| // Adapted from https://github.com/Alexhuszagh/rust-lexical. |
| |
| //! Algorithms to efficiently convert strings to floats. |
| |
| use super::bhcomp::*; |
| use super::cached::*; |
| use super::errors::*; |
| use super::float::ExtendedFloat; |
| use super::num::*; |
| use super::small_powers::*; |
| |
| // FAST |
| // ---- |
| |
| /// Convert mantissa to exact value for a non-base2 power. |
| /// |
| /// Returns the resulting float and if the value can be represented exactly. |
| pub(crate) fn fast_path<F>(mantissa: u64, exponent: i32) -> Option<F> |
| where |
| F: Float, |
| { |
| // `mantissa >> (F::MANTISSA_SIZE+1) != 0` effectively checks if the |
| // value has a no bits above the hidden bit, which is what we want. |
| let (min_exp, max_exp) = F::exponent_limit(); |
| let shift_exp = F::mantissa_limit(); |
| let mantissa_size = F::MANTISSA_SIZE + 1; |
| if mantissa == 0 { |
| Some(F::ZERO) |
| } else if mantissa >> mantissa_size != 0 { |
| // Would require truncation of the mantissa. |
| None |
| } else if exponent == 0 { |
| // 0 exponent, same as value, exact representation. |
| let float = F::as_cast(mantissa); |
| Some(float) |
| } else if exponent >= min_exp && exponent <= max_exp { |
| // Value can be exactly represented, return the value. |
| // Do not use powi, since powi can incrementally introduce |
| // error. |
| let float = F::as_cast(mantissa); |
| Some(float.pow10(exponent)) |
| } else if exponent >= 0 && exponent <= max_exp + shift_exp { |
| // Check to see if we have a disguised fast-path, where the |
| // number of digits in the mantissa is very small, but and |
| // so digits can be shifted from the exponent to the mantissa. |
| // https://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ |
| let small_powers = POW10_64; |
| let shift = exponent - max_exp; |
| let power = small_powers[shift as usize]; |
| |
| // Compute the product of the power, if it overflows, |
| // prematurely return early, otherwise, if we didn't overshoot, |
| // we can get an exact value. |
| let value = mantissa.checked_mul(power)?; |
| if value >> mantissa_size != 0 { |
| None |
| } else { |
| // Use powi, since it's correct, and faster on |
| // the fast-path. |
| let float = F::as_cast(value); |
| Some(float.pow10(max_exp)) |
| } |
| } else { |
| // Cannot be exactly represented, exponent too small or too big, |
| // would require truncation. |
| None |
| } |
| } |
| |
| // MODERATE |
| // -------- |
| |
| /// Multiply the floating-point by the exponent. |
| /// |
| /// Multiply by pre-calculated powers of the base, modify the extended- |
| /// float, and return if new value and if the value can be represented |
| /// accurately. |
| fn multiply_exponent_extended<F>(fp: &mut ExtendedFloat, exponent: i32, truncated: bool) -> bool |
| where |
| F: Float, |
| { |
| let powers = ExtendedFloat::get_powers(); |
| let exponent = exponent.saturating_add(powers.bias); |
| let small_index = exponent % powers.step; |
| let large_index = exponent / powers.step; |
| if exponent < 0 { |
| // Guaranteed underflow (assign 0). |
| fp.mant = 0; |
| true |
| } else if large_index as usize >= powers.large.len() { |
| // Overflow (assign infinity) |
| fp.mant = 1 << 63; |
| fp.exp = 0x7FF; |
| true |
| } else { |
| // Within the valid exponent range, multiply by the large and small |
| // exponents and return the resulting value. |
| |
| // Track errors to as a factor of unit in last-precision. |
| let mut errors: u32 = 0; |
| if truncated { |
| errors += u64::error_halfscale(); |
| } |
| |
| // Multiply by the small power. |
| // Check if we can directly multiply by an integer, if not, |
| // use extended-precision multiplication. |
| match fp |
| .mant |
| .overflowing_mul(powers.get_small_int(small_index as usize)) |
| { |
| // Overflow, multiplication unsuccessful, go slow path. |
| (_, true) => { |
| fp.normalize(); |
| fp.imul(&powers.get_small(small_index as usize)); |
| errors += u64::error_halfscale(); |
| } |
| // No overflow, multiplication successful. |
| (mant, false) => { |
| fp.mant = mant; |
| fp.normalize(); |
| } |
| } |
| |
| // Multiply by the large power |
| fp.imul(&powers.get_large(large_index as usize)); |
| if errors > 0 { |
| errors += 1; |
| } |
| errors += u64::error_halfscale(); |
| |
| // Normalize the floating point (and the errors). |
| let shift = fp.normalize(); |
| errors <<= shift; |
| |
| u64::error_is_accurate::<F>(errors, &fp) |
| } |
| } |
| |
| /// Create a precise native float using an intermediate extended-precision float. |
| /// |
| /// Return the float approximation and if the value can be accurately |
| /// represented with mantissa bits of precision. |
| #[inline] |
| pub(crate) fn moderate_path<F>( |
| mantissa: u64, |
| exponent: i32, |
| truncated: bool, |
| ) -> (ExtendedFloat, bool) |
| where |
| F: Float, |
| { |
| let mut fp = ExtendedFloat { |
| mant: mantissa, |
| exp: 0, |
| }; |
| let valid = multiply_exponent_extended::<F>(&mut fp, exponent, truncated); |
| (fp, valid) |
| } |
| |
| // FALLBACK |
| // -------- |
| |
| /// Fallback path when the fast path does not work. |
| /// |
| /// Uses the moderate path, if applicable, otherwise, uses the slow path |
| /// as required. |
| pub(crate) fn fallback_path<F>( |
| integer: &[u8], |
| fraction: &[u8], |
| mantissa: u64, |
| exponent: i32, |
| mantissa_exponent: i32, |
| truncated: bool, |
| ) -> F |
| where |
| F: Float, |
| { |
| // Moderate path (use an extended 80-bit representation). |
| let (fp, valid) = moderate_path::<F>(mantissa, mantissa_exponent, truncated); |
| if valid { |
| return fp.into_float::<F>(); |
| } |
| |
| // Slow path, fast path didn't work. |
| let b = fp.into_downward_float::<F>(); |
| if b.is_special() { |
| // We have a non-finite number, we get to leave early. |
| b |
| } else { |
| bhcomp(b, integer, fraction, exponent) |
| } |
| } |