blob: b27e9ace2a9dc8dd6b0867f7b547654c1aad833a [file] [log] [blame]
//! # Portable packed SIMD vectors
//!
//! This crate is proposed for stabilization as `std::packed_simd` in [RFC2366:
//! `std::simd`](https://github.com/rust-lang/rfcs/pull/2366) .
//!
//! The examples available in the
//! [`examples/`](https://github.com/rust-lang-nursery/packed_simd/tree/master/examples)
//! sub-directory of the crate showcase how to use the library in practice.
//!
//! ## Table of contents
//!
//! - [Introduction](#introduction)
//! - [Vector types](#vector-types)
//! - [Conditional operations](#conditional-operations)
//! - [Conversions](#conversions)
//! - [Performance
//! guide](https://rust-lang-nursery.github.io/packed_simd/perf-guide/)
//!
//! ## Introduction
//!
//! This crate exports [`Simd<[T; N]>`][`Simd`]: a packed vector of `N`
//! elements of type `T` as well as many type aliases for this type: for
//! example, [`f32x4`], which is just an alias for `Simd<[f32; 4]>`.
//!
//! The operations on packed vectors are, by default, "vertical", that is, they
//! are applied to each vector lane in isolation of the others:
//!
//! ```
//! # use packed_simd::*;
//! let a = i32x4::new(1, 2, 3, 4);
//! let b = i32x4::new(5, 6, 7, 8);
//! assert_eq!(a + b, i32x4::new(6, 8, 10, 12));
//! ```
//!
//! Many "horizontal" operations are also provided:
//!
//! ```
//! # use packed_simd::*;
//! # let a = i32x4::new(1, 2, 3, 4);
//! assert_eq!(a.wrapping_sum(), 10);
//! ```
//!
//! In virtually all architectures vertical operations are fast, while
//! horizontal operations are, by comparison, much slower. That is, the
//! most portably-efficient way of performing a reduction over a slice
//! is to collect the results into a vector using vertical operations,
//! and performing a single horizontal operation at the end:
//!
//! ```
//! # use packed_simd::*;
//! fn reduce(x: &[i32]) -> i32 {
//! assert!(x.len() % 4 == 0);
//! let mut sum = i32x4::splat(0); // [0, 0, 0, 0]
//! for i in (0..x.len()).step_by(4) {
//! sum += i32x4::from_slice_unaligned(&x[i..]);
//! }
//! sum.wrapping_sum()
//! }
//!
//! let x = [0, 1, 2, 3, 4, 5, 6, 7];
//! assert_eq!(reduce(&x), 28);
//! ```
//!
//! ## Vector types
//!
//! The vector type aliases are named according to the following scheme:
//!
//! > `{element_type}x{number_of_lanes} == Simd<[element_type;
//! number_of_lanes]>`
//!
//! where the following element types are supported:
//!
//! * `i{element_width}`: signed integer
//! * `u{element_width}`: unsigned integer
//! * `f{element_width}`: float
//! * `m{element_width}`: mask (see below)
//! * `*{const,mut} T`: `const` and `mut` pointers
//!
//! ## Basic operations
//!
//! ```
//! # use packed_simd::*;
//! // Sets all elements to `0`:
//! let a = i32x4::splat(0);
//!
//! // Reads a vector from a slice:
//! let mut arr = [0, 0, 0, 1, 2, 3, 4, 5];
//! let b = i32x4::from_slice_unaligned(&arr);
//!
//! // Reads the 4-th element of a vector:
//! assert_eq!(b.extract(3), 1);
//!
//! // Returns a new vector where the 4-th element is replaced with `1`:
//! let a = a.replace(3, 1);
//! assert_eq!(a, b);
//!
//! // Writes a vector to a slice:
//! let a = a.replace(2, 1);
//! a.write_to_slice_unaligned(&mut arr[4..]);
//! assert_eq!(arr, [0, 0, 0, 1, 0, 0, 1, 1]);
//! ```
//!
//! ## Conditional operations
//!
//! One often needs to perform an operation on some lanes of the vector. Vector
//! masks, like `m32x4`, allow selecting on which vector lanes an operation is
//! to be performed:
//!
//! ```
//! # use packed_simd::*;
//! let a = i32x4::new(1, 1, 2, 2);
//!
//! // Add `1` to the first two lanes of the vector.
//! let m = m16x4::new(true, true, false, false);
//! let a = m.select(a + 1, a);
//! assert_eq!(a, i32x4::splat(2));
//! ```
//!
//! The elements of a vector mask are either `true` or `false`. Here `true`
//! means that a lane is "selected", while `false` means that a lane is not
//! selected.
//!
//! All vector masks implement a `mask.select(a: T, b: T) -> T` method that
//! works on all vectors that have the same number of lanes as the mask. The
//! resulting vector contains the elements of `a` for those lanes for which the
//! mask is `true`, and the elements of `b` otherwise.
//!
//! The example constructs a mask with the first two lanes set to `true` and
//! the last two lanes set to `false`. This selects the first two lanes of `a +
//! 1` and the last two lanes of `a`, producing a vector where the first two
//! lanes have been incremented by `1`.
//!
//! > note: mask `select` can be used on vector types that have the same number
//! > of lanes as the mask. The example shows this by using [`m16x4`] instead
//! > of [`m32x4`]. It is _typically_ more performant to use a mask element
//! > width equal to the element width of the vectors being operated upon.
//! > This is, however, not true for 512-bit wide vectors when targetting
//! > AVX-512, where the most efficient masks use only 1-bit per element.
//!
//! All vertical comparison operations returns masks:
//!
//! ```
//! # use packed_simd::*;
//! let a = i32x4::new(1, 1, 3, 3);
//! let b = i32x4::new(2, 2, 0, 0);
//!
//! // ge: >= (Greater Eequal; see also lt, le, gt, eq, ne).
//! let m = a.ge(i32x4::splat(2));
//!
//! if m.any() {
//! // all / any / none allow coherent control flow
//! let d = m.select(a, b);
//! assert_eq!(d, i32x4::new(2, 2, 3, 3));
//! }
//! ```
//!
//! ## Conversions
//!
//! * **lossless widening conversions**: [`From`]/[`Into`] are implemented for
//! vectors with the same number of lanes when the conversion is value
//! preserving (same as in `std`).
//!
//! * **safe bitwise conversions**: The cargo feature `into_bits` provides the
//! `IntoBits/FromBits` traits (`x.into_bits()`). These perform safe bitwise
//! `transmute`s when all bit patterns of the source type are valid bit
//! patterns of the target type and are also implemented for the
//! architecture-specific vector types of `std::arch`. For example, `let x:
//! u8x8 = m8x8::splat(true).into_bits();` is provided because all `m8x8` bit
//! patterns are valid `u8x8` bit patterns. However, the opposite is not
//! true, not all `u8x8` bit patterns are valid `m8x8` bit-patterns, so this
//! operation cannot be peformed safely using `x.into_bits()`; one needs to
//! use `unsafe { crate::mem::transmute(x) }` for that, making sure that the
//! value in the `u8x8` is a valid bit-pattern of `m8x8`.
//!
//! * **numeric casts** (`as`): are peformed using [`FromCast`]/[`Cast`]
//! (`x.cast()`), just like `as`:
//!
//! * casting integer vectors whose lane types have the same size (e.g.
//! `i32xN` -> `u32xN`) is a **no-op**,
//!
//! * casting from a larger integer to a smaller integer (e.g. `u32xN` ->
//! `u8xN`) will **truncate**,
//!
//! * casting from a smaller integer to a larger integer (e.g. `u8xN` ->
//! `u32xN`) will:
//! * **zero-extend** if the source is unsigned, or
//! * **sign-extend** if the source is signed,
//!
//! * casting from a float to an integer will **round the float towards
//! zero**,
//!
//! * casting from an integer to float will produce the floating point
//! representation of the integer, **rounding to nearest, ties to even**,
//!
//! * casting from an `f32` to an `f64` is perfect and lossless,
//!
//! * casting from an `f64` to an `f32` **rounds to nearest, ties to even**.
//!
//! Numeric casts are not very "precise": sometimes lossy, sometimes value
//! preserving, etc.
#![feature(
repr_simd,
const_fn,
platform_intrinsics,
stdsimd,
aarch64_target_feature,
arm_target_feature,
link_llvm_intrinsics,
core_intrinsics,
stmt_expr_attributes,
align_offset,
mmx_target_feature,
crate_visibility_modifier,
custom_inner_attributes
)]
#![allow(non_camel_case_types, non_snake_case)]
#![cfg_attr(test, feature(hashmap_internals))]
#![cfg_attr(
feature = "cargo-clippy",
allow(
clippy::cast_possible_truncation,
clippy::cast_lossless,
clippy::cast_possible_wrap,
clippy::cast_precision_loss,
// This lint is currently broken for generic code
// See https://github.com/rust-lang/rust-clippy/issues/3410
clippy::use_self
)
)]
#![cfg_attr(
feature = "cargo-clippy",
deny(clippy::missing_inline_in_public_items)
)]
#![deny(warnings, rust_2018_idioms)]
#![no_std]
use cfg_if::cfg_if;
cfg_if! {
if #[cfg(feature = "core_arch")] {
#[allow(unused_imports)]
use core_arch as arch;
} else {
#[allow(unused_imports)]
use core::arch;
}
}
#[cfg(all(target_arch = "wasm32", test))]
use wasm_bindgen_test::*;
#[allow(unused_imports)]
use core::{
/* arch (handled above), */ cmp, f32, f64, fmt, hash, hint, i128,
i16, i32, i64, i8, intrinsics, isize, iter, marker, mem, ops, ptr, slice,
u128, u16, u32, u64, u8, usize,
};
#[macro_use]
mod testing;
#[macro_use]
mod api;
mod codegen;
mod sealed;
/// Packed SIMD vector type.
///
/// # Examples
///
/// ```
/// # use packed_simd::Simd;
/// let v = Simd::<[i32; 4]>::new(0, 1, 2, 3);
/// assert_eq!(v.extract(2), 2);
/// ```
#[repr(transparent)]
#[derive(Copy, Clone)]
pub struct Simd<A: sealed::SimdArray>(
// FIXME: this type should be private,
// but it currently must be public for the
// `shuffle!` macro to work: it needs to
// access the internal `repr(simd)` type
// to call the shuffle intrinsics.
#[doc(hidden)] pub <A as sealed::SimdArray>::Tuple,
);
/// Wrapper over `T` implementing a lexicoraphical order via the `PartialOrd`
/// and/or `Ord` traits.
#[repr(transparent)]
#[derive(Copy, Clone, Debug)]
#[cfg_attr(
feature = "cargo-clippy",
allow(clippy::missing_inline_in_public_items)
)]
pub struct LexicographicallyOrdered<T>(T);
mod masks;
pub use self::masks::*;
mod v16;
pub use self::v16::*;
mod v32;
pub use self::v32::*;
mod v64;
pub use self::v64::*;
mod v128;
pub use self::v128::*;
mod v256;
pub use self::v256::*;
mod v512;
pub use self::v512::*;
mod vSize;
pub use self::vSize::*;
mod vPtr;
pub use self::vPtr::*;
pub use self::api::cast::*;
#[cfg(feature = "into_bits")]
pub use self::api::into_bits::*;
// Re-export the shuffle intrinsics required by the `shuffle!` macro.
#[doc(hidden)]
pub use self::codegen::llvm::{
__shuffle_vector16, __shuffle_vector2, __shuffle_vector32,
__shuffle_vector4, __shuffle_vector64, __shuffle_vector8,
};
crate mod llvm {
crate use crate::codegen::llvm::*;
}