| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <atomic.h> |
| #include <gpio.h> |
| #include <nanohubPacket.h> |
| #include <plat/exti.h> |
| #include <plat/gpio.h> |
| #include <platform.h> |
| #include <plat/syscfg.h> |
| #include <heap.h> |
| #include <sensors.h> |
| #include <seos.h> |
| #include <slab.h> |
| #include <i2c.h> |
| #include <timer.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <variant/variant.h> |
| |
| #define LPS22HB_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1) |
| |
| /* Sensor defs */ |
| #define LPS22HB_INT_CFG_REG_ADDR 0x0B |
| #define LPS22HB_LIR_BIT 0x04 |
| |
| #define LPS22HB_WAI_REG_ADDR 0x0F |
| #define LPS22HB_WAI_REG_VAL 0xB1 |
| |
| #define LPS22HB_SOFT_RESET_REG_ADDR 0x11 |
| #define LPS22HB_SOFT_RESET_BIT 0x04 |
| #define LPS22HB_I2C_DIS 0x08 |
| #define LPS22HB_IF_ADD_INC 0x10 |
| |
| #define LPS22HB_ODR_REG_ADDR 0x10 |
| #define LPS22HB_ODR_ONE_SHOT 0x00 |
| #define LPS22HB_ODR_1_HZ 0x10 |
| #define LPS22HB_ODR_10_HZ 0x20 |
| #define LPS22HB_ODR_25_HZ 0x30 |
| #define LPS22HB_ODR_50_HZ 0x40 |
| #define LPS22HB_ODR_75_HZ 0x50 |
| |
| #define LPS22HB_RPDS_L 0x18 |
| #define LPS22HB_RPDS_H 0x19 |
| |
| #define LPS22HB_PRESS_OUTXL_REG_ADDR 0x28 |
| #define LPS22HB_TEMP_OUTL_REG_ADDR 0x2B |
| |
| #define LPS22HB_HECTO_PASCAL(baro_val) (baro_val/4096) |
| #define LPS22HB_CENTIGRADES(temp_val) (temp_val/100) |
| |
| #define INFO_PRINT(fmt, ...) \ |
| do { \ |
| osLog(LOG_INFO, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \ |
| } while (0); |
| |
| #define DEBUG_PRINT(fmt, ...) \ |
| do { \ |
| if (LPS22HB_DBG_ENABLED) { \ |
| osLog(LOG_DEBUG, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \ |
| } \ |
| } while (0); |
| |
| #define ERROR_PRINT(fmt, ...) \ |
| do { \ |
| osLog(LOG_ERROR, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \ |
| } while (0); |
| |
| /* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */ |
| #ifndef LPS22HB_DBG_ENABLED |
| #define LPS22HB_DBG_ENABLED 0 |
| #endif /* LPS22HB_DBG_ENABLED */ |
| |
| enum lps22hbSensorEvents |
| { |
| EVT_COMM_DONE = EVT_APP_START + 1, |
| EVT_SENSOR_BARO_TIMER, |
| EVT_SENSOR_TEMP_TIMER, |
| EVT_TEST, |
| }; |
| |
| enum lps22hbSensorState { |
| SENSOR_BOOT, |
| SENSOR_VERIFY_ID, |
| SENSOR_BARO_POWER_UP, |
| SENSOR_BARO_POWER_DOWN, |
| SENSOR_BARO_START_CAL, |
| SENSOR_BARO_READ_CAL_MEAS, |
| SENSOR_BARO_CAL_DONE, |
| SENSOR_BARO_SET_OFFSET, |
| SENSOR_BARO_CFG_DONE, |
| SENSOR_TEMP_POWER_UP, |
| SENSOR_TEMP_POWER_DOWN, |
| SENSOR_READ_SAMPLES, |
| }; |
| |
| #ifndef LPS22HB_I2C_BUS_ID |
| #error "LPS22HB_I2C_BUS_ID is not defined; please define in variant.h" |
| #endif |
| |
| #ifndef LPS22HB_I2C_SPEED |
| #error "LPS22HB_I2C_SPEED is not defined; please define in variant.h" |
| #endif |
| |
| #ifndef LPS22HB_I2C_ADDR |
| #error "LPS22HB_I2C_ADDR is not defined; please define in variant.h" |
| #endif |
| |
| enum lps22hbSensorIndex { |
| BARO = 0, |
| TEMP, |
| NUM_OF_SENSOR, |
| }; |
| |
| //#define NUM_OF_SENSOR 1 |
| |
| struct lps22hbSensor { |
| uint32_t handle; |
| }; |
| |
| struct CalibrationData { |
| struct HostHubRawPacket header; |
| struct SensorAppEventHeader data_header; |
| float value; |
| } __attribute__((packed)); |
| |
| #define LPS22HB_MAX_PENDING_I2C_REQUESTS 4 |
| #define LPS22HB_MAX_I2C_TRANSFER_SIZE 6 |
| #define LPS22HB_MAX_BARO_EVENTS 4 |
| |
| struct I2cTransfer |
| { |
| size_t tx; |
| size_t rx; |
| int err; |
| uint8_t txrxBuf[LPS22HB_MAX_I2C_TRANSFER_SIZE]; |
| uint8_t state; |
| bool inUse; |
| }; |
| |
| /* Task structure */ |
| struct lps22hbTask { |
| uint32_t tid; |
| |
| struct SlabAllocator *baroSlab; |
| |
| /* timer */ |
| uint32_t baroTimerHandle; |
| uint32_t tempTimerHandle; |
| |
| /* sensor flags */ |
| bool baroOn; |
| bool baroReading; |
| bool baroWantRead; |
| bool tempOn; |
| bool tempReading; |
| bool tempWantRead; |
| |
| uint8_t offset_L; |
| uint8_t offset_H; |
| |
| //int sensLastRead; |
| |
| struct I2cTransfer transfers[LPS22HB_MAX_PENDING_I2C_REQUESTS]; |
| |
| /* Communication functions */ |
| bool (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state); |
| bool (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state); |
| |
| /* sensors */ |
| struct lps22hbSensor sensors[NUM_OF_SENSOR]; |
| }; |
| |
| static struct lps22hbTask mTask; |
| |
| static bool baroAllocateEvt(struct SingleAxisDataEvent **evPtr, float sample, uint64_t time) |
| { |
| struct SingleAxisDataEvent *ev; |
| |
| ev = *evPtr = slabAllocatorAlloc(mTask.baroSlab); |
| if (!ev) { |
| ERROR_PRINT("Failed to allocate baro evt memory"); |
| return false; |
| } |
| |
| memset(&ev->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample)); |
| ev->referenceTime = time; |
| ev->samples[0].firstSample.numSamples = 1; |
| ev->samples[0].fdata = sample; |
| |
| return true; |
| } |
| |
| static void baroFreeEvt(void *ptr) |
| { |
| slabAllocatorFree(mTask.baroSlab, ptr); |
| } |
| |
| // Allocate a buffer and mark it as in use with the given state, or return NULL |
| // if no buffers available. Must *not* be called from interrupt context. |
| static struct I2cTransfer *allocXfer(uint8_t state) |
| { |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(mTask.transfers); i++) { |
| if (!mTask.transfers[i].inUse) { |
| mTask.transfers[i].inUse = true; |
| mTask.transfers[i].state = state; |
| return &mTask.transfers[i]; |
| } |
| } |
| |
| ERROR_PRINT("Ran out of i2c buffers!"); |
| return NULL; |
| } |
| |
| static inline void releaseXfer(struct I2cTransfer *xfer) |
| { |
| xfer->inUse = false; |
| } |
| |
| static void i2cCallback(void *cookie, size_t tx, size_t rx, int err) |
| { |
| struct I2cTransfer *xfer = cookie; |
| |
| xfer->tx = tx; |
| xfer->rx = rx; |
| xfer->err = err; |
| |
| osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid); |
| if (err != 0) |
| ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err); |
| } |
| |
| static bool i2c_read(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state) |
| { |
| struct I2cTransfer *xfer = allocXfer(state); |
| int ret = -1; |
| |
| if (xfer != NULL) { |
| xfer->txrxBuf[0] = 0x80 | addr; |
| if ((ret = i2cMasterTxRx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 1, xfer->txrxBuf, len, i2cCallback, xfer)) < 0) { |
| releaseXfer(xfer); |
| DEBUG_PRINT("i2c_read: i2cMasterTxRx operation failed (ret: %d)\n", ret); |
| return false; |
| } |
| } |
| |
| return (ret == -1) ? false : true; |
| } |
| |
| static bool i2c_write(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state) |
| { |
| struct I2cTransfer *xfer = allocXfer(state); |
| int ret = -1; |
| |
| if (xfer != NULL) { |
| xfer->txrxBuf[0] = addr; |
| xfer->txrxBuf[1] = data; |
| if ((ret = i2cMasterTx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 2, i2cCallback, xfer)) < 0) { |
| releaseXfer(xfer); |
| DEBUG_PRINT("i2c_write: i2cMasterTx operation failed (ret: %d)\n", ret); |
| return false; |
| } |
| } |
| |
| return (ret == -1) ? false : true; |
| } |
| |
| static void sendCalibrationResult(uint8_t status, float value) |
| { |
| struct CalibrationData *data = heapAlloc(sizeof(struct CalibrationData)); |
| if (!data) { |
| ERROR_PRINT("Couldn't alloc cal result pkt\n"); |
| return; |
| } |
| |
| data->header.appId = LPS22HB_APP_ID; |
| data->header.dataLen = (sizeof(struct CalibrationData) - sizeof(struct HostHubRawPacket)); |
| data->data_header.msgId = SENSOR_APP_MSG_ID_CAL_RESULT; |
| data->data_header.sensorType = SENS_TYPE_BARO; |
| data->data_header.status = status; |
| |
| data->value = value; |
| |
| if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree)) |
| ERROR_PRINT("Couldn't send cal result evt\n"); |
| } |
| |
| /* Sensor Info */ |
| static void sensorBaroTimerCallback(uint32_t timerId, void *data) |
| { |
| osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid); |
| } |
| |
| static void sensorTempTimerCallback(uint32_t timerId, void *data) |
| { |
| osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid); |
| } |
| |
| #define DEC_INFO(name, type, axis, inter, samples, rates) \ |
| .sensorName = name, \ |
| .sensorType = type, \ |
| .numAxis = axis, \ |
| .interrupt = inter, \ |
| .minSamples = samples, \ |
| .supportedRates = rates |
| |
| static uint32_t lps22hbRates[] = { |
| SENSOR_HZ(1.0f), |
| SENSOR_HZ(10.0f), |
| SENSOR_HZ(25.0f), |
| SENSOR_HZ(50.0f), |
| SENSOR_HZ(75.0f), |
| 0 |
| }; |
| |
| // should match "supported rates in length" and be the timer length for that rate in nanosecs |
| static const uint64_t lps22hbRatesRateVals[] = |
| { |
| 1 * 1000000000ULL, |
| 1000000000ULL / 10, |
| 1000000000ULL / 25, |
| 1000000000ULL / 50, |
| 1000000000ULL / 75, |
| }; |
| |
| |
| static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] = |
| { |
| { DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_ONE, NANOHUB_INT_NONWAKEUP, |
| 300, lps22hbRates) }, |
| { DEC_INFO("Temperature", SENS_TYPE_AMBIENT_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, |
| 20, lps22hbRates) }, |
| }; |
| |
| /* Sensor Operations */ |
| static bool baroPower(bool on, void *cookie) |
| { |
| bool oldMode = mTask.baroOn || mTask.tempOn; |
| bool newMode = on || mTask.tempOn; |
| uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN; |
| bool ret = true; |
| |
| INFO_PRINT("baroPower %s\n", on ? "enable" : "disable"); |
| if (!on && mTask.baroTimerHandle) { |
| timTimerCancel(mTask.baroTimerHandle); |
| mTask.baroTimerHandle = 0; |
| mTask.baroReading = false; |
| } |
| |
| if (oldMode != newMode) { |
| if (on) |
| ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state); |
| else |
| ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state); |
| } else |
| sensorSignalInternalEvt(mTask.sensors[BARO].handle, |
| SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0); |
| |
| if (!ret) { |
| DEBUG_PRINT("baroPower comm_tx failed\n"); |
| return(false); |
| } |
| |
| mTask.baroReading = false; |
| mTask.baroOn = on; |
| return true; |
| } |
| |
| static bool baroFwUpload(void *cookie) |
| { |
| return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0); |
| } |
| |
| static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie) |
| { |
| INFO_PRINT("baroSetRate %lu Hz - %llu ns\n", rate, latency); |
| |
| if (mTask.baroTimerHandle) |
| timTimerCancel(mTask.baroTimerHandle); |
| |
| mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates, |
| lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false); |
| |
| return sensorSignalInternalEvt(mTask.sensors[BARO].handle, |
| SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency); |
| } |
| |
| static bool baroFlush(void *cookie) |
| { |
| return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL); |
| } |
| |
| static bool baroCalibrate(void *cookie) |
| { |
| INFO_PRINT("baroCalibrate\n"); |
| |
| if (mTask.baroOn) { |
| ERROR_PRINT("cannot calibrate while baro is active\n"); |
| sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, 0.0f); |
| return false; |
| } |
| |
| mTask.comm_tx(LPS22HB_RPDS_L, 0, 0, SENSOR_BARO_START_CAL); |
| return true; |
| } |
| |
| /* |
| * Offset data is sent in hPa, and must be transformed in 16th of hPa. |
| * Since offset is expected to be summed to the out regs but the sensor |
| * will actually subctract it then we need to invert the sign. |
| */ |
| static bool baroCfgData(void *data, void *cookie) |
| { |
| float offset_f = *((float *)data) * 16; |
| int32_t offset; |
| bool ret; |
| |
| offset_f = (offset_f > 0) ? offset_f + 0.5f : offset_f - 0.5f; |
| offset = -(int32_t)offset_f; |
| |
| INFO_PRINT("baroCfgData %ld\n", offset); |
| |
| mTask.offset_H = (offset >> 8) & 0xff; |
| mTask.offset_L = (offset & 0xff); |
| |
| ret = mTask.comm_tx(LPS22HB_RPDS_L, mTask.offset_L, 0, SENSOR_BARO_SET_OFFSET); |
| if (!ret) |
| DEBUG_PRINT("baroCfgData: comm_tx failed\n"); |
| |
| return ret; |
| } |
| |
| static bool tempPower(bool on, void *cookie) |
| { |
| bool oldMode = mTask.baroOn || mTask.tempOn; |
| bool newMode = on || mTask.baroOn; |
| uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN; |
| bool ret = true; |
| |
| INFO_PRINT("tempPower %s\n", on ? "enable" : "disable"); |
| if (!on && mTask.tempTimerHandle) { |
| timTimerCancel(mTask.tempTimerHandle); |
| mTask.tempTimerHandle = 0; |
| mTask.tempReading = false; |
| } |
| |
| if (oldMode != newMode) { |
| if (on) |
| ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state); |
| else |
| ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state); |
| } else |
| sensorSignalInternalEvt(mTask.sensors[TEMP].handle, |
| SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0); |
| |
| if (!ret) { |
| DEBUG_PRINT("tempPower comm_tx failed\n"); |
| return(false); |
| } |
| |
| mTask.tempReading = false; |
| mTask.tempOn = on; |
| return true; |
| } |
| |
| static bool tempFwUpload(void *cookie) |
| { |
| return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0); |
| } |
| |
| static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie) |
| { |
| if (mTask.tempTimerHandle) |
| timTimerCancel(mTask.tempTimerHandle); |
| |
| INFO_PRINT("tempSetRate %lu Hz - %llu ns\n", rate, latency); |
| mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates, |
| lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false); |
| |
| return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, |
| SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency); |
| } |
| |
| static bool tempFlush(void *cookie) |
| { |
| return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL); |
| } |
| |
| #define DEC_OPS(power, firmware, rate, flush, cal, cfg) \ |
| .sensorPower = power, \ |
| .sensorFirmwareUpload = firmware, \ |
| .sensorSetRate = rate, \ |
| .sensorFlush = flush, \ |
| .sensorCalibrate = cal, \ |
| .sensorCfgData = cfg |
| |
| static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] = |
| { |
| { DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, baroCalibrate, baroCfgData) }, |
| { DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) }, |
| }; |
| |
| static int handleCommDoneEvt(const void* evtData) |
| { |
| uint8_t i; |
| int baro_val; |
| short temp_val; |
| //uint32_t state = (uint32_t)evtData; |
| struct SingleAxisDataEvent *baroSample; |
| union EmbeddedDataPoint sample; |
| struct I2cTransfer *xfer = (struct I2cTransfer *)evtData; |
| uint8_t *ptr_samples; |
| |
| switch (xfer->state) { |
| case SENSOR_BOOT: |
| if (!mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, SENSOR_VERIFY_ID)) { |
| DEBUG_PRINT("Not able to read WAI\n"); |
| return -1; |
| } |
| break; |
| |
| case SENSOR_VERIFY_ID: |
| /* Check the sensor ID */ |
| if (xfer->err != 0 || xfer->txrxBuf[0] != LPS22HB_WAI_REG_VAL) { |
| DEBUG_PRINT("WAI returned is: %02x\n", xfer->txrxBuf[0]); |
| break; |
| } |
| |
| |
| INFO_PRINT("Device ID is correct! (%02x)\n", xfer->txrxBuf[0]); |
| for (i = 0; i < NUM_OF_SENSOR; i++) |
| sensorRegisterInitComplete(mTask.sensors[i].handle); |
| |
| /* TEST the environment in standalone mode */ |
| //osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid); |
| break; |
| |
| case SENSOR_BARO_POWER_UP: |
| sensorSignalInternalEvt(mTask.sensors[BARO].handle, |
| SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0); |
| break; |
| |
| case SENSOR_BARO_POWER_DOWN: |
| sensorSignalInternalEvt(mTask.sensors[BARO].handle, |
| SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0); |
| break; |
| |
| case SENSOR_TEMP_POWER_UP: |
| sensorSignalInternalEvt(mTask.sensors[TEMP].handle, |
| SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0); |
| break; |
| |
| case SENSOR_TEMP_POWER_DOWN: |
| sensorSignalInternalEvt(mTask.sensors[TEMP].handle, |
| SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0); |
| break; |
| |
| case SENSOR_BARO_START_CAL: |
| mTask.comm_tx(LPS22HB_RPDS_H, 0, 0, SENSOR_BARO_READ_CAL_MEAS); |
| break; |
| |
| case SENSOR_BARO_READ_CAL_MEAS: |
| mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 3, 1, SENSOR_BARO_CAL_DONE); |
| break; |
| |
| case SENSOR_BARO_CAL_DONE: |
| ptr_samples = xfer->txrxBuf; |
| |
| baro_val = ((ptr_samples[2] << 16) & 0xff0000) | |
| ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]); |
| |
| sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, LPS22HB_HECTO_PASCAL((float)baro_val)); |
| break; |
| |
| case SENSOR_BARO_SET_OFFSET: |
| mTask.comm_tx(LPS22HB_RPDS_H, mTask.offset_H, 0, SENSOR_BARO_CFG_DONE); |
| break; |
| |
| case SENSOR_BARO_CFG_DONE: |
| break; |
| |
| case SENSOR_READ_SAMPLES: |
| if (mTask.baroOn && mTask.baroWantRead) { |
| float pressure_hPa; |
| |
| mTask.baroWantRead = false; |
| ptr_samples = xfer->txrxBuf; |
| |
| baro_val = ((ptr_samples[2] << 16) & 0xff0000) | |
| ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]); |
| |
| mTask.baroReading = false; |
| pressure_hPa = LPS22HB_HECTO_PASCAL((float)baro_val); |
| //osLog(LOG_INFO, "baro: %p\n", sample.vptr); |
| if (baroAllocateEvt(&baroSample, pressure_hPa, sensorGetTime())) { |
| osEnqueueEvtOrFree(sensorGetMyEventType(SENS_TYPE_BARO), baroSample, baroFreeEvt); |
| } |
| } |
| |
| if (mTask.tempOn && mTask.tempWantRead) { |
| mTask.tempWantRead = false; |
| ptr_samples = &xfer->txrxBuf[3]; |
| |
| temp_val = ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]); |
| |
| mTask.tempReading = false; |
| sample.fdata = LPS22HB_CENTIGRADES((float)temp_val); |
| //osLog(LOG_INFO, "temp: %p\n", sample.vptr); |
| osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), sample.vptr, NULL); |
| } |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| releaseXfer(xfer); |
| return (0); |
| } |
| |
| static void handleEvent(uint32_t evtType, const void* evtData) |
| { |
| switch (evtType) { |
| case EVT_APP_START: |
| INFO_PRINT("EVT_APP_START\n"); |
| osEventUnsubscribe(mTask.tid, EVT_APP_START); |
| |
| mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR, |
| LPS22HB_SOFT_RESET_BIT, 0, SENSOR_BOOT); |
| break; |
| |
| case EVT_COMM_DONE: |
| //INFO_PRINT("EVT_COMM_DONE %d\n", (int)evtData); |
| handleCommDoneEvt(evtData); |
| break; |
| |
| case EVT_SENSOR_BARO_TIMER: |
| //INFO_PRINT("EVT_SENSOR_BARO_TIMER\n"); |
| |
| mTask.baroWantRead = true; |
| |
| /* Start sampling for a value */ |
| if (!mTask.baroReading && !mTask.tempReading) { |
| mTask.baroReading = true; |
| |
| mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES); |
| } |
| |
| break; |
| |
| case EVT_SENSOR_TEMP_TIMER: |
| //INFO_PRINT("EVT_SENSOR_TEMP_TIMER\n"); |
| |
| mTask.tempWantRead = true; |
| |
| /* Start sampling for a value */ |
| if (!mTask.baroReading && !mTask.tempReading) { |
| mTask.tempReading = true; |
| |
| mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES); |
| } |
| |
| break; |
| |
| case EVT_TEST: |
| INFO_PRINT("EVT_TEST\n"); |
| |
| baroPower(true, NULL); |
| tempPower(true, NULL); |
| baroSetRate(SENSOR_HZ(1), 0, NULL); |
| tempSetRate(SENSOR_HZ(1), 0, NULL); |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| static bool startTask(uint32_t task_id) |
| { |
| uint8_t i; |
| size_t slabSize; |
| |
| mTask.tid = task_id; |
| |
| INFO_PRINT("task started\n"); |
| |
| mTask.baroOn = mTask.tempOn = false; |
| mTask.baroReading = mTask.tempReading = false; |
| |
| mTask.offset_H = 0; |
| mTask.offset_L = 0; |
| |
| slabSize = sizeof(struct SingleAxisDataEvent) + sizeof(struct SingleAxisDataPoint); |
| |
| mTask.baroSlab = slabAllocatorNew(slabSize, 4, LPS22HB_MAX_BARO_EVENTS); |
| if (!mTask.baroSlab) { |
| ERROR_PRINT("Failed to allocate baroSlab memory\n"); |
| return false; |
| } |
| |
| /* Init the communication part */ |
| i2cMasterRequest(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_SPEED); |
| |
| mTask.comm_tx = i2c_write; |
| mTask.comm_rx = i2c_read; |
| |
| for (i = 0; i < NUM_OF_SENSOR; i++) { |
| mTask.sensors[i].handle = |
| sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false); |
| } |
| |
| osEventSubscribe(mTask.tid, EVT_APP_START); |
| |
| return true; |
| } |
| |
| static void endTask(void) |
| { |
| INFO_PRINT("task ended\n"); |
| slabAllocatorDestroy(mTask.baroSlab); |
| } |
| |
| INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent); |