| use core::{ |
| borrow::Borrow, |
| panic::{RefUnwindSafe, UnwindSafe}, |
| }; |
| |
| use alloc::{boxed::Box, sync::Arc, vec, vec::Vec}; |
| |
| use regex_syntax::{ |
| ast, |
| hir::{self, Hir}, |
| }; |
| |
| use crate::{ |
| meta::{ |
| error::BuildError, |
| strategy::{self, Strategy}, |
| wrappers, |
| }, |
| nfa::thompson::WhichCaptures, |
| util::{ |
| captures::{Captures, GroupInfo}, |
| iter, |
| pool::{Pool, PoolGuard}, |
| prefilter::Prefilter, |
| primitives::{NonMaxUsize, PatternID}, |
| search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span}, |
| }, |
| }; |
| |
| /// A type alias for our pool of meta::Cache that fixes the type parameters to |
| /// what we use for the meta regex below. |
| type CachePool = Pool<Cache, CachePoolFn>; |
| |
| /// Same as above, but for the guard returned by a pool. |
| type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>; |
| |
| /// The type of the closure we use to create new caches. We need to spell out |
| /// all of the marker traits or else we risk leaking !MARKER impls. |
| type CachePoolFn = |
| Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>; |
| |
| /// A regex matcher that works by composing several other regex matchers |
| /// automatically. |
| /// |
| /// In effect, a meta regex papers over a lot of the quirks or performance |
| /// problems in each of the regex engines in this crate. Its goal is to provide |
| /// an infallible and simple API that "just does the right thing" in the common |
| /// case. |
| /// |
| /// A meta regex is the implementation of a `Regex` in the `regex` crate. |
| /// Indeed, the `regex` crate API is essentially just a light wrapper over |
| /// this type. This includes the `regex` crate's `RegexSet` API! |
| /// |
| /// # Composition |
| /// |
| /// This is called a "meta" matcher precisely because it uses other regex |
| /// matchers to provide a convenient high level regex API. Here are some |
| /// examples of how other regex matchers are composed: |
| /// |
| /// * When calling [`Regex::captures`], instead of immediately |
| /// running a slower but more capable regex engine like the |
| /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine |
| /// will usually first look for the bounds of a match with a higher throughput |
| /// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found |
| /// is a slower engine like `PikeVM` used to find the matching span for each |
| /// capture group. |
| /// * While higher throughout engines like the lazy DFA cannot handle |
| /// Unicode word boundaries in general, they can still be used on pure ASCII |
| /// haystacks by pretending that Unicode word boundaries are just plain ASCII |
| /// word boundaries. However, if a haystack is not ASCII, the meta regex engine |
| /// will automatically switch to a (possibly slower) regex engine that supports |
| /// Unicode word boundaries in general. |
| /// * In some cases where a regex pattern is just a simple literal or a small |
| /// set of literals, an actual regex engine won't be used at all. Instead, |
| /// substring or multi-substring search algorithms will be employed. |
| /// |
| /// There are many other forms of composition happening too, but the above |
| /// should give a general idea. In particular, it may perhaps be surprising |
| /// that *multiple* regex engines might get executed for a single search. That |
| /// is, the decision of what regex engine to use is not _just_ based on the |
| /// pattern, but also based on the dynamic execution of the search itself. |
| /// |
| /// The primary reason for this composition is performance. The fundamental |
| /// tension is that the faster engines tend to be less capable, and the more |
| /// capable engines tend to be slower. |
| /// |
| /// Note that the forms of composition that are allowed are determined by |
| /// compile time crate features and configuration. For example, if the `hybrid` |
| /// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the |
| /// meta regex engine will never use a lazy DFA. |
| /// |
| /// # Synchronization and cloning |
| /// |
| /// Most of the regex engines in this crate require some kind of mutable |
| /// "scratch" space to read and write from while performing a search. Since |
| /// a meta regex composes these regex engines, a meta regex also requires |
| /// mutable scratch space. This scratch space is called a [`Cache`]. |
| /// |
| /// Most regex engines _also_ usually have a read-only component, typically |
| /// a [Thompson `NFA`](crate::nfa::thompson::NFA). |
| /// |
| /// In order to make the `Regex` API convenient, most of the routines hide |
| /// the fact that a `Cache` is needed at all. To achieve this, a [memory |
| /// pool](crate::util::pool::Pool) is used internally to retrieve `Cache` |
| /// values in a thread safe way that also permits reuse. This in turn implies |
| /// that every such search call requires some form of synchronization. Usually |
| /// this synchronization is fast enough to not notice, but in some cases, it |
| /// can be a bottleneck. This typically occurs when all of the following are |
| /// true: |
| /// |
| /// * The same `Regex` is shared across multiple threads simultaneously, |
| /// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something |
| /// similar from the `once_cell` or `lazy_static` crates. |
| /// * The primary unit of work in each thread is a regex search. |
| /// * Searches are run on very short haystacks. |
| /// |
| /// This particular case can lead to high contention on the pool used by a |
| /// `Regex` internally, which can in turn increase latency to a noticeable |
| /// effect. This cost can be mitigated in one of the following ways: |
| /// |
| /// * Use a distinct copy of a `Regex` in each thread, usually by cloning it. |
| /// Cloning a `Regex` _does not_ do a deep copy of its read-only component. |
| /// But it does lead to each `Regex` having its own memory pool, which in |
| /// turn eliminates the problem of contention. In general, this technique should |
| /// not result in any additional memory usage when compared to sharing the same |
| /// `Regex` across multiple threads simultaneously. |
| /// * Use lower level APIs, like [`Regex::search_with`], which permit passing |
| /// a `Cache` explicitly. In this case, it is up to you to determine how best |
| /// to provide a `Cache`. For example, you might put a `Cache` in thread-local |
| /// storage if your use case allows for it. |
| /// |
| /// Overall, this is an issue that happens rarely in practice, but it can |
| /// happen. |
| /// |
| /// # Warning: spin-locks may be used in alloc-only mode |
| /// |
| /// When this crate is built without the `std` feature and the high level APIs |
| /// on a `Regex` are used, then a spin-lock will be used to synchronize access |
| /// to an internal pool of `Cache` values. This may be undesirable because |
| /// a spin-lock is [effectively impossible to implement correctly in user |
| /// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could |
| /// result in a deadlock. |
| /// |
| /// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html |
| /// |
| /// If one wants to avoid the use of spin-locks when the `std` feature is |
| /// disabled, then you must use APIs that accept a `Cache` value explicitly. |
| /// For example, [`Regex::search_with`]. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?; |
| /// assert!(re.is_match("2010-03-14")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: anchored search |
| /// |
| /// This example shows how to use [`Input::anchored`] to run an anchored |
| /// search, even when the regex pattern itself isn't anchored. An anchored |
| /// search guarantees that if a match is found, then the start offset of the |
| /// match corresponds to the offset at which the search was started. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Anchored, Input, Match}; |
| /// |
| /// let re = Regex::new(r"\bfoo\b")?; |
| /// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes); |
| /// // The offsets are in terms of the original haystack. |
| /// assert_eq!(Some(Match::must(0, 3..6)), re.find(input)); |
| /// |
| /// // Notice that no match occurs here, because \b still takes the |
| /// // surrounding context into account, even if it means looking back |
| /// // before the start of your search. |
| /// let hay = "xxfoo xx"; |
| /// let input = Input::new(hay).range(2..).anchored(Anchored::Yes); |
| /// assert_eq!(None, re.find(input)); |
| /// // Indeed, you cannot achieve the above by simply slicing the |
| /// // haystack itself, since the regex engine can't see the |
| /// // surrounding context. This is why 'Input' permits setting |
| /// // the bounds of a search! |
| /// let input = Input::new(&hay[2..]).anchored(Anchored::Yes); |
| /// // WRONG! |
| /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: earliest search |
| /// |
| /// This example shows how to use [`Input::earliest`] to run a search that |
| /// might stop before finding the typical leftmost match. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Anchored, Input, Match}; |
| /// |
| /// let re = Regex::new(r"[a-z]{3}|b")?; |
| /// let input = Input::new("abc").earliest(true); |
| /// assert_eq!(Some(Match::must(0, 1..2)), re.find(input)); |
| /// |
| /// // Note that "earliest" isn't really a match semantic unto itself. |
| /// // Instead, it is merely an instruction to whatever regex engine |
| /// // gets used internally to quit as soon as it can. For example, |
| /// // this regex uses a different search technique, and winds up |
| /// // producing a different (but valid) match! |
| /// let re = Regex::new(r"abc|b")?; |
| /// let input = Input::new("abc").earliest(true); |
| /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: change the line terminator |
| /// |
| /// This example shows how to enable multi-line mode by default and change |
| /// the line terminator to the NUL byte: |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .syntax(syntax::Config::new().multi_line(true)) |
| /// .configure(Regex::config().line_terminator(b'\x00')) |
| /// .build(r"^foo$")?; |
| /// let hay = "\x00foo\x00"; |
| /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[derive(Debug)] |
| pub struct Regex { |
| /// The actual regex implementation. |
| imp: Arc<RegexI>, |
| /// A thread safe pool of caches. |
| /// |
| /// For the higher level search APIs, a `Cache` is automatically plucked |
| /// from this pool before running a search. The lower level `with` methods |
| /// permit the caller to provide their own cache, thereby bypassing |
| /// accesses to this pool. |
| /// |
| /// Note that we put this outside the `Arc` so that cloning a `Regex` |
| /// results in creating a fresh `CachePool`. This in turn permits callers |
| /// to clone regexes into separate threads where each such regex gets |
| /// the pool's "thread owner" optimization. Otherwise, if one shares the |
| /// `Regex` directly, then the pool will go through a slower mutex path for |
| /// all threads except for the "owner." |
| pool: CachePool, |
| } |
| |
| /// The internal implementation of `Regex`, split out so that it can be wrapped |
| /// in an `Arc`. |
| #[derive(Debug)] |
| struct RegexI { |
| /// The core matching engine. |
| /// |
| /// Why is this reference counted when RegexI is already wrapped in an Arc? |
| /// Well, we need to capture this in a closure to our `Pool` below in order |
| /// to create new `Cache` values when needed. So since it needs to be in |
| /// two places, we make it reference counted. |
| /// |
| /// We make `RegexI` itself reference counted too so that `Regex` itself |
| /// stays extremely small and very cheap to clone. |
| strat: Arc<dyn Strategy>, |
| /// Metadata about the regexes driving the strategy. The metadata is also |
| /// usually stored inside the strategy too, but we put it here as well |
| /// so that we can get quick access to it (without virtual calls) before |
| /// executing the regex engine. For example, we use this metadata to |
| /// detect a subset of cases where we know a match is impossible, and can |
| /// thus avoid calling into the strategy at all. |
| /// |
| /// Since `RegexInfo` is stored in multiple places, it is also reference |
| /// counted. |
| info: RegexInfo, |
| } |
| |
| /// Convenience constructors for a `Regex` using the default configuration. |
| impl Regex { |
| /// Builds a `Regex` from a single pattern string using the default |
| /// configuration. |
| /// |
| /// If there was a problem parsing the pattern or a problem turning it into |
| /// a regex matcher, then an error is returned. |
| /// |
| /// If you want to change the configuration of a `Regex`, use a [`Builder`] |
| /// with a [`Config`]. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::new(r"(?Rm)^foo$")?; |
| /// let hay = "\r\nfoo\r\n"; |
| /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn new(pattern: &str) -> Result<Regex, BuildError> { |
| Regex::builder().build(pattern) |
| } |
| |
| /// Builds a `Regex` from many pattern strings using the default |
| /// configuration. |
| /// |
| /// If there was a problem parsing any of the patterns or a problem turning |
| /// them into a regex matcher, then an error is returned. |
| /// |
| /// If you want to change the configuration of a `Regex`, use a [`Builder`] |
| /// with a [`Config`]. |
| /// |
| /// # Example: simple lexer |
| /// |
| /// This simplistic example leverages the multi-pattern support to build a |
| /// simple little lexer. The pattern ID in the match tells you which regex |
| /// matched, which in turn might be used to map back to the "type" of the |
| /// token returned by the lexer. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::new_many(&[ |
| /// r"[[:space:]]", |
| /// r"[A-Za-z0-9][A-Za-z0-9_]+", |
| /// r"->", |
| /// r".", |
| /// ])?; |
| /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;"; |
| /// let matches: Vec<Match> = re.find_iter(haystack).collect(); |
| /// assert_eq!(matches, vec![ |
| /// Match::must(1, 0..2), // 'fn' |
| /// Match::must(0, 2..3), // ' ' |
| /// Match::must(1, 3..10), // 'is_boss' |
| /// Match::must(3, 10..11), // '(' |
| /// Match::must(1, 11..16), // 'bruce' |
| /// Match::must(3, 16..17), // ':' |
| /// Match::must(0, 17..18), // ' ' |
| /// Match::must(1, 18..21), // 'i32' |
| /// Match::must(3, 21..22), // ',' |
| /// Match::must(0, 22..23), // ' ' |
| /// Match::must(1, 23..34), // 'springsteen' |
| /// Match::must(3, 34..35), // ':' |
| /// Match::must(0, 35..36), // ' ' |
| /// Match::must(1, 36..42), // 'String' |
| /// Match::must(3, 42..43), // ')' |
| /// Match::must(0, 43..44), // ' ' |
| /// Match::must(2, 44..46), // '->' |
| /// Match::must(0, 46..47), // ' ' |
| /// Match::must(1, 47..51), // 'bool' |
| /// Match::must(3, 51..52), // ';' |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// One can write a lexer like the above using a regex like |
| /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`, |
| /// but then you need to ask whether capture group matched to determine |
| /// which branch in the regex matched, and thus, which token the match |
| /// corresponds to. In contrast, the above example includes the pattern ID |
| /// in the match. There's no need to use capture groups at all. |
| /// |
| /// # Example: finding the pattern that caused an error |
| /// |
| /// When a syntax error occurs, it is possible to ask which pattern |
| /// caused the syntax error. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, PatternID}; |
| /// |
| /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err(); |
| /// assert_eq!(Some(PatternID::must(2)), err.pattern()); |
| /// ``` |
| /// |
| /// # Example: zero patterns is valid |
| /// |
| /// Building a regex with zero patterns results in a regex that never |
| /// matches anything. Because this routine is generic, passing an empty |
| /// slice usually requires a turbo-fish (or something else to help type |
| /// inference). |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::new_many::<&str>(&[])?; |
| /// assert_eq!(None, re.find("")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn new_many<P: AsRef<str>>( |
| patterns: &[P], |
| ) -> Result<Regex, BuildError> { |
| Regex::builder().build_many(patterns) |
| } |
| |
| /// Return a default configuration for a `Regex`. |
| /// |
| /// This is a convenience routine to avoid needing to import the [`Config`] |
| /// type when customizing the construction of a `Regex`. |
| /// |
| /// # Example: lower the NFA size limit |
| /// |
| /// In some cases, the default size limit might be too big. The size limit |
| /// can be lowered, which will prevent large regex patterns from compiling. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) |
| /// // Not even 20KB is enough to build a single large Unicode class! |
| /// .build(r"\pL"); |
| /// assert!(result.is_err()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn config() -> Config { |
| Config::new() |
| } |
| |
| /// Return a builder for configuring the construction of a `Regex`. |
| /// |
| /// This is a convenience routine to avoid needing to import the |
| /// [`Builder`] type in common cases. |
| /// |
| /// # Example: change the line terminator |
| /// |
| /// This example shows how to enable multi-line mode by default and change |
| /// the line terminator to the NUL byte: |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .syntax(syntax::Config::new().multi_line(true)) |
| /// .configure(Regex::config().line_terminator(b'\x00')) |
| /// .build(r"^foo$")?; |
| /// let hay = "\x00foo\x00"; |
| /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn builder() -> Builder { |
| Builder::new() |
| } |
| } |
| |
| /// High level convenience routines for using a regex to search a haystack. |
| impl Regex { |
| /// Returns true if and only if this regex matches the given haystack. |
| /// |
| /// This routine may short circuit if it knows that scanning future input |
| /// will never lead to a different result. (Consider how this might make |
| /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`. |
| /// This routine _may_ stop after it sees the first `a`, but routines like |
| /// `find` need to continue searching because `+` is greedy by default.) |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new("foo[0-9]+bar")?; |
| /// |
| /// assert!(re.is_match("foo12345bar")); |
| /// assert!(!re.is_match("foobar")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: consistency with search APIs |
| /// |
| /// `is_match` is guaranteed to return `true` whenever `find` returns a |
| /// match. This includes searches that are executed entirely within a |
| /// codepoint: |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input}; |
| /// |
| /// let re = Regex::new("a*")?; |
| /// |
| /// // This doesn't match because the default configuration bans empty |
| /// // matches from splitting a codepoint. |
| /// assert!(!re.is_match(Input::new("☃").span(1..2))); |
| /// assert_eq!(None, re.find(Input::new("☃").span(1..2))); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// Notice that when UTF-8 mode is disabled, then the above reports a |
| /// match because the restriction against zero-width matches that split a |
| /// codepoint has been lifted: |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().utf8_empty(false)) |
| /// .build("a*")?; |
| /// |
| /// assert!(re.is_match(Input::new("☃").span(1..2))); |
| /// assert_eq!( |
| /// Some(Match::must(0, 1..1)), |
| /// re.find(Input::new("☃").span(1..2)), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// A similar idea applies when using line anchors with CRLF mode enabled, |
| /// which prevents them from matching between a `\r` and a `\n`. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, Match}; |
| /// |
| /// let re = Regex::new(r"(?Rm:$)")?; |
| /// assert!(!re.is_match(Input::new("\r\n").span(1..1))); |
| /// // A regular line anchor, which only considers \n as a |
| /// // line terminator, will match. |
| /// let re = Regex::new(r"(?m:$)")?; |
| /// assert!(re.is_match(Input::new("\r\n").span(1..1))); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool { |
| let input = input.into().earliest(true); |
| if self.imp.info.is_impossible(&input) { |
| return false; |
| } |
| let mut guard = self.pool.get(); |
| let result = self.imp.strat.is_match(&mut guard, &input); |
| // See 'Regex::search' for why we put the guard back explicitly. |
| PoolGuard::put(guard); |
| result |
| } |
| |
| /// Executes a leftmost search and returns the first match that is found, |
| /// if one exists. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::new("foo[0-9]+")?; |
| /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> { |
| self.search(&input.into()) |
| } |
| |
| /// Executes a leftmost forward search and writes the spans of capturing |
| /// groups that participated in a match into the provided [`Captures`] |
| /// value. If no match was found, then [`Captures::is_match`] is guaranteed |
| /// to return `false`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Span}; |
| /// |
| /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?; |
| /// let mut caps = re.create_captures(); |
| /// |
| /// re.captures("2010-03-14", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); |
| /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); |
| /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn captures<'h, I: Into<Input<'h>>>( |
| &self, |
| input: I, |
| caps: &mut Captures, |
| ) { |
| self.search_captures(&input.into(), caps) |
| } |
| |
| /// Returns an iterator over all non-overlapping leftmost matches in |
| /// the given haystack. If no match exists, then the iterator yields no |
| /// elements. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::new("foo[0-9]+")?; |
| /// let haystack = "foo1 foo12 foo123"; |
| /// let matches: Vec<Match> = re.find_iter(haystack).collect(); |
| /// assert_eq!(matches, vec![ |
| /// Match::must(0, 0..4), |
| /// Match::must(0, 5..10), |
| /// Match::must(0, 11..17), |
| /// ]); |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn find_iter<'r, 'h, I: Into<Input<'h>>>( |
| &'r self, |
| input: I, |
| ) -> FindMatches<'r, 'h> { |
| let cache = self.pool.get(); |
| let it = iter::Searcher::new(input.into()); |
| FindMatches { re: self, cache, it } |
| } |
| |
| /// Returns an iterator over all non-overlapping `Captures` values. If no |
| /// match exists, then the iterator yields no elements. |
| /// |
| /// This yields the same matches as [`Regex::find_iter`], but it includes |
| /// the spans of all capturing groups that participate in each match. |
| /// |
| /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for |
| /// how to correctly iterate over all matches in a haystack while avoiding |
| /// the creation of a new `Captures` value for every match. (Which you are |
| /// forced to do with an `Iterator`.) |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Span}; |
| /// |
| /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?; |
| /// |
| /// let haystack = "foo1 foo12 foo123"; |
| /// let matches: Vec<Span> = re |
| /// .captures_iter(haystack) |
| /// // The unwrap is OK since 'numbers' matches if the pattern matches. |
| /// .map(|caps| caps.get_group_by_name("numbers").unwrap()) |
| /// .collect(); |
| /// assert_eq!(matches, vec![ |
| /// Span::from(3..4), |
| /// Span::from(8..10), |
| /// Span::from(14..17), |
| /// ]); |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>( |
| &'r self, |
| input: I, |
| ) -> CapturesMatches<'r, 'h> { |
| let cache = self.pool.get(); |
| let caps = self.create_captures(); |
| let it = iter::Searcher::new(input.into()); |
| CapturesMatches { re: self, cache, caps, it } |
| } |
| |
| /// Returns an iterator of spans of the haystack given, delimited by a |
| /// match of the regex. Namely, each element of the iterator corresponds to |
| /// a part of the haystack that *isn't* matched by the regular expression. |
| /// |
| /// # Example |
| /// |
| /// To split a string delimited by arbitrary amounts of spaces or tabs: |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"[ \t]+")?; |
| /// let hay = "a b \t c\td e"; |
| /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect(); |
| /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: more cases |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r" ")?; |
| /// let hay = "Mary had a little lamb"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = ""; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec![""]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = "lionXXtigerXleopard"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]); |
| /// |
| /// let re = Regex::new(r"::")?; |
| /// let hay = "lion::tiger::leopard"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["lion", "tiger", "leopard"]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// If a haystack contains multiple contiguous matches, you will end up |
| /// with empty spans yielded by the iterator: |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = "XXXXaXXbXc"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]); |
| /// |
| /// let re = Regex::new(r"/")?; |
| /// let hay = "(///)"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["(", "", "", ")"]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// Separators at the start or end of a haystack are neighbored by empty |
| /// spans. |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"0")?; |
| /// let hay = "010"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["", "1", ""]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// When the empty string is used as a regex, it splits at every valid |
| /// UTF-8 boundary by default (which includes the beginning and end of the |
| /// haystack): |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"")?; |
| /// let hay = "rust"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]); |
| /// |
| /// // Splitting by an empty string is UTF-8 aware by default! |
| /// let re = Regex::new(r"")?; |
| /// let hay = "☃"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["", "☃", ""]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// But note that UTF-8 mode for empty strings can be disabled, which will |
| /// then result in a match at every byte offset in the haystack, |
| /// including between every UTF-8 code unit. |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().utf8_empty(false)) |
| /// .build(r"")?; |
| /// let hay = "☃".as_bytes(); |
| /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec![ |
| /// // Writing byte string slices is just brutal. The problem is that |
| /// // b"foo" has type &[u8; 3] instead of &[u8]. |
| /// &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..], |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// Contiguous separators (commonly shows up with whitespace), can lead to |
| /// possibly surprising behavior. For example, this code is correct: |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r" ")?; |
| /// let hay = " a b c"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want |
| /// to match contiguous space characters: |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r" +")?; |
| /// let hay = " a b c"; |
| /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| /// // N.B. This does still include a leading empty span because ' +' |
| /// // matches at the beginning of the haystack. |
| /// assert_eq!(got, vec!["", "a", "b", "c"]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn split<'r, 'h, I: Into<Input<'h>>>( |
| &'r self, |
| input: I, |
| ) -> Split<'r, 'h> { |
| Split { finder: self.find_iter(input), last: 0 } |
| } |
| |
| /// Returns an iterator of at most `limit` spans of the haystack given, |
| /// delimited by a match of the regex. (A `limit` of `0` will return no |
| /// spans.) Namely, each element of the iterator corresponds to a part |
| /// of the haystack that *isn't* matched by the regular expression. The |
| /// remainder of the haystack that is not split will be the last element in |
| /// the iterator. |
| /// |
| /// # Example |
| /// |
| /// Get the first two words in some haystack: |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"\W+").unwrap(); |
| /// let hay = "Hey! How are you?"; |
| /// let fields: Vec<&str> = |
| /// re.splitn(hay, 3).map(|span| &hay[span]).collect(); |
| /// assert_eq!(fields, vec!["Hey", "How", "are you?"]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Examples: more cases |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r" ")?; |
| /// let hay = "Mary had a little lamb"; |
| /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = ""; |
| /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec![""]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = "lionXXtigerXleopard"; |
| /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]); |
| /// |
| /// let re = Regex::new(r"::")?; |
| /// let hay = "lion::tiger::leopard"; |
| /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["lion", "tiger::leopard"]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = "abcXdef"; |
| /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["abcXdef"]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = "abcdef"; |
| /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect(); |
| /// assert_eq!(got, vec!["abcdef"]); |
| /// |
| /// let re = Regex::new(r"X")?; |
| /// let hay = "abcXdef"; |
| /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect(); |
| /// assert!(got.is_empty()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn splitn<'r, 'h, I: Into<Input<'h>>>( |
| &'r self, |
| input: I, |
| limit: usize, |
| ) -> SplitN<'r, 'h> { |
| SplitN { splits: self.split(input), limit } |
| } |
| } |
| |
| /// Lower level search routines that give more control. |
| impl Regex { |
| /// Returns the start and end offset of the leftmost match. If no match |
| /// exists, then `None` is returned. |
| /// |
| /// This is like [`Regex::find`] but, but it accepts a concrete `&Input` |
| /// instead of an `Into<Input>`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, Match}; |
| /// |
| /// let re = Regex::new(r"Samwise|Sam")?; |
| /// let input = Input::new( |
| /// "one of the chief characters, Samwise the Brave", |
| /// ); |
| /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search(&self, input: &Input<'_>) -> Option<Match> { |
| if self.imp.info.is_impossible(input) { |
| return None; |
| } |
| let mut guard = self.pool.get(); |
| let result = self.imp.strat.search(&mut guard, input); |
| // We do this dance with the guard and explicitly put it back in the |
| // pool because it seems to result in better codegen. If we let the |
| // guard's Drop impl put it back in the pool, then functions like |
| // ptr::drop_in_place get called and they *don't* get inlined. This |
| // isn't usually a big deal, but in latency sensitive benchmarks the |
| // extra function call can matter. |
| // |
| // I used `rebar measure -f '^grep/every-line$' -e meta` to measure |
| // the effects here. |
| // |
| // Note that this doesn't eliminate the latency effects of using the |
| // pool. There is still some (minor) cost for the "thread owner" of the |
| // pool. (i.e., The thread that first calls a regex search routine.) |
| // However, for other threads using the regex, the pool access can be |
| // quite expensive as it goes through a mutex. Callers can avoid this |
| // by either cloning the Regex (which creates a distinct copy of the |
| // pool), or callers can use the lower level APIs that accept a 'Cache' |
| // directly and do their own handling. |
| PoolGuard::put(guard); |
| result |
| } |
| |
| /// Returns the end offset of the leftmost match. If no match exists, then |
| /// `None` is returned. |
| /// |
| /// This is distinct from [`Regex::search`] in that it only returns the end |
| /// of a match and not the start of the match. Depending on a variety of |
| /// implementation details, this _may_ permit the regex engine to do less |
| /// overall work. For example, if a DFA is being used to execute a search, |
| /// then the start of a match usually requires running a separate DFA in |
| /// reverse to the find the start of a match. If one only needs the end of |
| /// a match, then the separate reverse scan to find the start of a match |
| /// can be skipped. (Note that the reverse scan is avoided even when using |
| /// `Regex::search` when possible, for example, in the case of an anchored |
| /// search.) |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, HalfMatch}; |
| /// |
| /// let re = Regex::new(r"Samwise|Sam")?; |
| /// let input = Input::new( |
| /// "one of the chief characters, Samwise the Brave", |
| /// ); |
| /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> { |
| if self.imp.info.is_impossible(input) { |
| return None; |
| } |
| let mut guard = self.pool.get(); |
| let result = self.imp.strat.search_half(&mut guard, input); |
| // See 'Regex::search' for why we put the guard back explicitly. |
| PoolGuard::put(guard); |
| result |
| } |
| |
| /// Executes a leftmost forward search and writes the spans of capturing |
| /// groups that participated in a match into the provided [`Captures`] |
| /// value. If no match was found, then [`Captures::is_match`] is guaranteed |
| /// to return `false`. |
| /// |
| /// This is like [`Regex::captures`], but it accepts a concrete `&Input` |
| /// instead of an `Into<Input>`. |
| /// |
| /// # Example: specific pattern search |
| /// |
| /// This example shows how to build a multi-pattern `Regex` that permits |
| /// searching for specific patterns. |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// Anchored, Match, PatternID, Input, |
| /// }; |
| /// |
| /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?; |
| /// let mut caps = re.create_captures(); |
| /// let haystack = "foo123"; |
| /// |
| /// // Since we are using the default leftmost-first match and both |
| /// // patterns match at the same starting position, only the first pattern |
| /// // will be returned in this case when doing a search for any of the |
| /// // patterns. |
| /// let expected = Some(Match::must(0, 0..6)); |
| /// re.search_captures(&Input::new(haystack), &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// // But if we want to check whether some other pattern matches, then we |
| /// // can provide its pattern ID. |
| /// let expected = Some(Match::must(1, 0..6)); |
| /// let input = Input::new(haystack) |
| /// .anchored(Anchored::Pattern(PatternID::must(1))); |
| /// re.search_captures(&input, &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: specifying the bounds of a search |
| /// |
| /// This example shows how providing the bounds of a search can produce |
| /// different results than simply sub-slicing the haystack. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, Match, Input}; |
| /// |
| /// let re = Regex::new(r"\b[0-9]{3}\b")?; |
| /// let mut caps = re.create_captures(); |
| /// let haystack = "foo123bar"; |
| /// |
| /// // Since we sub-slice the haystack, the search doesn't know about |
| /// // the larger context and assumes that `123` is surrounded by word |
| /// // boundaries. And of course, the match position is reported relative |
| /// // to the sub-slice as well, which means we get `0..3` instead of |
| /// // `3..6`. |
| /// let expected = Some(Match::must(0, 0..3)); |
| /// let input = Input::new(&haystack[3..6]); |
| /// re.search_captures(&input, &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// // But if we provide the bounds of the search within the context of the |
| /// // entire haystack, then the search can take the surrounding context |
| /// // into account. (And if we did find a match, it would be reported |
| /// // as a valid offset into `haystack` instead of its sub-slice.) |
| /// let expected = None; |
| /// let input = Input::new(haystack).range(3..6); |
| /// re.search_captures(&input, &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) { |
| caps.set_pattern(None); |
| let pid = self.search_slots(input, caps.slots_mut()); |
| caps.set_pattern(pid); |
| } |
| |
| /// Executes a leftmost forward search and writes the spans of capturing |
| /// groups that participated in a match into the provided `slots`, and |
| /// returns the matching pattern ID. The contents of the slots for patterns |
| /// other than the matching pattern are unspecified. If no match was found, |
| /// then `None` is returned and the contents of `slots` is unspecified. |
| /// |
| /// This is like [`Regex::search`], but it accepts a raw slots slice |
| /// instead of a `Captures` value. This is useful in contexts where you |
| /// don't want or need to allocate a `Captures`. |
| /// |
| /// It is legal to pass _any_ number of slots to this routine. If the regex |
| /// engine would otherwise write a slot offset that doesn't fit in the |
| /// provided slice, then it is simply skipped. In general though, there are |
| /// usually three slice lengths you might want to use: |
| /// |
| /// * An empty slice, if you only care about which pattern matched. |
| /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you |
| /// only care about the overall match spans for each matching pattern. |
| /// * A slice with |
| /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which |
| /// permits recording match offsets for every capturing group in every |
| /// pattern. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to find the overall match offsets in a |
| /// multi-pattern search without allocating a `Captures` value. Indeed, we |
| /// can put our slots right on the stack. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, PatternID, Input}; |
| /// |
| /// let re = Regex::new_many(&[ |
| /// r"\pL+", |
| /// r"\d+", |
| /// ])?; |
| /// let input = Input::new("!@#123"); |
| /// |
| /// // We only care about the overall match offsets here, so we just |
| /// // allocate two slots for each pattern. Each slot records the start |
| /// // and end of the match. |
| /// let mut slots = [None; 4]; |
| /// let pid = re.search_slots(&input, &mut slots); |
| /// assert_eq!(Some(PatternID::must(1)), pid); |
| /// |
| /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'. |
| /// // See 'GroupInfo' for more details on the mapping between groups and |
| /// // slot indices. |
| /// let slot_start = pid.unwrap().as_usize() * 2; |
| /// let slot_end = slot_start + 1; |
| /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get())); |
| /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get())); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_slots( |
| &self, |
| input: &Input<'_>, |
| slots: &mut [Option<NonMaxUsize>], |
| ) -> Option<PatternID> { |
| if self.imp.info.is_impossible(input) { |
| return None; |
| } |
| let mut guard = self.pool.get(); |
| let result = self.imp.strat.search_slots(&mut guard, input, slots); |
| // See 'Regex::search' for why we put the guard back explicitly. |
| PoolGuard::put(guard); |
| result |
| } |
| |
| /// Writes the set of patterns that match anywhere in the given search |
| /// configuration to `patset`. If multiple patterns match at the same |
| /// position and this `Regex` was configured with [`MatchKind::All`] |
| /// semantics, then all matching patterns are written to the given set. |
| /// |
| /// Unless all of the patterns in this `Regex` are anchored, then generally |
| /// speaking, this will scan the entire haystack. |
| /// |
| /// This search routine *does not* clear the pattern set. This gives some |
| /// flexibility to the caller (e.g., running multiple searches with the |
| /// same pattern set), but does make the API bug-prone if you're reusing |
| /// the same pattern set for multiple searches but intended them to be |
| /// independent. |
| /// |
| /// If a pattern ID matched but the given `PatternSet` does not have |
| /// sufficient capacity to store it, then it is not inserted and silently |
| /// dropped. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to find all matching patterns in a haystack, |
| /// even when some patterns match at the same position as other patterns. |
| /// It is important that we configure the `Regex` with [`MatchKind::All`] |
| /// semantics here, or else overlapping matches will not be reported. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet}; |
| /// |
| /// let patterns = &[ |
| /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar", |
| /// ]; |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().match_kind(MatchKind::All)) |
| /// .build_many(patterns)?; |
| /// |
| /// let input = Input::new("foobar"); |
| /// let mut patset = PatternSet::new(re.pattern_len()); |
| /// re.which_overlapping_matches(&input, &mut patset); |
| /// let expected = vec![0, 2, 3, 4, 6]; |
| /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect(); |
| /// assert_eq!(expected, got); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn which_overlapping_matches( |
| &self, |
| input: &Input<'_>, |
| patset: &mut PatternSet, |
| ) { |
| if self.imp.info.is_impossible(input) { |
| return; |
| } |
| let mut guard = self.pool.get(); |
| let result = self |
| .imp |
| .strat |
| .which_overlapping_matches(&mut guard, input, patset); |
| // See 'Regex::search' for why we put the guard back explicitly. |
| PoolGuard::put(guard); |
| result |
| } |
| } |
| |
| /// Lower level search routines that give more control, and require the caller |
| /// to provide an explicit [`Cache`] parameter. |
| impl Regex { |
| /// This is like [`Regex::search`], but requires the caller to |
| /// explicitly pass a [`Cache`]. |
| /// |
| /// # Why pass a `Cache` explicitly? |
| /// |
| /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| /// pool can be slower in some cases when a `Regex` is used from multiple |
| /// threads simultaneously. Typically, performance only becomes an issue |
| /// when there is heavy contention, which in turn usually only occurs |
| /// when each thread's primary unit of work is a regex search on a small |
| /// haystack. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, Match}; |
| /// |
| /// let re = Regex::new(r"Samwise|Sam")?; |
| /// let mut cache = re.create_cache(); |
| /// let input = Input::new( |
| /// "one of the chief characters, Samwise the Brave", |
| /// ); |
| /// assert_eq!( |
| /// Some(Match::must(0, 29..36)), |
| /// re.search_with(&mut cache, &input), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_with( |
| &self, |
| cache: &mut Cache, |
| input: &Input<'_>, |
| ) -> Option<Match> { |
| if self.imp.info.is_impossible(input) { |
| return None; |
| } |
| self.imp.strat.search(cache, input) |
| } |
| |
| /// This is like [`Regex::search_half`], but requires the caller to |
| /// explicitly pass a [`Cache`]. |
| /// |
| /// # Why pass a `Cache` explicitly? |
| /// |
| /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| /// pool can be slower in some cases when a `Regex` is used from multiple |
| /// threads simultaneously. Typically, performance only becomes an issue |
| /// when there is heavy contention, which in turn usually only occurs |
| /// when each thread's primary unit of work is a regex search on a small |
| /// haystack. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, HalfMatch}; |
| /// |
| /// let re = Regex::new(r"Samwise|Sam")?; |
| /// let mut cache = re.create_cache(); |
| /// let input = Input::new( |
| /// "one of the chief characters, Samwise the Brave", |
| /// ); |
| /// assert_eq!( |
| /// Some(HalfMatch::must(0, 36)), |
| /// re.search_half_with(&mut cache, &input), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_half_with( |
| &self, |
| cache: &mut Cache, |
| input: &Input<'_>, |
| ) -> Option<HalfMatch> { |
| if self.imp.info.is_impossible(input) { |
| return None; |
| } |
| self.imp.strat.search_half(cache, input) |
| } |
| |
| /// This is like [`Regex::search_captures`], but requires the caller to |
| /// explicitly pass a [`Cache`]. |
| /// |
| /// # Why pass a `Cache` explicitly? |
| /// |
| /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| /// pool can be slower in some cases when a `Regex` is used from multiple |
| /// threads simultaneously. Typically, performance only becomes an issue |
| /// when there is heavy contention, which in turn usually only occurs |
| /// when each thread's primary unit of work is a regex search on a small |
| /// haystack. |
| /// |
| /// # Example: specific pattern search |
| /// |
| /// This example shows how to build a multi-pattern `Regex` that permits |
| /// searching for specific patterns. |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// Anchored, Match, PatternID, Input, |
| /// }; |
| /// |
| /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// let haystack = "foo123"; |
| /// |
| /// // Since we are using the default leftmost-first match and both |
| /// // patterns match at the same starting position, only the first pattern |
| /// // will be returned in this case when doing a search for any of the |
| /// // patterns. |
| /// let expected = Some(Match::must(0, 0..6)); |
| /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// // But if we want to check whether some other pattern matches, then we |
| /// // can provide its pattern ID. |
| /// let expected = Some(Match::must(1, 0..6)); |
| /// let input = Input::new(haystack) |
| /// .anchored(Anchored::Pattern(PatternID::must(1))); |
| /// re.search_captures_with(&mut cache, &input, &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: specifying the bounds of a search |
| /// |
| /// This example shows how providing the bounds of a search can produce |
| /// different results than simply sub-slicing the haystack. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, Match, Input}; |
| /// |
| /// let re = Regex::new(r"\b[0-9]{3}\b")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// let haystack = "foo123bar"; |
| /// |
| /// // Since we sub-slice the haystack, the search doesn't know about |
| /// // the larger context and assumes that `123` is surrounded by word |
| /// // boundaries. And of course, the match position is reported relative |
| /// // to the sub-slice as well, which means we get `0..3` instead of |
| /// // `3..6`. |
| /// let expected = Some(Match::must(0, 0..3)); |
| /// let input = Input::new(&haystack[3..6]); |
| /// re.search_captures_with(&mut cache, &input, &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// // But if we provide the bounds of the search within the context of the |
| /// // entire haystack, then the search can take the surrounding context |
| /// // into account. (And if we did find a match, it would be reported |
| /// // as a valid offset into `haystack` instead of its sub-slice.) |
| /// let expected = None; |
| /// let input = Input::new(haystack).range(3..6); |
| /// re.search_captures_with(&mut cache, &input, &mut caps); |
| /// assert_eq!(expected, caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_captures_with( |
| &self, |
| cache: &mut Cache, |
| input: &Input<'_>, |
| caps: &mut Captures, |
| ) { |
| caps.set_pattern(None); |
| let pid = self.search_slots_with(cache, input, caps.slots_mut()); |
| caps.set_pattern(pid); |
| } |
| |
| /// This is like [`Regex::search_slots`], but requires the caller to |
| /// explicitly pass a [`Cache`]. |
| /// |
| /// # Why pass a `Cache` explicitly? |
| /// |
| /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| /// pool can be slower in some cases when a `Regex` is used from multiple |
| /// threads simultaneously. Typically, performance only becomes an issue |
| /// when there is heavy contention, which in turn usually only occurs |
| /// when each thread's primary unit of work is a regex search on a small |
| /// haystack. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to find the overall match offsets in a |
| /// multi-pattern search without allocating a `Captures` value. Indeed, we |
| /// can put our slots right on the stack. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, PatternID, Input}; |
| /// |
| /// let re = Regex::new_many(&[ |
| /// r"\pL+", |
| /// r"\d+", |
| /// ])?; |
| /// let mut cache = re.create_cache(); |
| /// let input = Input::new("!@#123"); |
| /// |
| /// // We only care about the overall match offsets here, so we just |
| /// // allocate two slots for each pattern. Each slot records the start |
| /// // and end of the match. |
| /// let mut slots = [None; 4]; |
| /// let pid = re.search_slots_with(&mut cache, &input, &mut slots); |
| /// assert_eq!(Some(PatternID::must(1)), pid); |
| /// |
| /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'. |
| /// // See 'GroupInfo' for more details on the mapping between groups and |
| /// // slot indices. |
| /// let slot_start = pid.unwrap().as_usize() * 2; |
| /// let slot_end = slot_start + 1; |
| /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get())); |
| /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get())); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn search_slots_with( |
| &self, |
| cache: &mut Cache, |
| input: &Input<'_>, |
| slots: &mut [Option<NonMaxUsize>], |
| ) -> Option<PatternID> { |
| if self.imp.info.is_impossible(input) { |
| return None; |
| } |
| self.imp.strat.search_slots(cache, input, slots) |
| } |
| |
| /// This is like [`Regex::which_overlapping_matches`], but requires the |
| /// caller to explicitly pass a [`Cache`]. |
| /// |
| /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| /// pool can be slower in some cases when a `Regex` is used from multiple |
| /// threads simultaneously. Typically, performance only becomes an issue |
| /// when there is heavy contention, which in turn usually only occurs |
| /// when each thread's primary unit of work is a regex search on a small |
| /// haystack. |
| /// |
| /// # Why pass a `Cache` explicitly? |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet}; |
| /// |
| /// let patterns = &[ |
| /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar", |
| /// ]; |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().match_kind(MatchKind::All)) |
| /// .build_many(patterns)?; |
| /// let mut cache = re.create_cache(); |
| /// |
| /// let input = Input::new("foobar"); |
| /// let mut patset = PatternSet::new(re.pattern_len()); |
| /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset); |
| /// let expected = vec![0, 2, 3, 4, 6]; |
| /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect(); |
| /// assert_eq!(expected, got); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn which_overlapping_matches_with( |
| &self, |
| cache: &mut Cache, |
| input: &Input<'_>, |
| patset: &mut PatternSet, |
| ) { |
| if self.imp.info.is_impossible(input) { |
| return; |
| } |
| self.imp.strat.which_overlapping_matches(cache, input, patset) |
| } |
| } |
| |
| /// Various non-search routines for querying properties of a `Regex` and |
| /// convenience routines for creating [`Captures`] and [`Cache`] values. |
| impl Regex { |
| /// Creates a new object for recording capture group offsets. This is used |
| /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`]. |
| /// |
| /// This is a convenience routine for |
| /// `Captures::all(re.group_info().clone())`. Callers may build other types |
| /// of `Captures` values that record less information (and thus require |
| /// less work from the regex engine) using [`Captures::matches`] and |
| /// [`Captures::empty`]. |
| /// |
| /// # Example |
| /// |
| /// This shows some alternatives to [`Regex::create_captures`]: |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// util::captures::Captures, |
| /// Match, PatternID, Span, |
| /// }; |
| /// |
| /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?; |
| /// |
| /// // This is equivalent to Regex::create_captures. It stores matching |
| /// // offsets for all groups in the regex. |
| /// let mut all = Captures::all(re.group_info().clone()); |
| /// re.captures("Bruce Springsteen", &mut all); |
| /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match()); |
| /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first")); |
| /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last")); |
| /// |
| /// // In this version, we only care about the implicit groups, which |
| /// // means offsets for the explicit groups will be unavailable. It can |
| /// // sometimes be faster to ask for fewer groups, since the underlying |
| /// // regex engine needs to do less work to keep track of them. |
| /// let mut matches = Captures::matches(re.group_info().clone()); |
| /// re.captures("Bruce Springsteen", &mut matches); |
| /// // We still get the overall match info. |
| /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match()); |
| /// // But now the explicit groups are unavailable. |
| /// assert_eq!(None, matches.get_group_by_name("first")); |
| /// assert_eq!(None, matches.get_group_by_name("last")); |
| /// |
| /// // Finally, in this version, we don't ask to keep track of offsets for |
| /// // *any* groups. All we get back is whether a match occurred, and if |
| /// // so, the ID of the pattern that matched. |
| /// let mut empty = Captures::empty(re.group_info().clone()); |
| /// re.captures("Bruce Springsteen", &mut empty); |
| /// // it's a match! |
| /// assert!(empty.is_match()); |
| /// // for pattern ID 0 |
| /// assert_eq!(Some(PatternID::ZERO), empty.pattern()); |
| /// // Match offsets are unavailable. |
| /// assert_eq!(None, empty.get_match()); |
| /// // And of course, explicit groups are unavailable too. |
| /// assert_eq!(None, empty.get_group_by_name("first")); |
| /// assert_eq!(None, empty.get_group_by_name("last")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn create_captures(&self) -> Captures { |
| Captures::all(self.group_info().clone()) |
| } |
| |
| /// Creates a new cache for use with lower level search APIs like |
| /// [`Regex::search_with`]. |
| /// |
| /// The cache returned should only be used for searches for this `Regex`. |
| /// If you want to reuse the cache for another `Regex`, then you must call |
| /// [`Cache::reset`] with that `Regex`. |
| /// |
| /// This is a convenience routine for [`Cache::new`]. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, Match}; |
| /// |
| /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?; |
| /// let mut cache = re.create_cache(); |
| /// let input = Input::new("crazy janey and her mission man"); |
| /// assert_eq!( |
| /// Some(Match::must(0, 20..31)), |
| /// re.search_with(&mut cache, &input), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn create_cache(&self) -> Cache { |
| self.imp.strat.create_cache() |
| } |
| |
| /// Returns the total number of patterns in this regex. |
| /// |
| /// The standard [`Regex::new`] constructor always results in a `Regex` |
| /// with a single pattern, but [`Regex::new_many`] permits building a |
| /// multi-pattern regex. |
| /// |
| /// A `Regex` guarantees that the maximum possible `PatternID` returned in |
| /// any match is `Regex::pattern_len() - 1`. In the case where the number |
| /// of patterns is `0`, a match is impossible. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let re = Regex::new(r"(?m)^[a-z]$")?; |
| /// assert_eq!(1, re.pattern_len()); |
| /// |
| /// let re = Regex::new_many::<&str>(&[])?; |
| /// assert_eq!(0, re.pattern_len()); |
| /// |
| /// let re = Regex::new_many(&["a", "b", "c"])?; |
| /// assert_eq!(3, re.pattern_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn pattern_len(&self) -> usize { |
| self.imp.info.pattern_len() |
| } |
| |
| /// Returns the total number of capturing groups. |
| /// |
| /// This includes the implicit capturing group corresponding to the |
| /// entire match. Therefore, the minimum value returned is `1`. |
| /// |
| /// # Example |
| /// |
| /// This shows a few patterns and how many capture groups they have. |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let len = |pattern| { |
| /// Regex::new(pattern).map(|re| re.captures_len()) |
| /// }; |
| /// |
| /// assert_eq!(1, len("a")?); |
| /// assert_eq!(2, len("(a)")?); |
| /// assert_eq!(3, len("(a)|(b)")?); |
| /// assert_eq!(5, len("(a)(b)|(c)(d)")?); |
| /// assert_eq!(2, len("(a)|b")?); |
| /// assert_eq!(2, len("a|(b)")?); |
| /// assert_eq!(2, len("(b)*")?); |
| /// assert_eq!(2, len("(b)+")?); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: multiple patterns |
| /// |
| /// This routine also works for multiple patterns. The total number is |
| /// the sum of the capture groups of each pattern. |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let len = |patterns| { |
| /// Regex::new_many(patterns).map(|re| re.captures_len()) |
| /// }; |
| /// |
| /// assert_eq!(2, len(&["a", "b"])?); |
| /// assert_eq!(4, len(&["(a)", "(b)"])?); |
| /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?); |
| /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?); |
| /// assert_eq!(3, len(&["(a)", "b"])?); |
| /// assert_eq!(3, len(&["a", "(b)"])?); |
| /// assert_eq!(4, len(&["(a)", "(b)*"])?); |
| /// assert_eq!(4, len(&["(a)+", "(b)+"])?); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn captures_len(&self) -> usize { |
| self.imp |
| .info |
| .props_union() |
| .explicit_captures_len() |
| .saturating_add(self.pattern_len()) |
| } |
| |
| /// Returns the total number of capturing groups that appear in every |
| /// possible match. |
| /// |
| /// If the number of capture groups can vary depending on the match, then |
| /// this returns `None`. That is, a value is only returned when the number |
| /// of matching groups is invariant or "static." |
| /// |
| /// Note that like [`Regex::captures_len`], this **does** include the |
| /// implicit capturing group corresponding to the entire match. Therefore, |
| /// when a non-None value is returned, it is guaranteed to be at least `1`. |
| /// Stated differently, a return value of `Some(0)` is impossible. |
| /// |
| /// # Example |
| /// |
| /// This shows a few cases where a static number of capture groups is |
| /// available and a few cases where it is not. |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let len = |pattern| { |
| /// Regex::new(pattern).map(|re| re.static_captures_len()) |
| /// }; |
| /// |
| /// assert_eq!(Some(1), len("a")?); |
| /// assert_eq!(Some(2), len("(a)")?); |
| /// assert_eq!(Some(2), len("(a)|(b)")?); |
| /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?); |
| /// assert_eq!(None, len("(a)|b")?); |
| /// assert_eq!(None, len("a|(b)")?); |
| /// assert_eq!(None, len("(b)*")?); |
| /// assert_eq!(Some(2), len("(b)+")?); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: multiple patterns |
| /// |
| /// This property extends to regexes with multiple patterns as well. In |
| /// order for their to be a static number of capture groups in this case, |
| /// every pattern must have the same static number. |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let len = |patterns| { |
| /// Regex::new_many(patterns).map(|re| re.static_captures_len()) |
| /// }; |
| /// |
| /// assert_eq!(Some(1), len(&["a", "b"])?); |
| /// assert_eq!(Some(2), len(&["(a)", "(b)"])?); |
| /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?); |
| /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?); |
| /// assert_eq!(None, len(&["(a)", "b"])?); |
| /// assert_eq!(None, len(&["a", "(b)"])?); |
| /// assert_eq!(None, len(&["(a)", "(b)*"])?); |
| /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn static_captures_len(&self) -> Option<usize> { |
| self.imp |
| .info |
| .props_union() |
| .static_explicit_captures_len() |
| .map(|len| len.saturating_add(1)) |
| } |
| |
| /// Return information about the capture groups in this `Regex`. |
| /// |
| /// A `GroupInfo` is an immutable object that can be cheaply cloned. It |
| /// is responsible for maintaining a mapping between the capture groups |
| /// in the concrete syntax of zero or more regex patterns and their |
| /// internal representation used by some of the regex matchers. It is also |
| /// responsible for maintaining a mapping between the name of each group |
| /// (if one exists) and its corresponding group index. |
| /// |
| /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value, |
| /// which is some mutable space where group offsets are stored as a result |
| /// of a search. |
| /// |
| /// # Example |
| /// |
| /// This shows some alternatives to [`Regex::create_captures`]: |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// util::captures::Captures, |
| /// Match, PatternID, Span, |
| /// }; |
| /// |
| /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?; |
| /// |
| /// // This is equivalent to Regex::create_captures. It stores matching |
| /// // offsets for all groups in the regex. |
| /// let mut all = Captures::all(re.group_info().clone()); |
| /// re.captures("Bruce Springsteen", &mut all); |
| /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match()); |
| /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first")); |
| /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last")); |
| /// |
| /// // In this version, we only care about the implicit groups, which |
| /// // means offsets for the explicit groups will be unavailable. It can |
| /// // sometimes be faster to ask for fewer groups, since the underlying |
| /// // regex engine needs to do less work to keep track of them. |
| /// let mut matches = Captures::matches(re.group_info().clone()); |
| /// re.captures("Bruce Springsteen", &mut matches); |
| /// // We still get the overall match info. |
| /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match()); |
| /// // But now the explicit groups are unavailable. |
| /// assert_eq!(None, matches.get_group_by_name("first")); |
| /// assert_eq!(None, matches.get_group_by_name("last")); |
| /// |
| /// // Finally, in this version, we don't ask to keep track of offsets for |
| /// // *any* groups. All we get back is whether a match occurred, and if |
| /// // so, the ID of the pattern that matched. |
| /// let mut empty = Captures::empty(re.group_info().clone()); |
| /// re.captures("Bruce Springsteen", &mut empty); |
| /// // it's a match! |
| /// assert!(empty.is_match()); |
| /// // for pattern ID 0 |
| /// assert_eq!(Some(PatternID::ZERO), empty.pattern()); |
| /// // Match offsets are unavailable. |
| /// assert_eq!(None, empty.get_match()); |
| /// // And of course, explicit groups are unavailable too. |
| /// assert_eq!(None, empty.get_group_by_name("first")); |
| /// assert_eq!(None, empty.get_group_by_name("last")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn group_info(&self) -> &GroupInfo { |
| self.imp.strat.group_info() |
| } |
| |
| /// Returns the configuration object used to build this `Regex`. |
| /// |
| /// If no configuration object was explicitly passed, then the |
| /// configuration returned represents the default. |
| #[inline] |
| pub fn get_config(&self) -> &Config { |
| self.imp.info.config() |
| } |
| |
| /// Returns true if this regex has a high chance of being "accelerated." |
| /// |
| /// The precise meaning of "accelerated" is specifically left unspecified, |
| /// but the general meaning is that the search is a high likelihood of |
| /// running faster than than a character-at-a-time loop inside a standard |
| /// regex engine. |
| /// |
| /// When a regex is accelerated, it is only a *probabilistic* claim. That |
| /// is, just because the regex is believed to be accelerated, that doesn't |
| /// mean it will definitely execute searches very fast. Similarly, if a |
| /// regex is *not* accelerated, that is also a probabilistic claim. That |
| /// is, a regex for which `is_accelerated` returns `false` could still run |
| /// searches more quickly than a regex for which `is_accelerated` returns |
| /// `true`. |
| /// |
| /// Whether a regex is marked as accelerated or not is dependent on |
| /// implementations details that may change in a semver compatible release. |
| /// That is, a regex that is accelerated in a `x.y.1` release might not be |
| /// accelerated in a `x.y.2` release. |
| /// |
| /// Basically, the value of acceleration boils down to a hedge: a hodge |
| /// podge of internal heuristics combine to make a probabilistic guess |
| /// that this regex search may run "fast." The value in knowing this from |
| /// a caller's perspective is that it may act as a signal that no further |
| /// work should be done to accelerate a search. For example, a grep-like |
| /// tool might try to do some extra work extracting literals from a regex |
| /// to create its own heuristic acceleration strategies. But it might |
| /// choose to defer to this crate's acceleration strategy if one exists. |
| /// This routine permits querying whether such a strategy is active for a |
| /// particular regex. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::meta::Regex; |
| /// |
| /// // A simple literal is very likely to be accelerated. |
| /// let re = Regex::new(r"foo")?; |
| /// assert!(re.is_accelerated()); |
| /// |
| /// // A regex with no literals is likely to not be accelerated. |
| /// let re = Regex::new(r"\w")?; |
| /// assert!(!re.is_accelerated()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn is_accelerated(&self) -> bool { |
| self.imp.strat.is_accelerated() |
| } |
| |
| /// Return the total approximate heap memory, in bytes, used by this `Regex`. |
| /// |
| /// Note that currently, there is no high level configuration for setting |
| /// a limit on the specific value returned by this routine. Instead, the |
| /// following routines can be used to control heap memory at a bit of a |
| /// lower level: |
| /// |
| /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are |
| /// allowed to be. |
| /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is |
| /// allowed to be. |
| /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy |
| /// DFA is permitted to allocate to store its transition table. |
| /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is |
| /// allowed to be. |
| /// * [`Config::dfa_state_limit`] controls the conditions under which the |
| /// meta regex engine will even attempt to build a fully compiled DFA. |
| #[inline] |
| pub fn memory_usage(&self) -> usize { |
| self.imp.strat.memory_usage() |
| } |
| } |
| |
| impl Clone for Regex { |
| fn clone(&self) -> Regex { |
| let imp = Arc::clone(&self.imp); |
| let pool = { |
| let strat = Arc::clone(&imp.strat); |
| let create: CachePoolFn = Box::new(move || strat.create_cache()); |
| Pool::new(create) |
| }; |
| Regex { imp, pool } |
| } |
| } |
| |
| #[derive(Clone, Debug)] |
| pub(crate) struct RegexInfo(Arc<RegexInfoI>); |
| |
| #[derive(Clone, Debug)] |
| struct RegexInfoI { |
| config: Config, |
| props: Vec<hir::Properties>, |
| props_union: hir::Properties, |
| } |
| |
| impl RegexInfo { |
| fn new(config: Config, hirs: &[&Hir]) -> RegexInfo { |
| // Collect all of the properties from each of the HIRs, and also |
| // union them into one big set of properties representing all HIRs |
| // as if they were in one big alternation. |
| let mut props = vec![]; |
| for hir in hirs.iter() { |
| props.push(hir.properties().clone()); |
| } |
| let props_union = hir::Properties::union(&props); |
| |
| RegexInfo(Arc::new(RegexInfoI { config, props, props_union })) |
| } |
| |
| pub(crate) fn config(&self) -> &Config { |
| &self.0.config |
| } |
| |
| pub(crate) fn props(&self) -> &[hir::Properties] { |
| &self.0.props |
| } |
| |
| pub(crate) fn props_union(&self) -> &hir::Properties { |
| &self.0.props_union |
| } |
| |
| pub(crate) fn pattern_len(&self) -> usize { |
| self.props().len() |
| } |
| |
| pub(crate) fn memory_usage(&self) -> usize { |
| self.props().iter().map(|p| p.memory_usage()).sum::<usize>() |
| + self.props_union().memory_usage() |
| } |
| |
| /// Returns true when the search is guaranteed to be anchored. That is, |
| /// when a match is reported, its offset is guaranteed to correspond to |
| /// the start of the search. |
| /// |
| /// This includes returning true when `input` _isn't_ anchored but the |
| /// underlying regex is. |
| #[cfg_attr(feature = "perf-inline", inline(always))] |
| pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool { |
| input.get_anchored().is_anchored() || self.is_always_anchored_start() |
| } |
| |
| /// Returns true when this regex is always anchored to the start of a |
| /// search. And in particular, that regardless of an `Input` configuration, |
| /// if any match is reported it must start at `0`. |
| #[cfg_attr(feature = "perf-inline", inline(always))] |
| pub(crate) fn is_always_anchored_start(&self) -> bool { |
| use regex_syntax::hir::Look; |
| self.props_union().look_set_prefix().contains(Look::Start) |
| } |
| |
| /// Returns true when this regex is always anchored to the end of a |
| /// search. And in particular, that regardless of an `Input` configuration, |
| /// if any match is reported it must end at the end of the haystack. |
| #[cfg_attr(feature = "perf-inline", inline(always))] |
| pub(crate) fn is_always_anchored_end(&self) -> bool { |
| use regex_syntax::hir::Look; |
| self.props_union().look_set_suffix().contains(Look::End) |
| } |
| |
| /// Returns true if and only if it is known that a match is impossible |
| /// for the given input. This is useful for short-circuiting and avoiding |
| /// running the regex engine if it's known no match can be reported. |
| /// |
| /// Note that this doesn't necessarily detect every possible case. For |
| /// example, when `pattern_len() == 0`, a match is impossible, but that |
| /// case is so rare that it's fine to be handled by the regex engine |
| /// itself. That is, it's not worth the cost of adding it here in order to |
| /// make it a little faster. The reason is that this is called for every |
| /// search. so there is some cost to adding checks here. Arguably, some of |
| /// the checks that are here already probably shouldn't be here... |
| #[cfg_attr(feature = "perf-inline", inline(always))] |
| fn is_impossible(&self, input: &Input<'_>) -> bool { |
| // The underlying regex is anchored, so if we don't start the search |
| // at position 0, a match is impossible, because the anchor can only |
| // match at position 0. |
| if input.start() > 0 && self.is_always_anchored_start() { |
| return true; |
| } |
| // Same idea, but for the end anchor. |
| if input.end() < input.haystack().len() |
| && self.is_always_anchored_end() |
| { |
| return true; |
| } |
| // If the haystack is smaller than the minimum length required, then |
| // we know there can be no match. |
| let minlen = match self.props_union().minimum_len() { |
| None => return false, |
| Some(minlen) => minlen, |
| }; |
| if input.get_span().len() < minlen { |
| return true; |
| } |
| // Same idea as minimum, but for maximum. This is trickier. We can |
| // only apply the maximum when we know the entire span that we're |
| // searching *has* to match according to the regex (and possibly the |
| // input configuration). If we know there is too much for the regex |
| // to match, we can bail early. |
| // |
| // I don't think we can apply the maximum otherwise unfortunately. |
| if self.is_anchored_start(input) && self.is_always_anchored_end() { |
| let maxlen = match self.props_union().maximum_len() { |
| None => return false, |
| Some(maxlen) => maxlen, |
| }; |
| if input.get_span().len() > maxlen { |
| return true; |
| } |
| } |
| false |
| } |
| } |
| |
| /// An iterator over all non-overlapping matches. |
| /// |
| /// The iterator yields a [`Match`] value until no more matches could be found. |
| /// |
| /// The lifetime parameters are as follows: |
| /// |
| /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| /// * `'h` represents the lifetime of the haystack being searched. |
| /// |
| /// This iterator can be created with the [`Regex::find_iter`] method. |
| #[derive(Debug)] |
| pub struct FindMatches<'r, 'h> { |
| re: &'r Regex, |
| cache: CachePoolGuard<'r>, |
| it: iter::Searcher<'h>, |
| } |
| |
| impl<'r, 'h> FindMatches<'r, 'h> { |
| /// Returns the `Regex` value that created this iterator. |
| #[inline] |
| pub fn regex(&self) -> &'r Regex { |
| self.re |
| } |
| |
| /// Returns the current `Input` associated with this iterator. |
| /// |
| /// The `start` position on the given `Input` may change during iteration, |
| /// but all other values are guaranteed to remain invariant. |
| #[inline] |
| pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| self.it.input() |
| } |
| } |
| |
| impl<'r, 'h> Iterator for FindMatches<'r, 'h> { |
| type Item = Match; |
| |
| #[inline] |
| fn next(&mut self) -> Option<Match> { |
| let FindMatches { re, ref mut cache, ref mut it } = *self; |
| it.advance(|input| Ok(re.search_with(cache, input))) |
| } |
| |
| #[inline] |
| fn count(self) -> usize { |
| // If all we care about is a count of matches, then we only need to |
| // find the end position of each match. This can give us a 2x perf |
| // boost in some cases, because it avoids needing to do a reverse scan |
| // to find the start of a match. |
| let FindMatches { re, mut cache, it } = self; |
| // This does the deref for PoolGuard once instead of every iter. |
| let cache = &mut *cache; |
| it.into_half_matches_iter( |
| |input| Ok(re.search_half_with(cache, input)), |
| ) |
| .count() |
| } |
| } |
| |
| impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {} |
| |
| /// An iterator over all non-overlapping leftmost matches with their capturing |
| /// groups. |
| /// |
| /// The iterator yields a [`Captures`] value until no more matches could be |
| /// found. |
| /// |
| /// The lifetime parameters are as follows: |
| /// |
| /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| /// * `'h` represents the lifetime of the haystack being searched. |
| /// |
| /// This iterator can be created with the [`Regex::captures_iter`] method. |
| #[derive(Debug)] |
| pub struct CapturesMatches<'r, 'h> { |
| re: &'r Regex, |
| cache: CachePoolGuard<'r>, |
| caps: Captures, |
| it: iter::Searcher<'h>, |
| } |
| |
| impl<'r, 'h> CapturesMatches<'r, 'h> { |
| /// Returns the `Regex` value that created this iterator. |
| #[inline] |
| pub fn regex(&self) -> &'r Regex { |
| self.re |
| } |
| |
| /// Returns the current `Input` associated with this iterator. |
| /// |
| /// The `start` position on the given `Input` may change during iteration, |
| /// but all other values are guaranteed to remain invariant. |
| #[inline] |
| pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| self.it.input() |
| } |
| } |
| |
| impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> { |
| type Item = Captures; |
| |
| #[inline] |
| fn next(&mut self) -> Option<Captures> { |
| // Splitting 'self' apart seems necessary to appease borrowck. |
| let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } = |
| *self; |
| let _ = it.advance(|input| { |
| re.search_captures_with(cache, input, caps); |
| Ok(caps.get_match()) |
| }); |
| if caps.is_match() { |
| Some(caps.clone()) |
| } else { |
| None |
| } |
| } |
| |
| #[inline] |
| fn count(self) -> usize { |
| let CapturesMatches { re, mut cache, it, .. } = self; |
| // This does the deref for PoolGuard once instead of every iter. |
| let cache = &mut *cache; |
| it.into_half_matches_iter( |
| |input| Ok(re.search_half_with(cache, input)), |
| ) |
| .count() |
| } |
| } |
| |
| impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {} |
| |
| /// Yields all substrings delimited by a regular expression match. |
| /// |
| /// The spans correspond to the offsets between matches. |
| /// |
| /// The lifetime parameters are as follows: |
| /// |
| /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| /// * `'h` represents the lifetime of the haystack being searched. |
| /// |
| /// This iterator can be created with the [`Regex::split`] method. |
| #[derive(Debug)] |
| pub struct Split<'r, 'h> { |
| finder: FindMatches<'r, 'h>, |
| last: usize, |
| } |
| |
| impl<'r, 'h> Split<'r, 'h> { |
| /// Returns the current `Input` associated with this iterator. |
| /// |
| /// The `start` position on the given `Input` may change during iteration, |
| /// but all other values are guaranteed to remain invariant. |
| #[inline] |
| pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| self.finder.input() |
| } |
| } |
| |
| impl<'r, 'h> Iterator for Split<'r, 'h> { |
| type Item = Span; |
| |
| fn next(&mut self) -> Option<Span> { |
| match self.finder.next() { |
| None => { |
| let len = self.finder.it.input().haystack().len(); |
| if self.last > len { |
| None |
| } else { |
| let span = Span::from(self.last..len); |
| self.last = len + 1; // Next call will return None |
| Some(span) |
| } |
| } |
| Some(m) => { |
| let span = Span::from(self.last..m.start()); |
| self.last = m.end(); |
| Some(span) |
| } |
| } |
| } |
| } |
| |
| impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {} |
| |
| /// Yields at most `N` spans delimited by a regular expression match. |
| /// |
| /// The spans correspond to the offsets between matches. The last span will be |
| /// whatever remains after splitting. |
| /// |
| /// The lifetime parameters are as follows: |
| /// |
| /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| /// * `'h` represents the lifetime of the haystack being searched. |
| /// |
| /// This iterator can be created with the [`Regex::splitn`] method. |
| #[derive(Debug)] |
| pub struct SplitN<'r, 'h> { |
| splits: Split<'r, 'h>, |
| limit: usize, |
| } |
| |
| impl<'r, 'h> SplitN<'r, 'h> { |
| /// Returns the current `Input` associated with this iterator. |
| /// |
| /// The `start` position on the given `Input` may change during iteration, |
| /// but all other values are guaranteed to remain invariant. |
| #[inline] |
| pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| self.splits.input() |
| } |
| } |
| |
| impl<'r, 'h> Iterator for SplitN<'r, 'h> { |
| type Item = Span; |
| |
| fn next(&mut self) -> Option<Span> { |
| if self.limit == 0 { |
| return None; |
| } |
| |
| self.limit -= 1; |
| if self.limit > 0 { |
| return self.splits.next(); |
| } |
| |
| let len = self.splits.finder.it.input().haystack().len(); |
| if self.splits.last > len { |
| // We've already returned all substrings. |
| None |
| } else { |
| // self.n == 0, so future calls will return None immediately |
| Some(Span::from(self.splits.last..len)) |
| } |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (0, Some(self.limit)) |
| } |
| } |
| |
| impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {} |
| |
| /// Represents mutable scratch space used by regex engines during a search. |
| /// |
| /// Most of the regex engines in this crate require some kind of |
| /// mutable state in order to execute a search. This mutable state is |
| /// explicitly separated from the the core regex object (such as a |
| /// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex |
| /// object can be shared across multiple threads simultaneously without any |
| /// synchronization. Conversely, a `Cache` must either be duplicated if using |
| /// the same `Regex` from multiple threads, or else there must be some kind of |
| /// synchronization that guarantees exclusive access while it's in use by one |
| /// thread. |
| /// |
| /// A `Regex` attempts to do this synchronization for you by using a thread |
| /// pool internally. Its size scales roughly with the number of simultaneous |
| /// regex searches. |
| /// |
| /// For cases where one does not want to rely on a `Regex`'s internal thread |
| /// pool, lower level routines such as [`Regex::search_with`] are provided |
| /// that permit callers to pass a `Cache` into the search routine explicitly. |
| /// |
| /// General advice is that the thread pool is often more than good enough. |
| /// However, it may be possible to observe the effects of its latency, |
| /// especially when searching many small haystacks from many threads |
| /// simultaneously. |
| /// |
| /// Caches can be created from their corresponding `Regex` via |
| /// [`Regex::create_cache`]. A cache can only be used with either the `Regex` |
| /// that created it, or the `Regex` that was most recently used to reset it |
| /// with [`Cache::reset`]. Using a cache with any other `Regex` may result in |
| /// panics or incorrect results. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Input, Match}; |
| /// |
| /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?; |
| /// let mut cache = re.create_cache(); |
| /// let input = Input::new("crazy janey and her mission man"); |
| /// assert_eq!( |
| /// Some(Match::must(0, 20..31)), |
| /// re.search_with(&mut cache, &input), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[derive(Debug, Clone)] |
| pub struct Cache { |
| pub(crate) capmatches: Captures, |
| pub(crate) pikevm: wrappers::PikeVMCache, |
| pub(crate) backtrack: wrappers::BoundedBacktrackerCache, |
| pub(crate) onepass: wrappers::OnePassCache, |
| pub(crate) hybrid: wrappers::HybridCache, |
| pub(crate) revhybrid: wrappers::ReverseHybridCache, |
| } |
| |
| impl Cache { |
| /// Creates a new `Cache` for use with this regex. |
| /// |
| /// The cache returned should only be used for searches for the given |
| /// `Regex`. If you want to reuse the cache for another `Regex`, then you |
| /// must call [`Cache::reset`] with that `Regex`. |
| pub fn new(re: &Regex) -> Cache { |
| re.create_cache() |
| } |
| |
| /// Reset this cache such that it can be used for searching with the given |
| /// `Regex` (and only that `Regex`). |
| /// |
| /// A cache reset permits potentially reusing memory already allocated in |
| /// this cache with a different `Regex`. |
| /// |
| /// # Example |
| /// |
| /// This shows how to re-purpose a cache for use with a different `Regex`. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, Match, Input}; |
| /// |
| /// let re1 = Regex::new(r"\w")?; |
| /// let re2 = Regex::new(r"\W")?; |
| /// |
| /// let mut cache = re1.create_cache(); |
| /// assert_eq!( |
| /// Some(Match::must(0, 0..2)), |
| /// re1.search_with(&mut cache, &Input::new("Δ")), |
| /// ); |
| /// |
| /// // Using 'cache' with re2 is not allowed. It may result in panics or |
| /// // incorrect results. In order to re-purpose the cache, we must reset |
| /// // it with the Regex we'd like to use it with. |
| /// // |
| /// // Similarly, after this reset, using the cache with 're1' is also not |
| /// // allowed. |
| /// cache.reset(&re2); |
| /// assert_eq!( |
| /// Some(Match::must(0, 0..3)), |
| /// re2.search_with(&mut cache, &Input::new("☃")), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn reset(&mut self, re: &Regex) { |
| re.imp.strat.reset_cache(self) |
| } |
| |
| /// Returns the heap memory usage, in bytes, of this cache. |
| /// |
| /// This does **not** include the stack size used up by this cache. To |
| /// compute that, use `std::mem::size_of::<Cache>()`. |
| pub fn memory_usage(&self) -> usize { |
| let mut bytes = 0; |
| bytes += self.pikevm.memory_usage(); |
| bytes += self.backtrack.memory_usage(); |
| bytes += self.onepass.memory_usage(); |
| bytes += self.hybrid.memory_usage(); |
| bytes += self.revhybrid.memory_usage(); |
| bytes |
| } |
| } |
| |
| /// An object describing the configuration of a `Regex`. |
| /// |
| /// This configuration only includes options for the |
| /// non-syntax behavior of a `Regex`, and can be applied via the |
| /// [`Builder::configure`] method. For configuring the syntax options, see |
| /// [`util::syntax::Config`](crate::util::syntax::Config). |
| /// |
| /// # Example: lower the NFA size limit |
| /// |
| /// In some cases, the default size limit might be too big. The size limit can |
| /// be lowered, which will prevent large regex patterns from compiling. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) |
| /// // Not even 20KB is enough to build a single large Unicode class! |
| /// .build(r"\pL"); |
| /// assert!(result.is_err()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[derive(Clone, Debug, Default)] |
| pub struct Config { |
| // As with other configuration types in this crate, we put all our knobs |
| // in options so that we can distinguish between "default" and "not set." |
| // This makes it possible to easily combine multiple configurations |
| // without default values overwriting explicitly specified values. See the |
| // 'overwrite' method. |
| // |
| // For docs on the fields below, see the corresponding method setters. |
| match_kind: Option<MatchKind>, |
| utf8_empty: Option<bool>, |
| autopre: Option<bool>, |
| pre: Option<Option<Prefilter>>, |
| which_captures: Option<WhichCaptures>, |
| nfa_size_limit: Option<Option<usize>>, |
| onepass_size_limit: Option<Option<usize>>, |
| hybrid_cache_capacity: Option<usize>, |
| hybrid: Option<bool>, |
| dfa: Option<bool>, |
| dfa_size_limit: Option<Option<usize>>, |
| dfa_state_limit: Option<Option<usize>>, |
| onepass: Option<bool>, |
| backtrack: Option<bool>, |
| byte_classes: Option<bool>, |
| line_terminator: Option<u8>, |
| } |
| |
| impl Config { |
| /// Create a new configuration object for a `Regex`. |
| pub fn new() -> Config { |
| Config::default() |
| } |
| |
| /// Set the match semantics for a `Regex`. |
| /// |
| /// The default value is [`MatchKind::LeftmostFirst`]. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match, MatchKind}; |
| /// |
| /// // By default, leftmost-first semantics are used, which |
| /// // disambiguates matches at the same position by selecting |
| /// // the one that corresponds earlier in the pattern. |
| /// let re = Regex::new("sam|samwise")?; |
| /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise")); |
| /// |
| /// // But with 'all' semantics, match priority is ignored |
| /// // and all match states are included. When coupled with |
| /// // a leftmost search, the search will report the last |
| /// // possible match. |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().match_kind(MatchKind::All)) |
| /// .build("sam|samwise")?; |
| /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise")); |
| /// // Beware that this can lead to skipping matches! |
| /// // Usually 'all' is used for anchored reverse searches |
| /// // only, or for overlapping searches. |
| /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn match_kind(self, kind: MatchKind) -> Config { |
| Config { match_kind: Some(kind), ..self } |
| } |
| |
| /// Toggles whether empty matches are permitted to occur between the code |
| /// units of a UTF-8 encoded codepoint. |
| /// |
| /// This should generally be enabled when search a `&str` or anything that |
| /// you otherwise know is valid UTF-8. It should be disabled in all other |
| /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled, |
| /// then behavior is unspecified. |
| /// |
| /// By default, this is enabled. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::new("")?; |
| /// let got: Vec<Match> = re.find_iter("☃").collect(); |
| /// // Matches only occur at the beginning and end of the snowman. |
| /// assert_eq!(got, vec![ |
| /// Match::must(0, 0..0), |
| /// Match::must(0, 3..3), |
| /// ]); |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().utf8_empty(false)) |
| /// .build("")?; |
| /// let got: Vec<Match> = re.find_iter("☃").collect(); |
| /// // Matches now occur at every position! |
| /// assert_eq!(got, vec![ |
| /// Match::must(0, 0..0), |
| /// Match::must(0, 1..1), |
| /// Match::must(0, 2..2), |
| /// Match::must(0, 3..3), |
| /// ]); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn utf8_empty(self, yes: bool) -> Config { |
| Config { utf8_empty: Some(yes), ..self } |
| } |
| |
| /// Toggles whether automatic prefilter support is enabled. |
| /// |
| /// If this is disabled and [`Config::prefilter`] is not set, then the |
| /// meta regex engine will not use any prefilters. This can sometimes |
| /// be beneficial in cases where you know (or have measured) that the |
| /// prefilter leads to overall worse search performance. |
| /// |
| /// By default, this is enabled. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().auto_prefilter(false)) |
| /// .build(r"Bruce \w+")?; |
| /// let hay = "Hello Bruce Springsteen!"; |
| /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay)); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn auto_prefilter(self, yes: bool) -> Config { |
| Config { autopre: Some(yes), ..self } |
| } |
| |
| /// Overrides and sets the prefilter to use inside a `Regex`. |
| /// |
| /// This permits one to forcefully set a prefilter in cases where the |
| /// caller knows better than whatever the automatic prefilter logic is |
| /// capable of. |
| /// |
| /// By default, this is set to `None` and an automatic prefilter will be |
| /// used if one could be built. (Assuming [`Config::auto_prefilter`] is |
| /// enabled, which it is by default.) |
| /// |
| /// # Example |
| /// |
| /// This example shows how to set your own prefilter. In the case of a |
| /// pattern like `Bruce \w+`, the automatic prefilter is likely to be |
| /// constructed in a way that it will look for occurrences of `Bruce `. |
| /// In most cases, this is the best choice. But in some cases, it may be |
| /// the case that running `memchr` on `B` is the best choice. One can |
| /// achieve that behavior by overriding the automatic prefilter logic |
| /// and providing a prefilter that just matches `B`. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// util::prefilter::Prefilter, |
| /// Match, MatchKind, |
| /// }; |
| /// |
| /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"]) |
| /// .expect("a prefilter"); |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().prefilter(Some(pre))) |
| /// .build(r"Bruce \w+")?; |
| /// let hay = "Hello Bruce Springsteen!"; |
| /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: incorrect prefilters can lead to incorrect results! |
| /// |
| /// Be warned that setting an incorrect prefilter can lead to missed |
| /// matches. So if you use this option, ensure your prefilter can _never_ |
| /// report false negatives. (A false positive is, on the other hand, quite |
| /// okay and generally unavoidable.) |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// util::prefilter::Prefilter, |
| /// Match, MatchKind, |
| /// }; |
| /// |
| /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"]) |
| /// .expect("a prefilter"); |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().prefilter(Some(pre))) |
| /// .build(r"Bruce \w+")?; |
| /// let hay = "Hello Bruce Springsteen!"; |
| /// // Oops! No match found, but there should be one! |
| /// assert_eq!(None, re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn prefilter(self, pre: Option<Prefilter>) -> Config { |
| Config { pre: Some(pre), ..self } |
| } |
| |
| /// Configures what kinds of groups are compiled as "capturing" in the |
| /// underlying regex engine. |
| /// |
| /// This is set to [`WhichCaptures::All`] by default. Callers may wish to |
| /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the |
| /// overhead of capture states for explicit groups. |
| /// |
| /// Note that another approach to avoiding the overhead of capture groups |
| /// is by using non-capturing groups in the regex pattern. That is, |
| /// `(?:a)` instead of `(a)`. This option is useful when you can't control |
| /// the concrete syntax but know that you don't need the underlying capture |
| /// states. For example, using `WhichCaptures::Implicit` will behave as if |
| /// all explicit capturing groups in the pattern were non-capturing. |
| /// |
| /// Setting this to `WhichCaptures::None` is usually not the right thing to |
| /// do. When no capture states are compiled, some regex engines (such as |
| /// the `PikeVM`) won't be able to report match offsets. This will manifest |
| /// as no match being found. |
| /// |
| /// # Example |
| /// |
| /// This example demonstrates how the results of capture groups can change |
| /// based on this option. First we show the default (all capture groups in |
| /// the pattern are capturing): |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match, Span}; |
| /// |
| /// let re = Regex::new(r"foo([0-9]+)bar")?; |
| /// let hay = "foo123bar"; |
| /// |
| /// let mut caps = re.create_captures(); |
| /// re.captures(hay, &mut caps); |
| /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0)); |
| /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1)); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// And now we show the behavior when we only include implicit capture |
| /// groups. In this case, we can only find the overall match span, but the |
| /// spans of any other explicit group don't exist because they are treated |
| /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used, |
| /// there is no real point in using [`Regex::captures`] since it will never |
| /// be able to report more information than [`Regex::find`].) |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// meta::Regex, |
| /// nfa::thompson::WhichCaptures, |
| /// Match, |
| /// Span, |
| /// }; |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().which_captures(WhichCaptures::Implicit)) |
| /// .build(r"foo([0-9]+)bar")?; |
| /// let hay = "foo123bar"; |
| /// |
| /// let mut caps = re.create_captures(); |
| /// re.captures(hay, &mut caps); |
| /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0)); |
| /// assert_eq!(None, caps.get_group(1)); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config { |
| self.which_captures = Some(which_captures); |
| self |
| } |
| |
| /// Sets the size limit, in bytes, to enforce on the construction of every |
| /// NFA build by the meta regex engine. |
| /// |
| /// Setting it to `None` disables the limit. This is not recommended if |
| /// you're compiling untrusted patterns. |
| /// |
| /// Note that this limit is applied to _each_ NFA built, and if any of |
| /// them excceed the limit, then construction will fail. This limit does |
| /// _not_ correspond to the total memory used by all NFAs in the meta regex |
| /// engine. |
| /// |
| /// This defaults to some reasonable number that permits most reasonable |
| /// patterns. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) |
| /// // Not even 20KB is enough to build a single large Unicode class! |
| /// .build(r"\pL"); |
| /// assert!(result.is_err()); |
| /// |
| /// // But notice that building such a regex with the exact same limit |
| /// // can succeed depending on other aspects of the configuration. For |
| /// // example, a single *forward* NFA will (at time of writing) fit into |
| /// // the 20KB limit, but a *reverse* NFA of the same pattern will not. |
| /// // So if one configures a meta regex such that a reverse NFA is never |
| /// // needed and thus never built, then the 20KB limit will be enough for |
| /// // a pattern like \pL! |
| /// let result = Regex::builder() |
| /// .configure(Regex::config() |
| /// .nfa_size_limit(Some(20 * (1<<10))) |
| /// // The DFAs are the only thing that (currently) need a reverse |
| /// // NFA. So if both are disabled, the meta regex engine will |
| /// // skip building the reverse NFA. Note that this isn't an API |
| /// // guarantee. A future semver compatible version may introduce |
| /// // new use cases for a reverse NFA. |
| /// .hybrid(false) |
| /// .dfa(false) |
| /// ) |
| /// // Not even 20KB is enough to build a single large Unicode class! |
| /// .build(r"\pL"); |
| /// assert!(result.is_ok()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn nfa_size_limit(self, limit: Option<usize>) -> Config { |
| Config { nfa_size_limit: Some(limit), ..self } |
| } |
| |
| /// Sets the size limit, in bytes, for the one-pass DFA. |
| /// |
| /// Setting it to `None` disables the limit. Disabling the limit is |
| /// strongly discouraged when compiling untrusted patterns. Even if the |
| /// patterns are trusted, it still may not be a good idea, since a one-pass |
| /// DFA can use a lot of memory. With that said, as the size of a regex |
| /// increases, the likelihood of it being one-pass likely decreases. |
| /// |
| /// This defaults to some reasonable number that permits most reasonable |
| /// one-pass patterns. |
| /// |
| /// # Example |
| /// |
| /// This shows how to set the one-pass DFA size limit. Note that since |
| /// a one-pass DFA is an optional component of the meta regex engine, |
| /// this size limit only impacts what is built internally and will never |
| /// determine whether a `Regex` itself fails to build. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20)))) |
| /// .build(r"\pL{5}"); |
| /// assert!(result.is_ok()); |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn onepass_size_limit(self, limit: Option<usize>) -> Config { |
| Config { onepass_size_limit: Some(limit), ..self } |
| } |
| |
| /// Set the cache capacity, in bytes, for the lazy DFA. |
| /// |
| /// The cache capacity of the lazy DFA determines approximately how much |
| /// heap memory it is allowed to use to store its state transitions. The |
| /// state transitions are computed at search time, and if the cache fills |
| /// up it, it is cleared. At this point, any previously generated state |
| /// transitions are lost and are re-generated if they're needed again. |
| /// |
| /// This sort of cache filling and clearing works quite well _so long as |
| /// cache clearing happens infrequently_. If it happens too often, then the |
| /// meta regex engine will stop using the lazy DFA and switch over to a |
| /// different regex engine. |
| /// |
| /// In cases where the cache is cleared too often, it may be possible to |
| /// give the cache more space and reduce (or eliminate) how often it is |
| /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't |
| /// used at all if its cache capacity isn't big enough. |
| /// |
| /// The capacity set here is a _limit_ on how much memory is used. The |
| /// actual memory used is only allocated as it's needed. |
| /// |
| /// Determining the right value for this is a little tricky and will likely |
| /// required some profiling. Enabling the `logging` feature and setting the |
| /// log level to `trace` will also tell you how often the cache is being |
| /// cleared. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20))) |
| /// .build(r"\pL{5}"); |
| /// assert!(result.is_ok()); |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn hybrid_cache_capacity(self, limit: usize) -> Config { |
| Config { hybrid_cache_capacity: Some(limit), ..self } |
| } |
| |
| /// Sets the size limit, in bytes, for heap memory used for a fully |
| /// compiled DFA. |
| /// |
| /// **NOTE:** If you increase this, you'll likely also need to increase |
| /// [`Config::dfa_state_limit`]. |
| /// |
| /// In contrast to the lazy DFA, building a full DFA requires computing |
| /// all of its state transitions up front. This can be a very expensive |
| /// process, and runs in worst case `2^n` time and space (where `n` is |
| /// proportional to the size of the regex). However, a full DFA unlocks |
| /// some additional optimization opportunities. |
| /// |
| /// Because full DFAs can be so expensive, the default limits for them are |
| /// incredibly small. Generally speaking, if your regex is moderately big |
| /// or if you're using Unicode features (`\w` is Unicode-aware by default |
| /// for example), then you can expect that the meta regex engine won't even |
| /// attempt to build a DFA for it. |
| /// |
| /// If this and [`Config::dfa_state_limit`] are set to `None`, then the |
| /// meta regex will not use any sort of limits when deciding whether to |
| /// build a DFA. This in turn makes construction of a `Regex` take |
| /// worst case exponential time and space. Even short patterns can result |
| /// in huge space blow ups. So it is strongly recommended to keep some kind |
| /// of limit set! |
| /// |
| /// The default is set to a small number that permits some simple regexes |
| /// to get compiled into DFAs in reasonable time. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// // 100MB is much bigger than the default. |
| /// .configure(Regex::config() |
| /// .dfa_size_limit(Some(100 * (1<<20))) |
| /// // We don't care about size too much here, so just |
| /// // remove the NFA state limit altogether. |
| /// .dfa_state_limit(None)) |
| /// .build(r"\pL{5}"); |
| /// assert!(result.is_ok()); |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn dfa_size_limit(self, limit: Option<usize>) -> Config { |
| Config { dfa_size_limit: Some(limit), ..self } |
| } |
| |
| /// Sets a limit on the total number of NFA states, beyond which, a full |
| /// DFA is not attempted to be compiled. |
| /// |
| /// This limit works in concert with [`Config::dfa_size_limit`]. Namely, |
| /// where as `Config::dfa_size_limit` is applied by attempting to construct |
| /// a DFA, this limit is used to avoid the attempt in the first place. This |
| /// is useful to avoid hefty initialization costs associated with building |
| /// a DFA for cases where it is obvious the DFA will ultimately be too big. |
| /// |
| /// By default, this is set to a very small number. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::meta::Regex; |
| /// |
| /// let result = Regex::builder() |
| /// .configure(Regex::config() |
| /// // Sometimes the default state limit rejects DFAs even |
| /// // if they would fit in the size limit. Here, we disable |
| /// // the check on the number of NFA states and just rely on |
| /// // the size limit. |
| /// .dfa_state_limit(None)) |
| /// .build(r"(?-u)\w{30}"); |
| /// assert!(result.is_ok()); |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn dfa_state_limit(self, limit: Option<usize>) -> Config { |
| Config { dfa_state_limit: Some(limit), ..self } |
| } |
| |
| /// Whether to attempt to shrink the size of the alphabet for the regex |
| /// pattern or not. When enabled, the alphabet is shrunk into a set of |
| /// equivalence classes, where every byte in the same equivalence class |
| /// cannot discriminate between a match or non-match. |
| /// |
| /// **WARNING:** This is only useful for debugging DFAs. Disabling this |
| /// does not yield any speed advantages. Indeed, disabling it can result |
| /// in much higher memory usage. Disabling byte classes is useful for |
| /// debugging the actual generated transitions because it lets one see the |
| /// transitions defined on actual bytes instead of the equivalence classes. |
| /// |
| /// This option is enabled by default and should never be disabled unless |
| /// one is debugging the meta regex engine's internals. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().byte_classes(false)) |
| /// .build(r"[a-z]+")?; |
| /// let hay = "!!quux!!"; |
| /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn byte_classes(self, yes: bool) -> Config { |
| Config { byte_classes: Some(yes), ..self } |
| } |
| |
| /// Set the line terminator to be used by the `^` and `$` anchors in |
| /// multi-line mode. |
| /// |
| /// This option has no effect when CRLF mode is enabled. That is, |
| /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat |
| /// `\r` and `\n` as line terminators (and will never match between a `\r` |
| /// and a `\n`). |
| /// |
| /// By default, `\n` is the line terminator. |
| /// |
| /// **Warning**: This does not change the behavior of `.`. To do that, |
| /// you'll need to configure the syntax option |
| /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator) |
| /// in addition to this. Otherwise, `.` will continue to match any |
| /// character other than `\n`. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .syntax(syntax::Config::new().multi_line(true)) |
| /// .configure(Regex::config().line_terminator(b'\x00')) |
| /// .build(r"^foo$")?; |
| /// let hay = "\x00foo\x00"; |
| /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn line_terminator(self, byte: u8) -> Config { |
| Config { line_terminator: Some(byte), ..self } |
| } |
| |
| /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should |
| /// be available for use by the meta regex engine. |
| /// |
| /// Enabling this does not necessarily mean that the lazy DFA will |
| /// definitely be used. It just means that it will be _available_ for use |
| /// if the meta regex engine thinks it will be useful. |
| /// |
| /// When the `hybrid` crate feature is enabled, then this is enabled by |
| /// default. Otherwise, if the crate feature is disabled, then this is |
| /// always disabled, regardless of its setting by the caller. |
| pub fn hybrid(self, yes: bool) -> Config { |
| Config { hybrid: Some(yes), ..self } |
| } |
| |
| /// Toggle whether a fully compiled DFA should be available for use by the |
| /// meta regex engine. |
| /// |
| /// Enabling this does not necessarily mean that a DFA will definitely be |
| /// used. It just means that it will be _available_ for use if the meta |
| /// regex engine thinks it will be useful. |
| /// |
| /// When the `dfa-build` crate feature is enabled, then this is enabled by |
| /// default. Otherwise, if the crate feature is disabled, then this is |
| /// always disabled, regardless of its setting by the caller. |
| pub fn dfa(self, yes: bool) -> Config { |
| Config { dfa: Some(yes), ..self } |
| } |
| |
| /// Toggle whether a one-pass DFA should be available for use by the meta |
| /// regex engine. |
| /// |
| /// Enabling this does not necessarily mean that a one-pass DFA will |
| /// definitely be used. It just means that it will be _available_ for |
| /// use if the meta regex engine thinks it will be useful. (Indeed, a |
| /// one-pass DFA can only be used when the regex is one-pass. See the |
| /// [`dfa::onepass`](crate::dfa::onepass) module for more details.) |
| /// |
| /// When the `dfa-onepass` crate feature is enabled, then this is enabled |
| /// by default. Otherwise, if the crate feature is disabled, then this is |
| /// always disabled, regardless of its setting by the caller. |
| pub fn onepass(self, yes: bool) -> Config { |
| Config { onepass: Some(yes), ..self } |
| } |
| |
| /// Toggle whether a bounded backtracking regex engine should be available |
| /// for use by the meta regex engine. |
| /// |
| /// Enabling this does not necessarily mean that a bounded backtracker will |
| /// definitely be used. It just means that it will be _available_ for use |
| /// if the meta regex engine thinks it will be useful. |
| /// |
| /// When the `nfa-backtrack` crate feature is enabled, then this is enabled |
| /// by default. Otherwise, if the crate feature is disabled, then this is |
| /// always disabled, regardless of its setting by the caller. |
| pub fn backtrack(self, yes: bool) -> Config { |
| Config { backtrack: Some(yes), ..self } |
| } |
| |
| /// Returns the match kind on this configuration, as set by |
| /// [`Config::match_kind`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_match_kind(&self) -> MatchKind { |
| self.match_kind.unwrap_or(MatchKind::LeftmostFirst) |
| } |
| |
| /// Returns whether empty matches must fall on valid UTF-8 boundaries, as |
| /// set by [`Config::utf8_empty`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_utf8_empty(&self) -> bool { |
| self.utf8_empty.unwrap_or(true) |
| } |
| |
| /// Returns whether automatic prefilters are enabled, as set by |
| /// [`Config::auto_prefilter`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_auto_prefilter(&self) -> bool { |
| self.autopre.unwrap_or(true) |
| } |
| |
| /// Returns a manually set prefilter, if one was set by |
| /// [`Config::prefilter`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_prefilter(&self) -> Option<&Prefilter> { |
| self.pre.as_ref().unwrap_or(&None).as_ref() |
| } |
| |
| /// Returns the capture configuration, as set by |
| /// [`Config::which_captures`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_which_captures(&self) -> WhichCaptures { |
| self.which_captures.unwrap_or(WhichCaptures::All) |
| } |
| |
| /// Returns NFA size limit, as set by [`Config::nfa_size_limit`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_nfa_size_limit(&self) -> Option<usize> { |
| self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20))) |
| } |
| |
| /// Returns one-pass DFA size limit, as set by |
| /// [`Config::onepass_size_limit`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_onepass_size_limit(&self) -> Option<usize> { |
| self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20))) |
| } |
| |
| /// Returns hybrid NFA/DFA cache capacity, as set by |
| /// [`Config::hybrid_cache_capacity`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_hybrid_cache_capacity(&self) -> usize { |
| self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20)) |
| } |
| |
| /// Returns DFA size limit, as set by [`Config::dfa_size_limit`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_dfa_size_limit(&self) -> Option<usize> { |
| // The default for this is VERY small because building a full DFA is |
| // ridiculously costly. But for regexes that are very small, it can be |
| // beneficial to use a full DFA. In particular, a full DFA can enable |
| // additional optimizations via something called "accelerated" states. |
| // Namely, when there's a state with only a few outgoing transitions, |
| // we can temporary suspend walking the transition table and use memchr |
| // for just those outgoing transitions to skip ahead very quickly. |
| // |
| // Generally speaking, if Unicode is enabled in your regex and you're |
| // using some kind of Unicode feature, then it's going to blow this |
| // size limit. Moreover, Unicode tends to defeat the "accelerated" |
| // state optimization too, so it's a double whammy. |
| // |
| // We also use a limit on the number of NFA states to avoid even |
| // starting the DFA construction process. Namely, DFA construction |
| // itself could make lots of initial allocs proportional to the size |
| // of the NFA, and if the NFA is large, it doesn't make sense to pay |
| // that cost if we know it's likely to be blown by a large margin. |
| self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10))) |
| } |
| |
| /// Returns DFA size limit in terms of the number of states in the NFA, as |
| /// set by [`Config::dfa_state_limit`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_dfa_state_limit(&self) -> Option<usize> { |
| // Again, as with the size limit, we keep this very small. |
| self.dfa_state_limit.unwrap_or(Some(30)) |
| } |
| |
| /// Returns whether byte classes are enabled, as set by |
| /// [`Config::byte_classes`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_byte_classes(&self) -> bool { |
| self.byte_classes.unwrap_or(true) |
| } |
| |
| /// Returns the line terminator for this configuration, as set by |
| /// [`Config::line_terminator`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_line_terminator(&self) -> u8 { |
| self.line_terminator.unwrap_or(b'\n') |
| } |
| |
| /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by |
| /// [`Config::hybrid`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_hybrid(&self) -> bool { |
| #[cfg(feature = "hybrid")] |
| { |
| self.hybrid.unwrap_or(true) |
| } |
| #[cfg(not(feature = "hybrid"))] |
| { |
| false |
| } |
| } |
| |
| /// Returns whether the DFA regex engine may be used, as set by |
| /// [`Config::dfa`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_dfa(&self) -> bool { |
| #[cfg(feature = "dfa-build")] |
| { |
| self.dfa.unwrap_or(true) |
| } |
| #[cfg(not(feature = "dfa-build"))] |
| { |
| false |
| } |
| } |
| |
| /// Returns whether the one-pass DFA regex engine may be used, as set by |
| /// [`Config::onepass`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_onepass(&self) -> bool { |
| #[cfg(feature = "dfa-onepass")] |
| { |
| self.onepass.unwrap_or(true) |
| } |
| #[cfg(not(feature = "dfa-onepass"))] |
| { |
| false |
| } |
| } |
| |
| /// Returns whether the bounded backtracking regex engine may be used, as |
| /// set by [`Config::backtrack`]. |
| /// |
| /// If it was not explicitly set, then a default value is returned. |
| pub fn get_backtrack(&self) -> bool { |
| #[cfg(feature = "nfa-backtrack")] |
| { |
| self.backtrack.unwrap_or(true) |
| } |
| #[cfg(not(feature = "nfa-backtrack"))] |
| { |
| false |
| } |
| } |
| |
| /// Overwrite the default configuration such that the options in `o` are |
| /// always used. If an option in `o` is not set, then the corresponding |
| /// option in `self` is used. If it's not set in `self` either, then it |
| /// remains not set. |
| pub(crate) fn overwrite(&self, o: Config) -> Config { |
| Config { |
| match_kind: o.match_kind.or(self.match_kind), |
| utf8_empty: o.utf8_empty.or(self.utf8_empty), |
| autopre: o.autopre.or(self.autopre), |
| pre: o.pre.or_else(|| self.pre.clone()), |
| which_captures: o.which_captures.or(self.which_captures), |
| nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit), |
| onepass_size_limit: o |
| .onepass_size_limit |
| .or(self.onepass_size_limit), |
| hybrid_cache_capacity: o |
| .hybrid_cache_capacity |
| .or(self.hybrid_cache_capacity), |
| hybrid: o.hybrid.or(self.hybrid), |
| dfa: o.dfa.or(self.dfa), |
| dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit), |
| dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit), |
| onepass: o.onepass.or(self.onepass), |
| backtrack: o.backtrack.or(self.backtrack), |
| byte_classes: o.byte_classes.or(self.byte_classes), |
| line_terminator: o.line_terminator.or(self.line_terminator), |
| } |
| } |
| } |
| |
| /// A builder for configuring and constructing a `Regex`. |
| /// |
| /// The builder permits configuring two different aspects of a `Regex`: |
| /// |
| /// * [`Builder::configure`] will set high-level configuration options as |
| /// described by a [`Config`]. |
| /// * [`Builder::syntax`] will set the syntax level configuration options |
| /// as described by a [`util::syntax::Config`](crate::util::syntax::Config). |
| /// This only applies when building a `Regex` from pattern strings. |
| /// |
| /// Once configured, the builder can then be used to construct a `Regex` from |
| /// one of 4 different inputs: |
| /// |
| /// * [`Builder::build`] creates a regex from a single pattern string. |
| /// * [`Builder::build_many`] creates a regex from many pattern strings. |
| /// * [`Builder::build_from_hir`] creates a regex from a |
| /// [`regex-syntax::Hir`](Hir) expression. |
| /// * [`Builder::build_many_from_hir`] creates a regex from many |
| /// [`regex-syntax::Hir`](Hir) expressions. |
| /// |
| /// The latter two methods in particular provide a way to construct a fully |
| /// feature regular expression matcher directly from an `Hir` expression |
| /// without having to first convert it to a string. (This is in contrast to the |
| /// top-level `regex` crate which intentionally provides no such API in order |
| /// to avoid making `regex-syntax` a public dependency.) |
| /// |
| /// As a convenience, this builder may be created via [`Regex::builder`], which |
| /// may help avoid an extra import. |
| /// |
| /// # Example: change the line terminator |
| /// |
| /// This example shows how to enable multi-line mode by default and change the |
| /// line terminator to the NUL byte: |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .syntax(syntax::Config::new().multi_line(true)) |
| /// .configure(Regex::config().line_terminator(b'\x00')) |
| /// .build(r"^foo$")?; |
| /// let hay = "\x00foo\x00"; |
| /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: disable UTF-8 requirement |
| /// |
| /// By default, regex patterns are required to match UTF-8. This includes |
| /// regex patterns that can produce matches of length zero. In the case of an |
| /// empty match, by default, matches will not appear between the code units of |
| /// a UTF-8 encoded codepoint. |
| /// |
| /// However, it can be useful to disable this requirement, particularly if |
| /// you're searching things like `&[u8]` that are not known to be valid UTF-8. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let mut builder = Regex::builder(); |
| /// // Disables the requirement that non-empty matches match UTF-8. |
| /// builder.syntax(syntax::Config::new().utf8(false)); |
| /// // Disables the requirement that empty matches match UTF-8 boundaries. |
| /// builder.configure(Regex::config().utf8_empty(false)); |
| /// |
| /// // We can match raw bytes via \xZZ syntax, but we need to disable |
| /// // Unicode mode to do that. We could disable it everywhere, or just |
| /// // selectively, as shown here. |
| /// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?; |
| /// let hay = b"\xFFfoo\xFF"; |
| /// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay)); |
| /// |
| /// // We can also match between code units. |
| /// let re = builder.build(r"")?; |
| /// let hay = "☃"; |
| /// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![ |
| /// Match::must(0, 0..0), |
| /// Match::must(0, 1..1), |
| /// Match::must(0, 2..2), |
| /// Match::must(0, 3..3), |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[derive(Clone, Debug)] |
| pub struct Builder { |
| config: Config, |
| ast: ast::parse::ParserBuilder, |
| hir: hir::translate::TranslatorBuilder, |
| } |
| |
| impl Builder { |
| /// Creates a new builder for configuring and constructing a [`Regex`]. |
| pub fn new() -> Builder { |
| Builder { |
| config: Config::default(), |
| ast: ast::parse::ParserBuilder::new(), |
| hir: hir::translate::TranslatorBuilder::new(), |
| } |
| } |
| |
| /// Builds a `Regex` from a single pattern string. |
| /// |
| /// If there was a problem parsing the pattern or a problem turning it into |
| /// a regex matcher, then an error is returned. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to configure syntax options. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .syntax(syntax::Config::new().crlf(true).multi_line(true)) |
| /// .build(r"^foo$")?; |
| /// let hay = "\r\nfoo\r\n"; |
| /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> { |
| self.build_many(&[pattern]) |
| } |
| |
| /// Builds a `Regex` from many pattern strings. |
| /// |
| /// If there was a problem parsing any of the patterns or a problem turning |
| /// them into a regex matcher, then an error is returned. |
| /// |
| /// # Example: finding the pattern that caused an error |
| /// |
| /// When a syntax error occurs, it is possible to ask which pattern |
| /// caused the syntax error. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, PatternID}; |
| /// |
| /// let err = Regex::builder() |
| /// .build_many(&["a", "b", r"\p{Foo}", "c"]) |
| /// .unwrap_err(); |
| /// assert_eq!(Some(PatternID::must(2)), err.pattern()); |
| /// ``` |
| /// |
| /// # Example: zero patterns is valid |
| /// |
| /// Building a regex with zero patterns results in a regex that never |
| /// matches anything. Because this routine is generic, passing an empty |
| /// slice usually requires a turbo-fish (or something else to help type |
| /// inference). |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .build_many::<&str>(&[])?; |
| /// assert_eq!(None, re.find("")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn build_many<P: AsRef<str>>( |
| &self, |
| patterns: &[P], |
| ) -> Result<Regex, BuildError> { |
| use crate::util::primitives::IteratorIndexExt; |
| log! { |
| debug!("building meta regex with {} patterns:", patterns.len()); |
| for (pid, p) in patterns.iter().with_pattern_ids() { |
| let p = p.as_ref(); |
| // We might split a grapheme with this truncation logic, but |
| // that's fine. We at least avoid splitting a codepoint. |
| let maxoff = p |
| .char_indices() |
| .map(|(i, ch)| i + ch.len_utf8()) |
| .take(1000) |
| .last() |
| .unwrap_or(0); |
| if maxoff < p.len() { |
| debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]); |
| } else { |
| debug!("{:?}: {}", pid, p); |
| } |
| } |
| } |
| let (mut asts, mut hirs) = (vec![], vec![]); |
| for (pid, p) in patterns.iter().with_pattern_ids() { |
| let ast = self |
| .ast |
| .build() |
| .parse(p.as_ref()) |
| .map_err(|err| BuildError::ast(pid, err))?; |
| asts.push(ast); |
| } |
| for ((pid, p), ast) in |
| patterns.iter().with_pattern_ids().zip(asts.iter()) |
| { |
| let hir = self |
| .hir |
| .build() |
| .translate(p.as_ref(), ast) |
| .map_err(|err| BuildError::hir(pid, err))?; |
| hirs.push(hir); |
| } |
| self.build_many_from_hir(&hirs) |
| } |
| |
| /// Builds a `Regex` directly from an `Hir` expression. |
| /// |
| /// This is useful if you needed to parse a pattern string into an `Hir` |
| /// for other reasons (such as analysis or transformations). This routine |
| /// permits building a `Regex` directly from the `Hir` expression instead |
| /// of first converting the `Hir` back to a pattern string. |
| /// |
| /// When using this method, any options set via [`Builder::syntax`] are |
| /// ignored. Namely, the syntax options only apply when parsing a pattern |
| /// string, which isn't relevant here. |
| /// |
| /// If there was a problem building the underlying regex matcher for the |
| /// given `Hir`, then an error is returned. |
| /// |
| /// # Example |
| /// |
| /// This example shows how one can hand-construct an `Hir` expression and |
| /// build a regex from it without doing any parsing at all. |
| /// |
| /// ``` |
| /// use { |
| /// regex_automata::{meta::Regex, Match}, |
| /// regex_syntax::hir::{Hir, Look}, |
| /// }; |
| /// |
| /// // (?Rm)^foo$ |
| /// let hir = Hir::concat(vec![ |
| /// Hir::look(Look::StartCRLF), |
| /// Hir::literal("foo".as_bytes()), |
| /// Hir::look(Look::EndCRLF), |
| /// ]); |
| /// let re = Regex::builder() |
| /// .build_from_hir(&hir)?; |
| /// let hay = "\r\nfoo\r\n"; |
| /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> { |
| self.build_many_from_hir(&[hir]) |
| } |
| |
| /// Builds a `Regex` directly from many `Hir` expressions. |
| /// |
| /// This is useful if you needed to parse pattern strings into `Hir` |
| /// expressions for other reasons (such as analysis or transformations). |
| /// This routine permits building a `Regex` directly from the `Hir` |
| /// expressions instead of first converting the `Hir` expressions back to |
| /// pattern strings. |
| /// |
| /// When using this method, any options set via [`Builder::syntax`] are |
| /// ignored. Namely, the syntax options only apply when parsing a pattern |
| /// string, which isn't relevant here. |
| /// |
| /// If there was a problem building the underlying regex matcher for the |
| /// given `Hir` expressions, then an error is returned. |
| /// |
| /// Note that unlike [`Builder::build_many`], this can only fail as a |
| /// result of building the underlying matcher. In that case, there is |
| /// no single `Hir` expression that can be isolated as a reason for the |
| /// failure. So if this routine fails, it's not possible to determine which |
| /// `Hir` expression caused the failure. |
| /// |
| /// # Example |
| /// |
| /// This example shows how one can hand-construct multiple `Hir` |
| /// expressions and build a single regex from them without doing any |
| /// parsing at all. |
| /// |
| /// ``` |
| /// use { |
| /// regex_automata::{meta::Regex, Match}, |
| /// regex_syntax::hir::{Hir, Look}, |
| /// }; |
| /// |
| /// // (?Rm)^foo$ |
| /// let hir1 = Hir::concat(vec![ |
| /// Hir::look(Look::StartCRLF), |
| /// Hir::literal("foo".as_bytes()), |
| /// Hir::look(Look::EndCRLF), |
| /// ]); |
| /// // (?Rm)^bar$ |
| /// let hir2 = Hir::concat(vec![ |
| /// Hir::look(Look::StartCRLF), |
| /// Hir::literal("bar".as_bytes()), |
| /// Hir::look(Look::EndCRLF), |
| /// ]); |
| /// let re = Regex::builder() |
| /// .build_many_from_hir(&[&hir1, &hir2])?; |
| /// let hay = "\r\nfoo\r\nbar"; |
| /// let got: Vec<Match> = re.find_iter(hay).collect(); |
| /// let expected = vec![ |
| /// Match::must(0, 2..5), |
| /// Match::must(1, 7..10), |
| /// ]; |
| /// assert_eq!(expected, got); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn build_many_from_hir<H: Borrow<Hir>>( |
| &self, |
| hirs: &[H], |
| ) -> Result<Regex, BuildError> { |
| let config = self.config.clone(); |
| // We collect the HIRs into a vec so we can write internal routines |
| // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code |
| // bloat down.. |
| let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect(); |
| let info = RegexInfo::new(config, &hirs); |
| let strat = strategy::new(&info, &hirs)?; |
| let pool = { |
| let strat = Arc::clone(&strat); |
| let create: CachePoolFn = Box::new(move || strat.create_cache()); |
| Pool::new(create) |
| }; |
| Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool }) |
| } |
| |
| /// Configure the behavior of a `Regex`. |
| /// |
| /// This configuration controls non-syntax options related to the behavior |
| /// of a `Regex`. This includes things like whether empty matches can split |
| /// a codepoint, prefilters, line terminators and a long list of options |
| /// for configuring which regex engines the meta regex engine will be able |
| /// to use internally. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to disable UTF-8 empty mode. This will permit |
| /// empty matches to occur between the UTF-8 encoding of a codepoint. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, Match}; |
| /// |
| /// let re = Regex::new("")?; |
| /// let got: Vec<Match> = re.find_iter("☃").collect(); |
| /// // Matches only occur at the beginning and end of the snowman. |
| /// assert_eq!(got, vec![ |
| /// Match::must(0, 0..0), |
| /// Match::must(0, 3..3), |
| /// ]); |
| /// |
| /// let re = Regex::builder() |
| /// .configure(Regex::config().utf8_empty(false)) |
| /// .build("")?; |
| /// let got: Vec<Match> = re.find_iter("☃").collect(); |
| /// // Matches now occur at every position! |
| /// assert_eq!(got, vec![ |
| /// Match::must(0, 0..0), |
| /// Match::must(0, 1..1), |
| /// Match::must(0, 2..2), |
| /// Match::must(0, 3..3), |
| /// ]); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn configure(&mut self, config: Config) -> &mut Builder { |
| self.config = self.config.overwrite(config); |
| self |
| } |
| |
| /// Configure the syntax options when parsing a pattern string while |
| /// building a `Regex`. |
| /// |
| /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`] |
| /// are used. The other build methods accept `Hir` values, which have |
| /// already been parsed. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to enable case insensitive mode. |
| /// |
| /// ``` |
| /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| /// |
| /// let re = Regex::builder() |
| /// .syntax(syntax::Config::new().case_insensitive(true)) |
| /// .build(r"δ")?; |
| /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ")); |
| /// |
| /// Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn syntax( |
| &mut self, |
| config: crate::util::syntax::Config, |
| ) -> &mut Builder { |
| config.apply_ast(&mut self.ast); |
| config.apply_hir(&mut self.hir); |
| self |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| // I found this in the course of building out the benchmark suite for |
| // rebar. |
| #[test] |
| fn regression() { |
| env_logger::init(); |
| |
| let re = Regex::new(r"[a-zA-Z]+ing").unwrap(); |
| assert_eq!(1, re.find_iter("tingling").count()); |
| } |
| } |