blob: b036ebcea22bed15850e215114e5b3547b22e33c [file] [log] [blame]
//! Harvest left-hand side superoptimization candidates.
//!
//! Given a clif function, harvest all its integer subexpressions, so that they
//! can be fed into [Souper](https://github.com/google/souper) as candidates for
//! superoptimization. For some of these candidates, Souper will successfully
//! synthesize a right-hand side that is equivalent but has lower cost than the
//! left-hand side. Then, we can combine these left- and right-hand sides into a
//! complete optimization, and add it to our peephole passes.
//!
//! To harvest the expression that produced a given value `x`, we do a
//! post-order traversal of the dataflow graph starting from `x`. As we do this
//! traversal, we maintain a map from clif values to their translated Souper
//! values. We stop traversing when we reach anything that can't be translated
//! into Souper IR: a memory load, a float-to-int conversion, a block parameter,
//! etc. For values produced by these instructions, we create a Souper `var`,
//! which is an input variable to the optimization. For instructions that have a
//! direct mapping into Souper IR, we get the Souper version of each of its
//! operands and then create the Souper version of the instruction itself. It
//! should now be clear why we do a post-order traversal: we need an
//! instruction's translated operands in order to translate the instruction
//! itself. Once this instruction is translated, we update the clif-to-souper
//! map with this new translation so that any other instruction that uses this
//! result as an operand has access to the translated value. When the traversal
//! is complete we return the translation of `x` as the root of left-hand side
//! candidate.
use crate::ir;
use souper_ir::ast;
use std::collections::{HashMap, HashSet};
use std::string::String;
use std::sync::mpsc;
use std::vec::Vec;
/// Harvest Souper left-hand side candidates from the given function.
///
/// Candidates are reported through the given MPSC sender.
pub fn do_souper_harvest(func: &ir::Function, out: &mut mpsc::Sender<String>) {
let mut allocs = Allocs::default();
// Iterate over each instruction in each block and try and harvest a
// left-hand side from its result.
for block in func.layout.blocks() {
let mut option_inst = func.layout.first_inst(block);
while let Some(inst) = option_inst {
let results = func.dfg.inst_results(inst);
if results.len() == 1 {
let val = results[0];
let ty = func.dfg.value_type(val);
if ty.is_int() && ty.lane_count() == 1 {
harvest_candidate_lhs(&mut allocs, func, val, out);
}
}
option_inst = func.layout.next_inst(inst);
}
}
}
/// Allocations that we reuse across many LHS candidate harvests.
#[derive(Default)]
struct Allocs {
/// A map from cranelift IR to souper IR for values that we've already
/// translated into souper IR.
ir_to_souper_val: HashMap<ir::Value, ast::ValueId>,
/// Stack of to-visit and to-trace values for the post-order DFS.
dfs_stack: Vec<StackEntry>,
/// Set of values we've already seen in our post-order DFS.
dfs_seen: HashSet<ir::Value>,
}
impl Allocs {
/// Reset the collections to their empty state (without deallocating their
/// backing data).
fn reset(&mut self) {
self.ir_to_souper_val.clear();
self.dfs_stack.clear();
self.dfs_seen.clear();
}
}
/// Harvest a candidate LHS for `val` from the dataflow graph.
fn harvest_candidate_lhs(
allocs: &mut Allocs,
func: &ir::Function,
val: ir::Value,
out: &mut mpsc::Sender<String>,
) {
allocs.reset();
let mut lhs = ast::LeftHandSideBuilder::default();
let mut non_var_count = 0;
// Should we keep tracing through the given `val`? Only if it is defined
// by an instruction that we can translate to Souper IR.
let should_trace = |val| match func.dfg.value_def(val) {
ir::ValueDef::Result(inst, 0) => match func.dfg[inst].opcode() {
ir::Opcode::Iadd
| ir::Opcode::IaddImm
| ir::Opcode::IrsubImm
| ir::Opcode::Imul
| ir::Opcode::ImulImm
| ir::Opcode::Udiv
| ir::Opcode::UdivImm
| ir::Opcode::Sdiv
| ir::Opcode::SdivImm
| ir::Opcode::Urem
| ir::Opcode::UremImm
| ir::Opcode::Srem
| ir::Opcode::SremImm
| ir::Opcode::Band
| ir::Opcode::BandImm
| ir::Opcode::Bor
| ir::Opcode::BorImm
| ir::Opcode::Bxor
| ir::Opcode::BxorImm
| ir::Opcode::Ishl
| ir::Opcode::IshlImm
| ir::Opcode::Sshr
| ir::Opcode::SshrImm
| ir::Opcode::Ushr
| ir::Opcode::UshrImm
| ir::Opcode::Select
| ir::Opcode::Uextend
| ir::Opcode::Sextend
| ir::Opcode::Trunc
| ir::Opcode::Icmp
| ir::Opcode::Popcnt
| ir::Opcode::Bitrev
| ir::Opcode::Clz
| ir::Opcode::Ctz
// TODO: ir::Opcode::IaddCarry
// TODO: ir::Opcode::IaddCout
| ir::Opcode::SaddSat
| ir::Opcode::SsubSat
| ir::Opcode::UsubSat => true,
_ => false,
},
_ => false,
};
post_order_dfs(allocs, &func.dfg, val, should_trace, |allocs, val| {
let souper_assignment_rhs = match func.dfg.value_def(val) {
ir::ValueDef::Result(inst, 0) => {
let args = func.dfg.inst_args(inst);
// Get the n^th argument as a souper operand.
let arg = |allocs: &mut Allocs, n| {
let arg = args[n];
if let Some(a) = allocs.ir_to_souper_val.get(&arg).copied() {
a.into()
} else {
// The only arguments we get that we haven't already
// converted into a souper instruction are `iconst`s.
// This is because souper only allows
// constants as operands, and it doesn't allow assigning
// constants to a variable name. So we lazily convert
// `iconst`s into souper operands here,
// when they are actually used.
match func.dfg.value_def(arg) {
ir::ValueDef::Result(inst, 0) => match func.dfg[inst] {
ir::InstructionData::UnaryImm { opcode, imm } => {
debug_assert_eq!(opcode, ir::Opcode::Iconst);
let imm: i64 = imm.into();
ast::Operand::Constant(ast::Constant {
value: imm.into(),
r#type: souper_type_of(&func.dfg, arg),
})
}
_ => unreachable!(
"only iconst instructions \
aren't in `ir_to_souper_val`"
),
},
_ => unreachable!(
"only iconst instructions \
aren't in `ir_to_souper_val`"
),
}
}
};
match (func.dfg[inst].opcode(), &func.dfg[inst]) {
(ir::Opcode::Iadd, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Add { a, b }.into()
}
(ir::Opcode::IaddImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Add { a, b }.into()
}
(ir::Opcode::IrsubImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let b = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let a = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Sub { a, b }.into()
}
(ir::Opcode::Imul, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Mul { a, b }.into()
}
(ir::Opcode::ImulImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Mul { a, b }.into()
}
(ir::Opcode::Udiv, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Udiv { a, b }.into()
}
(ir::Opcode::UdivImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Udiv { a, b }.into()
}
(ir::Opcode::Sdiv, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Sdiv { a, b }.into()
}
(ir::Opcode::SdivImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Sdiv { a, b }.into()
}
(ir::Opcode::Urem, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Urem { a, b }.into()
}
(ir::Opcode::UremImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Urem { a, b }.into()
}
(ir::Opcode::Srem, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Srem { a, b }.into()
}
(ir::Opcode::SremImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Srem { a, b }.into()
}
(ir::Opcode::Band, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::And { a, b }.into()
}
(ir::Opcode::BandImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::And { a, b }.into()
}
(ir::Opcode::Bor, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Or { a, b }.into()
}
(ir::Opcode::BorImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Or { a, b }.into()
}
(ir::Opcode::Bxor, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Xor { a, b }.into()
}
(ir::Opcode::BxorImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Xor { a, b }.into()
}
(ir::Opcode::Ishl, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Shl { a, b }.into()
}
(ir::Opcode::IshlImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Shl { a, b }.into()
}
(ir::Opcode::Sshr, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Ashr { a, b }.into()
}
(ir::Opcode::SshrImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Ashr { a, b }.into()
}
(ir::Opcode::Ushr, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::Lshr { a, b }.into()
}
(ir::Opcode::UshrImm, ir::InstructionData::BinaryImm64 { imm, .. }) => {
let a = arg(allocs, 0);
let value: i64 = (*imm).into();
let value: i128 = value.into();
let b = ast::Constant {
value,
r#type: souper_type_of(&func.dfg, val),
}
.into();
ast::Instruction::Lshr { a, b }.into()
}
(ir::Opcode::Select, _) => {
let a = arg(allocs, 0);
// While Cranelift allows any width condition for
// `select`, Souper requires an `i1`.
let a = match a {
ast::Operand::Value(id) => match lhs.get_value(id).r#type {
Some(ast::Type { width: 1 }) => a,
_ => lhs
.assignment(
None,
Some(ast::Type { width: 1 }),
ast::Instruction::Trunc { a },
vec![],
)
.into(),
},
ast::Operand::Constant(ast::Constant { value, .. }) => ast::Constant {
value: (value != 0) as _,
r#type: Some(ast::Type { width: 1 }),
}
.into(),
};
let b = arg(allocs, 1);
let c = arg(allocs, 2);
ast::Instruction::Select { a, b, c }.into()
}
(ir::Opcode::Uextend, _) => {
let a = arg(allocs, 0);
ast::Instruction::Zext { a }.into()
}
(ir::Opcode::Sextend, _) => {
let a = arg(allocs, 0);
ast::Instruction::Sext { a }.into()
}
(ir::Opcode::Trunc, _) => {
let a = arg(allocs, 0);
ast::Instruction::Trunc { a }.into()
}
(ir::Opcode::Icmp, ir::InstructionData::IntCompare { cond, .. })
| (ir::Opcode::IcmpImm, ir::InstructionData::IntCompare { cond, .. }) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
match cond {
ir::condcodes::IntCC::Equal => ast::Instruction::Eq { a, b }.into(),
ir::condcodes::IntCC::NotEqual => ast::Instruction::Ne { a, b }.into(),
ir::condcodes::IntCC::UnsignedLessThan => {
ast::Instruction::Ult { a, b }.into()
}
ir::condcodes::IntCC::SignedLessThan => {
ast::Instruction::Slt { a, b }.into()
}
ir::condcodes::IntCC::UnsignedLessThanOrEqual => {
ast::Instruction::Sle { a, b }.into()
}
ir::condcodes::IntCC::SignedLessThanOrEqual => {
ast::Instruction::Sle { a, b }.into()
}
_ => ast::AssignmentRhs::Var,
}
}
(ir::Opcode::Popcnt, _) => {
let a = arg(allocs, 0);
ast::Instruction::Ctpop { a }.into()
}
(ir::Opcode::Bitrev, _) => {
let a = arg(allocs, 0);
ast::Instruction::BitReverse { a }.into()
}
(ir::Opcode::Clz, _) => {
let a = arg(allocs, 0);
ast::Instruction::Ctlz { a }.into()
}
(ir::Opcode::Ctz, _) => {
let a = arg(allocs, 0);
ast::Instruction::Cttz { a }.into()
}
// TODO: ir::Opcode::IaddCarry
// TODO: ir::Opcode::IaddCout
(ir::Opcode::SaddSat, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::SaddSat { a, b }.into()
}
(ir::Opcode::SsubSat, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::SsubSat { a, b }.into()
}
(ir::Opcode::UsubSat, _) => {
let a = arg(allocs, 0);
let b = arg(allocs, 1);
ast::Instruction::UsubSat { a, b }.into()
}
// Because Souper doesn't allow constants to be on the right
// hand side of an assignment (i.e. `%0:i32 = 1234` is
// disallowed) we have to ignore `iconst`
// instructions until we process them as operands for some
// other instruction. See the `arg` closure above for
// details.
(ir::Opcode::Iconst, _) => return,
_ => ast::AssignmentRhs::Var,
}
}
_ => ast::AssignmentRhs::Var,
};
non_var_count += match souper_assignment_rhs {
ast::AssignmentRhs::Var => 0,
_ => 1,
};
let souper_ty = souper_type_of(&func.dfg, val);
let souper_val = lhs.assignment(None, souper_ty, souper_assignment_rhs, vec![]);
let old_value = allocs.ir_to_souper_val.insert(val, souper_val);
assert!(old_value.is_none());
});
// We end up harvesting a lot of candidates like:
//
// %0:i32 = var
// infer %0
//
// and
//
// %0:i32 = var
// %1:i32 = var
// %2:i32 = add %0, %1
//
// Both of these are useless. Only actually harvest the candidate if there
// are at least two actual operations.
if non_var_count >= 2 {
let lhs = lhs.finish(allocs.ir_to_souper_val[&val], None);
out.send(format!(
";; Harvested from `{}` in `{}`\n{}\n",
val, func.name, lhs
))
.unwrap();
}
}
fn souper_type_of(dfg: &ir::DataFlowGraph, val: ir::Value) -> Option<ast::Type> {
let ty = dfg.value_type(val);
assert!(ty.is_int());
assert_eq!(ty.lane_count(), 1);
Some(ast::Type {
width: ty.bits().try_into().unwrap(),
})
}
#[derive(Debug)]
enum StackEntry {
Visit(ir::Value),
Trace(ir::Value),
}
fn post_order_dfs(
allocs: &mut Allocs,
dfg: &ir::DataFlowGraph,
val: ir::Value,
should_trace: impl Fn(ir::Value) -> bool,
mut visit: impl FnMut(&mut Allocs, ir::Value),
) {
allocs.dfs_stack.push(StackEntry::Trace(val));
while let Some(entry) = allocs.dfs_stack.pop() {
match entry {
StackEntry::Visit(val) => {
let is_new = allocs.dfs_seen.insert(val);
if is_new {
visit(allocs, val);
}
}
StackEntry::Trace(val) => {
if allocs.dfs_seen.contains(&val) {
continue;
}
allocs.dfs_stack.push(StackEntry::Visit(val));
if should_trace(val) {
if let ir::ValueDef::Result(inst, 0) = dfg.value_def(val) {
let args = dfg.inst_args(inst);
for v in args.iter().rev().copied() {
allocs.dfs_stack.push(StackEntry::Trace(v));
}
}
}
}
}
}
}