| #include "common/math/kasa.h" |
| |
| #include <stdint.h> |
| #include <sys/types.h> |
| |
| #include "common/math/mat.h" |
| |
| void kasaReset(struct KasaFit *kasa) { |
| kasa->acc_mean_x = kasa->acc_mean_y = kasa->acc_mean_z = 0.0f; |
| kasa->acc_x = kasa->acc_y = kasa->acc_z = kasa->acc_w = 0.0f; |
| kasa->acc_xx = kasa->acc_xy = kasa->acc_xz = kasa->acc_xw = 0.0f; |
| kasa->acc_yy = kasa->acc_yz = kasa->acc_yw = 0.0f; |
| kasa->acc_zz = kasa->acc_zw = 0.0f; |
| kasa->nsamples = 0; |
| } |
| |
| void kasaInit(struct KasaFit *kasa) { kasaReset(kasa); } |
| |
| void kasaAccumulate(struct KasaFit *kasa, float x, float y, float z) { |
| // KASA fit runs into numerical accuracy issues for large offset and small |
| // radii. Assuming that all points are on an sphere we can substract the |
| // first x,y,z value from all incoming data, making sure that the sphere will |
| // always go through 0,0,0 ensuring the highest possible numerical accuracy. |
| if (kasa->nsamples == 0) { |
| kasa->acc_mean_x = x; |
| kasa->acc_mean_y = y; |
| kasa->acc_mean_z = z; |
| } |
| |
| x = x - kasa->acc_mean_x; |
| y = y - kasa->acc_mean_y; |
| z = z - kasa->acc_mean_z; |
| |
| // Accumulation. |
| float w = x * x + y * y + z * z; |
| |
| kasa->acc_x += x; |
| kasa->acc_y += y; |
| kasa->acc_z += z; |
| kasa->acc_w += w; |
| |
| kasa->acc_xx += x * x; |
| kasa->acc_xy += x * y; |
| kasa->acc_xz += x * z; |
| kasa->acc_xw += x * w; |
| |
| kasa->acc_yy += y * y; |
| kasa->acc_yz += y * z; |
| kasa->acc_yw += y * w; |
| |
| kasa->acc_zz += z * z; |
| kasa->acc_zw += z * w; |
| |
| kasa->nsamples += 1; |
| } |
| |
| bool kasaNormalize(struct KasaFit *kasa) { |
| if (kasa->nsamples == 0) { |
| return false; |
| } |
| |
| float inv = 1.0f / kasa->nsamples; |
| |
| kasa->acc_x *= inv; |
| kasa->acc_y *= inv; |
| kasa->acc_z *= inv; |
| kasa->acc_w *= inv; |
| |
| kasa->acc_xx *= inv; |
| kasa->acc_xy *= inv; |
| kasa->acc_xz *= inv; |
| kasa->acc_xw *= inv; |
| |
| kasa->acc_yy *= inv; |
| kasa->acc_yz *= inv; |
| kasa->acc_yw *= inv; |
| |
| kasa->acc_zz *= inv; |
| kasa->acc_zw *= inv; |
| |
| return true; |
| } |
| |
| int kasaFit(struct KasaFit *kasa, struct Vec3 *bias, float *radius, |
| float max_fit, float min_fit) { |
| // A * out = b |
| // (4 x 4) (4 x 1) (4 x 1) |
| struct Mat44 A; |
| A.elem[0][0] = kasa->acc_xx; |
| A.elem[0][1] = kasa->acc_xy; |
| A.elem[0][2] = kasa->acc_xz; |
| A.elem[0][3] = kasa->acc_x; |
| A.elem[1][0] = kasa->acc_xy; |
| A.elem[1][1] = kasa->acc_yy; |
| A.elem[1][2] = kasa->acc_yz; |
| A.elem[1][3] = kasa->acc_y; |
| A.elem[2][0] = kasa->acc_xz; |
| A.elem[2][1] = kasa->acc_yz; |
| A.elem[2][2] = kasa->acc_zz; |
| A.elem[2][3] = kasa->acc_z; |
| A.elem[3][0] = kasa->acc_x; |
| A.elem[3][1] = kasa->acc_y; |
| A.elem[3][2] = kasa->acc_z; |
| A.elem[3][3] = 1.0f; |
| |
| struct Vec4 b; |
| initVec4(&b, -kasa->acc_xw, -kasa->acc_yw, -kasa->acc_zw, -kasa->acc_w); |
| |
| struct Size4 pivot; |
| mat44DecomposeLup(&A, &pivot); |
| |
| struct Vec4 out; |
| mat44Solve(&A, &out, &b, &pivot); |
| |
| // sphere: (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2 |
| // |
| // xc = -out[0] / 2, yc = -out[1] / 2, zc = -out[2] / 2 |
| // r = sqrt(xc^2 + yc^2 + zc^2 - out[3]) |
| |
| struct Vec3 v; |
| initVec3(&v, out.x, out.y, out.z); |
| vec3ScalarMul(&v, -0.5f); |
| |
| float r_square = vec3Dot(&v, &v) - out.w; |
| float r = (r_square > 0) ? sqrtf(r_square) : 0; |
| |
| // Need to correct the bias with the first sample, which was used to shift |
| // the sphere in order to have best accuracy. |
| initVec3(bias, v.x + kasa->acc_mean_x, v.y + kasa->acc_mean_y, |
| v.z + kasa->acc_mean_z); |
| *radius = r; |
| |
| int success = 0; |
| if (r > min_fit && r < max_fit) { |
| success = 1; |
| } |
| |
| return success; |
| } |