blob: d8cccf86536e8c160c4d803c4cfa0a645e99c839 [file] [log] [blame]
//! External function calls.
//!
//! To a Cranelift function, all functions are "external". Directly called functions must be
//! declared in the preamble, and all function calls must have a signature.
//!
//! This module declares the data types used to represent external functions and call signatures.
use crate::ir::{ArgumentLoc, ExternalName, SigRef, Type};
use crate::isa::{CallConv, RegInfo, RegUnit};
use crate::machinst::RelocDistance;
use alloc::vec::Vec;
use core::fmt;
use core::str::FromStr;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
/// Function signature.
///
/// The function signature describes the types of formal parameters and return values along with
/// other details that are needed to call a function correctly.
///
/// A signature can optionally include ISA-specific ABI information which specifies exactly how
/// arguments and return values are passed.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Signature {
/// The arguments passed to the function.
pub params: Vec<AbiParam>,
/// Values returned from the function.
pub returns: Vec<AbiParam>,
/// Calling convention.
pub call_conv: CallConv,
}
impl Signature {
/// Create a new blank signature.
pub fn new(call_conv: CallConv) -> Self {
Self {
params: Vec::new(),
returns: Vec::new(),
call_conv,
}
}
/// Clear the signature so it is identical to a fresh one returned by `new()`.
pub fn clear(&mut self, call_conv: CallConv) {
self.params.clear();
self.returns.clear();
self.call_conv = call_conv;
}
/// Return an object that can display `self` with correct register names.
pub fn display<'a, R: Into<Option<&'a RegInfo>>>(&'a self, regs: R) -> DisplaySignature<'a> {
DisplaySignature(self, regs.into())
}
/// Find the index of a presumed unique special-purpose parameter.
pub fn special_param_index(&self, purpose: ArgumentPurpose) -> Option<usize> {
self.params.iter().rposition(|arg| arg.purpose == purpose)
}
/// Find the index of a presumed unique special-purpose parameter.
pub fn special_return_index(&self, purpose: ArgumentPurpose) -> Option<usize> {
self.returns.iter().rposition(|arg| arg.purpose == purpose)
}
/// Does this signature have a parameter whose `ArgumentPurpose` is
/// `purpose`?
pub fn uses_special_param(&self, purpose: ArgumentPurpose) -> bool {
self.special_param_index(purpose).is_some()
}
/// Does this signature have a return whose `ArgumentPurpose` is `purpose`?
pub fn uses_special_return(&self, purpose: ArgumentPurpose) -> bool {
self.special_return_index(purpose).is_some()
}
/// How many special parameters does this function have?
pub fn num_special_params(&self) -> usize {
self.params
.iter()
.filter(|p| p.purpose != ArgumentPurpose::Normal)
.count()
}
/// How many special returns does this function have?
pub fn num_special_returns(&self) -> usize {
self.returns
.iter()
.filter(|r| r.purpose != ArgumentPurpose::Normal)
.count()
}
/// Does this signature take an struct return pointer parameter?
pub fn uses_struct_return_param(&self) -> bool {
self.uses_special_param(ArgumentPurpose::StructReturn)
}
/// Does this return more than one normal value? (Pre-struct return
/// legalization)
pub fn is_multi_return(&self) -> bool {
self.returns
.iter()
.filter(|r| r.purpose == ArgumentPurpose::Normal)
.count()
> 1
}
}
/// Wrapper type capable of displaying a `Signature` with correct register names.
pub struct DisplaySignature<'a>(&'a Signature, Option<&'a RegInfo>);
fn write_list(f: &mut fmt::Formatter, args: &[AbiParam], regs: Option<&RegInfo>) -> fmt::Result {
match args.split_first() {
None => {}
Some((first, rest)) => {
write!(f, "{}", first.display(regs))?;
for arg in rest {
write!(f, ", {}", arg.display(regs))?;
}
}
}
Ok(())
}
impl<'a> fmt::Display for DisplaySignature<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(")?;
write_list(f, &self.0.params, self.1)?;
write!(f, ")")?;
if !self.0.returns.is_empty() {
write!(f, " -> ")?;
write_list(f, &self.0.returns, self.1)?;
}
write!(f, " {}", self.0.call_conv)
}
}
impl fmt::Display for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(None).fmt(f)
}
}
/// Function parameter or return value descriptor.
///
/// This describes the value type being passed to or from a function along with flags that affect
/// how the argument is passed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct AbiParam {
/// Type of the argument value.
pub value_type: Type,
/// Special purpose of argument, or `Normal`.
pub purpose: ArgumentPurpose,
/// Method for extending argument to a full register.
pub extension: ArgumentExtension,
/// ABI-specific location of this argument, or `Unassigned` for arguments that have not yet
/// been legalized.
pub location: ArgumentLoc,
/// Was the argument converted to pointer during legalization?
pub legalized_to_pointer: bool,
}
impl AbiParam {
/// Create a parameter with default flags.
pub fn new(vt: Type) -> Self {
Self {
value_type: vt,
extension: ArgumentExtension::None,
purpose: ArgumentPurpose::Normal,
location: Default::default(),
legalized_to_pointer: false,
}
}
/// Create a special-purpose parameter that is not (yet) bound to a specific register.
pub fn special(vt: Type, purpose: ArgumentPurpose) -> Self {
Self {
value_type: vt,
extension: ArgumentExtension::None,
purpose,
location: Default::default(),
legalized_to_pointer: false,
}
}
/// Create a parameter for a special-purpose register.
pub fn special_reg(vt: Type, purpose: ArgumentPurpose, regunit: RegUnit) -> Self {
Self {
value_type: vt,
extension: ArgumentExtension::None,
purpose,
location: ArgumentLoc::Reg(regunit),
legalized_to_pointer: false,
}
}
/// Convert `self` to a parameter with the `uext` flag set.
pub fn uext(self) -> Self {
debug_assert!(self.value_type.is_int(), "uext on {} arg", self.value_type);
Self {
extension: ArgumentExtension::Uext,
..self
}
}
/// Convert `self` to a parameter type with the `sext` flag set.
pub fn sext(self) -> Self {
debug_assert!(self.value_type.is_int(), "sext on {} arg", self.value_type);
Self {
extension: ArgumentExtension::Sext,
..self
}
}
/// Return an object that can display `self` with correct register names.
pub fn display<'a, R: Into<Option<&'a RegInfo>>>(&'a self, regs: R) -> DisplayAbiParam<'a> {
DisplayAbiParam(self, regs.into())
}
}
/// Wrapper type capable of displaying a `AbiParam` with correct register names.
pub struct DisplayAbiParam<'a>(&'a AbiParam, Option<&'a RegInfo>);
impl<'a> fmt::Display for DisplayAbiParam<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0.value_type)?;
if self.0.legalized_to_pointer {
write!(f, " ptr")?;
}
match self.0.extension {
ArgumentExtension::None => {}
ArgumentExtension::Uext => write!(f, " uext")?,
ArgumentExtension::Sext => write!(f, " sext")?,
}
if self.0.purpose != ArgumentPurpose::Normal {
write!(f, " {}", self.0.purpose)?;
}
if self.0.location.is_assigned() {
write!(f, " [{}]", self.0.location.display(self.1))?;
}
Ok(())
}
}
impl fmt::Display for AbiParam {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(None).fmt(f)
}
}
/// Function argument extension options.
///
/// On some architectures, small integer function arguments are extended to the width of a
/// general-purpose register.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum ArgumentExtension {
/// No extension, high bits are indeterminate.
None,
/// Unsigned extension: high bits in register are 0.
Uext,
/// Signed extension: high bits in register replicate sign bit.
Sext,
}
/// The special purpose of a function argument.
///
/// Function arguments and return values are used to pass user program values between functions,
/// but they are also used to represent special registers with significance to the ABI such as
/// frame pointers and callee-saved registers.
///
/// The argument purpose is used to indicate any special meaning of an argument or return value.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum ArgumentPurpose {
/// A normal user program value passed to or from a function.
Normal,
/// A C struct passed as argument.
StructArgument(u32),
/// Struct return pointer.
///
/// When a function needs to return more data than will fit in registers, the caller passes a
/// pointer to a memory location where the return value can be written. In some ABIs, this
/// struct return pointer is passed in a specific register.
///
/// This argument kind can also appear as a return value for ABIs that require a function with
/// a `StructReturn` pointer argument to also return that pointer in a register.
StructReturn,
/// The link register.
///
/// Most RISC architectures implement calls by saving the return address in a designated
/// register rather than pushing it on the stack. This is represented with a `Link` argument.
///
/// Similarly, some return instructions expect the return address in a register represented as
/// a `Link` return value.
Link,
/// The frame pointer.
///
/// This indicates the frame pointer register which has a special meaning in some ABIs.
///
/// The frame pointer appears as an argument and as a return value since it is a callee-saved
/// register.
FramePointer,
/// A callee-saved register.
///
/// Some calling conventions have registers that must be saved by the callee. These registers
/// are represented as `CalleeSaved` arguments and return values.
CalleeSaved,
/// A VM context pointer.
///
/// This is a pointer to a context struct containing details about the current sandbox. It is
/// used as a base pointer for `vmctx` global values.
VMContext,
/// A signature identifier.
///
/// This is a special-purpose argument used to identify the calling convention expected by the
/// caller in an indirect call. The callee can verify that the expected signature ID matches.
SignatureId,
/// A stack limit pointer.
///
/// This is a pointer to a stack limit. It is used to check the current stack pointer
/// against. Can only appear once in a signature.
StackLimit,
/// A callee TLS value.
///
/// In the Baldrdash-2020 calling convention, the stack upon entry to the callee contains the
/// TLS-register values for the caller and the callee. This argument is used to provide the
/// value for the callee.
CalleeTLS,
/// A caller TLS value.
///
/// In the Baldrdash-2020 calling convention, the stack upon entry to the callee contains the
/// TLS-register values for the caller and the callee. This argument is used to provide the
/// value for the caller.
CallerTLS,
}
impl fmt::Display for ArgumentPurpose {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match self {
Self::Normal => "normal",
Self::StructArgument(size) => return write!(f, "sarg({})", size),
Self::StructReturn => "sret",
Self::Link => "link",
Self::FramePointer => "fp",
Self::CalleeSaved => "csr",
Self::VMContext => "vmctx",
Self::SignatureId => "sigid",
Self::StackLimit => "stack_limit",
Self::CalleeTLS => "callee_tls",
Self::CallerTLS => "caller_tls",
})
}
}
impl FromStr for ArgumentPurpose {
type Err = ();
fn from_str(s: &str) -> Result<Self, ()> {
match s {
"normal" => Ok(Self::Normal),
"sret" => Ok(Self::StructReturn),
"link" => Ok(Self::Link),
"fp" => Ok(Self::FramePointer),
"csr" => Ok(Self::CalleeSaved),
"vmctx" => Ok(Self::VMContext),
"sigid" => Ok(Self::SignatureId),
"stack_limit" => Ok(Self::StackLimit),
_ if s.starts_with("sarg(") => {
if !s.ends_with(")") {
return Err(());
}
// Parse 'sarg(size)'
let size: u32 = s["sarg(".len()..s.len() - 1].parse().map_err(|_| ())?;
Ok(Self::StructArgument(size))
}
_ => Err(()),
}
}
}
/// An external function.
///
/// Information about a function that can be called directly with a direct `call` instruction.
#[derive(Clone, Debug)]
pub struct ExtFuncData {
/// Name of the external function.
pub name: ExternalName,
/// Call signature of function.
pub signature: SigRef,
/// Will this function be defined nearby, such that it will always be a certain distance away,
/// after linking? If so, references to it can avoid going through a GOT or PLT. Note that
/// symbols meant to be preemptible cannot be considered colocated.
///
/// If `true`, some backends may use relocation forms that have limited range. The exact
/// distance depends on the code model in use. Currently on AArch64, for example, Cranelift
/// uses a custom code model supporting up to +/- 128MB displacements. If it is unknown how
/// far away the target will be, it is best not to set the `colocated` flag; in general, this
/// flag is best used when the target is known to be in the same unit of code generation, such
/// as a Wasm module.
///
/// See the documentation for [`RelocDistance`](crate::machinst::RelocDistance) for more details. A
/// `colocated` flag value of `true` implies `RelocDistance::Near`.
pub colocated: bool,
}
impl fmt::Display for ExtFuncData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.colocated {
write!(f, "colocated ")?;
}
write!(f, "{} {}", self.name, self.signature)
}
}
impl ExtFuncData {
/// Return an estimate of the distance to the referred-to function symbol.
pub fn reloc_distance(&self) -> RelocDistance {
if self.colocated {
RelocDistance::Near
} else {
RelocDistance::Far
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ir::types::{B8, F32, I32};
use alloc::string::ToString;
#[test]
fn argument_type() {
let t = AbiParam::new(I32);
assert_eq!(t.to_string(), "i32");
let mut t = t.uext();
assert_eq!(t.to_string(), "i32 uext");
assert_eq!(t.sext().to_string(), "i32 sext");
t.purpose = ArgumentPurpose::StructReturn;
assert_eq!(t.to_string(), "i32 uext sret");
t.legalized_to_pointer = true;
assert_eq!(t.to_string(), "i32 ptr uext sret");
}
#[test]
fn argument_purpose() {
let all_purpose = [
(ArgumentPurpose::Normal, "normal"),
(ArgumentPurpose::StructReturn, "sret"),
(ArgumentPurpose::Link, "link"),
(ArgumentPurpose::FramePointer, "fp"),
(ArgumentPurpose::CalleeSaved, "csr"),
(ArgumentPurpose::VMContext, "vmctx"),
(ArgumentPurpose::SignatureId, "sigid"),
(ArgumentPurpose::StackLimit, "stack_limit"),
(ArgumentPurpose::StructArgument(42), "sarg(42)"),
];
for &(e, n) in &all_purpose {
assert_eq!(e.to_string(), n);
assert_eq!(Ok(e), n.parse());
}
}
#[test]
fn call_conv() {
for &cc in &[
CallConv::Fast,
CallConv::Cold,
CallConv::SystemV,
CallConv::WindowsFastcall,
CallConv::BaldrdashSystemV,
CallConv::BaldrdashWindows,
CallConv::Baldrdash2020,
] {
assert_eq!(Ok(cc), cc.to_string().parse())
}
}
#[test]
fn signatures() {
let mut sig = Signature::new(CallConv::BaldrdashSystemV);
assert_eq!(sig.to_string(), "() baldrdash_system_v");
sig.params.push(AbiParam::new(I32));
assert_eq!(sig.to_string(), "(i32) baldrdash_system_v");
sig.returns.push(AbiParam::new(F32));
assert_eq!(sig.to_string(), "(i32) -> f32 baldrdash_system_v");
sig.params.push(AbiParam::new(I32.by(4).unwrap()));
assert_eq!(sig.to_string(), "(i32, i32x4) -> f32 baldrdash_system_v");
sig.returns.push(AbiParam::new(B8));
assert_eq!(
sig.to_string(),
"(i32, i32x4) -> f32, b8 baldrdash_system_v"
);
// Order does not matter.
sig.params[0].location = ArgumentLoc::Stack(24);
sig.params[1].location = ArgumentLoc::Stack(8);
// Writing ABI-annotated signatures.
assert_eq!(
sig.to_string(),
"(i32 [24], i32x4 [8]) -> f32, b8 baldrdash_system_v"
);
}
}