPARE_AND_EXCHANGE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#compareAndExchangeRelease VarHandle.compareAndExchangeRelease}
+         */
+        COMPARE_AND_EXCHANGE_RELEASE("compareAndExchangeRelease", AccessType.COMPARE_AND_EXCHANGE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#weakCompareAndSetPlain VarHandle.weakCompareAndSetPlain}
+         */
+        WEAK_COMPARE_AND_SET_PLAIN("weakCompareAndSetPlain", AccessType.COMPARE_AND_SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#weakCompareAndSet VarHandle.weakCompareAndSet}
+         */
+        WEAK_COMPARE_AND_SET("weakCompareAndSet", AccessType.COMPARE_AND_SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#weakCompareAndSetAcquire VarHandle.weakCompareAndSetAcquire}
+         */
+        WEAK_COMPARE_AND_SET_ACQUIRE("weakCompareAndSetAcquire", AccessType.COMPARE_AND_SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#weakCompareAndSetRelease VarHandle.weakCompareAndSetRelease}
+         */
+        WEAK_COMPARE_AND_SET_RELEASE("weakCompareAndSetRelease", AccessType.COMPARE_AND_SET),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndSet VarHandle.getAndSet}
+         */
+        GET_AND_SET("getAndSet", AccessType.GET_AND_UPDATE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndSetAcquire VarHandle.getAndSetAcquire}
+         */
+        GET_AND_SET_ACQUIRE("getAndSetAcquire", AccessType.GET_AND_UPDATE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndSetRelease VarHandle.getAndSetRelease}
+         */
+        GET_AND_SET_RELEASE("getAndSetRelease", AccessType.GET_AND_UPDATE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndAdd VarHandle.getAndAdd}
+         */
+        GET_AND_ADD("getAndAdd", AccessType.GET_AND_UPDATE_NUMERIC),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndAddAcquire VarHandle.getAndAddAcquire}
+         */
+        GET_AND_ADD_ACQUIRE("getAndAddAcquire", AccessType.GET_AND_UPDATE_NUMERIC),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndAddRelease VarHandle.getAndAddRelease}
+         */
+        GET_AND_ADD_RELEASE("getAndAddRelease", AccessType.GET_AND_UPDATE_NUMERIC),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseOr VarHandle.getAndBitwiseOr}
+         */
+        GET_AND_BITWISE_OR("getAndBitwiseOr", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseOrRelease VarHandle.getAndBitwiseOrRelease}
+         */
+        GET_AND_BITWISE_OR_RELEASE("getAndBitwiseOrRelease", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseOrAcquire VarHandle.getAndBitwiseOrAcquire}
+         */
+        GET_AND_BITWISE_OR_ACQUIRE("getAndBitwiseOrAcquire", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseAnd VarHandle.getAndBitwiseAnd}
+         */
+        GET_AND_BITWISE_AND("getAndBitwiseAnd", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseAndRelease VarHandle.getAndBitwiseAndRelease}
+         */
+        GET_AND_BITWISE_AND_RELEASE("getAndBitwiseAndRelease", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseAndAcquire VarHandle.getAndBitwiseAndAcquire}
+         */
+        GET_AND_BITWISE_AND_ACQUIRE("getAndBitwiseAndAcquire", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseXor VarHandle.getAndBitwiseXor}
+         */
+        GET_AND_BITWISE_XOR("getAndBitwiseXor", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseXorRelease VarHandle.getAndBitwiseXorRelease}
+         */
+        GET_AND_BITWISE_XOR_RELEASE("getAndBitwiseXorRelease", AccessType.GET_AND_UPDATE_BITWISE),
+        /**
+         * The access mode whose access is specified by the corresponding
+         * method
+         * {@link VarHandle#getAndBitwiseXorAcquire VarHandle.getAndBitwiseXorAcquire}
+         */
+        GET_AND_BITWISE_XOR_ACQUIRE("getAndBitwiseXorAcquire", AccessType.GET_AND_UPDATE_BITWISE),
+        ;
+
+        static final Map<String, AccessMode> methodNameToAccessMode;
+        static {
+            AccessMode[] values = AccessMode.values();
+            // Initial capacity of # values divided by the load factor is sufficient
+            // to avoid resizes for the smallest table size (64)
+            int initialCapacity = (int)(values.length / 0.75f) + 1;
+            methodNameToAccessMode = new HashMap<>(initialCapacity);
+            for (AccessMode am : values) {
+                methodNameToAccessMode.put(am.methodName, am);
+            }
+        }
+
+        final String methodName;
+        final AccessType at;
+
+        AccessMode(final String methodName, AccessType at) {
+            this.methodName = methodName;
+            this.at = at;
+        }
+
+        /**
+         * Returns the {@code VarHandle} signature-polymorphic method name
+         * associated with this {@code AccessMode} value.
+         *
+         * @return the signature-polymorphic method name
+         * @see #valueFromMethodName
+         */
+        public String methodName() {
+            return methodName;
+        }
+
+        /**
+         * Returns the {@code AccessMode} value associated with the specified
+         * {@code VarHandle} signature-polymorphic method name.
+         *
+         * @param methodName the signature-polymorphic method name
+         * @return the {@code AccessMode} value
+         * @throws IllegalArgumentException if there is no {@code AccessMode}
+         *         value associated with method name (indicating the method
+         *         name does not correspond to a {@code VarHandle}
+         *         signature-polymorphic method name).
+         * @see #methodName()
+         */
+        public static AccessMode valueFromMethodName(String methodName) {
+            AccessMode am = methodNameToAccessMode.get(methodName);
+            if (am != null) return am;
+            throw new IllegalArgumentException("No AccessMode value for method name " + methodName);
+        }
+
+        // BEGIN Android-removed: MemberName and VarForm are not used in the Android implementation.
+        /*
+        @ForceInline
+        static MemberName getMemberName(int ordinal, VarForm vform) {
+            return vform.memberName_table[ordinal];
+        }
+        */
+        // END Android-removed: MemberName and VarForm are not used in the Android implementation.
+    }
+
+    // BEGIN Android-removed: AccessDescriptor not used in Android implementation.
+    /*
+    static final class AccessDescriptor {
+        final MethodType symbolicMethodTypeErased;
+        final MethodType symbolicMethodTypeInvoker;
+        final Class<?> returnType;
+        final int type;
+        final int mode;
+
+        public AccessDescriptor(MethodType symbolicMethodType, int type, int mode) {
+            this.symbolicMethodTypeErased = symbolicMethodType.erase();
+            this.symbolicMethodTypeInvoker = symbolicMethodType.insertParameterTypes(0, VarHandle.class);
+            this.returnType = symbolicMethodType.returnType();
+            this.type = type;
+            this.mode = mode;
+        }
+    }
+    */
+    // END Android-removed: AccessDescriptor not used in Android implementation.
+
+    /**
+     * Returns a compact textual description of this {@linkplain VarHandle},
+     * including the type of variable described, and a description of its coordinates.
+     *
+     * @return A compact textual description of this {@linkplain VarHandle}
+     */
+    @Override
+    public final String toString() {
+        return String.format("VarHandle[varType=%s, coord=%s]",
+                varType().getName(),
+                coordinateTypes());
+    }
+
+    /**
+     * Returns the variable type of variables referenced by this VarHandle.
+     *
+     * @return the variable type of variables referenced by this VarHandle
+     */
+    public final Class<?> varType() {
+        // Android-removed: existing implementation.
+        // MethodType typeSet = accessModeType(AccessMode.SET);
+        // return typeSet.parameterType(typeSet.parameterCount() - 1)
+        // Android-added: return instance field.
+        return varType;
+    }
+
+    /**
+     * Returns the coordinate types for this VarHandle.
+     *
+     * @return the coordinate types for this VarHandle. The returned
+     * list is unmodifiable
+     */
+    public final List<Class<?>> coordinateTypes() {
+        // Android-removed: existing implementation.
+        // MethodType typeGet = accessModeType(AccessMode.GET);
+        // return typeGet.parameterList();
+        // Android-added: Android specific implementation.
+        if (coordinateType0 == null) {
+            return Collections.EMPTY_LIST;
+        } else if (coordinateType1 == null) {
+            return Collections.singletonList(coordinateType0);
+        } else {
+            return Collections.unmodifiableList(Arrays.asList(coordinateType0, coordinateType1));
+        }
+    }
+
+    /**
+     * Obtains the access mode type for this VarHandle and a given access mode.
+     *
+     * <p>The access mode type's parameter types will consist of a prefix that
+     * is the coordinate types of this VarHandle followed by further
+     * types as defined by the access mode method.
+     * The access mode type's return type is defined by the return type of the
+     * access mode method.
+     *
+     * @param accessMode the access mode, corresponding to the
+     * signature-polymorphic method of the same name
+     * @return the access mode type for the given access mode
+     */
+    public final MethodType accessModeType(AccessMode accessMode) {
+        // BEGIN Android-removed: Relies on internal class that is not part of the
+        // Android implementation.
+        /*
+        TypesAndInvokers tis = getTypesAndInvokers();
+        MethodType mt = tis.methodType_table[accessMode.at.ordinal()];
+        if (mt == null) {
+            mt = tis.methodType_table[accessMode.at.ordinal()] =
+                    accessModeTypeUncached(accessMode);
+        }
+        return mt;
+        */
+        // END Android-removed: Relies on internal class that is not part of the
+        // Android implementation.
+        // Android-added: alternative implementation.
+        if (coordinateType1 == null) {
+            // accessModeType() treats the first argument as the
+            // receiver and adapts accordingly if it is null.
+            return accessMode.at.accessModeType(coordinateType0, varType);
+        } else {
+            return accessMode.at.accessModeType(coordinateType0, varType, coordinateType1);
+        }
+    }
+
+    // Android-removed: Not part of the Android implementation.
+    // abstract MethodType accessModeTypeUncached(AccessMode accessMode);
+
+    /**
+     * Returns {@code true} if the given access mode is supported, otherwise
+     * {@code false}.
+     *
+     * <p>The return of a {@code false} value for a given access mode indicates
+     * that an {@code UnsupportedOperationException} is thrown on invocation
+     * of the corresponding access mode method.
+     *
+     * @param accessMode the access mode, corresponding to the
+     * signature-polymorphic method of the same name
+     * @return {@code true} if the given access mode is supported, otherwise
+     * {@code false}.
+     */
+    public final boolean isAccessModeSupported(AccessMode accessMode) {
+        // Android-removed: Refers to unused field vform.
+        // return AccessMode.getMemberName(accessMode.ordinal(), vform) != null;
+        // Android-added: use accessModesBitsMask field.
+        final int testBit = 1 << accessMode.ordinal();
+        return (accessModesBitMask & testBit) == testBit;
+    }
+
+    /**
+     * Obtains a method handle bound to this VarHandle and the given access
+     * mode.
+     *
+     * @apiNote This method, for a VarHandle {@code vh} and access mode
+     * {@code {access-mode}}, returns a method handle that is equivalent to
+     * method handle {@code bmh} in the following code (though it may be more
+     * efficient):
+     * <pre>{@code
+     * MethodHandle mh = MethodHandles.varHandleExactInvoker(
+     *                       vh.accessModeType(VarHandle.AccessMode.{access-mode}));
+     *
+     * MethodHandle bmh = mh.bindTo(vh);
+     * }</pre>
+     *
+     * @param accessMode the access mode, corresponding to the
+     * signature-polymorphic method of the same name
+     * @return a method handle bound to this VarHandle and the given access mode
+     */
+    public final MethodHandle toMethodHandle(AccessMode accessMode) {
+        // BEGIN Android-removed: no vform field in Android implementation.
+        /*
+        MemberName mn = AccessMode.getMemberName(accessMode.ordinal(), vform);
+        if (mn != null) {
+            MethodHandle mh = getMethodHandle(accessMode.ordinal());
+            return mh.bindTo(this);
+        }
+        else {
+            // Ensure an UnsupportedOperationException is thrown
+            return MethodHandles.varHandleInvoker(accessMode, accessModeType(accessMode)).
+                    bindTo(this);
+        }
+        */
+        // END Android-removed: no vform field in Android implementation.
+
+        // Android-added: basic implementation following description in javadoc for this method.
+        MethodType type = accessModeType(accessMode);
+        return MethodHandles.varHandleExactInvoker(accessMode, type).bindTo(this);
+    }
+
+    // BEGIN Android-removed: Not used in Android implementation.
+    /*
+    @Stable
+    TypesAndInvokers typesAndInvokers;
+
+    static class TypesAndInvokers {
+        final @Stable
+        MethodType[] methodType_table =
+                new MethodType[VarHandle.AccessType.values().length];
+
+        final @Stable
+        MethodHandle[] methodHandle_table =
+                new MethodHandle[AccessMode.values().length];
+    }
+
+    @ForceInline
+    private final TypesAndInvokers getTypesAndInvokers() {
+        TypesAndInvokers tis = typesAndInvokers;
+        if (tis == null) {
+            tis = typesAndInvokers = new TypesAndInvokers();
+        }
+        return tis;
+    }
+
+    @ForceInline
+    final MethodHandle getMethodHandle(int mode) {
+        TypesAndInvokers tis = getTypesAndInvokers();
+        MethodHandle mh = tis.methodHandle_table[mode];
+        if (mh == null) {
+            mh = tis.methodHandle_table[mode] = getMethodHandleUncached(mode);
+        }
+        return mh;
+    }
+    private final MethodHandle getMethodHandleUncached(int mode) {
+        MethodType mt = accessModeType(AccessMode.values()[mode]).
+                insertParameterTypes(0, VarHandle.class);
+        MemberName mn = vform.getMemberName(mode);
+        DirectMethodHandle dmh = DirectMethodHandle.make(mn);
+        // Such a method handle must not be publically exposed directly
+        // otherwise it can be cracked, it must be transformed or rebound
+        // before exposure
+        MethodHandle mh = dmh.copyWith(mt, dmh.form);
+        assert mh.type().erase() == mn.getMethodType().erase();
+        return mh;
+    }
+    */
+    // END Android-removed: Not used in Android implementation.
+
+    // BEGIN Android-removed: No VarForm in Android implementation.
+    /*non-public*/
+    /*
+    final void updateVarForm(VarForm newVForm) {
+        if (vform == newVForm) return;
+        UNSAFE.putObject(this, VFORM_OFFSET, newVForm);
+        UNSAFE.fullFence();
+    }
+
+    static final BiFunction<String, List<Integer>, ArrayIndexOutOfBoundsException>
+            AIOOBE_SUPPLIER = Preconditions.outOfBoundsExceptionFormatter(
+            new Function<String, ArrayIndexOutOfBoundsException>() {
+                @Override
+                public ArrayIndexOutOfBoundsException apply(String s) {
+                    return new ArrayIndexOutOfBoundsException(s);
+                }
+            });
+
+    private static final long VFORM_OFFSET;
+
+    static {
+        VFORM_OFFSET = UNSAFE.objectFieldOffset(VarHandle.class, "vform");
+
+        // The VarHandleGuards must be initialized to ensure correct
+        // compilation of the guard methods
+        UNSAFE.ensureClassInitialized(VarHandleGuards.class);
+    }
+    */
+    // END Android-removed: No VarForm in Android implementation.
+
+    // Fence methods
+
+    /**
+     * Ensures that loads and stores before the fence will not be reordered
+     * with
+     * loads and stores after the fence.
+     *
+     * @apiNote Ignoring the many semantic differences from C and C++, this
+     * method has memory ordering effects compatible with
+     * {@code atomic_thread_fence(memory_order_seq_cst)}
+     */
+    // Android-removed: @ForceInline is an unsupported attribute.
+    // @ForceInline
+    public static void fullFence() {
+        UNSAFE.fullFence();
+    }
+
+    /**
+     * Ensures that loads before the fence will not be reordered with loads and
+     * stores after the fence.
+     *
+     * @apiNote Ignoring the many semantic differences from C and C++, this
+     * method has memory ordering effects compatible with
+     * {@code atomic_thread_fence(memory_order_acquire)}
+     */
+    // Android-removed: @ForceInline is an unsupported attribute.
+    // @ForceInline
+    public static void acquireFence() {
+        UNSAFE.loadFence();
+    }
+
+    /**
+     * Ensures that loads and stores before the fence will not be
+     * reordered with stores after the fence.
+     *
+     * @apiNote Ignoring the many semantic differences from C and C++, this
+     * method has memory ordering effects compatible with
+     * {@code atomic_thread_fence(memory_order_release)}
+     */
+    // Android-removed: @ForceInline is an unsupported attribute.
+    // @ForceInline
+    public static void releaseFence() {
+        UNSAFE.storeFence();
+    }
+
+    /**
+     * Ensures that loads before the fence will not be reordered with
+     * loads after the fence.
+     */
+    // Android-removed: @ForceInline is an unsupported attribute.
+    // @ForceInline
+    public static void loadLoadFence() {
+        // Android-changed: Not using UNSAFE.loadLoadFence() as not present on Android.
+        // NB The compiler recognizes all the fences here as intrinsics.
+        UNSAFE.loadFence();
+    }
+
+    /**
+     * Ensures that stores before the fence will not be reordered with
+     * stores after the fence.
+     */
+    // Android-removed: @ForceInline is an unsupported attribute.
+    // @ForceInline
+    public static void storeStoreFence() {
+        // Android-changed: Not using UNSAFE.storeStoreFence() as not present on Android.
+        // NB The compiler recognizes all the fences here as intrinsics.
+        UNSAFE.storeFence();
+    }
+
+    // BEGIN Android-added: package private constructors.
+    /**
+     * Constructor for VarHandle with no coordinates.
+     *
+     * @param varType the variable type of variables to be referenced
+     * @param isFinal whether the target variables are final (non-modifiable)
+     * @hide
+     */
+    VarHandle(Class<?> varType, boolean isFinal) {
+        this.varType = Objects.requireNonNull(varType);
+        this.coordinateType0 = null;
+        this.coordinateType1 = null;
+        this.accessModesBitMask = alignedAccessModesBitMask(varType, isFinal);
+    }
+
+    /**
+     * Constructor for VarHandle with one coordinate.
+     *
+     * @param varType the variable type of variables to be referenced
+     * @param isFinal  whether the target variables are final (non-modifiable)
+     * @param coordinateType the coordinate
+     * @hide
+     */
+    VarHandle(Class<?> varType, boolean isFinal, Class<?> coordinateType) {
+        this.varType = Objects.requireNonNull(varType);
+        this.coordinateType0 = Objects.requireNonNull(coordinateType);
+        this.coordinateType1 = null;
+        this.accessModesBitMask = alignedAccessModesBitMask(varType, isFinal);
+    }
+
+    /**
+     * Constructor for VarHandle with two coordinates.
+     *
+     * @param varType the variable type of variables to be referenced
+     * @param backingArrayType the type of the array accesses will be performed on
+     * @param isFinal whether the target variables are final (non-modifiable)
+     * @param coordinateType0 the first coordinate
+     * @param coordinateType1 the second coordinate
+     * @hide
+     */
+    VarHandle(Class<?> varType, Class<?> backingArrayType,  boolean isFinal,
+              Class<?> coordinateType0, Class<?> coordinateType1) {
+        this.varType = Objects.requireNonNull(varType);
+        this.coordinateType0 = Objects.requireNonNull(coordinateType0);
+        this.coordinateType1 = Objects.requireNonNull(coordinateType1);
+        Objects.requireNonNull(backingArrayType);
+        Class<?> backingArrayComponentType = backingArrayType.getComponentType();
+        if (backingArrayComponentType != varType && backingArrayComponentType != byte.class) {
+            throw new InternalError("Unsupported backingArrayType: " + backingArrayType);
+        }
+
+        if (backingArrayType.getComponentType() == varType) {
+            this.accessModesBitMask = alignedAccessModesBitMask(varType, isFinal);
+        } else {
+            this.accessModesBitMask = unalignedAccessModesBitMask(varType);
+        }
+    }
+    // END Android-added: package private constructors.
+
+    // BEGIN Android-added: helper state for VarHandle properties.
+
+    /** BitMask of access modes that do not change the memory referenced by a VarHandle.
+     * An example being a read of a variable with volatile ordering effects. */
+    private final static int READ_ACCESS_MODES_BIT_MASK;
+
+    /** BitMask of access modes that write to the memory referenced by
+     * a VarHandle.  This does not include any compare and update
+     * access modes, nor any bitwise or numeric access modes. An
+     * example being a write to variable with release ordering
+     * effects.
+     */
+    private final static int WRITE_ACCESS_MODES_BIT_MASK;
+
+    /** BitMask of access modes that are applicable to types
+     * supporting for atomic updates.  This includes access modes that
+     * both read and write a variable such as compare-and-set.
+     */
+    private final static int ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+
+    /** BitMask of access modes that are applicable to types
+     * supporting numeric atomic update operations. */
+    private final static int NUMERIC_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+
+    /** BitMask of access modes that are applicable to types
+     * supporting bitwise atomic update operations. */
+    private final static int BITWISE_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+
+    /** BitMask of all access modes. */
+    private final static int ALL_MODES_BIT_MASK;
+
+    static {
+        // Check we're not about to overflow the storage of the
+        // bitmasks here and in the accessModesBitMask field.
+        if (AccessMode.values().length > Integer.SIZE) {
+            throw new InternalError("accessModes overflow");
+        }
+
+        // Access modes bit mask declarations and initialization order
+        // follows the presentation order in JEP193.
+        READ_ACCESS_MODES_BIT_MASK = accessTypesToBitMask(EnumSet.of(AccessType.GET));
+
+        WRITE_ACCESS_MODES_BIT_MASK = accessTypesToBitMask(EnumSet.of(AccessType.SET));
+
+        ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK =
+                accessTypesToBitMask(EnumSet.of(AccessType.COMPARE_AND_EXCHANGE,
+                                                AccessType.COMPARE_AND_SET,
+                                                AccessType.GET_AND_UPDATE));
+
+        NUMERIC_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK =
+                accessTypesToBitMask(EnumSet.of(AccessType.GET_AND_UPDATE_NUMERIC));
+
+        BITWISE_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK =
+                accessTypesToBitMask(EnumSet.of(AccessType.GET_AND_UPDATE_BITWISE));
+
+        ALL_MODES_BIT_MASK = (READ_ACCESS_MODES_BIT_MASK |
+                              WRITE_ACCESS_MODES_BIT_MASK |
+                              ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK |
+                              NUMERIC_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK |
+                              BITWISE_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK);
+    }
+
+    static int accessTypesToBitMask(final EnumSet<AccessType> accessTypes) {
+        int m = 0;
+        for (AccessMode accessMode : AccessMode.values()) {
+            if (accessTypes.contains(accessMode.at)) {
+                m |= 1 << accessMode.ordinal();
+            }
+        }
+        return m;
+    }
+
+    static int alignedAccessModesBitMask(Class<?> varType, boolean isFinal) {
+        // For aligned accesses, the supported access modes are described in:
+        // @see java.lang.invoke.MethodHandles.Lookup#findVarHandle
+        int bitMask = ALL_MODES_BIT_MASK;
+
+        // If the field is declared final, keep only the read access modes.
+        if (isFinal) {
+            bitMask &= READ_ACCESS_MODES_BIT_MASK;
+        }
+
+        // If the field is anything other than byte, short, char, int,
+        // long, float, double then remove the numeric atomic update
+        // access modes.
+        if (varType != byte.class && varType != short.class && varType != char.class &&
+            varType != int.class && varType != long.class
+            && varType != float.class && varType != double.class) {
+            bitMask &= ~NUMERIC_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+        }
+
+        // If the field is not integral, remove the bitwise atomic update access modes.
+        if (varType != boolean.class && varType != byte.class && varType != short.class &&
+            varType != char.class && varType != int.class && varType != long.class) {
+            bitMask &= ~BITWISE_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+        }
+        return bitMask;
+    }
+
+    static int unalignedAccessModesBitMask(Class<?> varType) {
+        // The VarHandle refers to a view of byte array or a
+        // view of a byte buffer.  The corresponding accesses
+        // maybe unaligned so the access modes are more
+        // restrictive than field or array element accesses.
+        //
+        // The supported access modes are described in:
+        // @see java.lang.invoke.MethodHandles#byteArrayViewVarHandle
+
+        // Read/write access modes supported for all types including
+        // long and double on 32-bit platforms (though these accesses
+        // may not be atomic).
+        int bitMask = READ_ACCESS_MODES_BIT_MASK | WRITE_ACCESS_MODES_BIT_MASK;
+
+        // int, long, float, double support atomic update modes per documentation.
+        if (varType == int.class || varType == long.class ||
+            varType == float.class || varType == double.class) {
+            bitMask |= ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+        }
+
+        // int and long support numeric updates per documentation.
+        if (varType == int.class || varType == long.class) {
+            bitMask |= NUMERIC_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+        }
+
+        // int and long support bitwise updates per documentation.
+        if (varType == int.class || varType == long.class) {
+            bitMask |= BITWISE_ATOMIC_UPDATE_ACCESS_MODES_BIT_MASK;
+        }
+        return bitMask;
+    }
+    // END Android-added: helper state for VarHandle properties.
+
+    // BEGIN Android-added: Add VarHandleDesc from OpenJDK 17. http://b/270028670
+    /**
+     * A <a href="{@docRoot}/java.base/java/lang/constant/package-summary.html#nominal">nominal descriptor</a> for a
+     * {@link VarHandle} constant.
+     *
+     * @since 12
+     * @hide
+     */
+    public static final class VarHandleDesc extends DynamicConstantDesc<VarHandle> {
+
+        /**
+         * Kinds of variable handle descs
+         */
+        private enum Kind {
+            FIELD(ConstantDescs.BSM_VARHANDLE_FIELD),
+            STATIC_FIELD(ConstantDescs.BSM_VARHANDLE_STATIC_FIELD),
+            ARRAY(ConstantDescs.BSM_VARHANDLE_ARRAY);
+
+            final DirectMethodHandleDesc bootstrapMethod;
+
+            Kind(DirectMethodHandleDesc bootstrapMethod) {
+                this.bootstrapMethod = bootstrapMethod;
+            }
+
+            ConstantDesc[] toBSMArgs(ClassDesc declaringClass, ClassDesc varType) {
+                return switch (this) {
+                    case FIELD, STATIC_FIELD -> new ConstantDesc[]{declaringClass, varType};
+                    case ARRAY               -> new ConstantDesc[]{declaringClass};
+                    default -> throw new InternalError("Cannot reach here");
+                };
+            }
+        }
+
+        private final Kind kind;
+        private final ClassDesc declaringClass;
+        private final ClassDesc varType;
+
+        /**
+         * Construct a {@linkplain VarHandleDesc} given a kind, name, and declaring
+         * class.
+         *
+         * @param kind the kind of the var handle
+         * @param name the unqualified name of the field, for field var handles; otherwise ignored
+         * @param declaringClass a {@link ClassDesc} describing the declaring class,
+         *                       for field var handles
+         * @param varType a {@link ClassDesc} describing the type of the variable
+         * @throws NullPointerException if any required argument is null
+         * @jvms 4.2.2 Unqualified Names
+         */
+        private VarHandleDesc(Kind kind, String name, ClassDesc declaringClass, ClassDesc varType) {
+            super(kind.bootstrapMethod, name,
+                    ConstantDescs.CD_VarHandle,
+                    kind.toBSMArgs(declaringClass, varType));
+            this.kind = kind;
+            this.declaringClass = declaringClass;
+            this.varType = varType;
+        }
+
+        /**
+         * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
+         * for an instance field.
+         *
+         * @param name the unqualified name of the field
+         * @param declaringClass a {@link ClassDesc} describing the declaring class,
+         *                       for field var handles
+         * @param fieldType a {@link ClassDesc} describing the type of the field
+         * @return the {@linkplain VarHandleDesc}
+         * @throws NullPointerException if any of the arguments are null
+         * @jvms 4.2.2 Unqualified Names
+         */
+        public static VarHandleDesc ofField(ClassDesc declaringClass, String name, ClassDesc fieldType) {
+            Objects.requireNonNull(declaringClass);
+            Objects.requireNonNull(name);
+            Objects.requireNonNull(fieldType);
+            return new VarHandleDesc(Kind.FIELD, name, declaringClass, fieldType);
+        }
+
+        /**
+         * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
+         * for a static field.
+         *
+         * @param name the unqualified name of the field
+         * @param declaringClass a {@link ClassDesc} describing the declaring class,
+         *                       for field var handles
+         * @param fieldType a {@link ClassDesc} describing the type of the field
+         * @return the {@linkplain VarHandleDesc}
+         * @throws NullPointerException if any of the arguments are null
+         * @jvms 4.2.2 Unqualified Names
+         */
+        public static VarHandleDesc ofStaticField(ClassDesc declaringClass, String name, ClassDesc fieldType) {
+            Objects.requireNonNull(declaringClass);
+            Objects.requireNonNull(name);
+            Objects.requireNonNull(fieldType);
+            return new VarHandleDesc(Kind.STATIC_FIELD, name, declaringClass, fieldType);
+        }
+
+        /**
+         * Returns a {@linkplain VarHandleDesc} corresponding to a {@link VarHandle}
+         * for an array type.
+         *
+         * @param arrayClass a {@link ClassDesc} describing the type of the array
+         * @return the {@linkplain VarHandleDesc}
+         * @throws NullPointerException if any of the arguments are null
+         */
+        public static VarHandleDesc ofArray(ClassDesc arrayClass) {
+            Objects.requireNonNull(arrayClass);
+            if (!arrayClass.isArray())
+                throw new IllegalArgumentException("Array class argument not an array: " + arrayClass);
+            return new VarHandleDesc(Kind.ARRAY, ConstantDescs.DEFAULT_NAME, arrayClass, arrayClass.componentType());
+        }
+
+        /**
+         * Returns a {@link ClassDesc} describing the type of the variable described
+         * by this descriptor.
+         *
+         * @return the variable type
+         */
+        public ClassDesc varType() {
+            return varType;
+        }
+
+        @Override
+        public VarHandle resolveConstantDesc(MethodHandles.Lookup lookup)
+                throws ReflectiveOperationException {
+            return switch (kind) {
+                case FIELD        -> lookup.findVarHandle((Class<?>) declaringClass.resolveConstantDesc(lookup),
+                        constantName(),
+                        (Class<?>) varType.resolveConstantDesc(lookup));
+                case STATIC_FIELD -> lookup.findStaticVarHandle((Class<?>) declaringClass.resolveConstantDesc(lookup),
+                        constantName(),
+                        (Class<?>) varType.resolveConstantDesc(lookup));
+                case ARRAY        -> MethodHandles.arrayElementVarHandle((Class<?>) declaringClass.resolveConstantDesc(lookup));
+                default -> throw new InternalError("Cannot reach here");
+            };
+        }
+
+        /**
+         * Returns a compact textual description of this constant description.
+         * For a field {@linkplain VarHandle}, includes the owner, name, and type
+         * of the field, and whether it is static; for an array {@linkplain VarHandle},
+         * the name of the component type.
+         *
+         * @return A compact textual description of this descriptor
+         */
+        @Override
+        public String toString() {
+            return switch (kind) {
+                case FIELD, STATIC_FIELD -> String.format("VarHandleDesc[%s%s.%s:%s]",
+                        (kind == Kind.STATIC_FIELD) ? "static " : "",
+                        declaringClass.displayName(), constantName(), varType.displayName());
+                case ARRAY               -> String.format("VarHandleDesc[%s[]]", declaringClass.displayName());
+                default -> throw new InternalError("Cannot reach here");
+            };
+        }
+    }
+    // END Android-added: Add VarHandleDesc from OpenJDK 17. http://b/270028670
+}
diff --git a/android-35/java/lang/invoke/VolatileCallSite.java b/android-35/java/lang/invoke/VolatileCallSite.java
new file mode 100644
index 0000000..47d2689
--- /dev/null
+++ b/android-35/java/lang/invoke/VolatileCallSite.java
@@ -0,0 +1,105 @@
+/*
+ * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+// Android-changed: Removed references to MutableCallSite.syncAll().
+/**
+ * A {@code VolatileCallSite} is a {@link CallSite} whose target acts like a volatile variable.
+ * An {@code invokedynamic} instruction linked to a {@code VolatileCallSite} sees updates
+ * to its call site target immediately, even if the update occurs in another thread.
+ * There may be a performance penalty for such tight coupling between threads.
+ * <p>
+ * In other respects, a {@code VolatileCallSite} is interchangeable
+ * with {@code MutableCallSite}.
+ * @see MutableCallSite
+ * @author John Rose, JSR 292 EG
+ */
+public class VolatileCallSite extends CallSite {
+    /**
+     * Creates a call site with a volatile binding to its target.
+     * The initial target is set to a method handle
+     * of the given type which will throw an {@code IllegalStateException} if called.
+     * @param type the method type that this call site will have
+     * @throws NullPointerException if the proposed type is null
+     */
+    public VolatileCallSite(MethodType type) {
+        super(type);
+    }
+
+    /**
+     * Creates a call site with a volatile binding to its target.
+     * The target is set to the given value.
+     * @param target the method handle that will be the initial target of the call site
+     * @throws NullPointerException if the proposed target is null
+     */
+    public VolatileCallSite(MethodHandle target) {
+        super(target);
+    }
+
+    /**
+     * Returns the target method of the call site, which behaves
+     * like a {@code volatile} field of the {@code VolatileCallSite}.
+     * <p>
+     * The interactions of {@code getTarget} with memory are the same
+     * as of a read from a {@code volatile} field.
+     * <p>
+     * In particular, the current thread is required to issue a fresh
+     * read of the target from memory, and must not fail to see
+     * a recent update to the target by another thread.
+     *
+     * @return the linkage state of this call site, a method handle which can change over time
+     * @see #setTarget
+     */
+    @Override public final MethodHandle getTarget() {
+        return getTargetVolatile();
+    }
+
+    /**
+     * Updates the target method of this call site, as a volatile variable.
+     * The type of the new target must agree with the type of the old target.
+     * <p>
+     * The interactions with memory are the same as of a write to a volatile field.
+     * In particular, any threads is guaranteed to see the updated target
+     * the next time it calls {@code getTarget}.
+     * @param newTarget the new target
+     * @throws NullPointerException if the proposed new target is null
+     * @throws WrongMethodTypeException if the proposed new target
+     *         has a method type that differs from the previous target
+     * @see #getTarget
+     */
+    @Override public void setTarget(MethodHandle newTarget) {
+        checkTargetChange(getTargetVolatile(), newTarget);
+        setTargetVolatile(newTarget);
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    @Override
+    public final MethodHandle dynamicInvoker() {
+        return makeDynamicInvoker();
+    }
+}
diff --git a/android-35/java/lang/invoke/WrongMethodTypeException.java b/android-35/java/lang/invoke/WrongMethodTypeException.java
new file mode 100644
index 0000000..d55e3cd
--- /dev/null
+++ b/android-35/java/lang/invoke/WrongMethodTypeException.java
@@ -0,0 +1,85 @@
+/*
+ * Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+/**
+ * Thrown to indicate that code has attempted to call a method handle
+ * via the wrong method type.  As with the bytecode representation of
+ * normal Java method calls, method handle calls are strongly typed
+ * to a specific type descriptor associated with a call site.
+ * <p>
+ * This exception may also be thrown when two method handles are
+ * composed, and the system detects that their types cannot be
+ * matched up correctly.  This amounts to an early evaluation
+ * of the type mismatch, at method handle construction time,
+ * instead of when the mismatched method handle is called.
+ *
+ * @author John Rose, JSR 292 EG
+ * @since 1.7
+ */
+public class WrongMethodTypeException extends RuntimeException {
+    private static final long serialVersionUID = 292L;
+
+    /**
+     * Constructs a {@code WrongMethodTypeException} with no detail message.
+     */
+    public WrongMethodTypeException() {
+        super();
+    }
+
+    /**
+     * Constructs a {@code WrongMethodTypeException} with the specified
+     * detail message.
+     *
+     * @param s the detail message.
+     */
+    public WrongMethodTypeException(String s) {
+        super(s);
+    }
+
+    /**
+     * Constructs a {@code WrongMethodTypeException} with the specified
+     * detail message and cause.
+     *
+     * @param s the detail message.
+     * @param cause the cause of the exception, or null.
+     */
+    //FIXME: make this public in MR1
+    /*non-public*/ WrongMethodTypeException(String s, Throwable cause) {
+        super(s, cause);
+    }
+
+    /**
+     * Constructs a {@code WrongMethodTypeException} with the specified
+     * cause.
+     *
+     * @param cause the cause of the exception, or null.
+     */
+    //FIXME: make this public in MR1
+    /*non-public*/ WrongMethodTypeException(Throwable cause) {
+        super(cause);
+    }
+}