| use std::error::Error; |
| |
| use regex_automata::{ |
| hybrid::dfa::{OverlappingState, DFA}, |
| nfa::thompson, |
| HalfMatch, Input, MatchError, |
| }; |
| |
| // Tests that too many cache resets cause the lazy DFA to quit. |
| // |
| // We only test this on 64-bit because the test is gingerly crafted based on |
| // implementation details of cache sizes. It's not a great test because of |
| // that, but it does check some interesting properties around how positions are |
| // reported when a search "gives up." |
| // |
| // NOTE: If you change something in lazy DFA implementation that causes this |
| // test to fail by reporting different "gave up" positions, then it's generally |
| // okay to update the positions in the test below as long as you're sure your |
| // changes are correct. Namely, it is expected that if there are changes in the |
| // cache size (or changes in how big things are inside the cache), then its |
| // utilization may change slightly and thus impact where a search gives up. |
| // Precisely where a search gives up is not an API guarantee, so changing the |
| // offsets here is OK. |
| #[test] |
| #[cfg(target_pointer_width = "64")] |
| #[cfg(not(miri))] |
| fn too_many_cache_resets_cause_quit() -> Result<(), Box<dyn Error>> { |
| // This is a carefully chosen regex. The idea is to pick one that requires |
| // some decent number of states (hence the bounded repetition). But we |
| // specifically choose to create a class with an ASCII letter and a |
| // non-ASCII letter so that we can check that no new states are created |
| // once the cache is full. Namely, if we fill up the cache on a haystack |
| // of 'a's, then in order to match one 'β', a new state will need to be |
| // created since a 'β' is encoded with multiple bytes. |
| // |
| // So we proceed by "filling" up the cache by searching a haystack of just |
| // 'a's. The cache won't have enough room to add enough states to find the |
| // match (because of the bounded repetition), which should result in it |
| // giving up before it finds a match. |
| // |
| // Since there's now no more room to create states, we search a haystack |
| // of 'β' and confirm that it gives up immediately. |
| let pattern = r"[aβ]{99}"; |
| let dfa = DFA::builder() |
| .configure( |
| // Configure it so that we have the minimum cache capacity |
| // possible. And that if any resets occur, the search quits. |
| DFA::config() |
| .skip_cache_capacity_check(true) |
| .cache_capacity(0) |
| .minimum_cache_clear_count(Some(0)), |
| ) |
| .thompson(thompson::NFA::config()) |
| .build(pattern)?; |
| let mut cache = dfa.create_cache(); |
| |
| let haystack = "a".repeat(101).into_bytes(); |
| let err = MatchError::gave_up(25); |
| // Notice that we make the same amount of progress in each search! That's |
| // because the cache is reused and already has states to handle the first |
| // N bytes. |
| assert_eq!( |
| Err(err.clone()), |
| dfa.try_search_fwd(&mut cache, &Input::new(&haystack)) |
| ); |
| assert_eq!( |
| Err(err.clone()), |
| dfa.try_search_overlapping_fwd( |
| &mut cache, |
| &Input::new(&haystack), |
| &mut OverlappingState::start() |
| ), |
| ); |
| |
| let haystack = "β".repeat(101).into_bytes(); |
| let err = MatchError::gave_up(2); |
| assert_eq!( |
| Err(err), |
| dfa.try_search_fwd(&mut cache, &Input::new(&haystack)) |
| ); |
| // no need to test that other find routines quit, since we did that above |
| |
| // OK, if we reset the cache, then we should be able to create more states |
| // and make more progress with searching for betas. |
| cache.reset(&dfa); |
| let err = MatchError::gave_up(27); |
| assert_eq!( |
| Err(err), |
| dfa.try_search_fwd(&mut cache, &Input::new(&haystack)) |
| ); |
| |
| // ... switching back to ASCII still makes progress since it just needs to |
| // set transitions on existing states! |
| let haystack = "a".repeat(101).into_bytes(); |
| let err = MatchError::gave_up(13); |
| assert_eq!( |
| Err(err), |
| dfa.try_search_fwd(&mut cache, &Input::new(&haystack)) |
| ); |
| |
| Ok(()) |
| } |
| |
| // Tests that quit bytes in the forward direction work correctly. |
| #[test] |
| fn quit_fwd() -> Result<(), Box<dyn Error>> { |
| let dfa = DFA::builder() |
| .configure(DFA::config().quit(b'x', true)) |
| .build("[[:word:]]+$")?; |
| let mut cache = dfa.create_cache(); |
| |
| assert_eq!( |
| dfa.try_search_fwd(&mut cache, &Input::new("abcxyz")), |
| Err(MatchError::quit(b'x', 3)), |
| ); |
| assert_eq!( |
| dfa.try_search_overlapping_fwd( |
| &mut cache, |
| &Input::new(b"abcxyz"), |
| &mut OverlappingState::start() |
| ), |
| Err(MatchError::quit(b'x', 3)), |
| ); |
| |
| Ok(()) |
| } |
| |
| // Tests that quit bytes in the reverse direction work correctly. |
| #[test] |
| fn quit_rev() -> Result<(), Box<dyn Error>> { |
| let dfa = DFA::builder() |
| .configure(DFA::config().quit(b'x', true)) |
| .thompson(thompson::Config::new().reverse(true)) |
| .build("^[[:word:]]+")?; |
| let mut cache = dfa.create_cache(); |
| |
| assert_eq!( |
| dfa.try_search_rev(&mut cache, &Input::new("abcxyz")), |
| Err(MatchError::quit(b'x', 3)), |
| ); |
| |
| Ok(()) |
| } |
| |
| // Tests that if we heuristically enable Unicode word boundaries but then |
| // instruct that a non-ASCII byte should NOT be a quit byte, then the builder |
| // will panic. |
| #[test] |
| #[should_panic] |
| fn quit_panics() { |
| DFA::config().unicode_word_boundary(true).quit(b'\xFF', false); |
| } |
| |
| // This tests an intesting case where even if the Unicode word boundary option |
| // is disabled, setting all non-ASCII bytes to be quit bytes will cause Unicode |
| // word boundaries to be enabled. |
| #[test] |
| fn unicode_word_implicitly_works() -> Result<(), Box<dyn Error>> { |
| let mut config = DFA::config(); |
| for b in 0x80..=0xFF { |
| config = config.quit(b, true); |
| } |
| let dfa = DFA::builder().configure(config).build(r"\b")?; |
| let mut cache = dfa.create_cache(); |
| let expected = HalfMatch::must(0, 1); |
| assert_eq!( |
| Ok(Some(expected)), |
| dfa.try_search_fwd(&mut cache, &Input::new(" a")), |
| ); |
| Ok(()) |
| } |