| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| ///////////////////////////////////////////////////////////////////////// |
| /* |
| * This module contains vector math utilities for the following datatypes: |
| * -) Vec3 structures for 3-dimensional vectors |
| * -) Vec4 structures for 4-dimensional vectors |
| * -) floating point arrays for N-dimensional vectors. |
| * |
| * Note that the Vec3 and Vec4 utilties were ported from the Android |
| * repository and maintain dependenices in that separate codebase. As a |
| * result, the function signatures were left untouched for compatibility with |
| * this legacy code, despite certain style violations. In particular, for this |
| * module the function argument ordering is outputs before inputs. This style |
| * violation will be addressed once the full set of dependencies in Android |
| * have been brought into this repository. |
| */ |
| #ifndef LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_ |
| #define LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_ |
| |
| #ifdef NANOHUB_NON_CHRE_API |
| #include <nanohub_math.h> |
| #else |
| #include <math.h> |
| #endif // NANOHUB_NON_CHRE_API |
| |
| #include <stddef.h> |
| |
| #include "chre/util/nanoapp/assert.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| struct Vec3 { |
| float x, y, z; |
| }; |
| |
| struct Vec4 { |
| float x, y, z, w; |
| }; |
| |
| // 3-DIMENSIONAL VECTOR MATH /////////////////////////////////////////// |
| static inline void initVec3(struct Vec3 *v, float x, float y, float z) { |
| CHRE_ASSERT_NOT_NULL(v); |
| v->x = x; |
| v->y = y; |
| v->z = z; |
| } |
| |
| // Updates v as the sum of v and w. |
| static inline void vec3Add(struct Vec3 *v, const struct Vec3 *w) { |
| CHRE_ASSERT_NOT_NULL(v); |
| CHRE_ASSERT_NOT_NULL(w); |
| v->x += w->x; |
| v->y += w->y; |
| v->z += w->z; |
| } |
| |
| // Sets u as the sum of v and w. |
| static inline void vec3AddVecs(struct Vec3 *u, const struct Vec3 *v, |
| const struct Vec3 *w) { |
| CHRE_ASSERT_NOT_NULL(u); |
| CHRE_ASSERT_NOT_NULL(v); |
| CHRE_ASSERT_NOT_NULL(w); |
| u->x = v->x + w->x; |
| u->y = v->y + w->y; |
| u->z = v->z + w->z; |
| } |
| |
| // Updates v as the subtraction of w from v. |
| static inline void vec3Sub(struct Vec3 *v, const struct Vec3 *w) { |
| CHRE_ASSERT_NOT_NULL(v); |
| CHRE_ASSERT_NOT_NULL(w); |
| v->x -= w->x; |
| v->y -= w->y; |
| v->z -= w->z; |
| } |
| |
| // Sets u as the difference of v and w. |
| static inline void vec3SubVecs(struct Vec3 *u, const struct Vec3 *v, |
| const struct Vec3 *w) { |
| CHRE_ASSERT_NOT_NULL(u); |
| CHRE_ASSERT_NOT_NULL(v); |
| CHRE_ASSERT_NOT_NULL(w); |
| u->x = v->x - w->x; |
| u->y = v->y - w->y; |
| u->z = v->z - w->z; |
| } |
| |
| // Scales v by the scalar c, i.e. v = c * v. |
| static inline void vec3ScalarMul(struct Vec3 *v, float c) { |
| CHRE_ASSERT_NOT_NULL(v); |
| v->x *= c; |
| v->y *= c; |
| v->z *= c; |
| } |
| |
| // Returns the dot product of v and w. |
| static inline float vec3Dot(const struct Vec3 *v, const struct Vec3 *w) { |
| CHRE_ASSERT_NOT_NULL(v); |
| CHRE_ASSERT_NOT_NULL(w); |
| return v->x * w->x + v->y * w->y + v->z * w->z; |
| } |
| |
| // Returns the square of the L2-norm of the given vector. |
| static inline float vec3NormSquared(const struct Vec3 *v) { |
| CHRE_ASSERT_NOT_NULL(v); |
| return vec3Dot(v, v); |
| } |
| |
| // Returns the L2-norm of the given vector. |
| static inline float vec3Norm(const struct Vec3 *v) { |
| CHRE_ASSERT_NOT_NULL(v); |
| return sqrtf(vec3NormSquared(v)); |
| } |
| |
| // Normalizes the provided vector to unit norm. If the provided vector has a |
| // norm of zero, the vector will be unchanged. |
| static inline void vec3Normalize(struct Vec3 *v) { |
| CHRE_ASSERT_NOT_NULL(v); |
| float norm = vec3Norm(v); |
| CHRE_ASSERT(norm > 0); |
| // Only normalize if norm is non-zero. |
| if (norm > 0) { |
| float invNorm = 1.0f / norm; |
| v->x *= invNorm; |
| v->y *= invNorm; |
| v->z *= invNorm; |
| } |
| } |
| |
| // Updates u as the cross product of v and w. |
| static inline void vec3Cross(struct Vec3 *u, const struct Vec3 *v, |
| const struct Vec3 *w) { |
| CHRE_ASSERT_NOT_NULL(u); |
| CHRE_ASSERT_NOT_NULL(v); |
| CHRE_ASSERT_NOT_NULL(w); |
| u->x = v->y * w->z - v->z * w->y; |
| u->y = v->z * w->x - v->x * w->z; |
| u->z = v->x * w->y - v->y * w->x; |
| } |
| |
| // Finds a vector orthogonal to the vector [inX, inY, inZ] and returns |
| // this in the components [outX, outY, outZ]. The vector is chosen such |
| // that the smallest component of [inX, inY, inZ] is set to zero in the |
| // output vector. For example, for the in vector [0.01, 4.0, 5.0], this |
| // function will return [0, 5.0, -4.0]. |
| void findOrthogonalVector(float inX, float inY, float inZ, float *outX, |
| float *outY, float *outZ); |
| |
| |
| // 4-DIMENSIONAL VECTOR MATH /////////////////////////////////////////// |
| // Initialize the Vec4 structure with the provided component values. |
| static inline void initVec4(struct Vec4 *v, float x, float y, float z, |
| float w) { |
| CHRE_ASSERT_NOT_NULL(v); |
| v->x = x; |
| v->y = y; |
| v->z = z; |
| v->w = w; |
| } |
| |
| // N-DIMENSIONAL VECTOR MATH /////////////////////////////////////////// |
| // Dimension specified by the last argument in all functions below. |
| |
| // Adds two vectors and returns the sum in the provided vector, i.e. |
| // u = v + w. |
| void vecAdd(float *u, const float *v, const float *w, size_t dim); |
| |
| // Adds two vectors and returns the sum in the first vector, i.e. |
| // v = v + w. |
| void vecAddInPlace(float *v, const float *w, size_t dim); |
| |
| // Subtracts two vectors and returns in the provided vector, i.e. |
| // u = v - w. |
| void vecSub(float *u, const float *v, const float *w, size_t dim); |
| |
| // Scales vector by a scalar and returns in the provided vector, i.e. |
| // u = c * v. |
| void vecScalarMul(float *u, const float *v, float c, size_t dim); |
| |
| // Scales vector by a scalar and returns in the same vector, i.e. |
| // v = c * v. |
| void vecScalarMulInPlace(float *v, float c, size_t dim); |
| |
| // Returns the L2-norm of the given vector. |
| float vecNorm(const float *v, size_t dim); |
| |
| // Returns the square of the L2-norm of the given vector. |
| float vecNormSquared(const float *v, size_t dim); |
| |
| // Returns the dot product of v and w. |
| float vecDot(const float *v, const float *w, size_t dim); |
| |
| // Returns the maximum absolute value in vector. |
| float vecMaxAbsoluteValue(const float *v, size_t dim); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif // LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_ |