| |
| /* @(#)fdlibm.h 5.1 93/09/24 */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* REDHAT LOCAL: Include files. */ |
| #include <math.h> |
| #include <sys/types.h> |
| #include <machine/ieeefp.h> |
| |
| /* REDHAT LOCAL: Default to XOPEN_MODE. */ |
| #define _XOPEN_MODE |
| |
| /* Most routines need to check whether a float is finite, infinite, or not a |
| number, and many need to know whether the result of an operation will |
| overflow. These conditions depend on whether the largest exponent is |
| used for NaNs & infinities, or whether it's used for finite numbers. The |
| macros below wrap up that kind of information: |
| |
| FLT_UWORD_IS_FINITE(X) |
| True if a positive float with bitmask X is finite. |
| |
| FLT_UWORD_IS_NAN(X) |
| True if a positive float with bitmask X is not a number. |
| |
| FLT_UWORD_IS_INFINITE(X) |
| True if a positive float with bitmask X is +infinity. |
| |
| FLT_UWORD_MAX |
| The bitmask of FLT_MAX. |
| |
| FLT_UWORD_HALF_MAX |
| The bitmask of FLT_MAX/2. |
| |
| FLT_UWORD_EXP_MAX |
| The bitmask of the largest finite exponent (129 if the largest |
| exponent is used for finite numbers, 128 otherwise). |
| |
| FLT_UWORD_LOG_MAX |
| The bitmask of log(FLT_MAX), rounded down. This value is the largest |
| input that can be passed to exp() without producing overflow. |
| |
| FLT_UWORD_LOG_2MAX |
| The bitmask of log(2*FLT_MAX), rounded down. This value is the |
| largest input than can be passed to cosh() without producing |
| overflow. |
| |
| FLT_LARGEST_EXP |
| The largest biased exponent that can be used for finite numbers |
| (255 if the largest exponent is used for finite numbers, 254 |
| otherwise) */ |
| |
| #ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL |
| #define FLT_UWORD_IS_FINITE(x) 1 |
| #define FLT_UWORD_IS_NAN(x) 0 |
| #define FLT_UWORD_IS_INFINITE(x) 0 |
| #define FLT_UWORD_MAX 0x7fffffff |
| #define FLT_UWORD_EXP_MAX 0x43010000 |
| #define FLT_UWORD_LOG_MAX 0x42b2d4fc |
| #define FLT_UWORD_LOG_2MAX 0x42b437e0 |
| #define HUGE ((float)0X1.FFFFFEP128) |
| #else |
| #define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L) |
| #define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L) |
| #define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L) |
| #define FLT_UWORD_MAX 0x7f7fffffL |
| #define FLT_UWORD_EXP_MAX 0x43000000 |
| #define FLT_UWORD_LOG_MAX 0x42b17217 |
| #define FLT_UWORD_LOG_2MAX 0x42b2d4fc |
| #define HUGE ((float)3.40282346638528860e+38) |
| #endif |
| #define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23)) |
| #define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23) |
| |
| /* Many routines check for zero and subnormal numbers. Such things depend |
| on whether the target supports denormals or not: |
| |
| FLT_UWORD_IS_ZERO(X) |
| True if a positive float with bitmask X is +0. Without denormals, |
| any float with a zero exponent is a +0 representation. With |
| denormals, the only +0 representation is a 0 bitmask. |
| |
| FLT_UWORD_IS_SUBNORMAL(X) |
| True if a non-zero positive float with bitmask X is subnormal. |
| (Routines should check for zeros first.) |
| |
| FLT_UWORD_MIN |
| The bitmask of the smallest float above +0. Call this number |
| REAL_FLT_MIN... |
| |
| FLT_UWORD_EXP_MIN |
| The bitmask of the float representation of REAL_FLT_MIN's exponent. |
| |
| FLT_UWORD_LOG_MIN |
| The bitmask of |log(REAL_FLT_MIN)|, rounding down. |
| |
| FLT_SMALLEST_EXP |
| REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported, |
| -22 if they are). |
| */ |
| |
| #ifdef _FLT_NO_DENORMALS |
| #define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L) |
| #define FLT_UWORD_IS_SUBNORMAL(x) 0 |
| #define FLT_UWORD_MIN 0x00800000 |
| #define FLT_UWORD_EXP_MIN 0x42fc0000 |
| #define FLT_UWORD_LOG_MIN 0x42aeac50 |
| #define FLT_SMALLEST_EXP 1 |
| #else |
| #define FLT_UWORD_IS_ZERO(x) ((x)==0) |
| #define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L) |
| #define FLT_UWORD_MIN 0x00000001 |
| #define FLT_UWORD_EXP_MIN 0x43160000 |
| #define FLT_UWORD_LOG_MIN 0x42cff1b5 |
| #define FLT_SMALLEST_EXP -22 |
| #endif |
| |
| #ifdef __STDC__ |
| #undef __P |
| #define __P(p) p |
| #else |
| #define __P(p) () |
| #endif |
| |
| /* |
| * set X_TLOSS = pi*2**52, which is possibly defined in <values.h> |
| * (one may replace the following line by "#include <values.h>") |
| */ |
| |
| #define X_TLOSS 1.41484755040568800000e+16 |
| |
| /* Functions that are not documented, and are not in <math.h>. */ |
| |
| #ifdef _SCALB_INT |
| extern double scalb __P((double, int)); |
| #else |
| extern double scalb __P((double, double)); |
| #endif |
| extern double significand __P((double)); |
| |
| /* ieee style elementary functions */ |
| extern double __ieee754_sqrt __P((double)); |
| extern double __ieee754_acos __P((double)); |
| extern double __ieee754_acosh __P((double)); |
| extern double __ieee754_log __P((double)); |
| extern double __ieee754_atanh __P((double)); |
| extern double __ieee754_asin __P((double)); |
| extern double __ieee754_atan2 __P((double,double)); |
| extern double __ieee754_exp __P((double)); |
| extern double __ieee754_cosh __P((double)); |
| extern double __ieee754_fmod __P((double,double)); |
| extern double __ieee754_pow __P((double,double)); |
| extern double __ieee754_lgamma_r __P((double,int *)); |
| extern double __ieee754_gamma_r __P((double,int *)); |
| extern double __ieee754_log10 __P((double)); |
| extern double __ieee754_sinh __P((double)); |
| extern double __ieee754_hypot __P((double,double)); |
| extern double __ieee754_j0 __P((double)); |
| extern double __ieee754_j1 __P((double)); |
| extern double __ieee754_y0 __P((double)); |
| extern double __ieee754_y1 __P((double)); |
| extern double __ieee754_jn __P((int,double)); |
| extern double __ieee754_yn __P((int,double)); |
| extern double __ieee754_remainder __P((double,double)); |
| extern __int32_t __ieee754_rem_pio2 __P((double,double*)); |
| #ifdef _SCALB_INT |
| extern double __ieee754_scalb __P((double,int)); |
| #else |
| extern double __ieee754_scalb __P((double,double)); |
| #endif |
| |
| /* fdlibm kernel function */ |
| extern double __kernel_standard __P((double,double,int)); |
| extern double __kernel_sin __P((double,double,int)); |
| extern double __kernel_cos __P((double,double)); |
| extern double __kernel_tan __P((double,double,int)); |
| extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*)); |
| |
| /* Undocumented float functions. */ |
| #ifdef _SCALB_INT |
| extern float scalbf __P((float, int)); |
| #else |
| extern float scalbf __P((float, float)); |
| #endif |
| extern float significandf __P((float)); |
| |
| /* ieee style elementary float functions */ |
| extern float __ieee754_sqrtf __P((float)); |
| extern float __ieee754_acosf __P((float)); |
| extern float __ieee754_acoshf __P((float)); |
| extern float __ieee754_logf __P((float)); |
| extern float __ieee754_atanhf __P((float)); |
| extern float __ieee754_asinf __P((float)); |
| extern float __ieee754_atan2f __P((float,float)); |
| extern float __ieee754_expf __P((float)); |
| extern float __ieee754_coshf __P((float)); |
| extern float __ieee754_fmodf __P((float,float)); |
| extern float __ieee754_powf __P((float,float)); |
| extern float __ieee754_lgammaf_r __P((float,int *)); |
| extern float __ieee754_gammaf_r __P((float,int *)); |
| extern float __ieee754_log10f __P((float)); |
| extern float __ieee754_sinhf __P((float)); |
| extern float __ieee754_hypotf __P((float,float)); |
| extern float __ieee754_j0f __P((float)); |
| extern float __ieee754_j1f __P((float)); |
| extern float __ieee754_y0f __P((float)); |
| extern float __ieee754_y1f __P((float)); |
| extern float __ieee754_jnf __P((int,float)); |
| extern float __ieee754_ynf __P((int,float)); |
| extern float __ieee754_remainderf __P((float,float)); |
| extern __int32_t __ieee754_rem_pio2f __P((float,float*)); |
| #ifdef _SCALB_INT |
| extern float __ieee754_scalbf __P((float,int)); |
| #else |
| extern float __ieee754_scalbf __P((float,float)); |
| #endif |
| |
| /* float versions of fdlibm kernel functions */ |
| extern float __kernel_sinf __P((float,float,int)); |
| extern float __kernel_cosf __P((float,float)); |
| extern float __kernel_tanf __P((float,float,int)); |
| extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*)); |
| |
| /* The original code used statements like |
| n0 = ((*(int*)&one)>>29)^1; * index of high word * |
| ix0 = *(n0+(int*)&x); * high word of x * |
| ix1 = *((1-n0)+(int*)&x); * low word of x * |
| to dig two 32 bit words out of the 64 bit IEEE floating point |
| value. That is non-ANSI, and, moreover, the gcc instruction |
| scheduler gets it wrong. We instead use the following macros. |
| Unlike the original code, we determine the endianness at compile |
| time, not at run time; I don't see much benefit to selecting |
| endianness at run time. */ |
| |
| #ifndef __IEEE_BIG_ENDIAN |
| #ifndef __IEEE_LITTLE_ENDIAN |
| #error Must define endianness |
| #endif |
| #endif |
| |
| /* A union which permits us to convert between a double and two 32 bit |
| ints. */ |
| |
| #ifdef __IEEE_BIG_ENDIAN |
| |
| typedef union |
| { |
| double value; |
| struct |
| { |
| __uint32_t msw; |
| __uint32_t lsw; |
| } parts; |
| } ieee_double_shape_type; |
| |
| #endif |
| |
| #ifdef __IEEE_LITTLE_ENDIAN |
| |
| typedef union |
| { |
| double value; |
| struct |
| { |
| __uint32_t lsw; |
| __uint32_t msw; |
| } parts; |
| } ieee_double_shape_type; |
| |
| #endif |
| |
| /* Get two 32 bit ints from a double. */ |
| |
| #define EXTRACT_WORDS(ix0,ix1,d) \ |
| do { \ |
| ieee_double_shape_type ew_u; \ |
| ew_u.value = (d); \ |
| (ix0) = ew_u.parts.msw; \ |
| (ix1) = ew_u.parts.lsw; \ |
| } while (0) |
| |
| /* Get the more significant 32 bit int from a double. */ |
| |
| #define GET_HIGH_WORD(i,d) \ |
| do { \ |
| ieee_double_shape_type gh_u; \ |
| gh_u.value = (d); \ |
| (i) = gh_u.parts.msw; \ |
| } while (0) |
| |
| /* Get the less significant 32 bit int from a double. */ |
| |
| #define GET_LOW_WORD(i,d) \ |
| do { \ |
| ieee_double_shape_type gl_u; \ |
| gl_u.value = (d); \ |
| (i) = gl_u.parts.lsw; \ |
| } while (0) |
| |
| /* Set a double from two 32 bit ints. */ |
| |
| #define INSERT_WORDS(d,ix0,ix1) \ |
| do { \ |
| ieee_double_shape_type iw_u; \ |
| iw_u.parts.msw = (ix0); \ |
| iw_u.parts.lsw = (ix1); \ |
| (d) = iw_u.value; \ |
| } while (0) |
| |
| /* Set the more significant 32 bits of a double from an int. */ |
| |
| #define SET_HIGH_WORD(d,v) \ |
| do { \ |
| ieee_double_shape_type sh_u; \ |
| sh_u.value = (d); \ |
| sh_u.parts.msw = (v); \ |
| (d) = sh_u.value; \ |
| } while (0) |
| |
| /* Set the less significant 32 bits of a double from an int. */ |
| |
| #define SET_LOW_WORD(d,v) \ |
| do { \ |
| ieee_double_shape_type sl_u; \ |
| sl_u.value = (d); \ |
| sl_u.parts.lsw = (v); \ |
| (d) = sl_u.value; \ |
| } while (0) |
| |
| /* A union which permits us to convert between a float and a 32 bit |
| int. */ |
| |
| typedef union |
| { |
| float value; |
| __uint32_t word; |
| } ieee_float_shape_type; |
| |
| /* Get a 32 bit int from a float. */ |
| |
| #define GET_FLOAT_WORD(i,d) \ |
| do { \ |
| ieee_float_shape_type gf_u; \ |
| gf_u.value = (d); \ |
| (i) = gf_u.word; \ |
| } while (0) |
| |
| /* Set a float from a 32 bit int. */ |
| |
| #define SET_FLOAT_WORD(d,i) \ |
| do { \ |
| ieee_float_shape_type sf_u; \ |
| sf_u.word = (i); \ |
| (d) = sf_u.value; \ |
| } while (0) |
| |
| /* Macros to avoid undefined behaviour that can arise if the amount |
| of a shift is exactly equal to the size of the shifted operand. */ |
| |
| #define SAFE_LEFT_SHIFT(op,amt) \ |
| (((amt) < 8 * sizeof(op)) ? ((op) << (amt)) : 0) |
| |
| #define SAFE_RIGHT_SHIFT(op,amt) \ |
| (((amt) < 8 * sizeof(op)) ? ((op) >> (amt)) : 0) |
| |
| #ifdef _COMPLEX_H |
| |
| /* |
| * Quoting from ISO/IEC 9899:TC2: |
| * |
| * 6.2.5.13 Types |
| * Each complex type has the same representation and alignment requirements as |
| * an array type containing exactly two elements of the corresponding real type; |
| * the first element is equal to the real part, and the second element to the |
| * imaginary part, of the complex number. |
| */ |
| typedef union { |
| float complex z; |
| float parts[2]; |
| } float_complex; |
| |
| typedef union { |
| double complex z; |
| double parts[2]; |
| } double_complex; |
| |
| typedef union { |
| long double complex z; |
| long double parts[2]; |
| } long_double_complex; |
| |
| #define REAL_PART(z) ((z).parts[0]) |
| #define IMAG_PART(z) ((z).parts[1]) |
| |
| #endif /* _COMPLEX_H */ |
| |