| /* |
| * Copyright 2010 INRIA Saclay |
| * |
| * Use of this software is governed by the GNU LGPLv2.1 license |
| * |
| * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
| * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
| * 91893 Orsay, France |
| */ |
| |
| #include <isl_map_private.h> |
| #include <isl/set.h> |
| #include <isl/seq.h> |
| #include <isl_tab.h> |
| #include <isl_dim_private.h> |
| #include <isl_morph.h> |
| #include <isl_vertices_private.h> |
| #include <isl_mat_private.h> |
| |
| #define SELECTED 1 |
| #define DESELECTED -1 |
| #define UNSELECTED 0 |
| |
| static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset, |
| __isl_take isl_vertices *vertices); |
| |
| __isl_give isl_vertices *isl_vertices_copy(__isl_keep isl_vertices *vertices) |
| { |
| if (!vertices) |
| return NULL; |
| |
| vertices->ref++; |
| return vertices; |
| } |
| |
| void isl_vertices_free(__isl_take isl_vertices *vertices) |
| { |
| int i; |
| |
| if (!vertices) |
| return; |
| |
| if (--vertices->ref > 0) |
| return; |
| |
| for (i = 0; i < vertices->n_vertices; ++i) { |
| isl_basic_set_free(vertices->v[i].vertex); |
| isl_basic_set_free(vertices->v[i].dom); |
| } |
| free(vertices->v); |
| |
| for (i = 0; i < vertices->n_chambers; ++i) { |
| free(vertices->c[i].vertices); |
| isl_basic_set_free(vertices->c[i].dom); |
| } |
| free(vertices->c); |
| |
| isl_basic_set_free(vertices->bset); |
| free(vertices); |
| } |
| |
| struct isl_vertex_list { |
| struct isl_vertex v; |
| struct isl_vertex_list *next; |
| }; |
| |
| static void free_vertex_list(struct isl_vertex_list *list) |
| { |
| struct isl_vertex_list *next; |
| |
| for (; list; list = next) { |
| next = list->next; |
| isl_basic_set_free(list->v.vertex); |
| isl_basic_set_free(list->v.dom); |
| free(list); |
| } |
| } |
| |
| static __isl_give isl_vertices *vertices_from_list(__isl_keep isl_basic_set *bset, |
| int n_vertices, struct isl_vertex_list *list) |
| { |
| int i; |
| struct isl_vertex_list *next; |
| isl_vertices *vertices; |
| |
| vertices = isl_calloc_type(bset->ctx, isl_vertices); |
| if (!vertices) |
| goto error; |
| vertices->ref = 1; |
| vertices->bset = isl_basic_set_copy(bset); |
| vertices->v = isl_alloc_array(bset->ctx, struct isl_vertex, n_vertices); |
| if (!vertices->v) |
| goto error; |
| vertices->n_vertices = n_vertices; |
| |
| for (i = 0; list; list = next, i++) { |
| next = list->next; |
| vertices->v[i] = list->v; |
| free(list); |
| } |
| |
| return vertices; |
| error: |
| free(vertices); |
| free_vertex_list(list); |
| return NULL; |
| } |
| |
| /* Prepend a vertex to the linked list "list" based on the equalities in "tab". |
| */ |
| static int add_vertex(struct isl_vertex_list **list, |
| __isl_keep isl_basic_set *bset, struct isl_tab *tab) |
| { |
| unsigned nvar; |
| unsigned nparam; |
| struct isl_vertex_list *v = NULL; |
| |
| if (isl_tab_detect_implicit_equalities(tab) < 0) |
| return -1; |
| |
| nvar = isl_basic_set_dim(bset, isl_dim_set); |
| nparam = isl_basic_set_dim(bset, isl_dim_param); |
| |
| v = isl_calloc_type(tab->mat->ctx, struct isl_vertex_list); |
| if (!v) |
| goto error; |
| |
| v->v.vertex = isl_basic_set_copy(bset); |
| v->v.vertex = isl_basic_set_cow(v->v.vertex); |
| v->v.vertex = isl_basic_set_update_from_tab(v->v.vertex, tab); |
| v->v.vertex = isl_basic_set_simplify(v->v.vertex); |
| v->v.vertex = isl_basic_set_finalize(v->v.vertex); |
| if (!v->v.vertex) |
| goto error; |
| isl_assert(bset->ctx, v->v.vertex->n_eq >= nvar, goto error); |
| v->v.dom = isl_basic_set_copy(v->v.vertex); |
| v->v.dom = isl_basic_set_project_out(v->v.dom, isl_dim_set, 0, nvar); |
| if (!v->v.dom) |
| goto error; |
| |
| v->next = *list; |
| *list = v; |
| |
| return 0; |
| error: |
| free_vertex_list(v); |
| return -1; |
| } |
| |
| /* Compute the parametric vertices and the chamber decomposition |
| * of an empty parametric polytope. |
| */ |
| static __isl_give isl_vertices *vertices_empty(__isl_keep isl_basic_set *bset) |
| { |
| isl_vertices *vertices; |
| unsigned nparam; |
| |
| if (!bset) |
| return NULL; |
| |
| nparam = isl_basic_set_dim(bset, isl_dim_param); |
| |
| vertices = isl_calloc_type(bset->ctx, isl_vertices); |
| if (!vertices) |
| return NULL; |
| vertices->bset = isl_basic_set_copy(bset); |
| vertices->ref = 1; |
| |
| vertices->n_vertices = 0; |
| vertices->n_chambers = 0; |
| |
| return vertices; |
| } |
| |
| /* Compute the parametric vertices and the chamber decomposition |
| * of the parametric polytope defined using the same constraints |
| * as "bset" in the 0D case. |
| * There is exactly one 0D vertex and a single chamber containing |
| * the vertex. |
| */ |
| static __isl_give isl_vertices *vertices_0D(__isl_keep isl_basic_set *bset) |
| { |
| isl_vertices *vertices; |
| unsigned nparam; |
| |
| if (!bset) |
| return NULL; |
| |
| nparam = isl_basic_set_dim(bset, isl_dim_param); |
| |
| vertices = isl_calloc_type(bset->ctx, isl_vertices); |
| if (!vertices) |
| return NULL; |
| vertices->ref = 1; |
| vertices->bset = isl_basic_set_copy(bset); |
| |
| vertices->v = isl_calloc_array(bset->ctx, struct isl_vertex, 1); |
| if (!vertices->v) |
| goto error; |
| vertices->n_vertices = 1; |
| vertices->v[0].vertex = isl_basic_set_copy(bset); |
| if (!vertices->v[0].vertex) |
| goto error; |
| |
| vertices->c = isl_calloc_array(bset->ctx, struct isl_chamber, 1); |
| if (!vertices->c) |
| goto error; |
| vertices->n_chambers = 1; |
| vertices->c[0].n_vertices = 1; |
| vertices->c[0].vertices = isl_calloc_array(bset->ctx, int, 1); |
| if (!vertices->c[0].vertices) |
| goto error; |
| vertices->c[0].dom = isl_basic_set_copy(bset); |
| if (!vertices->c[0].dom) |
| goto error; |
| |
| return vertices; |
| error: |
| isl_vertices_free(vertices); |
| return NULL; |
| } |
| |
| static int isl_mat_rank(__isl_keep isl_mat *mat) |
| { |
| int row, col; |
| isl_mat *H; |
| |
| H = isl_mat_left_hermite(isl_mat_copy(mat), 0, NULL, NULL); |
| if (!H) |
| return -1; |
| |
| for (col = 0; col < H->n_col; ++col) { |
| for (row = 0; row < H->n_row; ++row) |
| if (!isl_int_is_zero(H->row[row][col])) |
| break; |
| if (row == H->n_row) |
| break; |
| } |
| |
| isl_mat_free(H); |
| |
| return col; |
| } |
| |
| /* Is the row pointed to by "f" linearly independent of the "n" first |
| * rows in "facets"? |
| */ |
| static int is_independent(__isl_keep isl_mat *facets, int n, isl_int *f) |
| { |
| int rank; |
| |
| if (isl_seq_first_non_zero(f, facets->n_col) < 0) |
| return 0; |
| |
| isl_seq_cpy(facets->row[n], f, facets->n_col); |
| facets->n_row = n + 1; |
| rank = isl_mat_rank(facets); |
| if (rank < 0) |
| return -1; |
| |
| return rank == n + 1; |
| } |
| |
| /* Check whether we can select constraint "level", given the current selection |
| * reflected by facets in "tab", the rows of "facets" and the earlier |
| * "selected" elements of "selection". |
| * |
| * If the constraint is (strictly) redundant in the tableau, selecting it would |
| * result in an empty tableau, so it can't be selected. |
| * If the set variable part of the constraint is not linearly indepedent |
| * of the set variable parts of the already selected constraints, |
| * the constraint cannot be selected. |
| * If selecting the constraint results in an empty tableau, the constraint |
| * cannot be selected. |
| * Finally, if selecting the constraint results in some explicitly |
| * deselected constraints turning into equalities, then the corresponding |
| * vertices have already been generated, so the constraint cannot be selected. |
| */ |
| static int can_select(__isl_keep isl_basic_set *bset, int level, |
| struct isl_tab *tab, __isl_keep isl_mat *facets, int selected, |
| int *selection) |
| { |
| int i; |
| int indep; |
| unsigned ovar; |
| struct isl_tab_undo *snap; |
| |
| if (isl_tab_is_redundant(tab, level)) |
| return 0; |
| |
| ovar = isl_dim_offset(bset->dim, isl_dim_set); |
| |
| indep = is_independent(facets, selected, bset->ineq[level] + 1 + ovar); |
| if (indep < 0) |
| return -1; |
| if (!indep) |
| return 0; |
| |
| snap = isl_tab_snap(tab); |
| if (isl_tab_select_facet(tab, level) < 0) |
| return -1; |
| |
| if (tab->empty) { |
| if (isl_tab_rollback(tab, snap) < 0) |
| return -1; |
| return 0; |
| } |
| |
| for (i = 0; i < level; ++i) { |
| int sgn; |
| |
| if (selection[i] != DESELECTED) |
| continue; |
| |
| if (isl_tab_is_equality(tab, i)) |
| sgn = 0; |
| else if (isl_tab_is_redundant(tab, i)) |
| sgn = 1; |
| else |
| sgn = isl_tab_sign_of_max(tab, i); |
| if (sgn < -1) |
| return -1; |
| if (sgn <= 0) { |
| if (isl_tab_rollback(tab, snap) < 0) |
| return -1; |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Compute the parametric vertices and the chamber decomposition |
| * of a parametric polytope that is not full-dimensional. |
| * |
| * Simply map the parametric polytope to a lower dimensional space |
| * and map the resulting vertices back. |
| */ |
| static __isl_give isl_vertices *lower_dim_vertices( |
| __isl_keep isl_basic_set *bset) |
| { |
| isl_morph *morph; |
| isl_vertices *vertices; |
| |
| bset = isl_basic_set_copy(bset); |
| morph = isl_basic_set_full_compression(bset); |
| bset = isl_morph_basic_set(isl_morph_copy(morph), bset); |
| |
| vertices = isl_basic_set_compute_vertices(bset); |
| isl_basic_set_free(bset); |
| |
| morph = isl_morph_inverse(morph); |
| |
| vertices = isl_morph_vertices(morph, vertices); |
| |
| return vertices; |
| } |
| |
| /* Compute the parametric vertices and the chamber decomposition |
| * of the parametric polytope defined using the same constraints |
| * as "bset". "bset" is assumed to have no existentially quantified |
| * variables. |
| * |
| * The vertices themselves are computed in a fairly simplistic way. |
| * We simply run through all combinations of d constraints, |
| * with d the number of set variables, and check if those d constraints |
| * define a vertex. To avoid the generation of duplicate vertices, |
| * which we may happen if a vertex is defined by more that d constraints, |
| * we make sure we only generate the vertex for the d constraints with |
| * smallest index. |
| * |
| * We set up a tableau and keep track of which facets have been |
| * selected. The tableau is marked strict_redundant so that we can be |
| * sure that any constraint that is marked redundant (and that is not |
| * also marked zero) is not an equality. |
| * If a constraint is marked DESELECTED, it means the constraint was |
| * SELECTED before (in combination with the same selection of earlier |
| * constraints). If such a deselected constraint turns out to be an |
| * equality, then any vertex that may still be found with the current |
| * selection has already been generated when the constraint was selected. |
| * A constraint is marked UNSELECTED when there is no way selecting |
| * the constraint could lead to a vertex (in combination with the current |
| * selection of earlier constraints). |
| * |
| * The set variable coefficients of the selected constraints are stored |
| * in the facets matrix. |
| */ |
| __isl_give isl_vertices *isl_basic_set_compute_vertices( |
| __isl_keep isl_basic_set *bset) |
| { |
| struct isl_tab *tab; |
| int level; |
| int init; |
| unsigned nvar; |
| int *selection = NULL; |
| int selected; |
| struct isl_tab_undo **snap = NULL; |
| isl_mat *facets = NULL; |
| struct isl_vertex_list *list = NULL; |
| int n_vertices = 0; |
| isl_vertices *vertices; |
| |
| if (!bset) |
| return NULL; |
| |
| if (isl_basic_set_plain_is_empty(bset)) |
| return vertices_empty(bset); |
| |
| if (bset->n_eq != 0) |
| return lower_dim_vertices(bset); |
| |
| isl_assert(bset->ctx, isl_basic_set_dim(bset, isl_dim_div) == 0, |
| return NULL); |
| |
| if (isl_basic_set_dim(bset, isl_dim_set) == 0) |
| return vertices_0D(bset); |
| |
| nvar = isl_basic_set_dim(bset, isl_dim_set); |
| |
| bset = isl_basic_set_copy(bset); |
| bset = isl_basic_set_set_rational(bset); |
| if (!bset) |
| return NULL; |
| |
| tab = isl_tab_from_basic_set(bset); |
| if (!tab) |
| goto error; |
| tab->strict_redundant = 1; |
| |
| if (tab->empty) { |
| vertices = vertices_empty(bset); |
| isl_basic_set_free(bset); |
| isl_tab_free(tab); |
| return vertices; |
| } |
| |
| selection = isl_alloc_array(bset->ctx, int, bset->n_ineq); |
| snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, bset->n_ineq); |
| facets = isl_mat_alloc(bset->ctx, nvar, nvar); |
| if (!selection || !snap || !facets) |
| goto error; |
| |
| level = 0; |
| init = 1; |
| selected = 0; |
| |
| while (level >= 0) { |
| if (level >= bset->n_ineq || |
| (!init && selection[level] != SELECTED)) { |
| --level; |
| init = 0; |
| continue; |
| } |
| if (init) { |
| int ok; |
| snap[level] = isl_tab_snap(tab); |
| ok = can_select(bset, level, tab, facets, selected, |
| selection); |
| if (ok < 0) |
| goto error; |
| if (ok) { |
| selection[level] = SELECTED; |
| selected++; |
| } else |
| selection[level] = UNSELECTED; |
| } else { |
| selection[level] = DESELECTED; |
| selected--; |
| if (isl_tab_rollback(tab, snap[level]) < 0) |
| goto error; |
| } |
| if (selected == nvar) { |
| if (tab->n_dead == nvar) { |
| if (add_vertex(&list, bset, tab) < 0) |
| goto error; |
| n_vertices++; |
| } |
| init = 0; |
| continue; |
| } |
| ++level; |
| init = 1; |
| } |
| |
| isl_mat_free(facets); |
| free(selection); |
| free(snap); |
| |
| isl_tab_free(tab); |
| |
| vertices = vertices_from_list(bset, n_vertices, list); |
| |
| vertices = compute_chambers(bset, vertices); |
| |
| return vertices; |
| error: |
| isl_mat_free(facets); |
| free(selection); |
| free(snap); |
| isl_tab_free(tab); |
| isl_basic_set_free(bset); |
| return NULL; |
| } |
| |
| struct isl_chamber_list { |
| struct isl_chamber c; |
| struct isl_chamber_list *next; |
| }; |
| |
| static void free_chamber_list(struct isl_chamber_list *list) |
| { |
| struct isl_chamber_list *next; |
| |
| for (; list; list = next) { |
| next = list->next; |
| isl_basic_set_free(list->c.dom); |
| free(list->c.vertices); |
| free(list); |
| } |
| } |
| |
| /* Check whether the basic set "bset" is a superset of the basic set described |
| * by "tab", i.e., check whether all constraints of "bset" are redundant. |
| */ |
| static int bset_covers_tab(__isl_keep isl_basic_set *bset, struct isl_tab *tab) |
| { |
| int i; |
| |
| if (!bset || !tab) |
| return -1; |
| |
| for (i = 0; i < bset->n_ineq; ++i) { |
| enum isl_ineq_type type = isl_tab_ineq_type(tab, bset->ineq[i]); |
| switch (type) { |
| case isl_ineq_error: return -1; |
| case isl_ineq_redundant: continue; |
| default: return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static __isl_give isl_vertices *vertices_add_chambers( |
| __isl_take isl_vertices *vertices, int n_chambers, |
| struct isl_chamber_list *list) |
| { |
| int i; |
| isl_ctx *ctx; |
| struct isl_chamber_list *next; |
| |
| ctx = isl_vertices_get_ctx(vertices); |
| vertices->c = isl_alloc_array(ctx, struct isl_chamber, n_chambers); |
| if (!vertices->c) |
| goto error; |
| vertices->n_chambers = n_chambers; |
| |
| for (i = 0; list; list = next, i++) { |
| next = list->next; |
| vertices->c[i] = list->c; |
| free(list); |
| } |
| |
| return vertices; |
| error: |
| isl_vertices_free(vertices); |
| free_chamber_list(list); |
| return NULL; |
| } |
| |
| /* Can "tab" be intersected with "bset" without resulting in |
| * a lower-dimensional set. |
| */ |
| static int can_intersect(struct isl_tab *tab, __isl_keep isl_basic_set *bset) |
| { |
| int i; |
| struct isl_tab_undo *snap; |
| |
| if (isl_tab_extend_cons(tab, bset->n_ineq) < 0) |
| return -1; |
| |
| snap = isl_tab_snap(tab); |
| |
| for (i = 0; i < bset->n_ineq; ++i) { |
| if (isl_tab_ineq_type(tab, bset->ineq[i]) == isl_ineq_redundant) |
| continue; |
| if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0) |
| return -1; |
| } |
| |
| if (isl_tab_detect_implicit_equalities(tab) < 0) |
| return -1; |
| if (tab->n_dead) { |
| if (isl_tab_rollback(tab, snap) < 0) |
| return -1; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int add_chamber(struct isl_chamber_list **list, |
| __isl_keep isl_vertices *vertices, struct isl_tab *tab, int *selection) |
| { |
| int n_frozen; |
| int i, j; |
| int n_vertices = 0; |
| struct isl_tab_undo *snap; |
| struct isl_chamber_list *c = NULL; |
| |
| for (i = 0; i < vertices->n_vertices; ++i) |
| if (selection[i]) |
| n_vertices++; |
| |
| snap = isl_tab_snap(tab); |
| |
| for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i) |
| tab->con[i].frozen = 0; |
| n_frozen = i; |
| |
| if (isl_tab_detect_redundant(tab) < 0) |
| return -1; |
| |
| c = isl_calloc_type(tab->mat->ctx, struct isl_chamber_list); |
| if (!c) |
| goto error; |
| c->c.vertices = isl_alloc_array(tab->mat->ctx, int, n_vertices); |
| if (!c->c.vertices) |
| goto error; |
| c->c.dom = isl_basic_set_from_basic_map(isl_basic_map_copy(tab->bmap)); |
| c->c.dom = isl_basic_set_set_rational(c->c.dom); |
| c->c.dom = isl_basic_set_cow(c->c.dom); |
| c->c.dom = isl_basic_set_update_from_tab(c->c.dom, tab); |
| c->c.dom = isl_basic_set_simplify(c->c.dom); |
| c->c.dom = isl_basic_set_finalize(c->c.dom); |
| if (!c->c.dom) |
| goto error; |
| |
| c->c.n_vertices = n_vertices; |
| |
| for (i = 0, j = 0; i < vertices->n_vertices; ++i) |
| if (selection[i]) { |
| c->c.vertices[j] = i; |
| j++; |
| } |
| |
| c->next = *list; |
| *list = c; |
| |
| for (i = 0; i < n_frozen; ++i) |
| tab->con[i].frozen = 1; |
| |
| if (isl_tab_rollback(tab, snap) < 0) |
| return -1; |
| |
| return 0; |
| error: |
| free_chamber_list(c); |
| return -1; |
| } |
| |
| struct isl_facet_todo { |
| struct isl_tab *tab; /* A tableau representation of the facet */ |
| isl_basic_set *bset; /* A normalized basic set representation */ |
| isl_vec *constraint; /* Constraint pointing to the other side */ |
| struct isl_facet_todo *next; |
| }; |
| |
| static void free_todo(struct isl_facet_todo *todo) |
| { |
| while (todo) { |
| struct isl_facet_todo *next = todo->next; |
| |
| isl_tab_free(todo->tab); |
| isl_basic_set_free(todo->bset); |
| isl_vec_free(todo->constraint); |
| free(todo); |
| |
| todo = next; |
| } |
| } |
| |
| static struct isl_facet_todo *create_todo(struct isl_tab *tab, int con) |
| { |
| int i; |
| int n_frozen; |
| struct isl_tab_undo *snap; |
| struct isl_facet_todo *todo; |
| |
| snap = isl_tab_snap(tab); |
| |
| for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i) |
| tab->con[i].frozen = 0; |
| n_frozen = i; |
| |
| if (isl_tab_detect_redundant(tab) < 0) |
| return NULL; |
| |
| todo = isl_calloc_type(tab->mat->ctx, struct isl_facet_todo); |
| if (!todo) |
| return NULL; |
| |
| todo->constraint = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); |
| if (!todo->constraint) |
| goto error; |
| isl_seq_neg(todo->constraint->el, tab->bmap->ineq[con], 1 + tab->n_var); |
| todo->bset = isl_basic_set_from_basic_map(isl_basic_map_copy(tab->bmap)); |
| todo->bset = isl_basic_set_set_rational(todo->bset); |
| todo->bset = isl_basic_set_cow(todo->bset); |
| todo->bset = isl_basic_set_update_from_tab(todo->bset, tab); |
| todo->bset = isl_basic_set_simplify(todo->bset); |
| todo->bset = isl_basic_set_sort_constraints(todo->bset); |
| if (!todo->bset) |
| goto error; |
| ISL_F_SET(todo->bset, ISL_BASIC_SET_NORMALIZED); |
| todo->tab = isl_tab_dup(tab); |
| if (!todo->tab) |
| goto error; |
| |
| for (i = 0; i < n_frozen; ++i) |
| tab->con[i].frozen = 1; |
| |
| if (isl_tab_rollback(tab, snap) < 0) |
| goto error; |
| |
| return todo; |
| error: |
| free_todo(todo); |
| return NULL; |
| } |
| |
| /* Create todo items for all interior facets of the chamber represented |
| * by "tab" and collect them in "next". |
| */ |
| static int init_todo(struct isl_facet_todo **next, struct isl_tab *tab) |
| { |
| int i; |
| struct isl_tab_undo *snap; |
| struct isl_facet_todo *todo; |
| |
| snap = isl_tab_snap(tab); |
| |
| for (i = 0; i < tab->n_con; ++i) { |
| if (tab->con[i].frozen) |
| continue; |
| if (tab->con[i].is_redundant) |
| continue; |
| |
| if (isl_tab_select_facet(tab, i) < 0) |
| return -1; |
| |
| todo = create_todo(tab, i); |
| if (!todo) |
| return -1; |
| |
| todo->next = *next; |
| *next = todo; |
| |
| if (isl_tab_rollback(tab, snap) < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Does the linked list contain a todo item that is the opposite of "todo". |
| * If so, return 1 and remove the opposite todo item. |
| */ |
| static int has_opposite(struct isl_facet_todo *todo, |
| struct isl_facet_todo **list) |
| { |
| for (; *list; list = &(*list)->next) { |
| int eq; |
| eq = isl_basic_set_plain_is_equal(todo->bset, (*list)->bset); |
| if (eq < 0) |
| return -1; |
| if (!eq) |
| continue; |
| todo = *list; |
| *list = todo->next; |
| todo->next = NULL; |
| free_todo(todo); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Create todo items for all interior facets of the chamber represented |
| * by "tab" and collect them in first->next, taking care to cancel |
| * opposite todo items. |
| */ |
| static int update_todo(struct isl_facet_todo *first, struct isl_tab *tab) |
| { |
| int i; |
| struct isl_tab_undo *snap; |
| struct isl_facet_todo *todo; |
| |
| snap = isl_tab_snap(tab); |
| |
| for (i = 0; i < tab->n_con; ++i) { |
| int drop; |
| |
| if (tab->con[i].frozen) |
| continue; |
| if (tab->con[i].is_redundant) |
| continue; |
| |
| if (isl_tab_select_facet(tab, i) < 0) |
| return -1; |
| |
| todo = create_todo(tab, i); |
| if (!todo) |
| return -1; |
| |
| drop = has_opposite(todo, &first->next); |
| if (drop < 0) |
| return -1; |
| |
| if (drop) |
| free_todo(todo); |
| else { |
| todo->next = first->next; |
| first->next = todo; |
| } |
| |
| if (isl_tab_rollback(tab, snap) < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Compute the chamber decomposition of the parametric polytope respresented |
| * by "bset" given the parametric vertices and their activity domains. |
| * |
| * We are only interested in full-dimensional chambers. |
| * Each of these chambers is the intersection of the activity domains of |
| * one or more vertices and the union of all chambers is equal to the |
| * projection of the entire parametric polytope onto the parameter space. |
| * |
| * We first create an initial chamber by intersecting as many activity |
| * domains as possible without ending up with an empty or lower-dimensional |
| * set. As a minor optimization, we only consider those activity domains |
| * that contain some arbitrary point. |
| * |
| * For each of interior facets of the chamber, we construct a todo item, |
| * containing the facet and a constraint containing the other side of the facet, |
| * for constructing the chamber on the other side. |
| * While their are any todo items left, we pick a todo item and |
| * create the required chamber by intersecting all activity domains |
| * that contain the facet and have a full-dimensional intersection with |
| * the other side of the facet. For each of the interior facets, we |
| * again create todo items, taking care to cancel opposite todo items. |
| */ |
| static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset, |
| __isl_take isl_vertices *vertices) |
| { |
| int i; |
| isl_ctx *ctx; |
| isl_vec *sample = NULL; |
| struct isl_tab *tab = NULL; |
| struct isl_tab_undo *snap; |
| unsigned nvar; |
| int *selection = NULL; |
| int n_chambers = 0; |
| struct isl_chamber_list *list = NULL; |
| struct isl_facet_todo *todo = NULL; |
| |
| if (!bset || !vertices) |
| goto error; |
| |
| ctx = isl_vertices_get_ctx(vertices); |
| selection = isl_alloc_array(ctx, int, vertices->n_vertices); |
| if (!selection) |
| goto error; |
| |
| nvar = isl_basic_set_dim(bset, isl_dim_set); |
| bset = isl_basic_set_project_out(bset, isl_dim_set, 0, nvar); |
| |
| tab = isl_tab_from_basic_set(bset); |
| for (i = 0; i < bset->n_ineq; ++i) |
| if (isl_tab_freeze_constraint(tab, i) < 0) |
| goto error; |
| if (isl_tab_track_bset(tab, bset) < 0) |
| goto error; |
| |
| snap = isl_tab_snap(tab); |
| |
| sample = isl_tab_get_sample_value(tab); |
| |
| for (i = 0; i < vertices->n_vertices; ++i) { |
| selection[i] = isl_basic_set_contains(vertices->v[i].dom, sample); |
| if (selection[i] < 0) |
| goto error; |
| if (!selection[i]) |
| continue; |
| selection[i] = can_intersect(tab, vertices->v[i].dom); |
| if (selection[i] < 0) |
| goto error; |
| } |
| |
| if (isl_tab_detect_redundant(tab) < 0) |
| goto error; |
| |
| if (add_chamber(&list, vertices, tab, selection) < 0) |
| goto error; |
| n_chambers++; |
| |
| if (init_todo(&todo, tab) < 0) |
| goto error; |
| |
| while (todo) { |
| struct isl_facet_todo *next; |
| |
| if (isl_tab_rollback(tab, snap) < 0) |
| goto error; |
| |
| if (isl_tab_add_ineq(tab, todo->constraint->el) < 0) |
| goto error; |
| if (isl_tab_freeze_constraint(tab, tab->n_con - 1) < 0) |
| goto error; |
| |
| for (i = 0; i < vertices->n_vertices; ++i) { |
| selection[i] = bset_covers_tab(vertices->v[i].dom, |
| todo->tab); |
| if (selection[i] < 0) |
| goto error; |
| if (!selection[i]) |
| continue; |
| selection[i] = can_intersect(tab, vertices->v[i].dom); |
| if (selection[i] < 0) |
| goto error; |
| } |
| |
| if (isl_tab_detect_redundant(tab) < 0) |
| goto error; |
| |
| if (add_chamber(&list, vertices, tab, selection) < 0) |
| goto error; |
| n_chambers++; |
| |
| if (update_todo(todo, tab) < 0) |
| goto error; |
| |
| next = todo->next; |
| todo->next = NULL; |
| free_todo(todo); |
| todo = next; |
| } |
| |
| isl_vec_free(sample); |
| |
| isl_tab_free(tab); |
| free(selection); |
| |
| vertices = vertices_add_chambers(vertices, n_chambers, list); |
| |
| for (i = 0; vertices && i < vertices->n_vertices; ++i) { |
| isl_basic_set_free(vertices->v[i].dom); |
| vertices->v[i].dom = NULL; |
| } |
| |
| return vertices; |
| error: |
| free_chamber_list(list); |
| free_todo(todo); |
| isl_vec_free(sample); |
| isl_tab_free(tab); |
| free(selection); |
| if (!tab) |
| isl_basic_set_free(bset); |
| isl_vertices_free(vertices); |
| return NULL; |
| } |
| |
| isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex) |
| { |
| return vertex ? isl_vertices_get_ctx(vertex->vertices) : NULL; |
| } |
| |
| int isl_vertex_get_id(__isl_keep isl_vertex *vertex) |
| { |
| return vertex ? vertex->id : -1; |
| } |
| |
| __isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex) |
| { |
| struct isl_vertex *v; |
| |
| if (!vertex) |
| return NULL; |
| |
| v = &vertex->vertices->v[vertex->id]; |
| if (!v->dom) { |
| unsigned nvar; |
| nvar = isl_basic_set_dim(v->vertex, isl_dim_set); |
| v->dom = isl_basic_set_copy(v->vertex); |
| v->dom = isl_basic_set_project_out(v->dom, isl_dim_set, 0, nvar); |
| } |
| |
| return isl_basic_set_copy(v->dom); |
| } |
| |
| __isl_give isl_basic_set *isl_vertex_get_expr(__isl_keep isl_vertex *vertex) |
| { |
| struct isl_vertex *v; |
| |
| if (!vertex) |
| return NULL; |
| |
| v = &vertex->vertices->v[vertex->id]; |
| |
| return isl_basic_set_copy(v->vertex); |
| } |
| |
| static __isl_give isl_vertex *isl_vertex_alloc(__isl_take isl_vertices *vertices, |
| int id) |
| { |
| isl_ctx *ctx; |
| isl_vertex *vertex; |
| |
| if (!vertices) |
| return NULL; |
| |
| ctx = isl_vertices_get_ctx(vertices); |
| vertex = isl_alloc_type(ctx, isl_vertex); |
| if (!vertex) |
| goto error; |
| |
| vertex->vertices = vertices; |
| vertex->id = id; |
| |
| return vertex; |
| error: |
| isl_vertices_free(vertices); |
| return NULL; |
| } |
| |
| void isl_vertex_free(__isl_take isl_vertex *vertex) |
| { |
| if (!vertex) |
| return; |
| isl_vertices_free(vertex->vertices); |
| free(vertex); |
| } |
| |
| __isl_give isl_basic_set *isl_basic_set_set_integral(__isl_take isl_basic_set *bset) |
| { |
| if (!bset) |
| return NULL; |
| |
| if (!ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL)) |
| return bset; |
| |
| bset = isl_basic_set_cow(bset); |
| if (!bset) |
| return NULL; |
| |
| ISL_F_CLR(bset, ISL_BASIC_MAP_RATIONAL); |
| |
| return isl_basic_set_finalize(bset); |
| } |
| |
| isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell) |
| { |
| return cell ? cell->dom->ctx : NULL; |
| } |
| |
| __isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell) |
| { |
| return cell ? isl_basic_set_copy(cell->dom) : NULL; |
| } |
| |
| static __isl_give isl_cell *isl_cell_alloc(__isl_take isl_vertices *vertices, |
| __isl_take isl_basic_set *dom, int id) |
| { |
| int i; |
| isl_cell *cell = NULL; |
| |
| if (!vertices || !dom) |
| goto error; |
| |
| cell = isl_calloc_type(dom->ctx, isl_cell); |
| if (!cell) |
| goto error; |
| |
| cell->n_vertices = vertices->c[id].n_vertices; |
| cell->ids = isl_alloc_array(dom->ctx, int, cell->n_vertices); |
| if (!cell->ids) |
| goto error; |
| for (i = 0; i < cell->n_vertices; ++i) |
| cell->ids[i] = vertices->c[id].vertices[i]; |
| cell->vertices = vertices; |
| cell->dom = dom; |
| |
| return cell; |
| error: |
| isl_cell_free(cell); |
| isl_vertices_free(vertices); |
| isl_basic_set_free(dom); |
| return NULL; |
| } |
| |
| void isl_cell_free(__isl_take isl_cell *cell) |
| { |
| if (!cell) |
| return; |
| |
| isl_vertices_free(cell->vertices); |
| free(cell->ids); |
| isl_basic_set_free(cell->dom); |
| free(cell); |
| } |
| |
| /* Create a tableau of the cone obtained by first homogenizing the given |
| * polytope and then making all inequalities strict by setting the |
| * constant term to -1. |
| */ |
| static struct isl_tab *tab_for_shifted_cone(__isl_keep isl_basic_set *bset) |
| { |
| int i; |
| isl_vec *c = NULL; |
| struct isl_tab *tab; |
| |
| if (!bset) |
| return NULL; |
| tab = isl_tab_alloc(bset->ctx, bset->n_ineq + 1, |
| 1 + isl_basic_set_total_dim(bset), 0); |
| if (!tab) |
| return NULL; |
| tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); |
| if (ISL_F_ISSET(bset, ISL_BASIC_MAP_EMPTY)) { |
| if (isl_tab_mark_empty(tab) < 0) |
| goto error; |
| return tab; |
| } |
| |
| c = isl_vec_alloc(bset->ctx, 1 + 1 + isl_basic_set_total_dim(bset)); |
| if (!c) |
| goto error; |
| |
| isl_int_set_si(c->el[0], 0); |
| for (i = 0; i < bset->n_eq; ++i) { |
| isl_seq_cpy(c->el + 1, bset->eq[i], c->size - 1); |
| if (isl_tab_add_eq(tab, c->el) < 0) |
| goto error; |
| } |
| |
| isl_int_set_si(c->el[0], -1); |
| for (i = 0; i < bset->n_ineq; ++i) { |
| isl_seq_cpy(c->el + 1, bset->ineq[i], c->size - 1); |
| if (isl_tab_add_ineq(tab, c->el) < 0) |
| goto error; |
| if (tab->empty) { |
| isl_vec_free(c); |
| return tab; |
| } |
| } |
| |
| isl_seq_clr(c->el + 1, c->size - 1); |
| isl_int_set_si(c->el[1], 1); |
| if (isl_tab_add_ineq(tab, c->el) < 0) |
| goto error; |
| |
| isl_vec_free(c); |
| return tab; |
| error: |
| isl_vec_free(c); |
| isl_tab_free(tab); |
| return NULL; |
| } |
| |
| /* Compute an interior point of "bset" by selecting an interior |
| * point in homogeneous space and projecting the point back down. |
| */ |
| static __isl_give isl_vec *isl_basic_set_interior_point( |
| __isl_keep isl_basic_set *bset) |
| { |
| isl_vec *vec; |
| struct isl_tab *tab; |
| |
| tab = tab_for_shifted_cone(bset); |
| vec = isl_tab_get_sample_value(tab); |
| isl_tab_free(tab); |
| if (!vec) |
| return NULL; |
| |
| isl_seq_cpy(vec->el, vec->el + 1, vec->size - 1); |
| vec->size--; |
| |
| return vec; |
| } |
| |
| /* Call "fn" on all chambers of the parametric polytope with the shared |
| * facets of neighboring chambers only appearing in one of the chambers. |
| * |
| * We pick an interior point from one of the chambers and then make |
| * all constraints that do not satisfy this point strict. |
| */ |
| int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices, |
| int (*fn)(__isl_take isl_cell *cell, void *user), void *user) |
| { |
| int i, j; |
| isl_vec *vec; |
| isl_int v; |
| isl_cell *cell; |
| |
| if (!vertices) |
| return -1; |
| |
| if (vertices->n_chambers == 0) |
| return 0; |
| |
| if (vertices->n_chambers == 1) { |
| isl_basic_set *dom = isl_basic_set_copy(vertices->c[0].dom); |
| dom = isl_basic_set_set_integral(dom); |
| cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, 0); |
| if (!cell) |
| return -1; |
| return fn(cell, user); |
| } |
| |
| vec = isl_basic_set_interior_point(vertices->c[0].dom); |
| if (!vec) |
| return -1; |
| |
| isl_int_init(v); |
| |
| for (i = 0; i < vertices->n_chambers; ++i) { |
| int r; |
| isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom); |
| dom = isl_basic_set_cow(dom); |
| if (!dom) |
| goto error; |
| for (j = 0; i && j < dom->n_ineq; ++j) { |
| isl_seq_inner_product(vec->el, dom->ineq[j], vec->size, |
| &v); |
| if (!isl_int_is_neg(v)) |
| continue; |
| isl_int_sub_ui(dom->ineq[j][0], dom->ineq[j][0], 1); |
| } |
| dom = isl_basic_set_set_integral(dom); |
| cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i); |
| if (!cell) |
| goto error; |
| r = fn(cell, user); |
| if (r < 0) |
| goto error; |
| } |
| |
| isl_int_clear(v); |
| isl_vec_free(vec); |
| |
| return 0; |
| error: |
| isl_int_clear(v); |
| isl_vec_free(vec); |
| return -1; |
| } |
| |
| int isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices, |
| int (*fn)(__isl_take isl_cell *cell, void *user), void *user) |
| { |
| int i; |
| isl_cell *cell; |
| |
| if (!vertices) |
| return -1; |
| |
| if (vertices->n_chambers == 0) |
| return 0; |
| |
| for (i = 0; i < vertices->n_chambers; ++i) { |
| int r; |
| isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom); |
| |
| cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i); |
| if (!cell) |
| return -1; |
| |
| r = fn(cell, user); |
| if (r < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices, |
| int (*fn)(__isl_take isl_vertex *vertex, void *user), void *user) |
| { |
| int i; |
| isl_vertex *vertex; |
| |
| if (!vertices) |
| return -1; |
| |
| if (vertices->n_vertices == 0) |
| return 0; |
| |
| for (i = 0; i < vertices->n_vertices; ++i) { |
| int r; |
| |
| vertex = isl_vertex_alloc(isl_vertices_copy(vertices), i); |
| if (!vertex) |
| return -1; |
| |
| r = fn(vertex, user); |
| if (r < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int isl_cell_foreach_vertex(__isl_keep isl_cell *cell, |
| int (*fn)(__isl_take isl_vertex *vertex, void *user), void *user) |
| { |
| int i; |
| isl_vertex *vertex; |
| |
| if (!cell) |
| return -1; |
| |
| if (cell->n_vertices == 0) |
| return 0; |
| |
| for (i = 0; i < cell->n_vertices; ++i) { |
| int r; |
| |
| vertex = isl_vertex_alloc(isl_vertices_copy(cell->vertices), |
| cell->ids[i]); |
| if (!vertex) |
| return -1; |
| |
| r = fn(vertex, user); |
| if (r < 0) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices) |
| { |
| return vertices ? vertices->bset->ctx : NULL; |
| } |
| |
| int isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices) |
| { |
| return vertices ? vertices->n_vertices : -1; |
| } |
| |
| __isl_give isl_vertices *isl_morph_vertices(__isl_take isl_morph *morph, |
| __isl_take isl_vertices *vertices) |
| { |
| int i; |
| isl_morph *param_morph = NULL; |
| |
| if (!morph || !vertices) |
| goto error; |
| |
| isl_assert(vertices->bset->ctx, vertices->ref == 1, goto error); |
| |
| param_morph = isl_morph_copy(morph); |
| param_morph = isl_morph_remove_dom_dims(param_morph, isl_dim_set, |
| 0, isl_morph_dom_dim(morph, isl_dim_set)); |
| param_morph = isl_morph_remove_ran_dims(param_morph, isl_dim_set, |
| 0, isl_morph_ran_dim(morph, isl_dim_set)); |
| |
| for (i = 0; i < vertices->n_vertices; ++i) { |
| vertices->v[i].dom = isl_morph_basic_set( |
| isl_morph_copy(param_morph), vertices->v[i].dom); |
| vertices->v[i].vertex = isl_morph_basic_set( |
| isl_morph_copy(morph), vertices->v[i].vertex); |
| if (!vertices->v[i].vertex) |
| goto error; |
| } |
| |
| for (i = 0; i < vertices->n_chambers; ++i) { |
| vertices->c[i].dom = isl_morph_basic_set( |
| isl_morph_copy(param_morph), vertices->c[i].dom); |
| if (!vertices->c[i].dom) |
| goto error; |
| } |
| |
| isl_morph_free(param_morph); |
| isl_morph_free(morph); |
| return vertices; |
| error: |
| isl_morph_free(param_morph); |
| isl_morph_free(morph); |
| isl_vertices_free(vertices); |
| return NULL; |
| } |
| |
| /* Construct a simplex isl_cell spanned by the vertices with indices in |
| * "simplex_ids" and "other_ids" and call "fn" on this isl_cell. |
| */ |
| static int call_on_simplex(__isl_keep isl_cell *cell, |
| int *simplex_ids, int n_simplex, int *other_ids, int n_other, |
| int (*fn)(__isl_take isl_cell *simplex, void *user), void *user) |
| { |
| int i; |
| isl_ctx *ctx; |
| struct isl_cell *simplex; |
| |
| ctx = isl_cell_get_ctx(cell); |
| |
| simplex = isl_calloc_type(ctx, struct isl_cell); |
| if (!simplex) |
| return -1; |
| simplex->vertices = isl_vertices_copy(cell->vertices); |
| if (!simplex->vertices) |
| goto error; |
| simplex->dom = isl_basic_set_copy(cell->dom); |
| if (!simplex->dom) |
| goto error; |
| simplex->n_vertices = n_simplex + n_other; |
| simplex->ids = isl_alloc_array(ctx, int, simplex->n_vertices); |
| if (!simplex->ids) |
| goto error; |
| |
| for (i = 0; i < n_simplex; ++i) |
| simplex->ids[i] = simplex_ids[i]; |
| for (i = 0; i < n_other; ++i) |
| simplex->ids[n_simplex + i] = other_ids[i]; |
| |
| return fn(simplex, user); |
| error: |
| isl_cell_free(simplex); |
| return -1; |
| } |
| |
| /* Check whether the parametric vertex described by "vertex" |
| * lies on the facet corresponding to constraint "facet" of "bset". |
| * The isl_vec "v" is a temporary vector than can be used by this function. |
| * |
| * We eliminate the variables from the facet constraint using the |
| * equalities defining the vertex and check if the result is identical |
| * to zero. |
| * |
| * It would probably be better to keep track of the constraints defining |
| * a vertex during the vertex construction so that we could simply look |
| * it up here. |
| */ |
| static int vertex_on_facet(__isl_keep isl_basic_set *vertex, |
| __isl_keep isl_basic_set *bset, int facet, __isl_keep isl_vec *v) |
| { |
| int i; |
| isl_int m; |
| |
| isl_seq_cpy(v->el, bset->ineq[facet], v->size); |
| |
| isl_int_init(m); |
| for (i = 0; i < vertex->n_eq; ++i) { |
| int k = isl_seq_last_non_zero(vertex->eq[i], v->size); |
| isl_seq_elim(v->el, vertex->eq[i], k, v->size, &m); |
| } |
| isl_int_clear(m); |
| |
| return isl_seq_first_non_zero(v->el, v->size) == -1; |
| } |
| |
| /* Triangulate the polytope spanned by the vertices with ids |
| * in "simplex_ids" and "other_ids" and call "fn" on each of |
| * the resulting simplices. |
| * If the input polytope is already a simplex, we simply call "fn". |
| * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids". |
| * Then we consider each facet of "bset" that does not contain the point |
| * we just picked, but does contain some of the other points in "other_ids" |
| * and call ourselves recursively on the polytope spanned by the new |
| * "simplex_ids" and those points in "other_ids" that lie on the facet. |
| */ |
| static int triangulate(__isl_keep isl_cell *cell, __isl_keep isl_vec *v, |
| int *simplex_ids, int n_simplex, int *other_ids, int n_other, |
| int (*fn)(__isl_take isl_cell *simplex, void *user), void *user) |
| { |
| int i, j, k; |
| int d, nparam; |
| int *ids; |
| isl_ctx *ctx; |
| isl_basic_set *vertex; |
| isl_basic_set *bset; |
| |
| ctx = isl_cell_get_ctx(cell); |
| d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set); |
| nparam = isl_basic_set_dim(cell->vertices->bset, isl_dim_param); |
| |
| if (n_simplex + n_other == d + 1) |
| return call_on_simplex(cell, simplex_ids, n_simplex, |
| other_ids, n_other, fn, user); |
| |
| simplex_ids[n_simplex] = other_ids[0]; |
| vertex = cell->vertices->v[other_ids[0]].vertex; |
| bset = cell->vertices->bset; |
| |
| ids = isl_alloc_array(ctx, int, n_other - 1); |
| for (i = 0; i < bset->n_ineq; ++i) { |
| if (isl_seq_first_non_zero(bset->ineq[i] + 1 + nparam, d) == -1) |
| continue; |
| if (vertex_on_facet(vertex, bset, i, v)) |
| continue; |
| |
| for (j = 1, k = 0; j < n_other; ++j) { |
| isl_basic_set *ov; |
| ov = cell->vertices->v[other_ids[j]].vertex; |
| if (vertex_on_facet(ov, bset, i, v)) |
| ids[k++] = other_ids[j]; |
| } |
| if (k == 0) |
| continue; |
| |
| if (triangulate(cell, v, simplex_ids, n_simplex + 1, |
| ids, k, fn, user) < 0) |
| goto error; |
| } |
| free(ids); |
| |
| return 0; |
| error: |
| free(ids); |
| return -1; |
| } |
| |
| /* Triangulate the given cell and call "fn" on each of the resulting |
| * simplices. |
| */ |
| int isl_cell_foreach_simplex(__isl_take isl_cell *cell, |
| int (*fn)(__isl_take isl_cell *simplex, void *user), void *user) |
| { |
| int d, total; |
| int r; |
| isl_ctx *ctx; |
| isl_vec *v = NULL; |
| int *simplex_ids = NULL; |
| |
| if (!cell) |
| return -1; |
| |
| d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set); |
| total = isl_basic_set_total_dim(cell->vertices->bset); |
| |
| if (cell->n_vertices == d + 1) |
| return fn(cell, user); |
| |
| ctx = isl_cell_get_ctx(cell); |
| simplex_ids = isl_alloc_array(ctx, int, d + 1); |
| if (!simplex_ids) |
| goto error; |
| |
| v = isl_vec_alloc(ctx, 1 + total); |
| if (!v) |
| goto error; |
| |
| r = triangulate(cell, v, simplex_ids, 0, |
| cell->ids, cell->n_vertices, fn, user); |
| |
| isl_vec_free(v); |
| free(simplex_ids); |
| |
| isl_cell_free(cell); |
| |
| return r; |
| error: |
| free(simplex_ids); |
| isl_vec_free(v); |
| isl_cell_free(cell); |
| return -1; |
| } |