| use super::*; |
| |
| /// Helper to make an `ArrayVec`. |
| /// |
| /// You specify the backing array type, and optionally give all the elements you |
| /// want to initially place into the array. |
| /// |
| /// As an unfortunate restriction, the backing array type must support `Default` |
| /// for it to work with this macro. |
| /// |
| /// ```rust |
| /// use tinyvec::*; |
| /// |
| /// // The backing array type can be specified in the macro call |
| /// let empty_av = array_vec!([u8; 16]); |
| /// let some_ints = array_vec!([i32; 4], 1, 2, 3); |
| /// |
| /// // Or left to inference |
| /// let empty_av: ArrayVec<[u8; 10]> = array_vec!(); |
| /// let some_ints: ArrayVec<[u8; 10]> = array_vec!(5, 6, 7, 8); |
| /// ``` |
| #[macro_export] |
| macro_rules! array_vec { |
| ($array_type:ty) => { |
| { |
| let av: $crate::ArrayVec<$array_type> = Default::default(); |
| av |
| } |
| }; |
| ($array_type:ty, $($elem:expr),*) => { |
| { |
| let mut av: $crate::ArrayVec<$array_type> = Default::default(); |
| $( av.push($elem); )* |
| av |
| } |
| }; |
| () => { |
| array_vec!(_) |
| }; |
| ($($elem:expr),*) => { |
| array_vec!(_, $($elem),*) |
| }; |
| } |
| |
| /// An array-backed, vector-like data structure. |
| /// |
| /// * `ArrayVec` has a fixed capacity, equal to the array size. |
| /// * `ArrayVec` has a variable length, as you add and remove elements. Attempts |
| /// to fill the vec beyond its capacity will cause a panic. |
| /// * All of the vec's array slots are always initialized in terms of Rust's |
| /// memory model. When you remove a element from a location, the old value at |
| /// that location is replaced with the type's default value. |
| /// |
| /// The overall API of this type is intended to, as much as possible, emulate |
| /// the API of the [`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html) |
| /// type. |
| /// |
| /// ## Construction |
| /// |
| /// If the backing array supports Default (length 32 or less), then you can use |
| /// the `array_vec!` macro similarly to how you might use the `vec!` macro. |
| /// Specify the array type, then optionally give all the initial values you want |
| /// to have. |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let some_ints = array_vec!([i32; 4], 1, 2, 3); |
| /// assert_eq!(some_ints.len(), 3); |
| /// ``` |
| /// |
| /// The [`default`](ArrayVec::new) for an `ArrayVec` is to have a default |
| /// array with length 0. The [`new`](ArrayVec::new) method is the same as |
| /// calling `default` |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let some_ints = ArrayVec::<[i32; 7]>::default(); |
| /// assert_eq!(some_ints.len(), 0); |
| /// |
| /// let more_ints = ArrayVec::<[i32; 7]>::new(); |
| /// assert_eq!(some_ints, more_ints); |
| /// ``` |
| /// |
| /// If you have an array and want the _whole thing_ so count as being "in" the |
| /// new `ArrayVec` you can use one of the `from` implementations. If you want |
| /// _part of_ the array then you can use |
| /// [`from_array_len`](ArrayVec::from_array_len): |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let some_ints = ArrayVec::from([5, 6, 7, 8]); |
| /// assert_eq!(some_ints.len(), 4); |
| /// |
| /// let more_ints = ArrayVec::from_array_len([5, 6, 7, 8], 2); |
| /// assert_eq!(more_ints.len(), 2); |
| /// ``` |
| #[repr(C)] |
| #[derive(Clone, Copy, Default)] |
| pub struct ArrayVec<A: Array> { |
| len: usize, |
| data: A, |
| } |
| |
| impl<A: Array> Deref for ArrayVec<A> { |
| type Target = [A::Item]; |
| #[inline(always)] |
| #[must_use] |
| fn deref(&self) -> &Self::Target { |
| &self.data.as_slice()[..self.len] |
| } |
| } |
| |
| impl<A: Array> DerefMut for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| fn deref_mut(&mut self) -> &mut Self::Target { |
| &mut self.data.as_slice_mut()[..self.len] |
| } |
| } |
| |
| impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for ArrayVec<A> { |
| type Output = <I as SliceIndex<[A::Item]>>::Output; |
| #[inline(always)] |
| #[must_use] |
| fn index(&self, index: I) -> &Self::Output { |
| &self.deref()[index] |
| } |
| } |
| |
| impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| fn index_mut(&mut self, index: I) -> &mut Self::Output { |
| &mut self.deref_mut()[index] |
| } |
| } |
| |
| impl<A: Array> ArrayVec<A> { |
| /// Move all values from `other` into this vec. |
| /// |
| /// ## Panics |
| /// * If the vec overflows its capacity |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 10], 1, 2, 3); |
| /// let mut av2 = array_vec!([i32; 10], 4, 5, 6); |
| /// av.append(&mut av2); |
| /// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); |
| /// assert_eq!(av2, &[][..]); |
| /// ``` |
| #[inline] |
| pub fn append(&mut self, other: &mut Self) { |
| for item in other.drain(..) { |
| self.push(item) |
| } |
| } |
| |
| /// A `*mut` pointer to the backing array. |
| /// |
| /// ## Safety |
| /// |
| /// This pointer has provenance over the _entire_ backing array. |
| #[inline(always)] |
| #[must_use] |
| pub fn as_mut_ptr(&mut self) -> *mut A::Item { |
| self.data.as_slice_mut().as_mut_ptr() |
| } |
| |
| /// Performs a `deref_mut`, into unique slice form. |
| #[inline(always)] |
| #[must_use] |
| pub fn as_mut_slice(&mut self) -> &mut [A::Item] { |
| self.deref_mut() |
| } |
| |
| /// A `*const` pointer to the backing array. |
| /// |
| /// ## Safety |
| /// |
| /// This pointer has provenance over the _entire_ backing array. |
| #[inline(always)] |
| #[must_use] |
| pub fn as_ptr(&self) -> *const A::Item { |
| self.data.as_slice().as_ptr() |
| } |
| |
| /// Performs a `deref`, into shared slice form. |
| #[inline(always)] |
| #[must_use] |
| pub fn as_slice(&self) -> &[A::Item] { |
| self.deref() |
| } |
| |
| /// The capacity of the `ArrayVec`. |
| /// |
| /// This is fixed based on the array type, but can't yet be made a `const fn` |
| /// on Stable Rust. |
| #[inline(always)] |
| #[must_use] |
| pub fn capacity(&self) -> usize { |
| A::CAPACITY |
| } |
| |
| /// Truncates the `ArrayVec` down to length 0. |
| #[inline(always)] |
| pub fn clear(&mut self) { |
| self.truncate(0) |
| } |
| |
| /// Creates a draining iterator that removes the specified range in the vector |
| /// and yields the removed items. |
| /// |
| /// ## Panics |
| /// * If the start is greater than the end |
| /// * If the end is past the edge of the vec. |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 4], 1, 2, 3); |
| /// let av2: ArrayVec<[i32; 4]> = av.drain(1..).collect(); |
| /// assert_eq!(av.as_slice(), &[1][..]); |
| /// assert_eq!(av2.as_slice(), &[2, 3][..]); |
| /// |
| /// av.drain(..); |
| /// assert_eq!(av.as_slice(), &[]); |
| /// ``` |
| #[inline] |
| pub fn drain<R: RangeBounds<usize>>( |
| &mut self, |
| range: R, |
| ) -> ArrayVecDrain<'_, A> { |
| use core::ops::Bound; |
| let start = match range.start_bound() { |
| Bound::Included(x) => *x, |
| Bound::Excluded(x) => x + 1, |
| Bound::Unbounded => 0, |
| }; |
| let end = match range.end_bound() { |
| Bound::Included(x) => x + 1, |
| Bound::Excluded(x) => *x, |
| Bound::Unbounded => self.len, |
| }; |
| assert!( |
| start <= end, |
| "ArrayVec::drain> Illegal range, {} to {}", |
| start, |
| end |
| ); |
| assert!( |
| end <= self.len, |
| "ArrayVec::drain> Range ends at {} but length is only {}!", |
| end, |
| self.len |
| ); |
| ArrayVecDrain { |
| parent: self, |
| target_start: start, |
| target_index: start, |
| target_end: end, |
| } |
| } |
| |
| /// Clone each element of the slice into this `ArrayVec`. |
| /// |
| /// ## Panics |
| /// * If the `ArrayVec` would overflow, this will panic. |
| #[inline] |
| pub fn extend_from_slice(&mut self, sli: &[A::Item]) |
| where |
| A::Item: Clone, |
| { |
| if sli.is_empty() { |
| return; |
| } |
| |
| let new_len = self.len + sli.len(); |
| if new_len > A::CAPACITY { |
| panic!( |
| "ArrayVec::extend_from_slice> total length {} exceeds capacity {}!", |
| new_len, |
| A::CAPACITY |
| ) |
| } |
| |
| let target = &mut self.data.as_slice_mut()[self.len..new_len]; |
| target.clone_from_slice(sli); |
| self.set_len(new_len); |
| } |
| |
| /// Wraps up an array and uses the given length as the initial length. |
| /// |
| /// If you want to simply use the full array, use `from` instead. |
| /// |
| /// ## Panics |
| /// |
| /// * The length specified must be less than or equal to the capacity of the array. |
| #[inline] |
| #[must_use] |
| #[allow(clippy::match_wild_err_arm)] |
| pub fn from_array_len(data: A, len: usize) -> Self { |
| match Self::try_from_array_len(data, len) { |
| Ok(out) => out, |
| Err(_) => { |
| panic!("ArrayVec::from_array_len> length {} exceeds capacity {}!", len, A::CAPACITY) |
| } |
| } |
| } |
| |
| /// Inserts an item at the position given, moving all following elements +1 |
| /// index. |
| /// |
| /// ## Panics |
| /// * If `index` > `len` or |
| /// * If the capacity is exhausted |
| /// |
| /// ## Example |
| /// ```rust |
| /// use tinyvec::*; |
| /// let mut av = array_vec!([i32; 10], 1, 2, 3); |
| /// av.insert(1, 4); |
| /// assert_eq!(av.as_slice(), &[1, 4, 2, 3]); |
| /// av.insert(4, 5); |
| /// assert_eq!(av.as_slice(), &[1, 4, 2, 3, 5]); |
| /// ``` |
| #[inline] |
| pub fn insert(&mut self, index: usize, item: A::Item) { |
| if index > self.len { |
| panic!("ArrayVec::insert> index {} is out of bounds {}", index, self.len); |
| } |
| |
| // Try to push the element. |
| self.push(item); |
| // And move it into its place. |
| self.as_mut_slice()[index..].rotate_right(1); |
| } |
| |
| /// Checks if the length is 0. |
| #[inline(always)] |
| #[must_use] |
| pub fn is_empty(&self) -> bool { |
| self.len == 0 |
| } |
| |
| /// The length of the `ArrayVec` (in elements). |
| #[inline(always)] |
| #[must_use] |
| pub fn len(&self) -> usize { |
| self.len |
| } |
| |
| /// Makes a new, empty `ArrayVec`. |
| #[inline(always)] |
| #[must_use] |
| pub fn new() -> Self |
| where |
| A: Default, |
| { |
| Self::default() |
| } |
| |
| /// Remove and return the last element of the vec, if there is one. |
| /// |
| /// ## Failure |
| /// * If the vec is empty you get `None`. |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 10], 1, 2); |
| /// assert_eq!(av.pop(), Some(2)); |
| /// assert_eq!(av.pop(), Some(1)); |
| /// assert_eq!(av.pop(), None); |
| /// ``` |
| #[inline] |
| pub fn pop(&mut self) -> Option<A::Item> { |
| if self.len > 0 { |
| self.len -= 1; |
| let out = take(&mut self.data.as_slice_mut()[self.len]); |
| Some(out) |
| } else { |
| None |
| } |
| } |
| |
| /// Place an element onto the end of the vec. |
| /// |
| /// ## Panics |
| /// * If the length of the vec would overflow the capacity. |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 2]); |
| /// assert_eq!(&av[..], []); |
| /// av.push(1); |
| /// assert_eq!(&av[..], [1]); |
| /// av.push(2); |
| /// assert_eq!(&av[..], [1, 2]); |
| /// // av.push(3); this would overflow the ArrayVec and panic! |
| /// ``` |
| #[inline(always)] |
| pub fn push(&mut self, val: A::Item) { |
| if self.len < A::CAPACITY { |
| replace(&mut self.data.as_slice_mut()[self.len], val); |
| self.len += 1; |
| } else { |
| panic!("ArrayVec::push> capacity overflow!") |
| } |
| } |
| |
| /// Removes the item at `index`, shifting all others down by one index. |
| /// |
| /// Returns the removed element. |
| /// |
| /// ## Panics |
| /// |
| /// * If the index is out of bounds. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 4], 1, 2, 3); |
| /// assert_eq!(av.remove(1), 2); |
| /// assert_eq!(&av[..], [1, 3]); |
| /// ``` |
| #[inline] |
| pub fn remove(&mut self, index: usize) -> A::Item { |
| let targets: &mut [A::Item] = &mut self.deref_mut()[index..]; |
| let item = replace(&mut targets[0], A::Item::default()); |
| targets.rotate_left(1); |
| self.len -= 1; |
| item |
| } |
| |
| /// Resize the vec to the new length. |
| /// |
| /// If it needs to be longer, it's filled with clones of the provided value. |
| /// If it needs to be shorter, it's truncated. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// # use tinyvec::*; |
| /// |
| /// let mut av = array_vec!([&str; 10], "hello"); |
| /// av.resize(3, "world"); |
| /// assert_eq!(&av[..], ["hello", "world", "world"]); |
| /// |
| /// let mut av = array_vec!([i32; 10], 1, 2, 3, 4); |
| /// av.resize(2, 0); |
| /// assert_eq!(&av[..], [1, 2]); |
| /// ``` |
| #[inline] |
| pub fn resize(&mut self, new_len: usize, new_val: A::Item) |
| where |
| A::Item: Clone, |
| { |
| match new_len.checked_sub(self.len) { |
| None => self.truncate(new_len), |
| Some(0) => (), |
| Some(new_elements) => { |
| for _ in 1..new_elements { |
| self.push(new_val.clone()); |
| } |
| self.push(new_val); |
| } |
| } |
| } |
| |
| /// Resize the vec to the new length. |
| /// |
| /// If it needs to be longer, it's filled with repeated calls to the provided |
| /// function. If it needs to be shorter, it's truncated. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// # use tinyvec::*; |
| /// |
| /// let mut av = array_vec!([i32; 10], 1, 2, 3); |
| /// av.resize_with(5, Default::default); |
| /// assert_eq!(&av[..], [1, 2, 3, 0, 0]); |
| /// |
| /// let mut av = array_vec!([i32; 10]); |
| /// let mut p = 1; |
| /// av.resize_with(4, || { p *= 2; p }); |
| /// assert_eq!(&av[..], [2, 4, 8, 16]); |
| /// ``` |
| #[inline] |
| pub fn resize_with<F: FnMut() -> A::Item>( |
| &mut self, |
| new_len: usize, |
| mut f: F, |
| ) { |
| match new_len.checked_sub(self.len) { |
| None => self.truncate(new_len), |
| Some(new_elements) => { |
| for _ in 0..new_elements { |
| self.push(f()); |
| } |
| } |
| } |
| } |
| |
| /// Walk the vec and keep only the elements that pass the predicate given. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// # use tinyvec::*; |
| /// |
| /// let mut av = array_vec!([i32; 10], 1, 1, 2, 3, 3, 4); |
| /// av.retain(|&x| x % 2 == 0); |
| /// assert_eq!(&av[..], [2, 4]); |
| /// ``` |
| #[inline] |
| pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, mut acceptable: F) { |
| // Drop guard to contain exactly the remaining elements when the test |
| // panics. |
| struct JoinOnDrop<'vec, Item> { |
| items: &'vec mut [Item], |
| done_end: usize, |
| // Start of tail relative to `done_end`. |
| tail_start: usize, |
| } |
| |
| impl<Item> Drop for JoinOnDrop<'_, Item> { |
| fn drop(&mut self) { |
| self.items[self.done_end..].rotate_left(self.tail_start); |
| } |
| } |
| |
| let mut rest = JoinOnDrop { |
| items: &mut self.data.as_slice_mut()[..self.len], |
| done_end: 0, |
| tail_start: 0, |
| }; |
| |
| for idx in 0..self.len { |
| // Loop start invariant: idx = rest.done_end + rest.tail_start |
| if !acceptable(&rest.items[idx]) { |
| let _ = take(&mut rest.items[idx]); |
| self.len -= 1; |
| rest.tail_start += 1; |
| } else { |
| rest.items.swap(rest.done_end, idx); |
| rest.done_end += 1; |
| } |
| } |
| } |
| |
| /// Forces the length of the vector to `new_len`. |
| /// |
| /// ## Panics |
| /// * If `new_len` is greater than the vec's capacity. |
| /// |
| /// ## Safety |
| /// * This is a fully safe operation! The inactive memory already counts as |
| /// "initialized" by Rust's rules. |
| /// * Other than "the memory is initialized" there are no other guarantees |
| /// regarding what you find in the inactive portion of the vec. |
| #[inline(always)] |
| pub fn set_len(&mut self, new_len: usize) { |
| if new_len > A::CAPACITY { |
| // Note(Lokathor): Technically we don't have to panic here, and we could |
| // just let some other call later on trigger a panic on accident when the |
| // length is wrong. However, it's a lot easier to catch bugs when things |
| // are more "fail-fast". |
| panic!("ArrayVec: set_len overflow!") |
| } else { |
| self.len = new_len; |
| } |
| } |
| |
| /// Fill the vector until its capacity has been reached. |
| /// |
| /// Successively fills unused space in the spare slice of the vector with |
| /// elements from the iterator. It then returns the remaining iterator |
| /// without exhausting it. This also allows appending the head of an |
| /// infinite iterator. |
| /// |
| /// This is an alternative to `Extend::extend` method for cases where the |
| /// length of the iterator can not be checked. Since this vector can not |
| /// reallocate to increase its capacity, it is unclear what to do with |
| /// remaining elements in the iterator and the iterator itself. The |
| /// interface also provides no way to communicate this to the caller. |
| /// |
| /// ## Panics |
| /// * If the `next` method of the provided iterator panics. |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 4]); |
| /// let mut to_inf = av.fill(0..); |
| /// assert_eq!(&av[..], [0, 1, 2, 3]); |
| /// assert_eq!(to_inf.next(), Some(4)); |
| /// ``` |
| #[inline] |
| pub fn fill<I: IntoIterator<Item = A::Item>>( |
| &mut self, |
| iter: I, |
| ) -> I::IntoIter { |
| let mut iter = iter.into_iter(); |
| for element in iter.by_ref().take(self.capacity() - self.len()) { |
| self.push(element); |
| } |
| iter |
| } |
| |
| /// Splits the collection at the point given. |
| /// |
| /// * `[0, at)` stays in this vec |
| /// * `[at, len)` ends up in the new vec. |
| /// |
| /// ## Panics |
| /// * if at > len |
| /// |
| /// ## Example |
| /// |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 4], 1, 2, 3); |
| /// let av2 = av.split_off(1); |
| /// assert_eq!(&av[..], [1]); |
| /// assert_eq!(&av2[..], [2, 3]); |
| /// ``` |
| #[inline] |
| pub fn split_off(&mut self, at: usize) -> Self |
| where |
| Self: Default, |
| { |
| // FIXME: should this just use drain into the output? |
| if at > self.len { |
| panic!( |
| "ArrayVec::split_off> at value {} exceeds length of {}", |
| at, self.len |
| ); |
| } |
| let mut new = Self::default(); |
| let moves = &mut self.as_mut_slice()[at..]; |
| let split_len = moves.len(); |
| let targets = &mut new.data.as_slice_mut()[..split_len]; |
| moves.swap_with_slice(targets); |
| new.len = split_len; |
| self.len = at; |
| new |
| } |
| |
| /// Remove an element, swapping the end of the vec into its place. |
| /// |
| /// ## Panics |
| /// * If the index is out of bounds. |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([&str; 4], "foo", "bar", "quack", "zap"); |
| /// |
| /// assert_eq!(av.swap_remove(1), "bar"); |
| /// assert_eq!(&av[..], ["foo", "zap", "quack"]); |
| /// |
| /// assert_eq!(av.swap_remove(0), "foo"); |
| /// assert_eq!(&av[..], ["quack", "zap"]); |
| /// ``` |
| #[inline] |
| pub fn swap_remove(&mut self, index: usize) -> A::Item { |
| assert!( |
| index < self.len, |
| "ArrayVec::swap_remove> index {} is out of bounds {}", |
| index, |
| self.len |
| ); |
| if index == self.len - 1 { |
| self.pop().unwrap() |
| } else { |
| let i = self.pop().unwrap(); |
| replace(&mut self[index], i) |
| } |
| } |
| |
| /// Reduces the vec's length to the given value. |
| /// |
| /// If the vec is already shorter than the input, nothing happens. |
| #[inline] |
| pub fn truncate(&mut self, new_len: usize) { |
| if needs_drop::<A::Item>() { |
| while self.len > new_len { |
| self.pop(); |
| } |
| } else { |
| self.len = self.len.min(new_len); |
| } |
| } |
| |
| /// Wraps an array, using the given length as the starting length. |
| /// |
| /// If you want to use the whole length of the array, you can just use the |
| /// `From` impl. |
| /// |
| /// ## Failure |
| /// |
| /// If the given length is greater than the capacity of the array this will |
| /// error, and you'll get the array back in the `Err`. |
| #[inline] |
| pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> { |
| if len <= A::CAPACITY { |
| Ok(Self { data, len }) |
| } else { |
| Err(data) |
| } |
| } |
| } |
| |
| #[cfg(feature = "grab_spare_slice")] |
| impl<A: Array> ArrayVec<A> { |
| /// Obtain the shared slice of the array _after_ the active memory. |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 4]); |
| /// assert_eq!(av.grab_spare_slice().len(), 4); |
| /// av.push(10); |
| /// av.push(11); |
| /// av.push(12); |
| /// av.push(13); |
| /// assert_eq!(av.grab_spare_slice().len(), 0); |
| /// ``` |
| #[inline(always)] |
| pub fn grab_spare_slice(&self) -> &[A::Item] { |
| &self.data.as_slice()[self.len..] |
| } |
| |
| /// Obtain the mutable slice of the array _after_ the active memory. |
| /// |
| /// ## Example |
| /// ```rust |
| /// # use tinyvec::*; |
| /// let mut av = array_vec!([i32; 4]); |
| /// assert_eq!(av.grab_spare_slice_mut().len(), 4); |
| /// av.push(10); |
| /// av.push(11); |
| /// assert_eq!(av.grab_spare_slice_mut().len(), 2); |
| /// ``` |
| #[inline(always)] |
| pub fn grab_spare_slice_mut(&mut self) -> &mut [A::Item] { |
| &mut self.data.as_slice_mut()[self.len..] |
| } |
| } |
| |
| #[cfg(feature = "nightly_slice_partition_dedup")] |
| impl<A: Array> ArrayVec<A> { |
| /// De-duplicates the vec contents. |
| #[inline(always)] |
| pub fn dedup(&mut self) |
| where |
| A::Item: PartialEq, |
| { |
| self.dedup_by(|a, b| a == b) |
| } |
| |
| /// De-duplicates the vec according to the predicate given. |
| #[inline(always)] |
| pub fn dedup_by<F>(&mut self, same_bucket: F) |
| where |
| F: FnMut(&mut A::Item, &mut A::Item) -> bool, |
| { |
| let len = { |
| let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket); |
| dedup.len() |
| }; |
| self.truncate(len); |
| } |
| |
| /// De-duplicates the vec according to the key selector given. |
| #[inline(always)] |
| pub fn dedup_by_key<F, K>(&mut self, mut key: F) |
| where |
| F: FnMut(&mut A::Item) -> K, |
| K: PartialEq, |
| { |
| self.dedup_by(|a, b| key(a) == key(b)) |
| } |
| } |
| |
| /// Draining iterator for `ArrayVecDrain` |
| /// |
| /// See [`ArrayVec::drain`](ArrayVec::drain) |
| pub struct ArrayVecDrain<'p, A: Array> { |
| parent: &'p mut ArrayVec<A>, |
| target_start: usize, |
| target_index: usize, |
| target_end: usize, |
| } |
| impl<'p, A: Array> Iterator for ArrayVecDrain<'p, A> { |
| type Item = A::Item; |
| #[inline] |
| fn next(&mut self) -> Option<Self::Item> { |
| if self.target_index != self.target_end { |
| let out = take(&mut self.parent[self.target_index]); |
| self.target_index += 1; |
| Some(out) |
| } else { |
| None |
| } |
| } |
| } |
| impl<'p, A: Array> FusedIterator for ArrayVecDrain<'p, A> { } |
| impl<'p, A: Array> Drop for ArrayVecDrain<'p, A> { |
| #[inline] |
| fn drop(&mut self) { |
| // Changed because it was moving `self`, it's also more clear and the std does the same |
| self.for_each(drop); |
| // Implementation very similar to [`ArrayVec::remove`](ArrayVec::remove) |
| let count = self.target_end - self.target_start; |
| let targets: &mut [A::Item] = &mut self.parent.deref_mut()[self.target_start..]; |
| targets.rotate_left(count); |
| self.parent.len -= count; |
| } |
| } |
| |
| impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| fn as_mut(&mut self) -> &mut [A::Item] { |
| &mut *self |
| } |
| } |
| |
| impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| fn as_ref(&self) -> &[A::Item] { |
| &*self |
| } |
| } |
| |
| impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| fn borrow(&self) -> &[A::Item] { |
| &*self |
| } |
| } |
| |
| impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| fn borrow_mut(&mut self) -> &mut [A::Item] { |
| &mut *self |
| } |
| } |
| |
| impl<A: Array> Extend<A::Item> for ArrayVec<A> { |
| #[inline] |
| fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) { |
| for t in iter { |
| self.push(t) |
| } |
| } |
| } |
| |
| impl<A: Array> From<A> for ArrayVec<A> { |
| #[inline(always)] |
| #[must_use] |
| /// The output has a length equal to the full array. |
| /// |
| /// If you want to select a length, use |
| /// [`from_array_len`](ArrayVec::from_array_len) |
| fn from(data: A) -> Self { |
| Self { len: data.as_slice().len(), data } |
| } |
| } |
| |
| impl<A: Array + Default> FromIterator<A::Item> for ArrayVec<A> { |
| #[inline] |
| #[must_use] |
| fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self { |
| let mut av = Self::default(); |
| for i in iter { |
| av.push(i) |
| } |
| av |
| } |
| } |
| |
| /// Iterator for consuming an `ArrayVec` and returning owned elements. |
| pub struct ArrayVecIterator<A: Array> { |
| base: usize, |
| len: usize, |
| data: A, |
| } |
| |
| impl<A: Array> ArrayVecIterator<A> { |
| /// Returns the remaining items of this iterator as a slice. |
| #[inline] |
| #[must_use] |
| pub fn as_slice(&self) -> &[A::Item] { |
| &self.data.as_slice()[self.base..self.len] |
| } |
| } |
| impl<A: Array> FusedIterator for ArrayVecIterator<A> { } |
| impl<A: Array> Iterator for ArrayVecIterator<A> { |
| type Item = A::Item; |
| #[inline] |
| fn next(&mut self) -> Option<Self::Item> { |
| if self.base < self.len { |
| let out = take(&mut self.data.as_slice_mut()[self.base]); |
| self.base += 1; |
| Some(out) |
| } else { |
| None |
| } |
| } |
| #[inline(always)] |
| #[must_use] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let s = self.len - self.base; |
| (s, Some(s)) |
| } |
| #[inline(always)] |
| fn count(self) -> usize { |
| self.len - self.base |
| } |
| #[inline] |
| fn last(mut self) -> Option<Self::Item> { |
| Some(take(&mut self.data.as_slice_mut()[self.len])) |
| } |
| #[inline] |
| fn nth(&mut self, n: usize) -> Option<A::Item> { |
| let i = self.base + (n - 1); |
| if i < self.len { |
| let out = take(&mut self.data.as_slice_mut()[i]); |
| self.base = i + 1; |
| Some(out) |
| } else { |
| None |
| } |
| } |
| } |
| |
| impl<A: Array> Debug for ArrayVecIterator<A> where A::Item: Debug { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { |
| f.debug_tuple("ArrayVecIterator").field(&self.as_slice()).finish() |
| } |
| } |
| |
| impl<A: Array> IntoIterator for ArrayVec<A> { |
| type Item = A::Item; |
| type IntoIter = ArrayVecIterator<A>; |
| #[inline(always)] |
| #[must_use] |
| fn into_iter(self) -> Self::IntoIter { |
| ArrayVecIterator { base: 0, len: self.len, data: self.data } |
| } |
| } |
| |
| impl<A: Array> PartialEq for ArrayVec<A> |
| where |
| A::Item: PartialEq, |
| { |
| #[inline] |
| #[must_use] |
| fn eq(&self, other: &Self) -> bool { |
| self.as_slice().eq(other.as_slice()) |
| } |
| } |
| impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq {} |
| |
| impl<A: Array> PartialOrd for ArrayVec<A> |
| where |
| A::Item: PartialOrd, |
| { |
| #[inline] |
| #[must_use] |
| fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { |
| self.as_slice().partial_cmp(other.as_slice()) |
| } |
| } |
| impl<A: Array> Ord for ArrayVec<A> |
| where |
| A::Item: Ord, |
| { |
| #[inline] |
| #[must_use] |
| fn cmp(&self, other: &Self) -> core::cmp::Ordering { |
| self.as_slice().cmp(other.as_slice()) |
| } |
| } |
| |
| impl<A: Array> PartialEq<&A> for ArrayVec<A> |
| where |
| A::Item: PartialEq, |
| { |
| #[inline] |
| #[must_use] |
| fn eq(&self, other: &&A) -> bool { |
| self.as_slice().eq(other.as_slice()) |
| } |
| } |
| |
| impl<A: Array> PartialEq<&[A::Item]> for ArrayVec<A> |
| where |
| A::Item: PartialEq, |
| { |
| #[inline] |
| #[must_use] |
| fn eq(&self, other: &&[A::Item]) -> bool { |
| self.as_slice().eq(*other) |
| } |
| } |
| |
| impl<A: Array> Hash for ArrayVec<A> |
| where |
| A::Item: Hash, |
| { |
| #[inline] |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| self.as_slice().hash(state) |
| } |
| } |
| |
| #[cfg(feature = "experimental_write_impl")] |
| impl<A: Array<Item=u8>> core::fmt::Write for ArrayVec<A> |
| { |
| fn write_str(&mut self, s: &str) -> core::fmt::Result { |
| let my_len = self.len(); |
| let str_len = s.as_bytes().len(); |
| if my_len + str_len <= A::CAPACITY { |
| let remainder = &mut self.data.as_slice_mut()[my_len..]; |
| let target = &mut remainder[..str_len]; |
| target.copy_from_slice(s.as_bytes()); |
| Ok(()) |
| } else { |
| Err(core::fmt::Error) |
| } |
| } |
| } |
| |
| // // // // // // // // |
| // Formatting impls |
| // // // // // // // // |
| |
| impl<A: Array> Binary for ArrayVec<A> |
| where |
| A::Item: Binary, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| Binary::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> Debug for ArrayVec<A> |
| where |
| A::Item: Debug, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| Debug::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> Display for ArrayVec<A> |
| where |
| A::Item: Display, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| Display::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> LowerExp for ArrayVec<A> |
| where |
| A::Item: LowerExp, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| LowerExp::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> LowerHex for ArrayVec<A> |
| where |
| A::Item: LowerHex, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| LowerHex::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> Octal for ArrayVec<A> |
| where |
| A::Item: Octal, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| Octal::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> Pointer for ArrayVec<A> |
| where |
| A::Item: Pointer, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| Pointer::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> UpperExp for ArrayVec<A> |
| where |
| A::Item: UpperExp, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| UpperExp::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |
| |
| impl<A: Array> UpperHex for ArrayVec<A> |
| where |
| A::Item: UpperHex, |
| { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { |
| write!(f, "[")?; |
| for (i, elem) in self.iter().enumerate() { |
| if i > 0 { |
| write!(f, ", ")?; |
| } |
| UpperHex::fmt(elem, f)?; |
| } |
| write!(f, "]") |
| } |
| } |