| #include <isl_ctx_private.h> |
| #include <isl/constraint.h> |
| #include <isl/set.h> |
| #include <isl_polynomial_private.h> |
| #include <isl_morph.h> |
| #include <isl_range.h> |
| |
| struct range_data { |
| struct isl_bound *bound; |
| int *signs; |
| int sign; |
| int test_monotonicity; |
| int monotonicity; |
| int tight; |
| isl_qpolynomial *poly; |
| isl_pw_qpolynomial_fold *pwf; |
| isl_pw_qpolynomial_fold *pwf_tight; |
| }; |
| |
| static int propagate_on_domain(__isl_take isl_basic_set *bset, |
| __isl_take isl_qpolynomial *poly, struct range_data *data); |
| |
| /* Check whether the polynomial "poly" has sign "sign" over "bset", |
| * i.e., if sign == 1, check that the lower bound on the polynomial |
| * is non-negative and if sign == -1, check that the upper bound on |
| * the polynomial is non-positive. |
| */ |
| static int has_sign(__isl_keep isl_basic_set *bset, |
| __isl_keep isl_qpolynomial *poly, int sign, int *signs) |
| { |
| struct range_data data_m; |
| unsigned nvar; |
| unsigned nparam; |
| isl_dim *dim; |
| isl_qpolynomial *opt; |
| int r; |
| enum isl_fold type; |
| |
| nparam = isl_basic_set_dim(bset, isl_dim_param); |
| nvar = isl_basic_set_dim(bset, isl_dim_set); |
| |
| bset = isl_basic_set_copy(bset); |
| poly = isl_qpolynomial_copy(poly); |
| |
| bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, |
| isl_dim_param, 0, nparam); |
| poly = isl_qpolynomial_move_dims(poly, isl_dim_set, 0, |
| isl_dim_param, 0, nparam); |
| |
| dim = isl_qpolynomial_get_dim(poly); |
| dim = isl_dim_drop(dim, isl_dim_set, 0, isl_dim_size(dim, isl_dim_set)); |
| |
| data_m.test_monotonicity = 0; |
| data_m.signs = signs; |
| data_m.sign = -sign; |
| type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; |
| data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type); |
| data_m.tight = 0; |
| data_m.pwf_tight = NULL; |
| |
| if (propagate_on_domain(bset, poly, &data_m) < 0) |
| goto error; |
| |
| if (sign > 0) |
| opt = isl_pw_qpolynomial_fold_min(data_m.pwf); |
| else |
| opt = isl_pw_qpolynomial_fold_max(data_m.pwf); |
| |
| if (!opt) |
| r = -1; |
| else if (isl_qpolynomial_is_nan(opt) || |
| isl_qpolynomial_is_infty(opt) || |
| isl_qpolynomial_is_neginfty(opt)) |
| r = 0; |
| else |
| r = sign * isl_qpolynomial_sgn(opt) >= 0; |
| |
| isl_qpolynomial_free(opt); |
| |
| return r; |
| error: |
| isl_pw_qpolynomial_fold_free(data_m.pwf); |
| return -1; |
| } |
| |
| /* Return 1 if poly is monotonically increasing in the last set variable, |
| * -1 if poly is monotonically decreasing in the last set variable, |
| * 0 if no conclusion, |
| * -2 on error. |
| * |
| * We simply check the sign of p(x+1)-p(x) |
| */ |
| static int monotonicity(__isl_keep isl_basic_set *bset, |
| __isl_keep isl_qpolynomial *poly, struct range_data *data) |
| { |
| isl_ctx *ctx; |
| isl_dim *dim; |
| isl_qpolynomial *sub = NULL; |
| isl_qpolynomial *diff = NULL; |
| int result = 0; |
| int s; |
| unsigned nvar; |
| |
| ctx = isl_qpolynomial_get_ctx(poly); |
| dim = isl_qpolynomial_get_dim(poly); |
| |
| nvar = isl_basic_set_dim(bset, isl_dim_set); |
| |
| sub = isl_qpolynomial_var(isl_dim_copy(dim), isl_dim_set, nvar - 1); |
| sub = isl_qpolynomial_add(sub, |
| isl_qpolynomial_rat_cst(dim, ctx->one, ctx->one)); |
| |
| diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), |
| isl_dim_set, nvar - 1, 1, &sub); |
| diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); |
| |
| s = has_sign(bset, diff, 1, data->signs); |
| if (s < 0) |
| goto error; |
| if (s) |
| result = 1; |
| else { |
| s = has_sign(bset, diff, -1, data->signs); |
| if (s < 0) |
| goto error; |
| if (s) |
| result = -1; |
| } |
| |
| isl_qpolynomial_free(diff); |
| isl_qpolynomial_free(sub); |
| |
| return result; |
| error: |
| isl_qpolynomial_free(diff); |
| isl_qpolynomial_free(sub); |
| return -2; |
| } |
| |
| static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, |
| __isl_take isl_dim *dim, unsigned pos, int sign) |
| { |
| if (!bound) { |
| if (sign > 0) |
| return isl_qpolynomial_infty(dim); |
| else |
| return isl_qpolynomial_neginfty(dim); |
| } |
| isl_dim_free(dim); |
| return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); |
| } |
| |
| static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos) |
| { |
| isl_int c; |
| int is_int; |
| |
| if (!bound) |
| return 1; |
| |
| isl_int_init(c); |
| isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); |
| is_int = isl_int_is_one(c) || isl_int_is_negone(c); |
| isl_int_clear(c); |
| |
| return is_int; |
| } |
| |
| struct isl_fixed_sign_data { |
| int *signs; |
| int sign; |
| isl_qpolynomial *poly; |
| }; |
| |
| /* Add term "term" to data->poly if it has sign data->sign. |
| * The sign is determined based on the signs of the parameters |
| * and variables in data->signs. The integer divisions, if |
| * any, are assumed to be non-negative. |
| */ |
| static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user) |
| { |
| struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; |
| isl_int n; |
| int i; |
| int sign; |
| unsigned nparam; |
| unsigned nvar; |
| |
| if (!term) |
| return -1; |
| |
| nparam = isl_term_dim(term, isl_dim_param); |
| nvar = isl_term_dim(term, isl_dim_set); |
| |
| isl_int_init(n); |
| |
| isl_term_get_num(term, &n); |
| |
| sign = isl_int_sgn(n); |
| for (i = 0; i < nparam; ++i) { |
| if (data->signs[i] > 0) |
| continue; |
| if (isl_term_get_exp(term, isl_dim_param, i) % 2) |
| sign = -sign; |
| } |
| for (i = 0; i < nvar; ++i) { |
| if (data->signs[nparam + i] > 0) |
| continue; |
| if (isl_term_get_exp(term, isl_dim_set, i) % 2) |
| sign = -sign; |
| } |
| |
| if (sign == data->sign) { |
| isl_qpolynomial *t = isl_qpolynomial_from_term(term); |
| |
| data->poly = isl_qpolynomial_add(data->poly, t); |
| } else |
| isl_term_free(term); |
| |
| isl_int_clear(n); |
| |
| return 0; |
| } |
| |
| /* Construct and return a polynomial that consists of the terms |
| * in "poly" that have sign "sign". The integer divisions, if |
| * any, are assumed to be non-negative. |
| */ |
| __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( |
| __isl_keep isl_qpolynomial *poly, int *signs, int sign) |
| { |
| struct isl_fixed_sign_data data = { signs, sign }; |
| data.poly = isl_qpolynomial_zero(isl_qpolynomial_get_dim(poly)); |
| |
| if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) |
| goto error; |
| |
| return data.poly; |
| error: |
| isl_qpolynomial_free(data.poly); |
| return NULL; |
| } |
| |
| /* Helper function to add a guarded polynomial to either pwf_tight or pwf, |
| * depending on whether the result has been determined to be tight. |
| */ |
| static int add_guarded_poly(__isl_take isl_basic_set *bset, |
| __isl_take isl_qpolynomial *poly, struct range_data *data) |
| { |
| enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; |
| isl_set *set; |
| isl_qpolynomial_fold *fold; |
| isl_pw_qpolynomial_fold *pwf; |
| |
| fold = isl_qpolynomial_fold_alloc(type, poly); |
| set = isl_set_from_basic_set(bset); |
| pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); |
| if (data->tight) |
| data->pwf_tight = isl_pw_qpolynomial_fold_fold( |
| data->pwf_tight, pwf); |
| else |
| data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); |
| |
| return 0; |
| } |
| |
| /* Given a lower and upper bound on the final variable and constraints |
| * on the remaining variables where these bounds are active, |
| * eliminate the variable from data->poly based on these bounds. |
| * If the polynomial has been determined to be monotonic |
| * in the variable, then simply plug in the appropriate bound. |
| * If the current polynomial is tight and if this bound is integer, |
| * then the result is still tight. In all other cases, the results |
| * may not be tight. |
| * Otherwise, plug in the largest bound (in absolute value) in |
| * the positive terms (if an upper bound is wanted) or the negative terms |
| * (if a lower bounded is wanted) and the other bound in the other terms. |
| * |
| * If all variables have been eliminated, then record the result. |
| * Ohterwise, recurse on the next variable. |
| */ |
| static int propagate_on_bound_pair(__isl_take isl_constraint *lower, |
| __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, |
| void *user) |
| { |
| struct range_data *data = (struct range_data *)user; |
| int save_tight = data->tight; |
| isl_qpolynomial *poly; |
| int r; |
| unsigned nvar; |
| |
| nvar = isl_basic_set_dim(bset, isl_dim_set); |
| |
| if (data->monotonicity) { |
| isl_qpolynomial *sub; |
| isl_dim *dim = isl_qpolynomial_get_dim(data->poly); |
| if (data->monotonicity * data->sign > 0) { |
| if (data->tight) |
| data->tight = bound_is_integer(upper, nvar); |
| sub = bound2poly(upper, dim, nvar, 1); |
| isl_constraint_free(lower); |
| } else { |
| if (data->tight) |
| data->tight = bound_is_integer(lower, nvar); |
| sub = bound2poly(lower, dim, nvar, -1); |
| isl_constraint_free(upper); |
| } |
| poly = isl_qpolynomial_copy(data->poly); |
| poly = isl_qpolynomial_substitute(poly, isl_dim_set, nvar, 1, &sub); |
| poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1); |
| |
| isl_qpolynomial_free(sub); |
| } else { |
| isl_qpolynomial *l, *u; |
| isl_qpolynomial *pos, *neg; |
| isl_dim *dim = isl_qpolynomial_get_dim(data->poly); |
| unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
| int sign = data->sign * data->signs[nparam + nvar]; |
| |
| data->tight = 0; |
| |
| u = bound2poly(upper, isl_dim_copy(dim), nvar, 1); |
| l = bound2poly(lower, dim, nvar, -1); |
| |
| pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); |
| neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); |
| |
| pos = isl_qpolynomial_substitute(pos, isl_dim_set, nvar, 1, &u); |
| neg = isl_qpolynomial_substitute(neg, isl_dim_set, nvar, 1, &l); |
| |
| poly = isl_qpolynomial_add(pos, neg); |
| poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1); |
| |
| isl_qpolynomial_free(u); |
| isl_qpolynomial_free(l); |
| } |
| |
| if (isl_basic_set_dim(bset, isl_dim_set) == 0) |
| r = add_guarded_poly(bset, poly, data); |
| else |
| r = propagate_on_domain(bset, poly, data); |
| |
| data->tight = save_tight; |
| |
| return r; |
| } |
| |
| /* Recursively perform range propagation on the polynomial "poly" |
| * defined over the basic set "bset" and collect the results in "data". |
| */ |
| static int propagate_on_domain(__isl_take isl_basic_set *bset, |
| __isl_take isl_qpolynomial *poly, struct range_data *data) |
| { |
| isl_ctx *ctx; |
| isl_qpolynomial *save_poly = data->poly; |
| int save_monotonicity = data->monotonicity; |
| unsigned d; |
| |
| if (!bset || !poly) |
| goto error; |
| |
| ctx = isl_basic_set_get_ctx(bset); |
| d = isl_basic_set_dim(bset, isl_dim_set); |
| isl_assert(ctx, d >= 1, goto error); |
| |
| if (isl_qpolynomial_is_cst(poly, NULL, NULL)) { |
| bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); |
| poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, d); |
| return add_guarded_poly(bset, poly, data); |
| } |
| |
| if (data->test_monotonicity) |
| data->monotonicity = monotonicity(bset, poly, data); |
| else |
| data->monotonicity = 0; |
| if (data->monotonicity < -1) |
| goto error; |
| |
| data->poly = poly; |
| if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, |
| &propagate_on_bound_pair, data) < 0) |
| goto error; |
| |
| isl_basic_set_free(bset); |
| isl_qpolynomial_free(poly); |
| data->monotonicity = save_monotonicity; |
| data->poly = save_poly; |
| |
| return 0; |
| error: |
| isl_basic_set_free(bset); |
| isl_qpolynomial_free(poly); |
| data->monotonicity = save_monotonicity; |
| data->poly = save_poly; |
| return -1; |
| } |
| |
| static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user) |
| { |
| struct range_data *data = (struct range_data *)user; |
| isl_ctx *ctx; |
| unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
| unsigned dim = isl_basic_set_dim(bset, isl_dim_set); |
| int r; |
| |
| data->signs = NULL; |
| |
| ctx = isl_basic_set_get_ctx(bset); |
| data->signs = isl_alloc_array(ctx, int, |
| isl_basic_set_dim(bset, isl_dim_all)); |
| |
| if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, |
| data->signs + nparam) < 0) |
| goto error; |
| if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, |
| data->signs) < 0) |
| goto error; |
| |
| r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); |
| |
| free(data->signs); |
| |
| return r; |
| error: |
| free(data->signs); |
| isl_basic_set_free(bset); |
| return -1; |
| } |
| |
| static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
| __isl_take isl_qpolynomial *poly, struct range_data *data) |
| { |
| unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
| unsigned nvar = isl_basic_set_dim(bset, isl_dim_set); |
| isl_set *set; |
| |
| if (!bset) |
| goto error; |
| |
| if (nvar == 0) |
| return add_guarded_poly(bset, poly, data); |
| |
| set = isl_set_from_basic_set(bset); |
| set = isl_set_split_dims(set, isl_dim_param, 0, nparam); |
| set = isl_set_split_dims(set, isl_dim_set, 0, nvar); |
| |
| data->poly = poly; |
| |
| data->test_monotonicity = 1; |
| if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) |
| goto error; |
| |
| isl_set_free(set); |
| isl_qpolynomial_free(poly); |
| |
| return 0; |
| error: |
| isl_set_free(set); |
| isl_qpolynomial_free(poly); |
| return -1; |
| } |
| |
| int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
| __isl_take isl_qpolynomial *poly, struct isl_bound *bound) |
| { |
| struct range_data data; |
| int r; |
| |
| data.pwf = bound->pwf; |
| data.pwf_tight = bound->pwf_tight; |
| data.tight = bound->check_tight; |
| if (bound->type == isl_fold_min) |
| data.sign = -1; |
| else |
| data.sign = 1; |
| |
| r = qpolynomial_bound_on_domain_range(bset, poly, &data); |
| |
| bound->pwf = data.pwf; |
| bound->pwf_tight = data.pwf_tight; |
| |
| return r; |
| } |