| use std::sync::atomic::{AtomicUsize, Ordering}; |
| |
| use super::*; |
| use prelude::*; |
| use rayon_core::*; |
| |
| use rand::distributions::Standard; |
| use rand::{Rng, SeedableRng, XorShiftRng}; |
| use std::collections::LinkedList; |
| use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet}; |
| use std::collections::{BinaryHeap, VecDeque}; |
| use std::f64; |
| use std::fmt::Debug; |
| use std::sync::mpsc; |
| use std::usize; |
| |
| fn is_indexed<T: IndexedParallelIterator>(_: T) {} |
| |
| fn seeded_rng() -> XorShiftRng { |
| let mut seed = <XorShiftRng as SeedableRng>::Seed::default(); |
| (0..).zip(seed.as_mut()).for_each(|(i, x)| *x = i); |
| XorShiftRng::from_seed(seed) |
| } |
| |
| #[test] |
| pub fn execute() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let mut b = vec![]; |
| a.par_iter().map(|&i| i + 1).collect_into_vec(&mut b); |
| let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn execute_cloned() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let mut b: Vec<i32> = vec![]; |
| a.par_iter().cloned().collect_into_vec(&mut b); |
| let c: Vec<i32> = (0..1024).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn execute_range() { |
| let a = 0i32..1024; |
| let mut b = vec![]; |
| a.into_par_iter().map(|i| i + 1).collect_into_vec(&mut b); |
| let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn execute_unindexed_range() { |
| let a = 0i64..1024; |
| let b: LinkedList<i64> = a.into_par_iter().map(|i| i + 1).collect(); |
| let c: LinkedList<i64> = (0..1024).map(|i| i + 1).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[cfg(has_i128)] |
| #[test] |
| pub fn execute_pseudo_indexed_range() { |
| use std::i128::MAX; |
| let range = MAX - 1024..MAX; |
| |
| // Given `Some` length, collecting `Vec` will try to act indexed. |
| let a = range.clone().into_par_iter(); |
| assert_eq!(a.opt_len(), Some(1024)); |
| |
| let b: Vec<i128> = a.map(|i| i + 1).collect(); |
| let c: Vec<i128> = range.map(|i| i + 1).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn check_map_indexed() { |
| let a = [1, 2, 3]; |
| is_indexed(a.par_iter().map(|x| x)); |
| } |
| |
| #[test] |
| pub fn map_sum() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let r1: i32 = a.par_iter().map(|&i| i + 1).sum(); |
| let r2 = a.iter().map(|&i| i + 1).fold(0, |a, b| a + b); |
| assert_eq!(r1, r2); |
| } |
| |
| #[test] |
| pub fn map_reduce() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let r1 = a.par_iter().map(|&i| i + 1).reduce(|| 0, |i, j| i + j); |
| let r2 = a.iter().map(|&i| i + 1).fold(0, |a, b| a + b); |
| assert_eq!(r1, r2); |
| } |
| |
| #[test] |
| pub fn map_reduce_with() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j); |
| let r2 = a.iter().map(|&i| i + 1).fold(0, |a, b| a + b); |
| assert_eq!(r1, Some(r2)); |
| } |
| |
| #[test] |
| pub fn fold_map_reduce() { |
| // Kind of a weird test, but it demonstrates various |
| // transformations that are taking place. Relies on |
| // `with_max_len(1).fold()` being equivalent to `map()`. |
| // |
| // Take each number from 0 to 32 and fold them by appending to a |
| // vector. Because of `with_max_len(1)`, this will produce 32 vectors, |
| // each with one item. We then collect all of these into an |
| // individual vector by mapping each into their own vector (so we |
| // have Vec<Vec<i32>>) and then reducing those into a single |
| // vector. |
| let r1 = (0_i32..32) |
| .into_par_iter() |
| .with_max_len(1) |
| .fold( |
| || vec![], |
| |mut v, e| { |
| v.push(e); |
| v |
| }, |
| ) |
| .map(|v| vec![v]) |
| .reduce_with(|mut v_a, v_b| { |
| v_a.extend(v_b); |
| v_a |
| }); |
| assert_eq!( |
| r1, |
| Some(vec![ |
| vec![0], |
| vec![1], |
| vec![2], |
| vec![3], |
| vec![4], |
| vec![5], |
| vec![6], |
| vec![7], |
| vec![8], |
| vec![9], |
| vec![10], |
| vec![11], |
| vec![12], |
| vec![13], |
| vec![14], |
| vec![15], |
| vec![16], |
| vec![17], |
| vec![18], |
| vec![19], |
| vec![20], |
| vec![21], |
| vec![22], |
| vec![23], |
| vec![24], |
| vec![25], |
| vec![26], |
| vec![27], |
| vec![28], |
| vec![29], |
| vec![30], |
| vec![31] |
| ]) |
| ); |
| } |
| |
| #[test] |
| pub fn fold_is_full() { |
| let counter = AtomicUsize::new(0); |
| let a = (0_i32..2048) |
| .into_par_iter() |
| .inspect(|_| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| }) |
| .fold(|| 0, |a, b| a + b) |
| .find_any(|_| true); |
| assert!(a.is_some()); |
| assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
| } |
| |
| #[test] |
| pub fn check_enumerate() { |
| let a: Vec<usize> = (0..1024).rev().collect(); |
| |
| let mut b = vec![]; |
| a.par_iter() |
| .enumerate() |
| .map(|(i, &x)| i + x) |
| .collect_into_vec(&mut b); |
| assert!(b.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_enumerate_rev() { |
| let a: Vec<usize> = (0..1024).rev().collect(); |
| |
| let mut b = vec![]; |
| a.par_iter() |
| .enumerate() |
| .rev() |
| .map(|(i, &x)| i + x) |
| .collect_into_vec(&mut b); |
| assert!(b.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_indices_after_enumerate_split() { |
| let a: Vec<i32> = (0..1024).collect(); |
| a.par_iter().enumerate().with_producer(WithProducer); |
| |
| struct WithProducer; |
| impl<'a> ProducerCallback<(usize, &'a i32)> for WithProducer { |
| type Output = (); |
| fn callback<P>(self, producer: P) |
| where |
| P: Producer<Item = (usize, &'a i32)>, |
| { |
| let (a, b) = producer.split_at(512); |
| for ((index, value), trusted_index) in a.into_iter().zip(0..) { |
| assert_eq!(index, trusted_index); |
| assert_eq!(index, *value as usize); |
| } |
| for ((index, value), trusted_index) in b.into_iter().zip(512..) { |
| assert_eq!(index, trusted_index); |
| assert_eq!(index, *value as usize); |
| } |
| } |
| } |
| } |
| |
| #[test] |
| pub fn check_increment() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| |
| a.par_iter_mut().enumerate().for_each(|(i, v)| *v += i); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_skip() { |
| let a: Vec<usize> = (0..1024).collect(); |
| |
| let mut v1 = Vec::new(); |
| a.par_iter().skip(16).collect_into_vec(&mut v1); |
| let v2 = a.iter().skip(16).collect::<Vec<_>>(); |
| assert_eq!(v1, v2); |
| |
| let mut v1 = Vec::new(); |
| a.par_iter().skip(2048).collect_into_vec(&mut v1); |
| let v2 = a.iter().skip(2048).collect::<Vec<_>>(); |
| assert_eq!(v1, v2); |
| |
| let mut v1 = Vec::new(); |
| a.par_iter().skip(0).collect_into_vec(&mut v1); |
| let v2 = a.iter().skip(0).collect::<Vec<_>>(); |
| assert_eq!(v1, v2); |
| |
| // Check that the skipped elements side effects are executed |
| use std::sync::atomic::{AtomicUsize, Ordering}; |
| let num = AtomicUsize::new(0); |
| a.par_iter() |
| .map(|&n| num.fetch_add(n, Ordering::Relaxed)) |
| .skip(512) |
| .count(); |
| assert_eq!(num.load(Ordering::Relaxed), a.iter().sum::<usize>()); |
| } |
| |
| #[test] |
| pub fn check_take() { |
| let a: Vec<usize> = (0..1024).collect(); |
| |
| let mut v1 = Vec::new(); |
| a.par_iter().take(16).collect_into_vec(&mut v1); |
| let v2 = a.iter().take(16).collect::<Vec<_>>(); |
| assert_eq!(v1, v2); |
| |
| let mut v1 = Vec::new(); |
| a.par_iter().take(2048).collect_into_vec(&mut v1); |
| let v2 = a.iter().take(2048).collect::<Vec<_>>(); |
| assert_eq!(v1, v2); |
| |
| let mut v1 = Vec::new(); |
| a.par_iter().take(0).collect_into_vec(&mut v1); |
| let v2 = a.iter().take(0).collect::<Vec<_>>(); |
| assert_eq!(v1, v2); |
| } |
| |
| #[test] |
| pub fn check_inspect() { |
| use std::sync::atomic::{AtomicUsize, Ordering}; |
| |
| let a = AtomicUsize::new(0); |
| let b: usize = (0_usize..1024) |
| .into_par_iter() |
| .inspect(|&i| { |
| a.fetch_add(i, Ordering::Relaxed); |
| }) |
| .sum(); |
| |
| assert_eq!(a.load(Ordering::Relaxed), b); |
| } |
| |
| #[test] |
| pub fn check_move() { |
| let a = vec![vec![1, 2, 3]]; |
| let ptr = a[0].as_ptr(); |
| |
| let mut b = vec![]; |
| a.into_par_iter().collect_into_vec(&mut b); |
| |
| // a simple move means the inner vec will be completely unchanged |
| assert_eq!(ptr, b[0].as_ptr()); |
| } |
| |
| #[test] |
| pub fn check_drops() { |
| use std::sync::atomic::{AtomicUsize, Ordering}; |
| |
| let c = AtomicUsize::new(0); |
| let a = vec![DropCounter(&c); 10]; |
| |
| let mut b = vec![]; |
| a.clone().into_par_iter().collect_into_vec(&mut b); |
| assert_eq!(c.load(Ordering::Relaxed), 0); |
| |
| b.into_par_iter(); |
| assert_eq!(c.load(Ordering::Relaxed), 10); |
| |
| a.into_par_iter().with_producer(Partial); |
| assert_eq!(c.load(Ordering::Relaxed), 20); |
| |
| #[derive(Clone)] |
| struct DropCounter<'a>(&'a AtomicUsize); |
| impl<'a> Drop for DropCounter<'a> { |
| fn drop(&mut self) { |
| self.0.fetch_add(1, Ordering::Relaxed); |
| } |
| } |
| |
| struct Partial; |
| impl<'a> ProducerCallback<DropCounter<'a>> for Partial { |
| type Output = (); |
| fn callback<P>(self, producer: P) |
| where |
| P: Producer<Item = DropCounter<'a>>, |
| { |
| let (a, _) = producer.split_at(5); |
| a.into_iter().next(); |
| } |
| } |
| } |
| |
| #[test] |
| pub fn check_slice_indexed() { |
| let a = vec![1, 2, 3]; |
| is_indexed(a.par_iter()); |
| } |
| |
| #[test] |
| pub fn check_slice_mut_indexed() { |
| let mut a = vec![1, 2, 3]; |
| is_indexed(a.par_iter_mut()); |
| } |
| |
| #[test] |
| pub fn check_vec_indexed() { |
| let a = vec![1, 2, 3]; |
| is_indexed(a.clone().into_par_iter()); |
| } |
| |
| #[test] |
| pub fn check_range_indexed() { |
| is_indexed((1..5).into_par_iter()); |
| } |
| |
| #[test] |
| pub fn check_cmp_direct() { |
| let a = (0..1024).into_par_iter(); |
| let b = (0..1024).into_par_iter(); |
| |
| let result = a.cmp(b); |
| |
| assert!(result == ::std::cmp::Ordering::Equal); |
| } |
| |
| #[test] |
| pub fn check_cmp_to_seq() { |
| assert_eq!( |
| (0..1024).into_par_iter().cmp(0..1024), |
| (0..1024).cmp(0..1024) |
| ); |
| } |
| |
| #[test] |
| pub fn check_cmp_rng_to_seq() { |
| let mut rng = seeded_rng(); |
| let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| for i in 0..a.len() { |
| let par_result = a[i..].par_iter().cmp(b[i..].par_iter()); |
| let seq_result = a[i..].iter().cmp(b[i..].iter()); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| } |
| |
| #[test] |
| pub fn check_cmp_lt_direct() { |
| let a = (0..1024).into_par_iter(); |
| let b = (1..1024).into_par_iter(); |
| |
| let result = a.cmp(b); |
| |
| assert!(result == ::std::cmp::Ordering::Less); |
| } |
| |
| #[test] |
| pub fn check_cmp_lt_to_seq() { |
| assert_eq!( |
| (0..1024).into_par_iter().cmp(1..1024), |
| (0..1024).cmp(1..1024) |
| ) |
| } |
| |
| #[test] |
| pub fn check_cmp_gt_direct() { |
| let a = (1..1024).into_par_iter(); |
| let b = (0..1024).into_par_iter(); |
| |
| let result = a.cmp(b); |
| |
| assert!(result == ::std::cmp::Ordering::Greater); |
| } |
| |
| #[test] |
| pub fn check_cmp_gt_to_seq() { |
| assert_eq!( |
| (1..1024).into_par_iter().cmp(0..1024), |
| (1..1024).cmp(0..1024) |
| ) |
| } |
| |
| #[test] |
| pub fn check_cmp_short_circuit() { |
| let a = vec![0; 1024]; |
| let mut b = a.clone(); |
| b[42] = 1; |
| |
| let counter = AtomicUsize::new(0); |
| let result = a |
| .par_iter() |
| .inspect(|_| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| }) |
| .cmp(&b); |
| assert!(result == ::std::cmp::Ordering::Less); |
| assert!(counter.load(Ordering::SeqCst) < a.len()); // should not have visited every single one |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_short_circuit() { |
| let a = vec![0; 1024]; |
| let mut b = a.clone(); |
| b[42] = 1; |
| |
| let counter = AtomicUsize::new(0); |
| let result = a |
| .par_iter() |
| .inspect(|_| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| }) |
| .partial_cmp(&b); |
| assert!(result == Some(::std::cmp::Ordering::Less)); |
| assert!(counter.load(Ordering::SeqCst) < a.len()); // should not have visited every single one |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_nan_short_circuit() { |
| let a = vec![0.0; 1024]; |
| let mut b = a.clone(); |
| b[42] = f64::NAN; |
| |
| let counter = AtomicUsize::new(0); |
| let result = a |
| .par_iter() |
| .inspect(|_| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| }) |
| .partial_cmp(&b); |
| assert!(result == None); |
| assert!(counter.load(Ordering::SeqCst) < a.len()); // should not have visited every single one |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_direct() { |
| let a = (0..1024).into_par_iter(); |
| let b = (0..1024).into_par_iter(); |
| |
| let result = a.partial_cmp(b); |
| |
| assert!(result == Some(::std::cmp::Ordering::Equal)); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_to_seq() { |
| let par_result = (0..1024).into_par_iter().partial_cmp(0..1024); |
| let seq_result = (0..1024).partial_cmp(0..1024); |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_rng_to_seq() { |
| let mut rng = seeded_rng(); |
| let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| for i in 0..a.len() { |
| let par_result = a[i..].par_iter().partial_cmp(b[i..].par_iter()); |
| let seq_result = a[i..].iter().partial_cmp(b[i..].iter()); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_lt_direct() { |
| let a = (0..1024).into_par_iter(); |
| let b = (1..1024).into_par_iter(); |
| |
| let result = a.partial_cmp(b); |
| |
| assert!(result == Some(::std::cmp::Ordering::Less)); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_lt_to_seq() { |
| let par_result = (0..1024).into_par_iter().partial_cmp(1..1024); |
| let seq_result = (0..1024).partial_cmp(1..1024); |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_gt_direct() { |
| let a = (1..1024).into_par_iter(); |
| let b = (0..1024).into_par_iter(); |
| |
| let result = a.partial_cmp(b); |
| |
| assert!(result == Some(::std::cmp::Ordering::Greater)); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_gt_to_seq() { |
| let par_result = (1..1024).into_par_iter().partial_cmp(0..1024); |
| let seq_result = (1..1024).partial_cmp(0..1024); |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_none_direct() { |
| let a = vec![f64::NAN, 0.0]; |
| let b = vec![0.0, 1.0]; |
| |
| let result = a.par_iter().partial_cmp(b.par_iter()); |
| |
| assert!(result == None); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_none_to_seq() { |
| let a = vec![f64::NAN, 0.0]; |
| let b = vec![0.0, 1.0]; |
| |
| let par_result = a.par_iter().partial_cmp(b.par_iter()); |
| let seq_result = a.iter().partial_cmp(b.iter()); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_late_nan_direct() { |
| let a = vec![0.0, f64::NAN]; |
| let b = vec![1.0, 1.0]; |
| |
| let result = a.par_iter().partial_cmp(b.par_iter()); |
| |
| assert!(result == Some(::std::cmp::Ordering::Less)); |
| } |
| |
| #[test] |
| pub fn check_partial_cmp_late_nane_to_seq() { |
| let a = vec![0.0, f64::NAN]; |
| let b = vec![1.0, 1.0]; |
| |
| let par_result = a.par_iter().partial_cmp(b.par_iter()); |
| let seq_result = a.iter().partial_cmp(b.iter()); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_cmp_lengths() { |
| // comparisons should consider length if they are otherwise equal |
| let a = vec![0; 1024]; |
| let b = vec![0; 1025]; |
| |
| assert_eq!(a.par_iter().cmp(&b), a.iter().cmp(&b)); |
| assert_eq!(a.par_iter().partial_cmp(&b), a.iter().partial_cmp(&b)); |
| } |
| |
| #[test] |
| pub fn check_eq_direct() { |
| let a = (0..1024).into_par_iter(); |
| let b = (0..1024).into_par_iter(); |
| |
| let result = a.eq(b); |
| |
| assert!(result); |
| } |
| |
| #[test] |
| pub fn check_eq_to_seq() { |
| let par_result = (0..1024).into_par_iter().eq((0..1024).into_par_iter()); |
| let seq_result = (0..1024).eq(0..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_ne_direct() { |
| let a = (0..1024).into_par_iter(); |
| let b = (1..1024).into_par_iter(); |
| |
| let result = a.ne(b); |
| |
| assert!(result); |
| } |
| |
| #[test] |
| pub fn check_ne_to_seq() { |
| let par_result = (0..1024).into_par_iter().ne((1..1025).into_par_iter()); |
| let seq_result = (0..1024).ne(1..1025); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_ne_lengths() { |
| // equality should consider length too |
| let a = vec![0; 1024]; |
| let b = vec![0; 1025]; |
| |
| assert_eq!(a.par_iter().eq(&b), a.iter().eq(&b)); |
| assert_eq!(a.par_iter().ne(&b), a.iter().ne(&b)); |
| } |
| |
| #[test] |
| pub fn check_lt_direct() { |
| assert!((0..1024).into_par_iter().lt(1..1024)); |
| assert!(!(1..1024).into_par_iter().lt(0..1024)); |
| } |
| |
| #[test] |
| pub fn check_lt_to_seq() { |
| let par_result = (0..1024).into_par_iter().lt((1..1024).into_par_iter()); |
| let seq_result = (0..1024).lt(1..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_le_equal_direct() { |
| assert!((0..1024).into_par_iter().le((0..1024).into_par_iter())); |
| } |
| |
| #[test] |
| pub fn check_le_equal_to_seq() { |
| let par_result = (0..1024).into_par_iter().le((0..1024).into_par_iter()); |
| let seq_result = (0..1024).le(0..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_le_less_direct() { |
| assert!((0..1024).into_par_iter().le((1..1024).into_par_iter())); |
| } |
| |
| #[test] |
| pub fn check_le_less_to_seq() { |
| let par_result = (0..1024).into_par_iter().le((1..1024).into_par_iter()); |
| let seq_result = (0..1024).le(1..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_gt_direct() { |
| assert!((1..1024).into_par_iter().gt((0..1024).into_par_iter())); |
| } |
| |
| #[test] |
| pub fn check_gt_to_seq() { |
| let par_result = (1..1024).into_par_iter().gt((0..1024).into_par_iter()); |
| let seq_result = (1..1024).gt(0..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_ge_equal_direct() { |
| assert!((0..1024).into_par_iter().ge((0..1024).into_par_iter())); |
| } |
| |
| #[test] |
| pub fn check_ge_equal_to_seq() { |
| let par_result = (0..1024).into_par_iter().ge((0..1024).into_par_iter()); |
| let seq_result = (0..1024).ge(0..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_ge_greater_direct() { |
| assert!((1..1024).into_par_iter().ge((0..1024).into_par_iter())); |
| } |
| |
| #[test] |
| pub fn check_ge_greater_to_seq() { |
| let par_result = (1..1024).into_par_iter().ge((0..1024).into_par_iter()); |
| let seq_result = (1..1024).ge(0..1024); |
| |
| assert_eq!(par_result, seq_result); |
| } |
| |
| #[test] |
| pub fn check_zip() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| let b: Vec<usize> = (0..1024).collect(); |
| |
| a.par_iter_mut().zip(&b[..]).for_each(|(a, &b)| *a += b); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_into_par_iter() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| let b: Vec<usize> = (0..1024).collect(); |
| |
| a.par_iter_mut() |
| .zip(&b) // here we rely on &b iterating over &usize |
| .for_each(|(a, &b)| *a += b); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_into_mut_par_iter() { |
| let a: Vec<usize> = (0..1024).rev().collect(); |
| let mut b: Vec<usize> = (0..1024).collect(); |
| |
| a.par_iter().zip(&mut b).for_each(|(&a, b)| *b += a); |
| |
| assert!(b.iter().all(|&x| x == b.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_range() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| |
| a.par_iter_mut() |
| .zip(0usize..1024) |
| .for_each(|(a, b)| *a += b); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_eq() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| let b: Vec<usize> = (0..1024).collect(); |
| |
| a.par_iter_mut().zip_eq(&b[..]).for_each(|(a, &b)| *a += b); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_eq_into_par_iter() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| let b: Vec<usize> = (0..1024).collect(); |
| |
| a.par_iter_mut() |
| .zip_eq(&b) // here we rely on &b iterating over &usize |
| .for_each(|(a, &b)| *a += b); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_eq_into_mut_par_iter() { |
| let a: Vec<usize> = (0..1024).rev().collect(); |
| let mut b: Vec<usize> = (0..1024).collect(); |
| |
| a.par_iter().zip_eq(&mut b).for_each(|(&a, b)| *b += a); |
| |
| assert!(b.iter().all(|&x| x == b.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_zip_eq_range() { |
| let mut a: Vec<usize> = (0..1024).rev().collect(); |
| |
| a.par_iter_mut() |
| .zip_eq(0usize..1024) |
| .for_each(|(a, b)| *a += b); |
| |
| assert!(a.iter().all(|&x| x == a.len() - 1)); |
| } |
| |
| #[test] |
| pub fn check_sum_filtered_ints() { |
| let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| let par_sum_evens: i32 = a.par_iter().filter(|&x| (x & 1) == 0).sum(); |
| let seq_sum_evens = a |
| .iter() |
| .filter(|&x| (x & 1) == 0) |
| .map(|&x| x) |
| .fold(0, |a, b| a + b); |
| assert_eq!(par_sum_evens, seq_sum_evens); |
| } |
| |
| #[test] |
| pub fn check_sum_filtermap_ints() { |
| let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| let par_sum_evens: f32 = a |
| .par_iter() |
| .filter_map(|&x| if (x & 1) == 0 { Some(x as f32) } else { None }) |
| .sum(); |
| let seq_sum_evens = a |
| .iter() |
| .filter_map(|&x| if (x & 1) == 0 { Some(x as f32) } else { None }) |
| .sum(); |
| assert_eq!(par_sum_evens, seq_sum_evens); |
| } |
| |
| #[test] |
| pub fn check_flat_map_nested_ranges() { |
| // FIXME -- why are precise type hints required on the integers here? |
| |
| let v: i32 = (0_i32..10) |
| .into_par_iter() |
| .flat_map(|i| (0_i32..10).into_par_iter().map(move |j| (i, j))) |
| .map(|(i, j)| i * j) |
| .sum(); |
| |
| let w = (0_i32..10) |
| .flat_map(|i| (0_i32..10).map(move |j| (i, j))) |
| .map(|(i, j)| i * j) |
| .fold(0, |i, j| i + j); |
| |
| assert_eq!(v, w); |
| } |
| |
| #[test] |
| pub fn check_empty_flat_map_sum() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let empty = &a[..0]; |
| |
| // empty on the inside |
| let b: i32 = a.par_iter().flat_map(|_| empty).sum(); |
| assert_eq!(b, 0); |
| |
| // empty on the outside |
| let c: i32 = empty.par_iter().flat_map(|_| a.par_iter()).sum(); |
| assert_eq!(c, 0); |
| } |
| |
| #[test] |
| pub fn check_flatten_vec() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: Vec<Vec<i32>> = vec![a.clone(), a.clone(), a.clone(), a.clone()]; |
| let c: Vec<i32> = b.par_iter().flatten().cloned().collect(); |
| let mut d = a.clone(); |
| d.extend(&a); |
| d.extend(&a); |
| d.extend(&a); |
| |
| assert_eq!(d, c); |
| } |
| |
| #[test] |
| pub fn check_flatten_vec_empty() { |
| let a: Vec<Vec<i32>> = vec![vec![]]; |
| let b: Vec<i32> = a.par_iter().flatten().cloned().collect(); |
| |
| assert_eq!(vec![] as Vec<i32>, b); |
| } |
| |
| #[test] |
| pub fn check_slice_split() { |
| let v: Vec<_> = (0..1000).collect(); |
| for m in 1..100 { |
| let a: Vec<_> = v.split(|x| x % m == 0).collect(); |
| let b: Vec<_> = v.par_split(|x| x % m == 0).collect(); |
| assert_eq!(a, b); |
| } |
| |
| // same as std::slice::split() examples |
| let slice = [10, 40, 33, 20]; |
| let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); |
| assert_eq!(v, &[&slice[..2], &slice[3..]]); |
| |
| let slice = [10, 40, 33]; |
| let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); |
| assert_eq!(v, &[&slice[..2], &slice[..0]]); |
| |
| let slice = [10, 6, 33, 20]; |
| let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); |
| assert_eq!(v, &[&slice[..1], &slice[..0], &slice[3..]]); |
| } |
| |
| #[test] |
| pub fn check_slice_split_mut() { |
| let mut v1: Vec<_> = (0..1000).collect(); |
| let mut v2 = v1.clone(); |
| for m in 1..100 { |
| let a: Vec<_> = v1.split_mut(|x| x % m == 0).collect(); |
| let b: Vec<_> = v2.par_split_mut(|x| x % m == 0).collect(); |
| assert_eq!(a, b); |
| } |
| |
| // same as std::slice::split_mut() example |
| let mut v = [10, 40, 30, 20, 60, 50]; |
| v.par_split_mut(|num| num % 3 == 0).for_each(|group| { |
| group[0] = 1; |
| }); |
| assert_eq!(v, [1, 40, 30, 1, 60, 1]); |
| } |
| |
| #[test] |
| pub fn check_chunks() { |
| let a: Vec<i32> = vec![1, 5, 10, 4, 100, 3, 1000, 2, 10000, 1]; |
| let par_sum_product_pairs: i32 = a |
| .par_chunks(2) |
| .map(|c| c.iter().map(|&x| x).fold(1, |i, j| i * j)) |
| .sum(); |
| let seq_sum_product_pairs = a |
| .chunks(2) |
| .map(|c| c.iter().map(|&x| x).fold(1, |i, j| i * j)) |
| .fold(0, |i, j| i + j); |
| assert_eq!(par_sum_product_pairs, 12345); |
| assert_eq!(par_sum_product_pairs, seq_sum_product_pairs); |
| |
| let par_sum_product_triples: i32 = a |
| .par_chunks(3) |
| .map(|c| c.iter().map(|&x| x).fold(1, |i, j| i * j)) |
| .sum(); |
| let seq_sum_product_triples = a |
| .chunks(3) |
| .map(|c| c.iter().map(|&x| x).fold(1, |i, j| i * j)) |
| .fold(0, |i, j| i + j); |
| assert_eq!(par_sum_product_triples, 5_0 + 12_00 + 2_000_0000 + 1); |
| assert_eq!(par_sum_product_triples, seq_sum_product_triples); |
| } |
| |
| #[test] |
| pub fn check_chunks_mut() { |
| let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| let mut b: Vec<i32> = a.clone(); |
| a.par_chunks_mut(2) |
| .for_each(|c| c[0] = c.iter().map(|&x| x).fold(0, |i, j| i + j)); |
| b.chunks_mut(2) |
| .map(|c| c[0] = c.iter().map(|&x| x).fold(0, |i, j| i + j)) |
| .count(); |
| assert_eq!(a, &[3, 2, 7, 4, 11, 6, 15, 8, 19, 10]); |
| assert_eq!(a, b); |
| |
| let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| let mut b: Vec<i32> = a.clone(); |
| a.par_chunks_mut(3) |
| .for_each(|c| c[0] = c.iter().map(|&x| x).fold(0, |i, j| i + j)); |
| b.chunks_mut(3) |
| .map(|c| c[0] = c.iter().map(|&x| x).fold(0, |i, j| i + j)) |
| .count(); |
| assert_eq!(a, &[6, 2, 3, 15, 5, 6, 24, 8, 9, 10]); |
| assert_eq!(a, b); |
| } |
| |
| #[test] |
| pub fn check_windows() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let par: Vec<_> = a.par_windows(2).collect(); |
| let seq: Vec<_> = a.windows(2).collect(); |
| assert_eq!(par, seq); |
| |
| let par: Vec<_> = a.par_windows(100).collect(); |
| let seq: Vec<_> = a.windows(100).collect(); |
| assert_eq!(par, seq); |
| |
| let par: Vec<_> = a.par_windows(1_000_000).collect(); |
| let seq: Vec<_> = a.windows(1_000_000).collect(); |
| assert_eq!(par, seq); |
| |
| let par: Vec<_> = a |
| .par_windows(2) |
| .chain(a.par_windows(1_000_000)) |
| .zip(a.par_windows(2)) |
| .collect(); |
| let seq: Vec<_> = a |
| .windows(2) |
| .chain(a.windows(1_000_000)) |
| .zip(a.windows(2)) |
| .collect(); |
| assert_eq!(par, seq); |
| } |
| |
| #[test] |
| pub fn check_options() { |
| let mut a = vec![None, Some(1), None, None, Some(2), Some(4)]; |
| |
| assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>()); |
| assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>()); |
| |
| a.par_iter_mut() |
| .flat_map(|opt| opt) |
| .for_each(|x| *x = *x * *x); |
| |
| assert_eq!(21, a.into_par_iter().flat_map(|opt| opt).sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_results() { |
| let mut a = vec![Err(()), Ok(1i32), Err(()), Err(()), Ok(2), Ok(4)]; |
| |
| assert_eq!(7, a.par_iter().flat_map(|res| res).sum::<i32>()); |
| |
| assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().sum()); |
| assert_eq!(Ok(7), a.par_iter().cloned().filter(Result::is_ok).sum()); |
| |
| assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().product()); |
| assert_eq!(Ok(8), a.par_iter().cloned().filter(Result::is_ok).product()); |
| |
| a.par_iter_mut() |
| .flat_map(|res| res) |
| .for_each(|x| *x = *x * *x); |
| |
| assert_eq!(21, a.into_par_iter().flat_map(|res| res).sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_binary_heap() { |
| use std::collections::BinaryHeap; |
| |
| let a: BinaryHeap<i32> = (0..10).collect(); |
| |
| assert_eq!(45, a.par_iter().sum::<i32>()); |
| assert_eq!(45, a.into_par_iter().sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_btree_map() { |
| use std::collections::BTreeMap; |
| |
| let mut a: BTreeMap<i32, i32> = (0..10).map(|i| (i, -i)).collect(); |
| |
| assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>()); |
| assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>()); |
| |
| a.par_iter_mut().for_each(|(k, v)| *v += *k); |
| |
| assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_btree_set() { |
| use std::collections::BTreeSet; |
| |
| let a: BTreeSet<i32> = (0..10).collect(); |
| |
| assert_eq!(45, a.par_iter().sum::<i32>()); |
| assert_eq!(45, a.into_par_iter().sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_hash_map() { |
| use std::collections::HashMap; |
| |
| let mut a: HashMap<i32, i32> = (0..10).map(|i| (i, -i)).collect(); |
| |
| assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>()); |
| assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>()); |
| |
| a.par_iter_mut().for_each(|(k, v)| *v += *k); |
| |
| assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_hash_set() { |
| use std::collections::HashSet; |
| |
| let a: HashSet<i32> = (0..10).collect(); |
| |
| assert_eq!(45, a.par_iter().sum::<i32>()); |
| assert_eq!(45, a.into_par_iter().sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_linked_list() { |
| use std::collections::LinkedList; |
| |
| let mut a: LinkedList<i32> = (0..10).collect(); |
| |
| assert_eq!(45, a.par_iter().sum::<i32>()); |
| |
| a.par_iter_mut().for_each(|x| *x = -*x); |
| |
| assert_eq!(-45, a.into_par_iter().sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_vec_deque() { |
| use std::collections::VecDeque; |
| |
| let mut a: VecDeque<i32> = (0..10).collect(); |
| |
| // try to get it to wrap around |
| a.drain(..5); |
| a.extend(0..5); |
| |
| assert_eq!(45, a.par_iter().sum::<i32>()); |
| |
| a.par_iter_mut().for_each(|x| *x = -*x); |
| |
| assert_eq!(-45, a.into_par_iter().sum::<i32>()); |
| } |
| |
| #[test] |
| pub fn check_chain() { |
| let mut res = vec![]; |
| |
| // stays indexed in the face of madness |
| Some(0) |
| .into_par_iter() |
| .chain(Ok::<_, ()>(1)) |
| .chain(1..4) |
| .chain(Err("huh?")) |
| .chain(None) |
| .chain(vec![5, 8, 13]) |
| .map(|x| (x as u8 + b'a') as char) |
| .chain(vec!['x', 'y', 'z']) |
| .zip((0i32..1000).into_par_iter().map(|x| -x)) |
| .enumerate() |
| .map(|(a, (b, c))| (a, b, c)) |
| .chain(None) |
| .collect_into_vec(&mut res); |
| |
| assert_eq!( |
| res, |
| vec![ |
| (0, 'a', 0), |
| (1, 'b', -1), |
| (2, 'b', -2), |
| (3, 'c', -3), |
| (4, 'd', -4), |
| (5, 'f', -5), |
| (6, 'i', -6), |
| (7, 'n', -7), |
| (8, 'x', -8), |
| (9, 'y', -9), |
| (10, 'z', -10) |
| ] |
| ); |
| |
| // unindexed is ok too |
| let res: Vec<i32> = Some(1i32) |
| .into_par_iter() |
| .chain( |
| (2i32..4) |
| .into_par_iter() |
| .chain(vec![5, 6, 7, 8, 9]) |
| .chain(Some((10, 100)).into_par_iter().flat_map(|(a, b)| a..b)) |
| .filter(|x| x & 1 == 1), |
| ) |
| .collect(); |
| let other: Vec<i32> = (0..100).filter(|x| x & 1 == 1).collect(); |
| assert_eq!(res, other); |
| |
| // chain collect is ok with the "fake" specialization |
| let res: Vec<i32> = Some(1i32).into_par_iter().chain(None).collect(); |
| assert_eq!(res, &[1]); |
| } |
| |
| #[test] |
| pub fn check_count() { |
| let c0 = (0_u32..24 * 1024).filter(|i| i % 2 == 0).count(); |
| let c1 = (0_u32..24 * 1024) |
| .into_par_iter() |
| .filter(|i| i % 2 == 0) |
| .count(); |
| assert_eq!(c0, c1); |
| } |
| |
| #[test] |
| pub fn find_any() { |
| let a: Vec<i32> = (0..1024).collect(); |
| |
| assert!(a.par_iter().find_any(|&&x| x % 42 == 41).is_some()); |
| assert_eq!( |
| a.par_iter().find_any(|&&x| x % 19 == 1 && x % 53 == 0), |
| Some(&742_i32) |
| ); |
| assert_eq!(a.par_iter().find_any(|&&x| x < 0), None); |
| |
| assert!(a.par_iter().position_any(|&x| x % 42 == 41).is_some()); |
| assert_eq!( |
| a.par_iter().position_any(|&x| x % 19 == 1 && x % 53 == 0), |
| Some(742_usize) |
| ); |
| assert_eq!(a.par_iter().position_any(|&x| x < 0), None); |
| |
| assert!(a.par_iter().any(|&x| x > 1000)); |
| assert!(!a.par_iter().any(|&x| x < 0)); |
| |
| assert!(!a.par_iter().all(|&x| x > 1000)); |
| assert!(a.par_iter().all(|&x| x >= 0)); |
| } |
| |
| #[test] |
| pub fn find_first_or_last() { |
| let a: Vec<i32> = (0..1024).collect(); |
| |
| assert_eq!(a.par_iter().find_first(|&&x| x % 42 == 41), Some(&41_i32)); |
| assert_eq!( |
| a.par_iter().find_first(|&&x| x % 19 == 1 && x % 53 == 0), |
| Some(&742_i32) |
| ); |
| assert_eq!(a.par_iter().find_first(|&&x| x < 0), None); |
| |
| assert_eq!( |
| a.par_iter().position_first(|&x| x % 42 == 41), |
| Some(41_usize) |
| ); |
| assert_eq!( |
| a.par_iter().position_first(|&x| x % 19 == 1 && x % 53 == 0), |
| Some(742_usize) |
| ); |
| assert_eq!(a.par_iter().position_first(|&x| x < 0), None); |
| |
| assert_eq!(a.par_iter().find_last(|&&x| x % 42 == 41), Some(&1007_i32)); |
| assert_eq!( |
| a.par_iter().find_last(|&&x| x % 19 == 1 && x % 53 == 0), |
| Some(&742_i32) |
| ); |
| assert_eq!(a.par_iter().find_last(|&&x| x < 0), None); |
| |
| assert_eq!( |
| a.par_iter().position_last(|&x| x % 42 == 41), |
| Some(1007_usize) |
| ); |
| assert_eq!( |
| a.par_iter().position_last(|&x| x % 19 == 1 && x % 53 == 0), |
| Some(742_usize) |
| ); |
| assert_eq!(a.par_iter().position_last(|&x| x < 0), None); |
| } |
| |
| #[test] |
| pub fn check_find_not_present() { |
| let counter = AtomicUsize::new(0); |
| let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| p >= 2048 |
| }); |
| assert!(value.is_none()); |
| assert!(counter.load(Ordering::SeqCst) == 2048); // should have visited every single one |
| } |
| |
| #[test] |
| pub fn check_find_is_present() { |
| let counter = AtomicUsize::new(0); |
| let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| p >= 1024 && p < 1096 |
| }); |
| let q = value.unwrap(); |
| assert!(q >= 1024 && q < 1096); |
| assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
| } |
| |
| #[test] |
| pub fn check_while_some() { |
| let value = (0_i32..2048).into_par_iter().map(Some).while_some().max(); |
| assert_eq!(value, Some(2047)); |
| |
| let counter = AtomicUsize::new(0); |
| let value = (0_i32..2048) |
| .into_par_iter() |
| .map(|x| { |
| counter.fetch_add(1, Ordering::SeqCst); |
| if x < 1024 { |
| Some(x) |
| } else { |
| None |
| } |
| }) |
| .while_some() |
| .max(); |
| assert!(value < Some(1024)); |
| assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
| } |
| |
| #[test] |
| pub fn par_iter_collect_option() { |
| let a: Option<Vec<_>> = (0_i32..2048).map(Some).collect(); |
| let b: Option<Vec<_>> = (0_i32..2048).into_par_iter().map(Some).collect(); |
| assert_eq!(a, b); |
| |
| let c: Option<Vec<_>> = (0_i32..2048) |
| .into_par_iter() |
| .map(|x| if x == 1234 { None } else { Some(x) }) |
| .collect(); |
| assert_eq!(c, None); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_result() { |
| let a: Result<Vec<_>, ()> = (0_i32..2048).map(Ok).collect(); |
| let b: Result<Vec<_>, ()> = (0_i32..2048).into_par_iter().map(Ok).collect(); |
| assert_eq!(a, b); |
| |
| let c: Result<Vec<_>, _> = (0_i32..2048) |
| .into_par_iter() |
| .map(|x| if x == 1234 { Err(x) } else { Ok(x) }) |
| .collect(); |
| assert_eq!(c, Err(1234)); |
| |
| let d: Result<Vec<_>, _> = (0_i32..2048) |
| .into_par_iter() |
| .map(|x| if x % 100 == 99 { Err(x) } else { Ok(x) }) |
| .collect(); |
| assert_eq!(d.map_err(|x| x % 100), Err(99)); |
| } |
| |
| #[test] |
| pub fn par_iter_collect() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: Vec<i32> = a.par_iter().map(|&i| i + 1).collect(); |
| let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_vecdeque() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: VecDeque<i32> = a.par_iter().cloned().collect(); |
| let c: VecDeque<i32> = a.iter().cloned().collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_binaryheap() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let mut b: BinaryHeap<i32> = a.par_iter().cloned().collect(); |
| assert_eq!(b.peek(), Some(&1023)); |
| assert_eq!(b.len(), 1024); |
| for n in (0..1024).rev() { |
| assert_eq!(b.pop(), Some(n)); |
| assert_eq!(b.len() as i32, n); |
| } |
| } |
| |
| #[test] |
| pub fn par_iter_collect_hashmap() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: HashMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}", i))).collect(); |
| assert_eq!(&b[&3], "3"); |
| assert_eq!(b.len(), 1024); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_hashset() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: HashSet<i32> = a.par_iter().cloned().collect(); |
| assert_eq!(b.len(), 1024); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_btreemap() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: BTreeMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}", i))).collect(); |
| assert_eq!(&b[&3], "3"); |
| assert_eq!(b.len(), 1024); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_btreeset() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: BTreeSet<i32> = a.par_iter().cloned().collect(); |
| assert_eq!(b.len(), 1024); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_linked_list() { |
| let a: Vec<i32> = (0..1024).collect(); |
| let b: LinkedList<_> = a.par_iter().map(|&i| (i, format!("{}", i))).collect(); |
| let c: LinkedList<_> = a.iter().map(|&i| (i, format!("{}", i))).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_linked_list_flat_map_filter() { |
| let b: LinkedList<i32> = (0_i32..1024) |
| .into_par_iter() |
| .flat_map(|i| (0..i)) |
| .filter(|&i| i % 2 == 0) |
| .collect(); |
| let c: LinkedList<i32> = (0_i32..1024) |
| .flat_map(|i| (0..i)) |
| .filter(|&i| i % 2 == 0) |
| .collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| pub fn par_iter_collect_cows() { |
| use std::borrow::Cow; |
| |
| let s = "Fearless Concurrency with Rust"; |
| |
| // Collects `i32` into a `Vec` |
| let a: Cow<[i32]> = (0..1024).collect(); |
| let b: Cow<[i32]> = a.par_iter().cloned().collect(); |
| assert_eq!(a, b); |
| |
| // Collects `char` into a `String` |
| let a: Cow<str> = s.chars().collect(); |
| let b: Cow<str> = s.par_chars().collect(); |
| assert_eq!(a, b); |
| |
| // Collects `str` into a `String` |
| let a: Cow<str> = s.split_whitespace().collect(); |
| let b: Cow<str> = s.par_split_whitespace().collect(); |
| assert_eq!(a, b); |
| |
| // Collects `String` into a `String` |
| let a: Cow<str> = s.split_whitespace().map(|s| s.to_owned()).collect(); |
| let b: Cow<str> = s.par_split_whitespace().map(|s| s.to_owned()).collect(); |
| assert_eq!(a, b); |
| } |
| |
| #[test] |
| pub fn par_iter_unindexed_flat_map() { |
| let b: Vec<i64> = (0_i64..1024) |
| .into_par_iter() |
| .flat_map(|i| Some(i)) |
| .collect(); |
| let c: Vec<i64> = (0_i64..1024).flat_map(|i| Some(i)).collect(); |
| assert_eq!(b, c); |
| } |
| |
| #[test] |
| fn min_max() { |
| let mut rng = seeded_rng(); |
| let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| for i in 0..a.len() + 1 { |
| let slice = &a[..i]; |
| assert_eq!(slice.par_iter().min(), slice.iter().min()); |
| assert_eq!(slice.par_iter().max(), slice.iter().max()); |
| } |
| } |
| |
| #[test] |
| fn min_max_by() { |
| let mut rng = seeded_rng(); |
| // Make sure there are duplicate keys, for testing sort stability |
| let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect(); |
| let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect(); |
| for i in 0..a.len() + 1 { |
| let slice = &a[..i]; |
| assert_eq!( |
| slice.par_iter().min_by(|x, y| x.0.cmp(&y.0)), |
| slice.iter().min_by(|x, y| x.0.cmp(&y.0)) |
| ); |
| assert_eq!( |
| slice.par_iter().max_by(|x, y| x.0.cmp(&y.0)), |
| slice.iter().max_by(|x, y| x.0.cmp(&y.0)) |
| ); |
| } |
| } |
| |
| #[test] |
| fn min_max_by_key() { |
| let mut rng = seeded_rng(); |
| // Make sure there are duplicate keys, for testing sort stability |
| let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect(); |
| let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect(); |
| for i in 0..a.len() + 1 { |
| let slice = &a[..i]; |
| assert_eq!( |
| slice.par_iter().min_by_key(|x| x.0), |
| slice.iter().min_by_key(|x| x.0) |
| ); |
| assert_eq!( |
| slice.par_iter().max_by_key(|x| x.0), |
| slice.iter().max_by_key(|x| x.0) |
| ); |
| } |
| } |
| |
| #[test] |
| fn check_rev() { |
| let a: Vec<usize> = (0..1024).rev().collect(); |
| let b: Vec<usize> = (0..1024).collect(); |
| |
| assert!(a.par_iter().rev().zip(b).all(|(&a, b)| a == b)); |
| } |
| |
| #[test] |
| fn scope_mix() { |
| let counter_p = &AtomicUsize::new(0); |
| scope(|s| { |
| s.spawn(move |s| { |
| divide_and_conquer(s, counter_p, 1024); |
| }); |
| s.spawn(move |_| { |
| let a: Vec<i32> = (0..1024).collect(); |
| let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j); |
| let r2 = a.iter().map(|&i| i + 1).fold(0, |a, b| a + b); |
| assert_eq!(r1.unwrap(), r2); |
| }); |
| }); |
| } |
| |
| fn divide_and_conquer<'scope>(scope: &Scope<'scope>, counter: &'scope AtomicUsize, size: usize) { |
| if size > 1 { |
| scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2)); |
| scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2)); |
| } else { |
| // count the leaves |
| counter.fetch_add(1, Ordering::SeqCst); |
| } |
| } |
| |
| #[test] |
| fn check_split() { |
| use std::ops::Range; |
| |
| let a = (0..1024).into_par_iter(); |
| |
| let b = split(0..1024, |Range { start, end }| { |
| let mid = (end - start) / 2; |
| if mid > start { |
| (start..mid, Some(mid..end)) |
| } else { |
| (start..end, None) |
| } |
| }) |
| .flat_map(|range| range); |
| |
| assert_eq!(a.collect::<Vec<_>>(), b.collect::<Vec<_>>()); |
| } |
| |
| #[test] |
| fn check_lengths() { |
| fn check(min: usize, max: usize) { |
| let range = 0..1024 * 1024; |
| |
| // Check against normalized values. |
| let min_check = cmp::min(cmp::max(min, 1), range.len()); |
| let max_check = cmp::max(max, min_check.saturating_add(min_check - 1)); |
| |
| assert!( |
| range |
| .into_par_iter() |
| .with_min_len(min) |
| .with_max_len(max) |
| .fold(|| 0, |count, _| count + 1) |
| .all(|c| c >= min_check && c <= max_check), |
| "check_lengths failed {:?} -> {:?} ", |
| (min, max), |
| (min_check, max_check) |
| ); |
| } |
| |
| let lengths = [0, 1, 10, 100, 1000, 10000, 100000, 1000000, usize::MAX]; |
| for &min in &lengths { |
| for &max in &lengths { |
| check(min, max); |
| } |
| } |
| } |
| |
| #[test] |
| fn check_map_with() { |
| let (sender, receiver) = mpsc::channel(); |
| let a: HashSet<_> = (0..1024).collect(); |
| |
| a.par_iter() |
| .cloned() |
| .map_with(sender, |s, i| s.send(i).unwrap()) |
| .count(); |
| |
| let b: HashSet<_> = receiver.iter().collect(); |
| assert_eq!(a, b); |
| } |
| |
| #[test] |
| fn check_fold_with() { |
| let (sender, receiver) = mpsc::channel(); |
| let a: HashSet<_> = (0..1024).collect(); |
| |
| a.par_iter() |
| .cloned() |
| .fold_with(sender, |s, i| { |
| s.send(i).unwrap(); |
| s |
| }) |
| .count(); |
| |
| let b: HashSet<_> = receiver.iter().collect(); |
| assert_eq!(a, b); |
| } |
| |
| #[test] |
| fn check_for_each_with() { |
| let (sender, receiver) = mpsc::channel(); |
| let a: HashSet<_> = (0..1024).collect(); |
| |
| a.par_iter() |
| .cloned() |
| .for_each_with(sender, |s, i| s.send(i).unwrap()); |
| |
| let b: HashSet<_> = receiver.iter().collect(); |
| assert_eq!(a, b); |
| } |
| |
| #[test] |
| fn check_extend_items() { |
| fn check<C>() |
| where |
| C: Default |
| + Eq |
| + Debug |
| + Extend<i32> |
| + for<'a> Extend<&'a i32> |
| + ParallelExtend<i32> |
| + for<'a> ParallelExtend<&'a i32>, |
| { |
| let mut serial = C::default(); |
| let mut parallel = C::default(); |
| |
| // extend with references |
| let v: Vec<_> = (0..128).collect(); |
| serial.extend(&v); |
| parallel.par_extend(&v); |
| assert_eq!(serial, parallel); |
| |
| // extend with values |
| serial.extend(-128..0); |
| parallel.par_extend(-128..0); |
| assert_eq!(serial, parallel); |
| } |
| |
| check::<BTreeSet<_>>(); |
| check::<HashSet<_>>(); |
| check::<LinkedList<_>>(); |
| check::<Vec<_>>(); |
| check::<VecDeque<_>>(); |
| } |
| |
| #[test] |
| fn check_extend_heap() { |
| let mut serial: BinaryHeap<_> = Default::default(); |
| let mut parallel: BinaryHeap<_> = Default::default(); |
| |
| // extend with references |
| let v: Vec<_> = (0..128).collect(); |
| serial.extend(&v); |
| parallel.par_extend(&v); |
| assert_eq!( |
| serial.clone().into_sorted_vec(), |
| parallel.clone().into_sorted_vec() |
| ); |
| |
| // extend with values |
| serial.extend(-128..0); |
| parallel.par_extend(-128..0); |
| assert_eq!(serial.into_sorted_vec(), parallel.into_sorted_vec()); |
| } |
| |
| #[test] |
| fn check_extend_pairs() { |
| fn check<C>() |
| where |
| C: Default |
| + Eq |
| + Debug |
| + Extend<(usize, i32)> |
| + for<'a> Extend<(&'a usize, &'a i32)> |
| + ParallelExtend<(usize, i32)> |
| + for<'a> ParallelExtend<(&'a usize, &'a i32)>, |
| { |
| let mut serial = C::default(); |
| let mut parallel = C::default(); |
| |
| // extend with references |
| let m: HashMap<_, _> = (0..128).enumerate().collect(); |
| serial.extend(&m); |
| parallel.par_extend(&m); |
| assert_eq!(serial, parallel); |
| |
| // extend with values |
| let v: Vec<(_, _)> = (-128..0).enumerate().collect(); |
| serial.extend(v.clone()); |
| parallel.par_extend(v); |
| assert_eq!(serial, parallel); |
| } |
| |
| check::<BTreeMap<usize, i32>>(); |
| check::<HashMap<usize, i32>>(); |
| } |
| |
| #[test] |
| fn check_unzip_into_vecs() { |
| let mut a = vec![]; |
| let mut b = vec![]; |
| (0..1024) |
| .into_par_iter() |
| .map(|i| i * i) |
| .enumerate() |
| .unzip_into_vecs(&mut a, &mut b); |
| |
| let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| assert_eq!(a, c); |
| assert_eq!(b, d); |
| } |
| |
| #[test] |
| fn check_unzip() { |
| // indexed, unindexed |
| let (a, b): (Vec<_>, HashSet<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); |
| let (c, d): (Vec<_>, HashSet<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| assert_eq!(a, c); |
| assert_eq!(b, d); |
| |
| // unindexed, indexed |
| let (a, b): (HashSet<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); |
| let (c, d): (HashSet<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| assert_eq!(a, c); |
| assert_eq!(b, d); |
| |
| // indexed, indexed |
| let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); |
| let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| assert_eq!(a, c); |
| assert_eq!(b, d); |
| |
| // unindexed producer |
| let (a, b): (Vec<_>, Vec<_>) = (0..1024) |
| .into_par_iter() |
| .filter_map(|i| Some((i, i * i))) |
| .unzip(); |
| let (c, d): (Vec<_>, Vec<_>) = (0..1024).filter_map(|i| Some((i, i * i))).unzip(); |
| assert_eq!(a, c); |
| assert_eq!(b, d); |
| } |
| |
| #[test] |
| fn check_partition() { |
| let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().partition(|&i| i % 3 == 0); |
| let (c, d): (Vec<_>, Vec<_>) = (0..1024).partition(|&i| i % 3 == 0); |
| assert_eq!(a, c); |
| assert_eq!(b, d); |
| } |
| |
| #[test] |
| fn check_partition_map() { |
| let input = "a b c 1 2 3 x y z"; |
| let (a, b): (Vec<_>, String) = |
| input |
| .par_split_whitespace() |
| .partition_map(|s| match s.parse::<i32>() { |
| Ok(n) => Either::Left(n), |
| Err(_) => Either::Right(s), |
| }); |
| assert_eq!(a, vec![1, 2, 3]); |
| assert_eq!(b, "abcxyz"); |
| } |
| |
| #[test] |
| fn check_either() { |
| type I = ::vec::IntoIter<i32>; |
| type E = Either<I, I>; |
| |
| let v: Vec<i32> = (0..1024).collect(); |
| |
| // try iterating the left side |
| let left: E = Either::Left(v.clone().into_par_iter()); |
| assert!(left.eq(v.clone())); |
| |
| // try iterating the right side |
| let right: E = Either::Right(v.clone().into_par_iter()); |
| assert!(right.eq(v.clone())); |
| |
| // try an indexed iterator |
| let left: E = Either::Left(v.clone().into_par_iter()); |
| assert!(left.enumerate().eq(v.clone().into_par_iter().enumerate())); |
| } |
| |
| #[test] |
| fn check_either_extend() { |
| type E = Either<Vec<i32>, HashSet<i32>>; |
| |
| let v: Vec<i32> = (0..1024).collect(); |
| |
| // try extending the left side |
| let mut left: E = Either::Left(vec![]); |
| left.par_extend(v.clone()); |
| assert_eq!(left.as_ref(), Either::Left(&v)); |
| |
| // try extending the right side |
| let mut right: E = Either::Right(HashSet::default()); |
| right.par_extend(v.clone()); |
| assert_eq!(right, Either::Right(v.iter().cloned().collect())); |
| } |
| |
| #[test] |
| fn check_interleave_eq() { |
| let xs: Vec<usize> = (0..10).collect(); |
| let ys: Vec<usize> = (10..20).collect(); |
| |
| let mut actual = vec![]; |
| xs.par_iter() |
| .interleave(&ys) |
| .map(|&i| i) |
| .collect_into_vec(&mut actual); |
| |
| let expected: Vec<usize> = (0..10) |
| .zip(10..20) |
| .flat_map(|(i, j)| vec![i, j].into_iter()) |
| .collect(); |
| assert_eq!(expected, actual); |
| } |
| |
| #[test] |
| fn check_interleave_uneven() { |
| let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![ |
| ( |
| (0..9).collect(), |
| vec![10], |
| vec![0, 10, 1, 2, 3, 4, 5, 6, 7, 8], |
| ), |
| ( |
| vec![10], |
| (0..9).collect(), |
| vec![10, 0, 1, 2, 3, 4, 5, 6, 7, 8], |
| ), |
| ( |
| (0..5).collect(), |
| (5..10).collect(), |
| (0..5) |
| .zip(5..10) |
| .flat_map(|(i, j)| vec![i, j].into_iter()) |
| .collect(), |
| ), |
| (vec![], (0..9).collect(), (0..9).collect()), |
| ((0..9).collect(), vec![], (0..9).collect()), |
| ( |
| (0..50).collect(), |
| (50..100).collect(), |
| (0..50) |
| .zip(50..100) |
| .flat_map(|(i, j)| vec![i, j].into_iter()) |
| .collect(), |
| ), |
| ]; |
| |
| for (i, (xs, ys, expected)) in cases.into_iter().enumerate() { |
| let mut res = vec![]; |
| xs.par_iter() |
| .interleave(&ys) |
| .map(|&i| i) |
| .collect_into_vec(&mut res); |
| assert_eq!(expected, res, "Case {} failed", i); |
| |
| res.truncate(0); |
| xs.par_iter() |
| .interleave(&ys) |
| .rev() |
| .map(|&i| i) |
| .collect_into_vec(&mut res); |
| assert_eq!( |
| expected.into_iter().rev().collect::<Vec<usize>>(), |
| res, |
| "Case {} reversed failed", |
| i |
| ); |
| } |
| } |
| |
| #[test] |
| fn check_interleave_shortest() { |
| let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![ |
| ((0..9).collect(), vec![10], vec![0, 10, 1]), |
| (vec![10], (0..9).collect(), vec![10, 0]), |
| ( |
| (0..5).collect(), |
| (5..10).collect(), |
| (0..5) |
| .zip(5..10) |
| .flat_map(|(i, j)| vec![i, j].into_iter()) |
| .collect(), |
| ), |
| (vec![], (0..9).collect(), vec![]), |
| ((0..9).collect(), vec![], vec![0]), |
| ( |
| (0..50).collect(), |
| (50..100).collect(), |
| (0..50) |
| .zip(50..100) |
| .flat_map(|(i, j)| vec![i, j].into_iter()) |
| .collect(), |
| ), |
| ]; |
| |
| for (i, (xs, ys, expected)) in cases.into_iter().enumerate() { |
| let mut res = vec![]; |
| xs.par_iter() |
| .interleave_shortest(&ys) |
| .map(|&i| i) |
| .collect_into_vec(&mut res); |
| assert_eq!(expected, res, "Case {} failed", i); |
| |
| res.truncate(0); |
| xs.par_iter() |
| .interleave_shortest(&ys) |
| .rev() |
| .map(|&i| i) |
| .collect_into_vec(&mut res); |
| assert_eq!( |
| expected.into_iter().rev().collect::<Vec<usize>>(), |
| res, |
| "Case {} reversed failed", |
| i |
| ); |
| } |
| } |
| |
| #[test] |
| #[should_panic(expected = "chunk_size must not be zero")] |
| fn check_chunks_zero_size() { |
| let _: Vec<Vec<i32>> = vec![1, 2, 3].into_par_iter().chunks(0).collect(); |
| } |
| |
| #[test] |
| fn check_chunks_even_size() { |
| assert_eq!( |
| vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]], |
| (1..10).into_par_iter().chunks(3).collect::<Vec<Vec<i32>>>() |
| ); |
| } |
| |
| #[test] |
| fn check_chunks_empty() { |
| let v: Vec<i32> = vec![]; |
| let expected: Vec<Vec<i32>> = vec![]; |
| assert_eq!( |
| expected, |
| v.into_par_iter().chunks(2).collect::<Vec<Vec<i32>>>() |
| ); |
| } |
| |
| #[test] |
| fn check_chunks_len() { |
| assert_eq!(4, (0..8).into_par_iter().chunks(2).len()); |
| assert_eq!(3, (0..9).into_par_iter().chunks(3).len()); |
| assert_eq!(3, (0..8).into_par_iter().chunks(3).len()); |
| assert_eq!(1, (&[1]).par_iter().chunks(3).len()); |
| assert_eq!(0, (0..0).into_par_iter().chunks(3).len()); |
| } |
| |
| #[test] |
| fn check_chunks_uneven() { |
| let cases: Vec<(Vec<u32>, usize, Vec<Vec<u32>>)> = vec![ |
| ((0..5).collect(), 3, vec![vec![0, 1, 2], vec![3, 4]]), |
| (vec![1], 5, vec![vec![1]]), |
| ((0..4).collect(), 3, vec![vec![0, 1, 2], vec![3]]), |
| ]; |
| |
| for (i, (v, n, expected)) in cases.into_iter().enumerate() { |
| let mut res: Vec<Vec<u32>> = vec![]; |
| v.par_iter() |
| .chunks(n) |
| .map(|v| v.into_iter().cloned().collect()) |
| .collect_into_vec(&mut res); |
| assert_eq!(expected, res, "Case {} failed", i); |
| |
| res.truncate(0); |
| v.into_par_iter().chunks(n).rev().collect_into_vec(&mut res); |
| assert_eq!( |
| expected.into_iter().rev().collect::<Vec<Vec<u32>>>(), |
| res, |
| "Case {} reversed failed", |
| i |
| ); |
| } |
| } |
| |
| #[test] |
| #[ignore] // it's quick enough on optimized 32-bit platforms, but otherwise... ... ... |
| #[should_panic(expected = "overflow")] |
| #[cfg(debug_assertions)] |
| fn check_repeat_unbounded() { |
| // use just one thread, so we don't get infinite adaptive splitting |
| // (forever stealing and re-splitting jobs that will panic on overflow) |
| let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap(); |
| pool.install(|| { |
| println!("counted {} repeats", repeat(()).count()); |
| }); |
| } |
| |
| #[test] |
| fn check_repeat_find_any() { |
| let even = repeat(4).find_any(|&x| x % 2 == 0); |
| assert_eq!(even, Some(4)); |
| } |
| |
| #[test] |
| fn check_repeat_take() { |
| let v: Vec<_> = repeat(4).take(4).collect(); |
| assert_eq!(v, [4, 4, 4, 4]); |
| } |
| |
| #[test] |
| fn check_repeat_zip() { |
| let v = vec![4, 4, 4, 4]; |
| let mut fours: Vec<_> = repeat(4).zip(v).collect(); |
| assert_eq!(fours.len(), 4); |
| while let Some(item) = fours.pop() { |
| assert_eq!(item, (4, 4)); |
| } |
| } |
| |
| #[test] |
| fn check_repeatn_zip_left() { |
| let v = vec![4, 4, 4, 4]; |
| let mut fours: Vec<_> = repeatn(4, usize::MAX).zip(v).collect(); |
| assert_eq!(fours.len(), 4); |
| while let Some(item) = fours.pop() { |
| assert_eq!(item, (4, 4)); |
| } |
| } |
| |
| #[test] |
| fn check_repeatn_zip_right() { |
| let v = vec![4, 4, 4, 4]; |
| let mut fours: Vec<_> = v.into_par_iter().zip(repeatn(4, usize::MAX)).collect(); |
| assert_eq!(fours.len(), 4); |
| while let Some(item) = fours.pop() { |
| assert_eq!(item, (4, 4)); |
| } |
| } |
| |
| #[test] |
| fn check_empty() { |
| // drive_unindexed |
| let mut v: Vec<i32> = empty().filter(|_| unreachable!()).collect(); |
| assert!(v.is_empty()); |
| |
| // drive (indexed) |
| empty().collect_into_vec(&mut v); |
| assert!(v.is_empty()); |
| |
| // with_producer |
| let v: Vec<(i32, i32)> = empty().zip(1..10).collect(); |
| assert!(v.is_empty()); |
| } |
| |
| #[test] |
| fn check_once() { |
| // drive_unindexed |
| let mut v: Vec<i32> = once(42).filter(|_| true).collect(); |
| assert_eq!(v, &[42]); |
| |
| // drive (indexed) |
| once(42).collect_into_vec(&mut v); |
| assert_eq!(v, &[42]); |
| |
| // with_producer |
| let v: Vec<(i32, i32)> = once(42).zip(1..10).collect(); |
| assert_eq!(v, &[(42, 1)]); |
| } |
| |
| #[test] |
| fn check_update() { |
| let mut v: Vec<Vec<_>> = vec![vec![1], vec![3, 2, 1]]; |
| v.par_iter_mut().update(|v| v.push(0)).for_each(|_| ()); |
| |
| assert_eq!(v, vec![vec![1, 0], vec![3, 2, 1, 0]]); |
| } |