| /* |
| * Copyright 2005-2007 Universiteit Leiden |
| * Copyright 2008-2009 Katholieke Universiteit Leuven |
| * Copyright 2010 INRIA Saclay |
| * |
| * Use of this software is governed by the GNU LGPLv2.1 license |
| * |
| * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, |
| * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands |
| * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, |
| * B-3001 Leuven, Belgium |
| * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
| * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
| */ |
| |
| #include <isl/set.h> |
| #include <isl/map.h> |
| #include <isl/flow.h> |
| |
| /* A private structure to keep track of a mapping together with |
| * a user-specified identifier and a boolean indicating whether |
| * the map represents a must or may access/dependence. |
| */ |
| struct isl_labeled_map { |
| struct isl_map *map; |
| void *data; |
| int must; |
| }; |
| |
| /* A structure containing the input for dependence analysis: |
| * - a sink |
| * - n_must + n_may (<= max_source) sources |
| * - a function for determining the relative order of sources and sink |
| * The must sources are placed before the may sources. |
| */ |
| struct isl_access_info { |
| struct isl_labeled_map sink; |
| isl_access_level_before level_before; |
| int max_source; |
| int n_must; |
| int n_may; |
| struct isl_labeled_map source[1]; |
| }; |
| |
| /* A structure containing the output of dependence analysis: |
| * - n_source dependences |
| * - a wrapped subset of the sink for which definitely no source could be found |
| * - a wrapped subset of the sink for which possibly no source could be found |
| */ |
| struct isl_flow { |
| isl_set *must_no_source; |
| isl_set *may_no_source; |
| int n_source; |
| struct isl_labeled_map *dep; |
| }; |
| |
| /* Construct an isl_access_info structure and fill it up with |
| * the given data. The number of sources is set to 0. |
| */ |
| __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink, |
| void *sink_user, isl_access_level_before fn, int max_source) |
| { |
| isl_ctx *ctx; |
| struct isl_access_info *acc; |
| |
| if (!sink) |
| return NULL; |
| |
| ctx = isl_map_get_ctx(sink); |
| isl_assert(ctx, max_source >= 0, goto error); |
| |
| acc = isl_alloc(ctx, struct isl_access_info, |
| sizeof(struct isl_access_info) + |
| (max_source - 1) * sizeof(struct isl_labeled_map)); |
| if (!acc) |
| goto error; |
| |
| acc->sink.map = sink; |
| acc->sink.data = sink_user; |
| acc->level_before = fn; |
| acc->max_source = max_source; |
| acc->n_must = 0; |
| acc->n_may = 0; |
| |
| return acc; |
| error: |
| isl_map_free(sink); |
| return NULL; |
| } |
| |
| /* Free the given isl_access_info structure. |
| */ |
| void isl_access_info_free(__isl_take isl_access_info *acc) |
| { |
| int i; |
| |
| if (!acc) |
| return; |
| isl_map_free(acc->sink.map); |
| for (i = 0; i < acc->n_must + acc->n_may; ++i) |
| isl_map_free(acc->source[i].map); |
| free(acc); |
| } |
| |
| isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc) |
| { |
| return acc ? isl_map_get_ctx(acc->sink.map) : NULL; |
| } |
| |
| /* Add another source to an isl_access_info structure, making |
| * sure the "must" sources are placed before the "may" sources. |
| * This function may be called at most max_source times on a |
| * given isl_access_info structure, with max_source as specified |
| * in the call to isl_access_info_alloc that constructed the structure. |
| */ |
| __isl_give isl_access_info *isl_access_info_add_source( |
| __isl_take isl_access_info *acc, __isl_take isl_map *source, |
| int must, void *source_user) |
| { |
| isl_ctx *ctx; |
| |
| if (!acc) |
| return NULL; |
| ctx = isl_map_get_ctx(acc->sink.map); |
| isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error); |
| |
| if (must) { |
| if (acc->n_may) |
| acc->source[acc->n_must + acc->n_may] = |
| acc->source[acc->n_must]; |
| acc->source[acc->n_must].map = source; |
| acc->source[acc->n_must].data = source_user; |
| acc->source[acc->n_must].must = 1; |
| acc->n_must++; |
| } else { |
| acc->source[acc->n_must + acc->n_may].map = source; |
| acc->source[acc->n_must + acc->n_may].data = source_user; |
| acc->source[acc->n_must + acc->n_may].must = 0; |
| acc->n_may++; |
| } |
| |
| return acc; |
| error: |
| isl_map_free(source); |
| isl_access_info_free(acc); |
| return NULL; |
| } |
| |
| /* A temporary structure used while sorting the accesses in an isl_access_info. |
| */ |
| struct isl_access_sort_info { |
| struct isl_map *source_map; |
| void *source_data; |
| struct isl_access_info *acc; |
| }; |
| |
| /* Return -n, 0 or n (with n a positive value), depending on whether |
| * the source access identified by p1 should be sorted before, together |
| * or after that identified by p2. |
| * |
| * If p1 and p2 share a different number of levels with the sink, |
| * then the one with the lowest number of shared levels should be |
| * sorted first. |
| * If they both share no levels, then the order is irrelevant. |
| * Otherwise, if p1 appears before p2, then it should be sorted first. |
| * For more generic initial schedules, it is possible that neither |
| * p1 nor p2 appears before the other, or at least not in any obvious way. |
| * We therefore also check if p2 appears before p1, in which case p2 |
| * should be sorted first. |
| * If not, we try to order the two statements based on the description |
| * of the iteration domains. This results in an arbitrary, but fairly |
| * stable ordering. |
| */ |
| static int access_sort_cmp(const void *p1, const void *p2) |
| { |
| const struct isl_access_sort_info *i1, *i2; |
| int level1, level2; |
| uint32_t h1, h2; |
| i1 = (const struct isl_access_sort_info *) p1; |
| i2 = (const struct isl_access_sort_info *) p2; |
| |
| level1 = i1->acc->level_before(i1->source_data, i1->acc->sink.data); |
| level2 = i2->acc->level_before(i2->source_data, i2->acc->sink.data); |
| |
| if (level1 != level2 || !level1) |
| return level1 - level2; |
| |
| level1 = i1->acc->level_before(i1->source_data, i2->source_data); |
| if (level1 % 2) |
| return -1; |
| |
| level2 = i1->acc->level_before(i2->source_data, i1->source_data); |
| if (level2 % 2) |
| return 1; |
| |
| h1 = isl_map_get_hash(i1->source_map); |
| h2 = isl_map_get_hash(i2->source_map); |
| return h1 > h2 ? 1 : h1 < h2 ? -1 : 0; |
| } |
| |
| /* Sort the must source accesses in order of increasing number of shared |
| * levels with the sink access. |
| * Source accesses with the same number of shared levels are sorted |
| * in their textual order. |
| */ |
| static __isl_give isl_access_info *isl_access_info_sort_sources( |
| __isl_take isl_access_info *acc) |
| { |
| int i; |
| isl_ctx *ctx; |
| struct isl_access_sort_info *array; |
| |
| if (!acc) |
| return NULL; |
| if (acc->n_must <= 1) |
| return acc; |
| |
| ctx = isl_map_get_ctx(acc->sink.map); |
| array = isl_alloc_array(ctx, struct isl_access_sort_info, acc->n_must); |
| if (!array) |
| goto error; |
| |
| for (i = 0; i < acc->n_must; ++i) { |
| array[i].source_map = acc->source[i].map; |
| array[i].source_data = acc->source[i].data; |
| array[i].acc = acc; |
| } |
| |
| qsort(array, acc->n_must, sizeof(struct isl_access_sort_info), |
| access_sort_cmp); |
| |
| for (i = 0; i < acc->n_must; ++i) { |
| acc->source[i].map = array[i].source_map; |
| acc->source[i].data = array[i].source_data; |
| } |
| |
| free(array); |
| |
| return acc; |
| error: |
| isl_access_info_free(acc); |
| return NULL; |
| } |
| |
| /* Initialize an empty isl_flow structure corresponding to a given |
| * isl_access_info structure. |
| * For each must access, two dependences are created (initialized |
| * to the empty relation), one for the resulting must dependences |
| * and one for the resulting may dependences. May accesses can |
| * only lead to may dependences, so only one dependence is created |
| * for each of them. |
| * This function is private as isl_flow structures are only supposed |
| * to be created by isl_access_info_compute_flow. |
| */ |
| static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc) |
| { |
| int i; |
| struct isl_ctx *ctx; |
| struct isl_flow *dep; |
| |
| if (!acc) |
| return NULL; |
| |
| ctx = isl_map_get_ctx(acc->sink.map); |
| dep = isl_calloc_type(ctx, struct isl_flow); |
| if (!dep) |
| return NULL; |
| |
| dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, |
| 2 * acc->n_must + acc->n_may); |
| if (!dep->dep) |
| goto error; |
| |
| dep->n_source = 2 * acc->n_must + acc->n_may; |
| for (i = 0; i < acc->n_must; ++i) { |
| struct isl_dim *dim; |
| dim = isl_dim_join(isl_map_get_dim(acc->source[i].map), |
| isl_dim_reverse(isl_map_get_dim(acc->sink.map))); |
| dep->dep[2 * i].map = isl_map_empty(dim); |
| dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map); |
| dep->dep[2 * i].data = acc->source[i].data; |
| dep->dep[2 * i + 1].data = acc->source[i].data; |
| dep->dep[2 * i].must = 1; |
| dep->dep[2 * i + 1].must = 0; |
| if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map) |
| goto error; |
| } |
| for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) { |
| struct isl_dim *dim; |
| dim = isl_dim_join(isl_map_get_dim(acc->source[i].map), |
| isl_dim_reverse(isl_map_get_dim(acc->sink.map))); |
| dep->dep[acc->n_must + i].map = isl_map_empty(dim); |
| dep->dep[acc->n_must + i].data = acc->source[i].data; |
| dep->dep[acc->n_must + i].must = 0; |
| if (!dep->dep[acc->n_must + i].map) |
| goto error; |
| } |
| |
| return dep; |
| error: |
| isl_flow_free(dep); |
| return NULL; |
| } |
| |
| /* Iterate over all sources and for each resulting flow dependence |
| * that is not empty, call the user specfied function. |
| * The second argument in this function call identifies the source, |
| * while the third argument correspond to the final argument of |
| * the isl_flow_foreach call. |
| */ |
| int isl_flow_foreach(__isl_keep isl_flow *deps, |
| int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user), |
| void *user) |
| { |
| int i; |
| |
| if (!deps) |
| return -1; |
| |
| for (i = 0; i < deps->n_source; ++i) { |
| if (isl_map_plain_is_empty(deps->dep[i].map)) |
| continue; |
| if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must, |
| deps->dep[i].data, user) < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Return a copy of the subset of the sink for which no source could be found. |
| */ |
| __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must) |
| { |
| if (!deps) |
| return NULL; |
| |
| if (must) |
| return isl_set_unwrap(isl_set_copy(deps->must_no_source)); |
| else |
| return isl_set_unwrap(isl_set_copy(deps->may_no_source)); |
| } |
| |
| void isl_flow_free(__isl_take isl_flow *deps) |
| { |
| int i; |
| |
| if (!deps) |
| return; |
| isl_set_free(deps->must_no_source); |
| isl_set_free(deps->may_no_source); |
| if (deps->dep) { |
| for (i = 0; i < deps->n_source; ++i) |
| isl_map_free(deps->dep[i].map); |
| free(deps->dep); |
| } |
| free(deps); |
| } |
| |
| isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps) |
| { |
| return deps ? isl_set_get_ctx(deps->must_no_source) : NULL; |
| } |
| |
| /* Return a map that enforces that the domain iteration occurs after |
| * the range iteration at the given level. |
| * If level is odd, then the domain iteration should occur after |
| * the target iteration in their shared level/2 outermost loops. |
| * In this case we simply need to enforce that these outermost |
| * loop iterations are the same. |
| * If level is even, then the loop iterator of the domain should |
| * be greater than the loop iterator of the range at the last |
| * of the level/2 shared loops, i.e., loop level/2 - 1. |
| */ |
| static __isl_give isl_map *after_at_level(struct isl_dim *dim, int level) |
| { |
| struct isl_basic_map *bmap; |
| |
| if (level % 2) |
| bmap = isl_basic_map_equal(dim, level/2); |
| else |
| bmap = isl_basic_map_more_at(dim, level/2 - 1); |
| |
| return isl_map_from_basic_map(bmap); |
| } |
| |
| /* Compute the last iteration of must source j that precedes the sink |
| * at the given level for sink iterations in set_C. |
| * The subset of set_C for which no such iteration can be found is returned |
| * in *empty. |
| */ |
| static struct isl_map *last_source(struct isl_access_info *acc, |
| struct isl_set *set_C, |
| int j, int level, struct isl_set **empty) |
| { |
| struct isl_map *read_map; |
| struct isl_map *write_map; |
| struct isl_map *dep_map; |
| struct isl_map *after; |
| struct isl_map *result; |
| |
| read_map = isl_map_copy(acc->sink.map); |
| write_map = isl_map_copy(acc->source[j].map); |
| write_map = isl_map_reverse(write_map); |
| dep_map = isl_map_apply_range(read_map, write_map); |
| after = after_at_level(isl_map_get_dim(dep_map), level); |
| dep_map = isl_map_intersect(dep_map, after); |
| result = isl_map_partial_lexmax(dep_map, set_C, empty); |
| result = isl_map_reverse(result); |
| |
| return result; |
| } |
| |
| /* For a given mapping between iterations of must source j and iterations |
| * of the sink, compute the last iteration of must source k preceding |
| * the sink at level before_level for any of the sink iterations, |
| * but following the corresponding iteration of must source j at level |
| * after_level. |
| */ |
| static struct isl_map *last_later_source(struct isl_access_info *acc, |
| struct isl_map *old_map, |
| int j, int before_level, |
| int k, int after_level, |
| struct isl_set **empty) |
| { |
| struct isl_dim *dim; |
| struct isl_set *set_C; |
| struct isl_map *read_map; |
| struct isl_map *write_map; |
| struct isl_map *dep_map; |
| struct isl_map *after_write; |
| struct isl_map *before_read; |
| struct isl_map *result; |
| |
| set_C = isl_map_range(isl_map_copy(old_map)); |
| read_map = isl_map_copy(acc->sink.map); |
| write_map = isl_map_copy(acc->source[k].map); |
| |
| write_map = isl_map_reverse(write_map); |
| dep_map = isl_map_apply_range(read_map, write_map); |
| dim = isl_dim_join(isl_map_get_dim(acc->source[k].map), |
| isl_dim_reverse(isl_map_get_dim(acc->source[j].map))); |
| after_write = after_at_level(dim, after_level); |
| after_write = isl_map_apply_range(after_write, old_map); |
| after_write = isl_map_reverse(after_write); |
| dep_map = isl_map_intersect(dep_map, after_write); |
| before_read = after_at_level(isl_map_get_dim(dep_map), before_level); |
| dep_map = isl_map_intersect(dep_map, before_read); |
| result = isl_map_partial_lexmax(dep_map, set_C, empty); |
| result = isl_map_reverse(result); |
| |
| return result; |
| } |
| |
| /* Given a shared_level between two accesses, return 1 if the |
| * the first can precede the second at the requested target_level. |
| * If the target level is odd, i.e., refers to a statement level |
| * dimension, then first needs to precede second at the requested |
| * level, i.e., shared_level must be equal to target_level. |
| * If the target level is odd, then the two loops should share |
| * at least the requested number of outer loops. |
| */ |
| static int can_precede_at_level(int shared_level, int target_level) |
| { |
| if (shared_level < target_level) |
| return 0; |
| if ((target_level % 2) && shared_level > target_level) |
| return 0; |
| return 1; |
| } |
| |
| /* Given a possible flow dependence temp_rel[j] between source j and the sink |
| * at level sink_level, remove those elements for which |
| * there is an iteration of another source k < j that is closer to the sink. |
| * The flow dependences temp_rel[k] are updated with the improved sources. |
| * Any improved source needs to precede the sink at the same level |
| * and needs to follow source j at the same or a deeper level. |
| * The lower this level, the later the execution date of source k. |
| * We therefore consider lower levels first. |
| * |
| * If temp_rel[j] is empty, then there can be no improvement and |
| * we return immediately. |
| */ |
| static int intermediate_sources(__isl_keep isl_access_info *acc, |
| struct isl_map **temp_rel, int j, int sink_level) |
| { |
| int k, level; |
| int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1; |
| |
| if (isl_map_plain_is_empty(temp_rel[j])) |
| return 0; |
| |
| for (k = j - 1; k >= 0; --k) { |
| int plevel, plevel2; |
| plevel = acc->level_before(acc->source[k].data, acc->sink.data); |
| if (!can_precede_at_level(plevel, sink_level)) |
| continue; |
| |
| plevel2 = acc->level_before(acc->source[j].data, |
| acc->source[k].data); |
| |
| for (level = sink_level; level <= depth; ++level) { |
| struct isl_map *T; |
| struct isl_set *trest; |
| struct isl_map *copy; |
| |
| if (!can_precede_at_level(plevel2, level)) |
| continue; |
| |
| copy = isl_map_copy(temp_rel[j]); |
| T = last_later_source(acc, copy, j, sink_level, k, |
| level, &trest); |
| if (isl_map_plain_is_empty(T)) { |
| isl_set_free(trest); |
| isl_map_free(T); |
| continue; |
| } |
| temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest); |
| temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Compute all iterations of may source j that precedes the sink at the given |
| * level for sink iterations in set_C. |
| */ |
| static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc, |
| __isl_take isl_set *set_C, int j, int level) |
| { |
| isl_map *read_map; |
| isl_map *write_map; |
| isl_map *dep_map; |
| isl_map *after; |
| |
| read_map = isl_map_copy(acc->sink.map); |
| read_map = isl_map_intersect_domain(read_map, set_C); |
| write_map = isl_map_copy(acc->source[acc->n_must + j].map); |
| write_map = isl_map_reverse(write_map); |
| dep_map = isl_map_apply_range(read_map, write_map); |
| after = after_at_level(isl_map_get_dim(dep_map), level); |
| dep_map = isl_map_intersect(dep_map, after); |
| |
| return isl_map_reverse(dep_map); |
| } |
| |
| /* For a given mapping between iterations of must source k and iterations |
| * of the sink, compute the all iteration of may source j preceding |
| * the sink at level before_level for any of the sink iterations, |
| * but following the corresponding iteration of must source k at level |
| * after_level. |
| */ |
| static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc, |
| __isl_keep isl_map *old_map, |
| int j, int before_level, int k, int after_level) |
| { |
| isl_dim *dim; |
| isl_set *set_C; |
| isl_map *read_map; |
| isl_map *write_map; |
| isl_map *dep_map; |
| isl_map *after_write; |
| isl_map *before_read; |
| |
| set_C = isl_map_range(isl_map_copy(old_map)); |
| read_map = isl_map_copy(acc->sink.map); |
| read_map = isl_map_intersect_domain(read_map, set_C); |
| write_map = isl_map_copy(acc->source[acc->n_must + j].map); |
| |
| write_map = isl_map_reverse(write_map); |
| dep_map = isl_map_apply_range(read_map, write_map); |
| dim = isl_dim_join(isl_map_get_dim(acc->source[acc->n_must + j].map), |
| isl_dim_reverse(isl_map_get_dim(acc->source[k].map))); |
| after_write = after_at_level(dim, after_level); |
| after_write = isl_map_apply_range(after_write, old_map); |
| after_write = isl_map_reverse(after_write); |
| dep_map = isl_map_intersect(dep_map, after_write); |
| before_read = after_at_level(isl_map_get_dim(dep_map), before_level); |
| dep_map = isl_map_intersect(dep_map, before_read); |
| return isl_map_reverse(dep_map); |
| } |
| |
| /* Given the must and may dependence relations for the must accesses |
| * for level sink_level, check if there are any accesses of may access j |
| * that occur in between and return their union. |
| * If some of these accesses are intermediate with respect to |
| * (previously thought to be) must dependences, then these |
| * must dependences are turned into may dependences. |
| */ |
| static __isl_give isl_map *all_intermediate_sources( |
| __isl_keep isl_access_info *acc, __isl_take isl_map *map, |
| struct isl_map **must_rel, struct isl_map **may_rel, |
| int j, int sink_level) |
| { |
| int k, level; |
| int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map, |
| isl_dim_in) + 1; |
| |
| for (k = 0; k < acc->n_must; ++k) { |
| int plevel; |
| |
| if (isl_map_plain_is_empty(may_rel[k]) && |
| isl_map_plain_is_empty(must_rel[k])) |
| continue; |
| |
| plevel = acc->level_before(acc->source[k].data, |
| acc->source[acc->n_must + j].data); |
| |
| for (level = sink_level; level <= depth; ++level) { |
| isl_map *T; |
| isl_map *copy; |
| isl_set *ran; |
| |
| if (!can_precede_at_level(plevel, level)) |
| continue; |
| |
| copy = isl_map_copy(may_rel[k]); |
| T = all_later_sources(acc, copy, j, sink_level, k, level); |
| map = isl_map_union(map, T); |
| |
| copy = isl_map_copy(must_rel[k]); |
| T = all_later_sources(acc, copy, j, sink_level, k, level); |
| ran = isl_map_range(isl_map_copy(T)); |
| map = isl_map_union(map, T); |
| may_rel[k] = isl_map_union_disjoint(may_rel[k], |
| isl_map_intersect_range(isl_map_copy(must_rel[k]), |
| isl_set_copy(ran))); |
| T = isl_map_from_domain_and_range( |
| isl_set_universe( |
| isl_dim_domain(isl_map_get_dim(must_rel[k]))), |
| ran); |
| must_rel[k] = isl_map_subtract(must_rel[k], T); |
| } |
| } |
| |
| return map; |
| } |
| |
| /* Compute dependences for the case where all accesses are "may" |
| * accesses, which boils down to computing memory based dependences. |
| * The generic algorithm would also work in this case, but it would |
| * be overkill to use it. |
| */ |
| static __isl_give isl_flow *compute_mem_based_dependences( |
| __isl_take isl_access_info *acc) |
| { |
| int i; |
| isl_set *mustdo; |
| isl_set *maydo; |
| isl_flow *res; |
| |
| res = isl_flow_alloc(acc); |
| if (!res) |
| goto error; |
| |
| mustdo = isl_map_domain(isl_map_copy(acc->sink.map)); |
| maydo = isl_set_copy(mustdo); |
| |
| for (i = 0; i < acc->n_may; ++i) { |
| int plevel; |
| int is_before; |
| isl_dim *dim; |
| isl_map *before; |
| isl_map *dep; |
| |
| plevel = acc->level_before(acc->source[i].data, acc->sink.data); |
| is_before = plevel & 1; |
| plevel >>= 1; |
| |
| dim = isl_map_get_dim(res->dep[i].map); |
| if (is_before) |
| before = isl_map_lex_le_first(dim, plevel); |
| else |
| before = isl_map_lex_lt_first(dim, plevel); |
| dep = isl_map_apply_range(isl_map_copy(acc->source[i].map), |
| isl_map_reverse(isl_map_copy(acc->sink.map))); |
| dep = isl_map_intersect(dep, before); |
| mustdo = isl_set_subtract(mustdo, |
| isl_map_range(isl_map_copy(dep))); |
| res->dep[i].map = isl_map_union(res->dep[i].map, dep); |
| } |
| |
| res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo)); |
| res->must_no_source = mustdo; |
| |
| isl_access_info_free(acc); |
| |
| return res; |
| error: |
| isl_access_info_free(acc); |
| return NULL; |
| } |
| |
| /* Compute dependences for the case where there is at least one |
| * "must" access. |
| * |
| * The core algorithm considers all levels in which a source may precede |
| * the sink, where a level may either be a statement level or a loop level. |
| * The outermost statement level is 1, the first loop level is 2, etc... |
| * The algorithm basically does the following: |
| * for all levels l of the read access from innermost to outermost |
| * for all sources w that may precede the sink access at that level |
| * compute the last iteration of the source that precedes the sink access |
| * at that level |
| * add result to possible last accesses at level l of source w |
| * for all sources w2 that we haven't considered yet at this level that may |
| * also precede the sink access |
| * for all levels l2 of w from l to innermost |
| * for all possible last accesses dep of w at l |
| * compute last iteration of w2 between the source and sink |
| * of dep |
| * add result to possible last accesses at level l of write w2 |
| * and replace possible last accesses dep by the remainder |
| * |
| * |
| * The above algorithm is applied to the must access. During the course |
| * of the algorithm, we keep track of sink iterations that still |
| * need to be considered. These iterations are split into those that |
| * haven't been matched to any source access (mustdo) and those that have only |
| * been matched to may accesses (maydo). |
| * At the end of each level, we also consider the may accesses. |
| * In particular, we consider may accesses that precede the remaining |
| * sink iterations, moving elements from mustdo to maydo when appropriate, |
| * and may accesses that occur between a must source and a sink of any |
| * dependences found at the current level, turning must dependences into |
| * may dependences when appropriate. |
| * |
| */ |
| static __isl_give isl_flow *compute_val_based_dependences( |
| __isl_take isl_access_info *acc) |
| { |
| isl_ctx *ctx; |
| isl_flow *res; |
| isl_set *mustdo = NULL; |
| isl_set *maydo = NULL; |
| int level, j; |
| int depth; |
| isl_map **must_rel = NULL; |
| isl_map **may_rel = NULL; |
| |
| acc = isl_access_info_sort_sources(acc); |
| if (!acc) |
| return NULL; |
| |
| res = isl_flow_alloc(acc); |
| if (!res) |
| goto error; |
| ctx = isl_map_get_ctx(acc->sink.map); |
| |
| depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1; |
| mustdo = isl_map_domain(isl_map_copy(acc->sink.map)); |
| maydo = isl_set_empty_like(mustdo); |
| if (!mustdo || !maydo) |
| goto error; |
| if (isl_set_plain_is_empty(mustdo)) |
| goto done; |
| |
| must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must); |
| may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must); |
| if (!must_rel || !may_rel) |
| goto error; |
| |
| for (level = depth; level >= 1; --level) { |
| for (j = acc->n_must-1; j >=0; --j) { |
| must_rel[j] = isl_map_empty_like(res->dep[j].map); |
| may_rel[j] = isl_map_copy(must_rel[j]); |
| } |
| |
| for (j = acc->n_must - 1; j >= 0; --j) { |
| struct isl_map *T; |
| struct isl_set *rest; |
| int plevel; |
| |
| plevel = acc->level_before(acc->source[j].data, |
| acc->sink.data); |
| if (!can_precede_at_level(plevel, level)) |
| continue; |
| |
| T = last_source(acc, mustdo, j, level, &rest); |
| must_rel[j] = isl_map_union_disjoint(must_rel[j], T); |
| mustdo = rest; |
| |
| intermediate_sources(acc, must_rel, j, level); |
| |
| T = last_source(acc, maydo, j, level, &rest); |
| may_rel[j] = isl_map_union_disjoint(may_rel[j], T); |
| maydo = rest; |
| |
| intermediate_sources(acc, may_rel, j, level); |
| |
| if (isl_set_plain_is_empty(mustdo) && |
| isl_set_plain_is_empty(maydo)) |
| break; |
| } |
| for (j = j - 1; j >= 0; --j) { |
| int plevel; |
| |
| plevel = acc->level_before(acc->source[j].data, |
| acc->sink.data); |
| if (!can_precede_at_level(plevel, level)) |
| continue; |
| |
| intermediate_sources(acc, must_rel, j, level); |
| intermediate_sources(acc, may_rel, j, level); |
| } |
| |
| for (j = 0; j < acc->n_may; ++j) { |
| int plevel; |
| isl_map *T; |
| isl_set *ran; |
| |
| plevel = acc->level_before(acc->source[acc->n_must + j].data, |
| acc->sink.data); |
| if (!can_precede_at_level(plevel, level)) |
| continue; |
| |
| T = all_sources(acc, isl_set_copy(maydo), j, level); |
| res->dep[2 * acc->n_must + j].map = |
| isl_map_union(res->dep[2 * acc->n_must + j].map, T); |
| T = all_sources(acc, isl_set_copy(mustdo), j, level); |
| ran = isl_map_range(isl_map_copy(T)); |
| res->dep[2 * acc->n_must + j].map = |
| isl_map_union(res->dep[2 * acc->n_must + j].map, T); |
| mustdo = isl_set_subtract(mustdo, isl_set_copy(ran)); |
| maydo = isl_set_union_disjoint(maydo, ran); |
| |
| T = res->dep[2 * acc->n_must + j].map; |
| T = all_intermediate_sources(acc, T, must_rel, may_rel, |
| j, level); |
| res->dep[2 * acc->n_must + j].map = T; |
| } |
| |
| for (j = acc->n_must - 1; j >= 0; --j) { |
| res->dep[2 * j].map = |
| isl_map_union_disjoint(res->dep[2 * j].map, |
| must_rel[j]); |
| res->dep[2 * j + 1].map = |
| isl_map_union_disjoint(res->dep[2 * j + 1].map, |
| may_rel[j]); |
| } |
| |
| if (isl_set_plain_is_empty(mustdo) && |
| isl_set_plain_is_empty(maydo)) |
| break; |
| } |
| |
| free(must_rel); |
| free(may_rel); |
| done: |
| res->must_no_source = mustdo; |
| res->may_no_source = maydo; |
| isl_access_info_free(acc); |
| return res; |
| error: |
| isl_access_info_free(acc); |
| isl_flow_free(res); |
| isl_set_free(mustdo); |
| isl_set_free(maydo); |
| free(must_rel); |
| free(may_rel); |
| return NULL; |
| } |
| |
| /* Given a "sink" access, a list of n "source" accesses, |
| * compute for each iteration of the sink access |
| * and for each element accessed by that iteration, |
| * the source access in the list that last accessed the |
| * element accessed by the sink access before this sink access. |
| * Each access is given as a map from the loop iterators |
| * to the array indices. |
| * The result is a list of n relations between source and sink |
| * iterations and a subset of the domain of the sink access, |
| * corresponding to those iterations that access an element |
| * not previously accessed. |
| * |
| * To deal with multi-valued sink access relations, the sink iteration |
| * domain is first extended with dimensions that correspond to the data |
| * space. After the computation is finished, these extra dimensions are |
| * projected out again. |
| */ |
| __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc) |
| { |
| int j; |
| struct isl_flow *res; |
| isl_map *domain_map = NULL; |
| |
| if (!acc) |
| return NULL; |
| |
| domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map)); |
| acc->sink.map = isl_map_range_map(acc->sink.map); |
| if (!acc->sink.map) |
| goto error; |
| |
| if (acc->n_must == 0) |
| res = compute_mem_based_dependences(acc); |
| else |
| res = compute_val_based_dependences(acc); |
| if (!res) |
| return NULL; |
| |
| for (j = 0; j < res->n_source; ++j) { |
| res->dep[j].map = isl_map_apply_range(res->dep[j].map, |
| isl_map_copy(domain_map)); |
| if (!res->dep[j].map) |
| goto error2; |
| } |
| if (!res->must_no_source || !res->may_no_source) |
| goto error2; |
| |
| isl_map_free(domain_map); |
| return res; |
| error: |
| isl_map_free(domain_map); |
| isl_access_info_free(acc); |
| return NULL; |
| error2: |
| isl_map_free(domain_map); |
| isl_flow_free(res); |
| return NULL; |
| } |
| |
| |
| /* Keep track of some information about a schedule for a given |
| * access. In particular, keep track of which dimensions |
| * have a constant value and of the actual constant values. |
| */ |
| struct isl_sched_info { |
| int *is_cst; |
| isl_vec *cst; |
| }; |
| |
| static void sched_info_free(__isl_take struct isl_sched_info *info) |
| { |
| if (!info) |
| return; |
| isl_vec_free(info->cst); |
| free(info->is_cst); |
| free(info); |
| } |
| |
| /* Extract information on the constant dimensions of the schedule |
| * for a given access. The "map" is of the form |
| * |
| * [S -> D] -> A |
| * |
| * with S the schedule domain, D the iteration domain and A the data domain. |
| */ |
| static __isl_give struct isl_sched_info *sched_info_alloc( |
| __isl_keep isl_map *map) |
| { |
| isl_ctx *ctx; |
| isl_dim *dim; |
| struct isl_sched_info *info; |
| int i, n; |
| |
| if (!map) |
| return NULL; |
| |
| dim = isl_dim_unwrap(isl_dim_domain(isl_map_get_dim(map))); |
| if (!dim) |
| return NULL; |
| n = isl_dim_size(dim, isl_dim_in); |
| isl_dim_free(dim); |
| |
| ctx = isl_map_get_ctx(map); |
| info = isl_alloc_type(ctx, struct isl_sched_info); |
| if (!info) |
| return NULL; |
| info->is_cst = isl_alloc_array(ctx, int, n); |
| info->cst = isl_vec_alloc(ctx, n); |
| if (!info->is_cst || !info->cst) |
| goto error; |
| |
| for (i = 0; i < n; ++i) |
| info->is_cst[i] = isl_map_plain_is_fixed(map, isl_dim_in, i, |
| &info->cst->el[i]); |
| |
| return info; |
| error: |
| sched_info_free(info); |
| return NULL; |
| } |
| |
| struct isl_compute_flow_data { |
| isl_union_map *must_source; |
| isl_union_map *may_source; |
| isl_union_map *must_dep; |
| isl_union_map *may_dep; |
| isl_union_map *must_no_source; |
| isl_union_map *may_no_source; |
| |
| int count; |
| int must; |
| isl_dim *dim; |
| struct isl_sched_info *sink_info; |
| struct isl_sched_info **source_info; |
| isl_access_info *accesses; |
| }; |
| |
| static int count_matching_array(__isl_take isl_map *map, void *user) |
| { |
| int eq; |
| isl_dim *dim; |
| struct isl_compute_flow_data *data; |
| |
| data = (struct isl_compute_flow_data *)user; |
| |
| dim = isl_dim_range(isl_map_get_dim(map)); |
| |
| eq = isl_dim_equal(dim, data->dim); |
| |
| isl_dim_free(dim); |
| isl_map_free(map); |
| |
| if (eq < 0) |
| return -1; |
| if (eq) |
| data->count++; |
| |
| return 0; |
| } |
| |
| static int collect_matching_array(__isl_take isl_map *map, void *user) |
| { |
| int eq; |
| isl_dim *dim; |
| struct isl_sched_info *info; |
| struct isl_compute_flow_data *data; |
| |
| data = (struct isl_compute_flow_data *)user; |
| |
| dim = isl_dim_range(isl_map_get_dim(map)); |
| |
| eq = isl_dim_equal(dim, data->dim); |
| |
| isl_dim_free(dim); |
| |
| if (eq < 0) |
| goto error; |
| if (!eq) { |
| isl_map_free(map); |
| return 0; |
| } |
| |
| info = sched_info_alloc(map); |
| data->source_info[data->count] = info; |
| |
| data->accesses = isl_access_info_add_source(data->accesses, |
| map, data->must, info); |
| |
| data->count++; |
| |
| return 0; |
| error: |
| isl_map_free(map); |
| return -1; |
| } |
| |
| /* Determine the shared nesting level and the "textual order" of |
| * the given accesses. |
| * |
| * We first determine the minimal schedule dimension for both accesses. |
| * |
| * If among those dimensions, we can find one where both have a fixed |
| * value and if moreover those values are different, then the previous |
| * dimension is the last shared nesting level and the textual order |
| * is determined based on the order of the fixed values. |
| * If no such fixed values can be found, then we set the shared |
| * nesting level to the minimal schedule dimension, with no textual ordering. |
| */ |
| static int before(void *first, void *second) |
| { |
| struct isl_sched_info *info1 = first; |
| struct isl_sched_info *info2 = second; |
| int n1, n2; |
| int i; |
| |
| n1 = info1->cst->size; |
| n2 = info2->cst->size; |
| |
| if (n2 < n1) |
| n1 = n2; |
| |
| for (i = 0; i < n1; ++i) { |
| if (!info1->is_cst[i]) |
| continue; |
| if (!info2->is_cst[i]) |
| continue; |
| if (isl_int_eq(info1->cst->el[i], info2->cst->el[i])) |
| continue; |
| return 2 * i + isl_int_lt(info1->cst->el[i], info2->cst->el[i]); |
| } |
| |
| return 2 * n1; |
| } |
| |
| /* Given a sink access, look for all the source accesses that access |
| * the same array and perform dataflow analysis on them using |
| * isl_access_info_compute_flow. |
| */ |
| static int compute_flow(__isl_take isl_map *map, void *user) |
| { |
| int i; |
| isl_ctx *ctx; |
| struct isl_compute_flow_data *data; |
| isl_flow *flow; |
| |
| data = (struct isl_compute_flow_data *)user; |
| |
| ctx = isl_map_get_ctx(map); |
| |
| data->accesses = NULL; |
| data->sink_info = NULL; |
| data->source_info = NULL; |
| data->count = 0; |
| data->dim = isl_dim_range(isl_map_get_dim(map)); |
| |
| if (isl_union_map_foreach_map(data->must_source, |
| &count_matching_array, data) < 0) |
| goto error; |
| if (isl_union_map_foreach_map(data->may_source, |
| &count_matching_array, data) < 0) |
| goto error; |
| |
| data->sink_info = sched_info_alloc(map); |
| data->source_info = isl_calloc_array(ctx, struct isl_sched_info *, |
| data->count); |
| |
| data->accesses = isl_access_info_alloc(isl_map_copy(map), |
| data->sink_info, &before, data->count); |
| if (!data->sink_info || !data->source_info || !data->accesses) |
| goto error; |
| data->count = 0; |
| data->must = 1; |
| if (isl_union_map_foreach_map(data->must_source, |
| &collect_matching_array, data) < 0) |
| goto error; |
| data->must = 0; |
| if (isl_union_map_foreach_map(data->may_source, |
| &collect_matching_array, data) < 0) |
| goto error; |
| |
| flow = isl_access_info_compute_flow(data->accesses); |
| data->accesses = NULL; |
| |
| if (!flow) |
| goto error; |
| |
| data->must_no_source = isl_union_map_union(data->must_no_source, |
| isl_union_map_from_map(isl_flow_get_no_source(flow, 1))); |
| data->may_no_source = isl_union_map_union(data->may_no_source, |
| isl_union_map_from_map(isl_flow_get_no_source(flow, 0))); |
| |
| for (i = 0; i < flow->n_source; ++i) { |
| isl_union_map *dep; |
| dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map)); |
| if (flow->dep[i].must) |
| data->must_dep = isl_union_map_union(data->must_dep, dep); |
| else |
| data->may_dep = isl_union_map_union(data->may_dep, dep); |
| } |
| |
| isl_flow_free(flow); |
| |
| sched_info_free(data->sink_info); |
| if (data->source_info) { |
| for (i = 0; i < data->count; ++i) |
| sched_info_free(data->source_info[i]); |
| free(data->source_info); |
| } |
| isl_dim_free(data->dim); |
| isl_map_free(map); |
| |
| return 0; |
| error: |
| isl_access_info_free(data->accesses); |
| sched_info_free(data->sink_info); |
| if (data->source_info) { |
| for (i = 0; i < data->count; ++i) |
| sched_info_free(data->source_info[i]); |
| free(data->source_info); |
| } |
| isl_dim_free(data->dim); |
| isl_map_free(map); |
| |
| return -1; |
| } |
| |
| /* Given a collection of "sink" and "source" accesses, |
| * compute for each iteration of a sink access |
| * and for each element accessed by that iteration, |
| * the source access in the list that last accessed the |
| * element accessed by the sink access before this sink access. |
| * Each access is given as a map from the loop iterators |
| * to the array indices. |
| * The result is a relations between source and sink |
| * iterations and a subset of the domain of the sink accesses, |
| * corresponding to those iterations that access an element |
| * not previously accessed. |
| * |
| * We first prepend the schedule dimensions to the domain |
| * of the accesses so that we can easily compare their relative order. |
| * Then we consider each sink access individually in compute_flow. |
| */ |
| int isl_union_map_compute_flow(__isl_take isl_union_map *sink, |
| __isl_take isl_union_map *must_source, |
| __isl_take isl_union_map *may_source, |
| __isl_take isl_union_map *schedule, |
| __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep, |
| __isl_give isl_union_map **must_no_source, |
| __isl_give isl_union_map **may_no_source) |
| { |
| isl_dim *dim; |
| isl_union_map *range_map = NULL; |
| struct isl_compute_flow_data data; |
| |
| sink = isl_union_map_align_params(sink, |
| isl_union_map_get_dim(must_source)); |
| sink = isl_union_map_align_params(sink, |
| isl_union_map_get_dim(may_source)); |
| sink = isl_union_map_align_params(sink, |
| isl_union_map_get_dim(schedule)); |
| dim = isl_union_map_get_dim(sink); |
| must_source = isl_union_map_align_params(must_source, isl_dim_copy(dim)); |
| may_source = isl_union_map_align_params(may_source, isl_dim_copy(dim)); |
| schedule = isl_union_map_align_params(schedule, isl_dim_copy(dim)); |
| |
| schedule = isl_union_map_reverse(schedule); |
| range_map = isl_union_map_range_map(schedule); |
| schedule = isl_union_map_reverse(isl_union_map_copy(range_map)); |
| sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule)); |
| must_source = isl_union_map_apply_domain(must_source, |
| isl_union_map_copy(schedule)); |
| may_source = isl_union_map_apply_domain(may_source, schedule); |
| |
| data.must_source = must_source; |
| data.may_source = may_source; |
| data.must_dep = must_dep ? |
| isl_union_map_empty(isl_dim_copy(dim)) : NULL; |
| data.may_dep = may_dep ? isl_union_map_empty(isl_dim_copy(dim)) : NULL; |
| data.must_no_source = must_no_source ? |
| isl_union_map_empty(isl_dim_copy(dim)) : NULL; |
| data.may_no_source = may_no_source ? |
| isl_union_map_empty(isl_dim_copy(dim)) : NULL; |
| |
| isl_dim_free(dim); |
| |
| if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0) |
| goto error; |
| |
| isl_union_map_free(sink); |
| isl_union_map_free(must_source); |
| isl_union_map_free(may_source); |
| |
| if (must_dep) { |
| data.must_dep = isl_union_map_apply_domain(data.must_dep, |
| isl_union_map_copy(range_map)); |
| data.must_dep = isl_union_map_apply_range(data.must_dep, |
| isl_union_map_copy(range_map)); |
| *must_dep = data.must_dep; |
| } |
| if (may_dep) { |
| data.may_dep = isl_union_map_apply_domain(data.may_dep, |
| isl_union_map_copy(range_map)); |
| data.may_dep = isl_union_map_apply_range(data.may_dep, |
| isl_union_map_copy(range_map)); |
| *may_dep = data.may_dep; |
| } |
| if (must_no_source) { |
| data.must_no_source = isl_union_map_apply_domain( |
| data.must_no_source, isl_union_map_copy(range_map)); |
| *must_no_source = data.must_no_source; |
| } |
| if (may_no_source) { |
| data.may_no_source = isl_union_map_apply_domain( |
| data.may_no_source, isl_union_map_copy(range_map)); |
| *may_no_source = data.may_no_source; |
| } |
| |
| isl_union_map_free(range_map); |
| |
| return 0; |
| error: |
| isl_union_map_free(range_map); |
| isl_union_map_free(sink); |
| isl_union_map_free(must_source); |
| isl_union_map_free(may_source); |
| isl_union_map_free(data.must_dep); |
| isl_union_map_free(data.may_dep); |
| isl_union_map_free(data.must_no_source); |
| isl_union_map_free(data.may_no_source); |
| |
| if (must_dep) |
| *must_dep = NULL; |
| if (may_dep) |
| *may_dep = NULL; |
| if (must_no_source) |
| *must_no_source = NULL; |
| if (may_no_source) |
| *may_no_source = NULL; |
| return -1; |
| } |