| #include <math.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <floatRt.h> |
| #include "time_sync.h" |
| |
| #define NUM_TIME_SYNC_DATAPOINTS 16 |
| |
| typedef struct { |
| uint64_t time1[NUM_TIME_SYNC_DATAPOINTS]; |
| uint64_t time2[NUM_TIME_SYNC_DATAPOINTS]; |
| size_t n; |
| size_t i; |
| |
| uint64_t time1_base; |
| uint64_t time2_base; |
| |
| bool estimate_valid; |
| float n1, n2, alpha; |
| |
| uint8_t hold_count; |
| |
| } time_sync_t; |
| |
| static time_sync_t gSensorTime2RTC; |
| |
| static void time_sync_reset(time_sync_t *sync) { |
| sync->n = 0; |
| sync->i = 0; |
| sync->estimate_valid = false; |
| |
| sync->hold_count = 0; |
| } |
| |
| static bool time_sync_init(time_sync_t *sync) { |
| time_sync_reset(sync); |
| |
| return true; |
| } |
| |
| static void time_sync_truncate(time_sync_t *sync, size_t window_size) { |
| size_t k, m; |
| sync->n = (window_size < sync->n) ? window_size : sync->n; |
| sync->estimate_valid = false; |
| |
| // oldest sample index (new time_base) after truncation |
| size_t bidx = (sync->i >= sync->n) ? (sync->i - sync->n) |
| : (sync->i + NUM_TIME_SYNC_DATAPOINTS - sync->n); |
| |
| // left circular-shift oldest sample to index 0 |
| for (k = 0; k < bidx; ++k) { |
| uint64_t tmp1 = sync->time1[0]; |
| uint64_t tmp2 = sync->time2[0]; |
| |
| for (m = 0; m < NUM_TIME_SYNC_DATAPOINTS - 1; ++m) { |
| sync->time1[m] = sync->time1[m + 1]; |
| sync->time2[m] = sync->time2[m + 1]; |
| } |
| sync->time1[NUM_TIME_SYNC_DATAPOINTS - 1] = tmp1; |
| sync->time2[NUM_TIME_SYNC_DATAPOINTS - 1] = tmp2; |
| } |
| |
| sync->i = (sync->n < NUM_TIME_SYNC_DATAPOINTS) ? sync->n : 0; |
| } |
| |
| static bool time_sync_add(time_sync_t *sync, uint64_t time1, uint64_t time2) { |
| size_t i = sync->i; |
| |
| sync->time1[i] = time1; |
| sync->time2[i] = time2; |
| |
| if (++i == NUM_TIME_SYNC_DATAPOINTS) { |
| i = 0; |
| } |
| |
| sync->i = i; |
| |
| size_t prev_n = sync->n; |
| if (sync->n < NUM_TIME_SYNC_DATAPOINTS) { |
| ++sync->n; |
| } |
| |
| sync->estimate_valid = false; |
| |
| if (sync->hold_count > 0) { |
| --sync->hold_count; |
| time_sync_truncate(sync, prev_n); |
| } |
| |
| return true; |
| } |
| |
| static bool time_sync_estimate_time1(time_sync_t *sync, uint64_t time2, uint64_t *time1) |
| { |
| size_t j; |
| |
| if (sync->n < 2) |
| return false; |
| |
| *time1 = 0; |
| |
| if (!sync->estimate_valid) { |
| // compute normal vector (n1, n2) and offset alpha, so that |
| // |
| // sum_i (n1 x + n2 y - alpha)^2 min. for some ||(n1, n2)|| = 1. |
| // |
| // this involves normalizing x, y wrt their mean, after that the |
| // normal vector is the eigenvector corresponding to the smallest |
| // eigenvalue of (sum_x^2, sum_xy; sum_xy, sum_y^2). |
| |
| size_t n = sync->n; |
| |
| // Rewind to the oldest sample in the history. |
| size_t i = sync->i; |
| if (n < NUM_TIME_SYNC_DATAPOINTS) { |
| if (i != n) { |
| return false; |
| } |
| i = 0; |
| } |
| |
| uint64_t time1_base = sync->time1[i]; |
| uint64_t time2_base = sync->time2[i]; |
| |
| float mean_x = 0.0f; |
| float mean_y = 0.0f; |
| float invN = 1.0f / n; |
| size_t ii = i; |
| for (j = 0; j < n; ++j) { |
| mean_x += floatFromUint64(sync->time1[ii] - time1_base) * invN; |
| mean_y += floatFromUint64(sync->time2[ii] - time2_base) * invN; |
| |
| if (++ii == NUM_TIME_SYNC_DATAPOINTS) { |
| ii = 0; |
| } |
| } |
| |
| float sum_x2 = 0.0f, sum_y2 = 0.0f, sum_xy = 0.0f; |
| ii = i; |
| for (j = 0; j < n; ++j) { |
| float x = floatFromUint64(sync->time1[ii] - time1_base) - mean_x; |
| float y = floatFromUint64(sync->time2[ii] - time2_base) - mean_y; |
| |
| sum_x2 += x * x; |
| sum_y2 += y * y; |
| sum_xy += x * y; |
| |
| if (++ii == NUM_TIME_SYNC_DATAPOINTS) { |
| ii = 0; |
| } |
| } |
| |
| float p = 0.5f * (sum_x2 + sum_y2); |
| |
| float lambda = p - sqrtf(p * p - sum_x2 * sum_y2 + sum_xy * sum_xy); |
| |
| // now find n for which, A n = lambda n |
| |
| float a = sum_x2; |
| float c = sum_xy; |
| |
| float n1 = 1.0f; |
| float n2 = (lambda * n1 - a * n1) / c; |
| float invNorm = 1.0f / sqrtf(n1 * n1 + n2 * n2); |
| n1 *= invNorm; |
| n2 *= invNorm; |
| |
| float alpha = n1 * mean_x + n2 * mean_y; |
| |
| sync->n1 = n1; |
| sync->n2 = n2; |
| sync->alpha = alpha; |
| sync->time1_base = time1_base; |
| sync->time2_base = time2_base; |
| |
| sync->estimate_valid = true; |
| } |
| |
| *time1 = sync->time1_base + floatToInt64((sync->alpha - sync->n2 * floatFromInt64(time2 - sync->time2_base)) / sync->n1); |
| |
| return true; |
| } |
| |
| static void time_sync_hold(time_sync_t *sync, uint8_t count) { |
| sync->hold_count = count; |
| } |
| |
| void time_init() { |
| time_sync_init(&gSensorTime2RTC); |
| } |
| |
| bool sensortime_to_rtc_time(uint64_t sensor_time, uint64_t *rtc_time_ns) { |
| return time_sync_estimate_time1( |
| &gSensorTime2RTC, sensor_time * 39ull, rtc_time_ns); |
| } |
| |
| void map_sensortime_to_rtc_time(uint64_t sensor_time, uint64_t rtc_time_ns) { |
| time_sync_add(&gSensorTime2RTC, rtc_time_ns, sensor_time * 39ull); |
| } |
| |
| void invalidate_sensortime_to_rtc_time() { |
| time_sync_reset(&gSensorTime2RTC); |
| } |
| |
| void minimize_sensortime_history() { |
| // truncate datapoints to the latest two to maintain valid sensortime to rtc |
| // mapping and minimize the inflence of the past mapping |
| time_sync_truncate(&gSensorTime2RTC, 2); |
| |
| // drop the oldest datapoint when a new one arrives for two times to |
| // completely shift out the influence of the past mapping |
| time_sync_hold(&gSensorTime2RTC, 2); |
| } |