blob: 132834931860b93a590dd2a0545900e24d6329d5 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Vibrator.h"
#include "utils.h"
#include <android/looper.h>
#include <android/sensor.h>
#include <cutils/properties.h>
#include <hardware/hardware.h>
#include <hardware/vibrator.h>
#include <log/log.h>
#include <utils/Errors.h>
#include <utils/Trace.h>
#include <cinttypes>
#include <cmath>
#include <fstream>
#include <iostream>
#include <numeric>
namespace aidl {
namespace android {
namespace hardware {
namespace vibrator {
using ::android::NO_ERROR;
using ::android::UNEXPECTED_NULL;
static constexpr int8_t MAX_RTP_INPUT = 127;
static constexpr int8_t MIN_RTP_INPUT = 0;
static constexpr char RTP_MODE[] = "rtp";
static constexpr char WAVEFORM_MODE[] = "waveform";
// Use effect #1 in the waveform library for CLICK effect
static constexpr char WAVEFORM_CLICK_EFFECT_SEQ[] = "1 0";
// Use effect #2 in the waveform library for TICK effect
static constexpr char WAVEFORM_TICK_EFFECT_SEQ[] = "2 0";
// Use effect #3 in the waveform library for DOUBLE_CLICK effect
static constexpr char WAVEFORM_DOUBLE_CLICK_EFFECT_SEQ[] = "3 0";
// Use effect #4 in the waveform library for HEAVY_CLICK effect
static constexpr char WAVEFORM_HEAVY_CLICK_EFFECT_SEQ[] = "4 0";
// UT team design those target G values
static constexpr std::array<float, 5> EFFECT_TARGET_G = {0.19, 0.30, 0.39, 0.66, 0.75};
static constexpr std::array<float, 3> STEADY_TARGET_G = {1.5, 1.145, 0.82};
struct SensorContext {
ASensorEventQueue *queue;
};
static std::vector<float> sXAxleData;
static std::vector<float> sYAxleData;
static uint64_t sEndTime = 0;
static struct timespec sGetTime;
#define MAX_VOLTAGE 3.2
#define FLOAT_EPS 1e-7
#define SENSOR_DATA_NUM 20
// Set sensing period to 2s
#define SENSING_PERIOD 2000000000
#define VIBRATION_MOTION_TIME_THRESHOLD 100
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
int GSensorCallback(__attribute__((unused)) int fd, __attribute__((unused)) int events,
void *data) {
ASensorEvent event;
int event_count = 0;
SensorContext *context = reinterpret_cast<SensorContext *>(data);
event_count = ASensorEventQueue_getEvents(context->queue, &event, 1);
sXAxleData.push_back(event.data[0]);
sYAxleData.push_back(event.data[1]);
return 1;
}
// TODO: b/152305970
int32_t PollGSensor() {
int err = NO_ERROR, counter = 0;
ASensorManager *sensorManager = nullptr;
ASensorRef GSensor;
ALooper *looper;
struct SensorContext context = {nullptr};
// Get proximity sensor events from the NDK
sensorManager = ASensorManager_getInstanceForPackage("");
if (!sensorManager) {
ALOGI("Chase %s: Sensor manager is NULL.\n", __FUNCTION__);
err = UNEXPECTED_NULL;
return 0;
}
GSensor = ASensorManager_getDefaultSensor(sensorManager, ASENSOR_TYPE_GRAVITY);
if (GSensor == nullptr) {
ALOGE("%s:Chase Unable to get g sensor\n", __func__);
} else {
looper = ALooper_forThread();
if (looper == nullptr) {
looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);
}
context.queue =
ASensorManager_createEventQueue(sensorManager, looper, 0, GSensorCallback, &context);
err = ASensorEventQueue_registerSensor(context.queue, GSensor, 0, 0);
if (err != NO_ERROR) {
ALOGE("Chase %s: Error %d registering G sensor with event queue.\n", __FUNCTION__, err);
return 0;
}
if (err < 0) {
ALOGE("%s:Chase Unable to register for G sensor events\n", __func__);
} else {
for (counter = 0; counter < SENSOR_DATA_NUM; counter++) {
ALooper_pollOnce(5, nullptr, nullptr, nullptr);
}
}
}
if (sensorManager != nullptr && context.queue != nullptr) {
ASensorEventQueue_disableSensor(context.queue, GSensor);
ASensorManager_destroyEventQueue(sensorManager, context.queue);
}
return 0;
}
// Temperature protection upper bound 10°C and lower bound 5°C
static constexpr int32_t TEMP_UPPER_BOUND = 10000;
static constexpr int32_t TEMP_LOWER_BOUND = 5000;
// Steady vibration's voltage in lower bound guarantee
static uint32_t STEADY_VOLTAGE_LOWER_BOUND = 90; // 1.8 Vpeak
static std::uint32_t freqPeriodFormula(std::uint32_t in) {
return 1000000000 / (24615 * in);
}
static std::uint32_t convertLevelsToOdClamp(float voltageLevel, uint32_t lraPeriod) {
float odClamp;
odClamp = voltageLevel /
((21.32 / 1000.0) *
sqrt(1.0 - (static_cast<float>(freqPeriodFormula(lraPeriod)) * 8.0 / 10000.0)));
return round(odClamp);
}
static float targetGToVlevelsUnderLinearEquation(std::array<float, 4> inputCoeffs, float targetG) {
// Implement linear equation to get voltage levels, f(x) = ax + b
// 0 to 3.2 is our valid output
float outPutVal = 0.0f;
outPutVal = (targetG - inputCoeffs[1]) / inputCoeffs[0];
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
} else {
return 0.0f;
}
}
static float targetGToVlevelsUnderCubicEquation(std::array<float, 4> inputCoeffs, float targetG) {
// Implement cubic equation to get voltage levels, f(x) = ax^3 + bx^2 + cx + d
// 0 to 3.2 is our valid output
float AA = 0.0f, BB = 0.0f, CC = 0.0f, Delta = 0.0f;
float Y1 = 0.0f, Y2 = 0.0f, K = 0.0f, T = 0.0f, sita = 0.0f;
float outPutVal = 0.0f;
float oneHalf = 1.0 / 2.0, oneThird = 1.0 / 3.0;
float cosSita = 0.0f, sinSitaSqrt3 = 0.0f, sqrtA = 0.0f;
AA = inputCoeffs[1] * inputCoeffs[1] - 3.0 * inputCoeffs[0] * inputCoeffs[2];
BB = inputCoeffs[1] * inputCoeffs[2] - 9.0 * inputCoeffs[0] * (inputCoeffs[3] - targetG);
CC = inputCoeffs[2] * inputCoeffs[2] - 3.0 * inputCoeffs[1] * (inputCoeffs[3] - targetG);
Delta = BB * BB - 4.0 * AA * CC;
// There are four discriminants in Shengjin formula.
// https://zh.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B#%E7%9B%9B%E9%87%91%E5%85%AC%E5%BC%8F%E6%B3%95
if ((fabs(AA) <= FLOAT_EPS) && (fabs(BB) <= FLOAT_EPS)) {
// Case 1: A = B = 0
outPutVal = -inputCoeffs[1] / (3 * inputCoeffs[0]);
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
}
return 0.0f;
} else if (Delta > FLOAT_EPS) {
// Case 2: Delta > 0
Y1 = AA * inputCoeffs[1] + 3.0 * inputCoeffs[0] * (-BB + pow(Delta, oneHalf)) / 2.0;
Y2 = AA * inputCoeffs[1] + 3.0 * inputCoeffs[0] * (-BB - pow(Delta, oneHalf)) / 2.0;
if ((Y1 < -FLOAT_EPS) && (Y2 > FLOAT_EPS)) {
return (-inputCoeffs[1] + pow(-Y1, oneThird) - pow(Y2, oneThird)) /
(3.0 * inputCoeffs[0]);
} else if ((Y1 > FLOAT_EPS) && (Y2 < -FLOAT_EPS)) {
return (-inputCoeffs[1] - pow(Y1, oneThird) + pow(-Y2, oneThird)) /
(3.0 * inputCoeffs[0]);
} else if ((Y1 < -FLOAT_EPS) && (Y2 < -FLOAT_EPS)) {
return (-inputCoeffs[1] + pow(-Y1, oneThird) + pow(-Y2, oneThird)) /
(3.0 * inputCoeffs[0]);
} else {
return (-inputCoeffs[1] - pow(Y1, oneThird) - pow(Y2, oneThird)) /
(3.0 * inputCoeffs[0]);
}
return 0.0f;
} else if (Delta < -FLOAT_EPS) {
// Case 3: Delta < 0
T = (2 * AA * inputCoeffs[1] - 3 * inputCoeffs[0] * BB) / (2 * AA * sqrt(AA));
sita = acos(T);
cosSita = cos(sita / 3);
sinSitaSqrt3 = sqrt(3.0) * sin(sita / 3);
sqrtA = sqrt(AA);
outPutVal = (-inputCoeffs[1] - 2 * sqrtA * cosSita) / (3 * inputCoeffs[0]);
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
}
outPutVal = (-inputCoeffs[1] + sqrtA * (cosSita + sinSitaSqrt3)) / (3 * inputCoeffs[0]);
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
}
outPutVal = (-inputCoeffs[1] + sqrtA * (cosSita - sinSitaSqrt3)) / (3 * inputCoeffs[0]);
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
}
return 0.0f;
} else if (Delta <= FLOAT_EPS) {
// Case 4: Delta = 0
K = BB / AA;
outPutVal = (-inputCoeffs[1] / inputCoeffs[0] + K);
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
}
outPutVal = (-K / 2);
if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
return outPutVal;
}
return 0.0f;
} else {
// Exception handling
return 0.0f;
}
}
static float vLevelsToTargetGUnderCubicEquation(std::array<float, 4> inputCoeffs, float vLevel) {
float inputVoltage = 0.0f;
inputVoltage = vLevel * MAX_VOLTAGE;
return inputCoeffs[0] * pow(inputVoltage, 3) + inputCoeffs[1] * pow(inputVoltage, 2) +
inputCoeffs[2] * inputVoltage + inputCoeffs[3];
}
static bool motionAwareness() {
float avgX = 0.0, avgY = 0.0;
uint64_t current_time = 0;
clock_gettime(CLOCK_MONOTONIC, &sGetTime);
current_time = ((uint64_t)sGetTime.tv_sec * 1000 * 1000 * 1000) + sGetTime.tv_nsec;
if ((current_time - sEndTime) > SENSING_PERIOD) {
sXAxleData.clear();
sYAxleData.clear();
PollGSensor();
clock_gettime(CLOCK_MONOTONIC, &sGetTime);
sEndTime = ((uint64_t)sGetTime.tv_sec * 1000 * 1000 * 1000) + sGetTime.tv_nsec;
}
avgX = std::accumulate(sXAxleData.begin(), sXAxleData.end(), 0.0) / sXAxleData.size();
avgY = std::accumulate(sYAxleData.begin(), sYAxleData.end(), 0.0) / sYAxleData.size();
if ((avgX > -1.3) && (avgX < 1.3) && (avgY > -0.8) && (avgY < 0.8)) {
return false;
} else {
return true;
}
}
using utils::toUnderlying;
Vibrator::Vibrator(std::unique_ptr<HwApi> hwapi, std::unique_ptr<HwCal> hwcal)
: mHwApi(std::move(hwapi)), mHwCal(std::move(hwcal)) {
std::string autocal;
uint32_t lraPeriod = 0, lpTrigSupport = 0;
bool hasEffectCoeffs = false, hasSteadyCoeffs = false;
std::array<float, 4> effectCoeffs = {0};
std::array<float, 4> steadyCoeffs = {0};
if (!mHwApi->setState(true)) {
ALOGE("Failed to set state (%d): %s", errno, strerror(errno));
}
if (mHwCal->getAutocal(&autocal)) {
mHwApi->setAutocal(autocal);
}
mHwCal->getLraPeriod(&lraPeriod);
mHwCal->getCloseLoopThreshold(&mCloseLoopThreshold);
mHwCal->getDynamicConfig(&mDynamicConfig);
if (mDynamicConfig) {
uint8_t i = 0;
float tempVolLevel = 0.0f;
float tempAmpMax = 0.0f;
uint32_t longFreqencyShift = 0;
uint32_t shortVoltageMax = 0, longVoltageMax = 0;
uint32_t shape = 0;
mHwCal->getLongFrequencyShift(&longFreqencyShift);
mHwCal->getShortVoltageMax(&shortVoltageMax);
mHwCal->getLongVoltageMax(&longVoltageMax);
hasEffectCoeffs = mHwCal->getEffectCoeffs(&effectCoeffs);
for (i = 0; i < 5; i++) {
if (hasEffectCoeffs) {
// Use linear approach to get the target voltage levels
if ((effectCoeffs[2] == 0) && (effectCoeffs[3] == 0)) {
tempVolLevel =
targetGToVlevelsUnderLinearEquation(effectCoeffs, EFFECT_TARGET_G[i]);
mEffectTargetOdClamp[i] = convertLevelsToOdClamp(tempVolLevel, lraPeriod);
} else {
// Use cubic approach to get the target voltage levels
tempVolLevel =
targetGToVlevelsUnderCubicEquation(effectCoeffs, EFFECT_TARGET_G[i]);
mEffectTargetOdClamp[i] = convertLevelsToOdClamp(tempVolLevel, lraPeriod);
}
} else {
mEffectTargetOdClamp[i] = shortVoltageMax;
}
}
// Add a boundary protection for level 5 only, since
// some devices might not be able to reach the maximum target G
if ((mEffectTargetOdClamp[4] <= 0) || (mEffectTargetOdClamp[4] > shortVoltageMax)) {
mEffectTargetOdClamp[4] = shortVoltageMax;
}
mHwCal->getEffectShape(&shape);
mEffectConfig.reset(new VibrationConfig({
.shape = (shape == UINT32_MAX) ? WaveShape::SINE : static_cast<WaveShape>(shape),
.odClamp = &mEffectTargetOdClamp[0],
.olLraPeriod = lraPeriod,
}));
hasSteadyCoeffs = mHwCal->getSteadyCoeffs(&steadyCoeffs);
if (hasSteadyCoeffs) {
for (i = 0; i < 3; i++) {
// Use cubic approach to get the steady target voltage levels
// For steady level 3 voltage which is used for non-motion voltage, we use
// interpolation method to calculate the voltage via 20% of MAX
// voltage, 60% of MAX voltage and steady level 3 target G
if (i == 2) {
tempVolLevel = ((STEADY_TARGET_G[2] -
vLevelsToTargetGUnderCubicEquation(steadyCoeffs, 0.2)) *
0.4 * MAX_VOLTAGE) /
(vLevelsToTargetGUnderCubicEquation(steadyCoeffs, 0.6) -
vLevelsToTargetGUnderCubicEquation(steadyCoeffs, 0.2)) +
0.2 * MAX_VOLTAGE;
} else {
tempVolLevel =
targetGToVlevelsUnderCubicEquation(steadyCoeffs, STEADY_TARGET_G[i]);
}
mSteadyTargetOdClamp[i] = convertLevelsToOdClamp(tempVolLevel, lraPeriod);
if ((mSteadyTargetOdClamp[i] <= 0) || (mSteadyTargetOdClamp[i] > longVoltageMax)) {
mSteadyTargetOdClamp[i] = longVoltageMax;
}
}
} else {
mSteadyTargetOdClamp[0] =
mHwCal->getSteadyAmpMax(&tempAmpMax)
? round((STEADY_TARGET_G[0] / tempAmpMax) * longVoltageMax)
: longVoltageMax;
mSteadyTargetOdClamp[2] =
mHwCal->getSteadyAmpMax(&tempAmpMax)
? round((STEADY_TARGET_G[2] / tempAmpMax) * longVoltageMax)
: longVoltageMax;
}
mHwCal->getSteadyShape(&shape);
mSteadyConfig.reset(new VibrationConfig({
.shape = (shape == UINT32_MAX) ? WaveShape::SQUARE : static_cast<WaveShape>(shape),
.odClamp = &mSteadyTargetOdClamp[0],
.olLraPeriod = lraPeriod,
}));
mSteadyOlLraPeriod = lraPeriod;
// 1. Change long lra period to frequency
// 2. Get frequency': subtract the frequency shift from the frequency
// 3. Get final long lra period after put the frequency' to formula
mSteadyOlLraPeriodShift =
freqPeriodFormula(freqPeriodFormula(lraPeriod) - longFreqencyShift);
} else {
mHwApi->setOlLraPeriod(lraPeriod);
}
mHwCal->getClickDuration(&mClickDuration);
mHwCal->getTickDuration(&mTickDuration);
mHwCal->getDoubleClickDuration(&mDoubleClickDuration);
mHwCal->getHeavyClickDuration(&mHeavyClickDuration);
// This enables effect #1 from the waveform library to be triggered by SLPI
// while the AP is in suspend mode
// For default setting, we will enable this feature if that project did not
// set the lptrigger config
mHwCal->getTriggerEffectSupport(&lpTrigSupport);
if (!mHwApi->setLpTriggerEffect(lpTrigSupport)) {
ALOGW("Failed to set LP trigger mode (%d): %s", errno, strerror(errno));
}
}
ndk::ScopedAStatus Vibrator::getCapabilities(int32_t *_aidl_return) {
ATRACE_NAME("Vibrator::getCapabilities");
int32_t ret = 0;
if (mHwApi->hasRtpInput()) {
ret |= IVibrator::CAP_AMPLITUDE_CONTROL;
}
ret |= IVibrator::CAP_GET_RESONANT_FREQUENCY;
*_aidl_return = ret;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::on(uint32_t timeoutMs, const char mode[],
const std::unique_ptr<VibrationConfig> &config,
const int8_t volOffset) {
LoopControl loopMode = LoopControl::OPEN;
// Open-loop mode is used for short click for over-drive
// Close-loop mode is used for long notification for stability
if (mode == RTP_MODE && timeoutMs > mCloseLoopThreshold) {
loopMode = LoopControl::CLOSE;
}
mHwApi->setCtrlLoop(toUnderlying(loopMode));
if (!mHwApi->setDuration(timeoutMs)) {
ALOGE("Failed to set duration (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
mHwApi->setMode(mode);
if (config != nullptr) {
mHwApi->setLraWaveShape(toUnderlying(config->shape));
mHwApi->setOdClamp(config->odClamp[volOffset]);
mHwApi->setOlLraPeriod(config->olLraPeriod);
}
if (!mHwApi->setActivate(1)) {
ALOGE("Failed to activate (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::on(int32_t timeoutMs,
const std::shared_ptr<IVibratorCallback> &callback) {
ATRACE_NAME("Vibrator::on");
if (callback) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
if (mDynamicConfig) {
int temperature = 0;
mHwApi->getPATemp(&temperature);
if (temperature > TEMP_UPPER_BOUND) {
mSteadyConfig->odClamp = &mSteadyTargetOdClamp[0];
mSteadyConfig->olLraPeriod = mSteadyOlLraPeriod;
// TODO: b/162346934 This a compromise way to bypass the motion
// awareness delay
if ((timeoutMs > VIBRATION_MOTION_TIME_THRESHOLD) && (!motionAwareness())) {
return on(timeoutMs, RTP_MODE, mSteadyConfig, 2);
}
} else if (temperature < TEMP_LOWER_BOUND) {
mSteadyConfig->odClamp = &STEADY_VOLTAGE_LOWER_BOUND;
mSteadyConfig->olLraPeriod = mSteadyOlLraPeriodShift;
}
}
return on(timeoutMs, RTP_MODE, mSteadyConfig, 0);
}
ndk::ScopedAStatus Vibrator::off() {
ATRACE_NAME("Vibrator::off");
if (!mHwApi->setActivate(0)) {
ALOGE("Failed to turn vibrator off (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setAmplitude(float amplitude) {
ATRACE_NAME("Vibrator::setAmplitude");
if (amplitude <= 0.0f || amplitude > 1.0f) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
int32_t rtp_input = std::round(amplitude * (MAX_RTP_INPUT - MIN_RTP_INPUT) + MIN_RTP_INPUT);
if (!mHwApi->setRtpInput(rtp_input)) {
ALOGE("Failed to set amplitude (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setExternalControl(bool enabled) {
ATRACE_NAME("Vibrator::setExternalControl");
ALOGE("Not support in DRV2624 solution, %d", enabled);
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
binder_status_t Vibrator::dump(int fd, const char **args, uint32_t numArgs) {
if (fd < 0) {
ALOGE("Called debug() with invalid fd.");
return STATUS_OK;
}
(void)args;
(void)numArgs;
dprintf(fd, "AIDL:\n");
dprintf(fd, " Close Loop Thresh: %" PRIu32 "\n", mCloseLoopThreshold);
if (mSteadyConfig) {
dprintf(fd, " Steady Shape: %" PRIu32 "\n", mSteadyConfig->shape);
dprintf(fd, " Steady OD Clamp: %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
mSteadyConfig->odClamp[0], mSteadyConfig->odClamp[1], mSteadyConfig->odClamp[2]);
dprintf(fd, " Steady OL LRA Period: %" PRIu32 "\n", mSteadyConfig->olLraPeriod);
}
if (mEffectConfig) {
dprintf(fd, " Effect Shape: %" PRIu32 "\n", mEffectConfig->shape);
dprintf(fd,
" Effect OD Clamp: %" PRIu32 " %" PRIu32 " %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
mEffectConfig->odClamp[0], mEffectConfig->odClamp[1], mEffectConfig->odClamp[2],
mEffectConfig->odClamp[3], mEffectConfig->odClamp[4]);
dprintf(fd, " Effect OL LRA Period: %" PRIu32 "\n", mEffectConfig->olLraPeriod);
}
dprintf(fd, " Click Duration: %" PRIu32 "\n", mClickDuration);
dprintf(fd, " Tick Duration: %" PRIu32 "\n", mTickDuration);
dprintf(fd, " Double Click Duration: %" PRIu32 "\n", mDoubleClickDuration);
dprintf(fd, " Heavy Click Duration: %" PRIu32 "\n", mHeavyClickDuration);
dprintf(fd, "\n");
mHwApi->debug(fd);
dprintf(fd, "\n");
mHwCal->debug(fd);
fsync(fd);
return STATUS_OK;
}
ndk::ScopedAStatus Vibrator::getSupportedEffects(std::vector<Effect> *_aidl_return) {
*_aidl_return = {Effect::TEXTURE_TICK, Effect::TICK, Effect::CLICK, Effect::HEAVY_CLICK,
Effect::DOUBLE_CLICK};
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::perform(Effect effect, EffectStrength strength,
const std::shared_ptr<IVibratorCallback> &callback,
int32_t *_aidl_return) {
ATRACE_NAME("Vibrator::perform");
ndk::ScopedAStatus status;
if (callback) {
status = ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
} else {
status = performEffect(effect, strength, _aidl_return);
}
return status;
}
ndk::ScopedAStatus Vibrator::performEffect(Effect effect, EffectStrength strength,
int32_t *outTimeMs) {
ndk::ScopedAStatus status;
uint32_t timeMS;
int8_t volOffset;
switch (strength) {
case EffectStrength::LIGHT:
volOffset = 0;
break;
case EffectStrength::MEDIUM:
volOffset = 1;
break;
case EffectStrength::STRONG:
volOffset = 1;
break;
default:
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
break;
}
switch (effect) {
case Effect::TEXTURE_TICK:
mHwApi->setSequencer(WAVEFORM_TICK_EFFECT_SEQ);
timeMS = mTickDuration;
volOffset = TEXTURE_TICK;
break;
case Effect::CLICK:
mHwApi->setSequencer(WAVEFORM_CLICK_EFFECT_SEQ);
timeMS = mClickDuration;
volOffset += CLICK;
break;
case Effect::DOUBLE_CLICK:
mHwApi->setSequencer(WAVEFORM_DOUBLE_CLICK_EFFECT_SEQ);
timeMS = mDoubleClickDuration;
volOffset += CLICK;
break;
case Effect::TICK:
mHwApi->setSequencer(WAVEFORM_TICK_EFFECT_SEQ);
timeMS = mTickDuration;
volOffset += TICK;
break;
case Effect::HEAVY_CLICK:
mHwApi->setSequencer(WAVEFORM_HEAVY_CLICK_EFFECT_SEQ);
timeMS = mHeavyClickDuration;
volOffset += HEAVY_CLICK;
break;
default:
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
status = on(timeMS, WAVEFORM_MODE, mEffectConfig, volOffset);
if (!status.isOk()) {
return status;
}
*outTimeMs = timeMS;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getSupportedAlwaysOnEffects(std::vector<Effect> * /*_aidl_return*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::alwaysOnEnable(int32_t /*id*/, Effect /*effect*/,
EffectStrength /*strength*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::alwaysOnDisable(int32_t /*id*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getCompositionDelayMax(int32_t * /*maxDelayMs*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getCompositionSizeMax(int32_t * /*maxSize*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getSupportedPrimitives(std::vector<CompositePrimitive> * /*supported*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getPrimitiveDuration(CompositePrimitive /*primitive*/,
int32_t * /*durationMs*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::compose(const std::vector<CompositeEffect> & /*composite*/,
const std::shared_ptr<IVibratorCallback> & /*callback*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
static float freqPeriodFormulaFloat(std::uint32_t in) {
return static_cast<float>(1000000000) / static_cast<float>(24615 * in);
}
ndk::ScopedAStatus Vibrator::getResonantFrequency(float *resonantFreqHz) {
uint32_t lraPeriod;
if(!mHwCal->getLraPeriod(&lraPeriod)) {
ALOGE("Failed to get resonant frequency (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
*resonantFreqHz = freqPeriodFormulaFloat(lraPeriod);
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getQFactor(float * /*qFactor*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getFrequencyResolution(float * /*freqResolutionHz*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getFrequencyMinimum(float * /*freqMinimumHz*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getBandwidthAmplitudeMap(std::vector<float> * /*_aidl_return*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getPwlePrimitiveDurationMax(int32_t * /*durationMs*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getPwleCompositionSizeMax(int32_t * /*maxSize*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getSupportedBraking(std::vector<Braking> * /*supported*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::composePwle(const std::vector<PrimitivePwle> & /*composite*/,
const std::shared_ptr<IVibratorCallback> & /*callback*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
} // namespace vibrator
} // namespace hardware
} // namespace android
} // namespace aidl