| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <algos/accel_cal.h> |
| #include <algos/mag_cal.h> |
| #include <seos.h> |
| #include <stdio.h> |
| #include <errno.h> |
| #include <math.h> |
| #include <string.h> |
| #define KSCALE 0.101936799f // Scaling from m/s^2 to g (0.101 = 1/(9.81 m/s^2)). |
| #define KSCALE2 9.81f // Scaling from g to m/s^2. |
| #define PHI 0.707f // = 1/sqrt(2) gives a 45 degree angle for sorting data. |
| #define PHIb -0.707f |
| #define PHIZ 0.866f // smaller Z sphere cap, opening angle is 30 degrees. |
| #define PHIZb -0.866f |
| #define G_NORM_MAX 1.38f // Norm during stillness should be 1 g, checking from max min values. |
| #define G_NORM_MIN 0.68f |
| #define MAX_OFF 0.1f // Will not accept offsets that are larger than 100 mg. |
| #define MIN_TEMP 20.0f // No Data is collected below 20 degree C. |
| #define MAX_TEMP 45.0f // No Data is collected above 45 degree C. |
| #define TEMP_CUT 30 // Separation point for temperature buckets 30 degree C. |
| #define EIGEN_RATIO 0.35 // EIGEN_RATIO (must be greater than 0.35). |
| #define EIGEN_MAG 0.97 // Eigen value magnitude (must be greater than 0.97). |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| #define TEMP_HIST_LOW 16 // Putting all Temp counts in first bucket for temp < 16 degree C. |
| #define TEMP_HIST_HIGH 62 // Putting all Temp counts in last bucket for temp > 62 degree C. |
| #define HIST_COUNT 9 |
| #endif |
| |
| #define INFO_PRINT(fmt, ...) do { \ |
| osLog(LOG_INFO, "%s " fmt, "[BMI160]", ##__VA_ARGS__); \ |
| } while (0); |
| |
| #define ENCODE_FLOAT(x, num_digits) ((x < 0) ? "-" : ""), (int)floorf(fabsf(x)), \ |
| (int)((fabsf(x) - floorf(fabsf(x))) * powf(10,num_digits)) |
| |
| /////////// Start Debug ////////////////////// |
| |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| // Total bucket Counter. |
| static void accelStatsCounter(struct accelStillDet_t *asd, struct accelStatsMem_t *adf) { |
| |
| // Sorting the data in the different buckets |
| // x bucket ntx. |
| if (PHI < asd->mean_x) { |
| adf->ntx += 1; |
| } |
| // Negative x bucket ntxb. |
| if (PHIb > asd->mean_x) { |
| adf->ntxb += 1; |
| } |
| // Y bucket nty. |
| if (PHI < asd->mean_y) { |
| adf->nty += 1; |
| } |
| // Negative y bucket ntyb. |
| if (PHIb > asd->mean_y) { |
| adf->ntyb += 1; |
| } |
| // Z bucket ntz. |
| if (PHIZ < asd->mean_z) { |
| adf->ntz += 1; |
| } |
| // Negative z bucket ntzb. |
| if (PHIZb > asd->mean_z) { |
| adf->ntzb += 1; |
| } |
| // The leftover bucket ntle. |
| if (PHI > asd->mean_x && PHIb < asd->mean_x && |
| PHI > asd->mean_y && PHIb < asd->mean_y && |
| PHIZ > asd->mean_z && PHIZb < asd->mean_z) { |
| adf->ntle += 1; |
| } |
| } |
| // Temp histogram generation. |
| static void accelTempHisto(struct accelStatsMem_t *adf, float temp) { |
| |
| int index = 0; |
| |
| // Take temp at every stillness detection. |
| adf->start_time = 0; |
| if (temp <= TEMP_HIST_LOW) { |
| adf->t_hist[0] += 1; |
| return; |
| } |
| if (temp >= TEMP_HIST_HIGH) { |
| adf->t_hist[TEMP_HISTOGRAM -1] += 1; |
| return; |
| } |
| index = (int)(((temp - TEMP_HIST_LOW) / 2) + 1); |
| adf->t_hist[index] += 1; |
| } |
| |
| #endif |
| ///////// End Debug //////////////////// |
| |
| |
| // Stillness detector reset. |
| static void asdReset(struct accelStillDet_t *asd) { |
| |
| asd->nsamples = 0; |
| asd->start_time = 0; |
| asd->acc_x = asd->acc_y = asd->acc_z = 0.0f; |
| asd->acc_xx = asd->acc_yy = asd->acc_zz = 0.0f; |
| } |
| |
| // Stillness detector init. |
| static void accelStillInit(struct accelStillDet_t *asd, uint32_t t0, uint32_t n_s, float th) { |
| |
| memset(asd, 0, sizeof(struct accelStillDet_t)); |
| asd->var_th = th; |
| asd->min_batch_window = t0; |
| asd->max_batch_window = t0 + 100000000; |
| asd->min_batch_size = n_s; |
| asd->n_still = 0; |
| } |
| |
| // Good data reset. |
| static void agdReset(struct accelGoodData_t *agd) { |
| |
| agd->nx = agd->nxb = 0; |
| agd->ny = agd->nyb = 0; |
| agd->nz = agd->nzb = 0; |
| agd->nle = 0; |
| agd->acc_t = agd->acc_tt = 0; |
| agd->e_x = agd->e_y = agd->e_z = 0; |
| } |
| |
| // Good data init. |
| static void accelGoodDataInit(struct accelGoodData_t *agd, uint32_t fx, uint32_t fxb, uint32_t fy, uint32_t fyb, |
| uint32_t fz, uint32_t fzb, uint32_t fle) { |
| |
| memset(agd, 0, sizeof(struct accelGoodData_t)); |
| agd->nfx = fx; |
| agd->nfxb = fxb; |
| agd->nfy = fy; |
| agd->nfyb = fyb; |
| agd->nfz = fz; |
| agd->nfzb = fzb; |
| agd->nfle = fle; |
| agd->var_t = 0; |
| agd->mean_t = 0; |
| } |
| |
| // Accel cal algo init (ready for temp buckets). |
| static void accelCalAlgoInit(struct accelCalAlgo_t *acc, uint32_t fx, |
| uint32_t fxb, uint32_t fy, uint32_t fyb, |
| uint32_t fz, uint32_t fzb, uint32_t fle) { |
| |
| accelGoodDataInit(&acc->agd, fx, fxb, fy, fyb, fz, fzb, fle); |
| |
| initMagCal(&acc->amoc, // mag_cal_t struct need for accel cal |
| 0.0f, 0.0f, 0.0f, // bias x, y, z |
| 1.0f, 0.0f, 0.0f, // c00, c01, c02 |
| 0.0f, 1.0f, 0.0f, // c10, c11, c12 |
| 0.0f, 0.0f, 1.0f); // c20, c21, c22 |
| } |
| |
| // Accel cal init. |
| void accelCalInit(struct accelCal_t *acc, uint32_t t0, uint32_t n_s,float th, |
| uint32_t fx, uint32_t fxb, uint32_t fy, uint32_t fyb, |
| uint32_t fz, uint32_t fzb, uint32_t fle) { |
| |
| // Init core accel data. |
| accelCalAlgoInit(&acc->ac1[0], fx, fxb, fy, fyb, |
| fz, fzb, fle); |
| accelCalAlgoInit(&acc->ac1[1], fx, fxb, fy, fyb, |
| fz, fzb, fle); |
| // Stillness Reset. |
| accelStillInit(&acc->asd, t0, n_s, th); |
| |
| // Debug data init. |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| memset(&acc->adf, 0, sizeof(struct accelStatsMem_t)); |
| #endif |
| |
| acc->x_bias = acc->y_bias = acc->z_bias = 0; |
| acc->x_bias_new = acc->y_bias_new = acc->z_bias_new = 0; |
| } |
| |
| // Stillness time check. |
| static int stillnessBatchComplete(struct accelStillDet_t *asd, uint64_t sample_time_nsec) { |
| |
| int complete = 0; |
| |
| // Checking if enough data is accumulated to calc Mean and Var. |
| if ((sample_time_nsec - asd->start_time > asd->min_batch_window) |
| && (asd->nsamples > asd->min_batch_size)) { |
| if (sample_time_nsec - asd->start_time < asd->max_batch_window) { |
| complete = 1; |
| } else { |
| // Checking for too long batch window, if yes reset and start over. |
| asdReset(asd); |
| return complete; |
| } |
| } else if (sample_time_nsec - asd->start_time > asd->min_batch_window |
| && (asd->nsamples < asd->min_batch_size)) { |
| // Not enough samples collected in max_batch_window during sample window. |
| asdReset(asd); |
| } |
| return complete; |
| } |
| |
| // Releasing Memory. |
| void accelCalDestroy(struct accelCal_t *acc) { |
| |
| (void)acc; |
| } |
| |
| // Stillness Detection. |
| static int accelStillnessDetection(struct accelStillDet_t *asd, uint64_t sample_time_nsec, |
| float x, float y, float z) { |
| |
| float inv = 0.0f; |
| int complete = 0.0f; |
| float g_norm = 0.0f; |
| |
| // Accumulate for mean and VAR. |
| asd->acc_x += x; |
| asd->acc_xx += x * x; |
| asd->acc_y += y; |
| asd->acc_yy += y * y; |
| asd->acc_z += z; |
| asd->acc_zz += z * z; |
| |
| // Setting a new start time and wait until T0 is reached. |
| if (++asd->nsamples == 1) { |
| asd->start_time = sample_time_nsec; |
| } |
| if (stillnessBatchComplete(asd, sample_time_nsec)) { |
| // Getting 1/#samples and checking asd->nsamples != 0. |
| if (0 < asd->nsamples) { |
| inv = 1.0f / asd->nsamples; |
| } else { |
| // Something went wrong resetting and start over. |
| asdReset(asd); |
| return complete; |
| } |
| // Calculating the VAR = sum(x^2)/n - sum(x)^2/n^2. |
| asd->var_x = (asd->acc_xx - (asd->acc_x * asd->acc_x) * inv) * inv; |
| asd->var_y = (asd->acc_yy - (asd->acc_y * asd->acc_y) * inv) * inv; |
| asd->var_z = (asd->acc_zz - (asd->acc_z * asd->acc_z) * inv) * inv; |
| // Checking if sensor is still. |
| if ( asd->var_x < asd->var_th && asd->var_y < asd->var_th && asd->var_z < asd->var_th ) { |
| // Calcluating the MEAN = sum(x) / n. |
| asd->mean_x = asd->acc_x * inv; |
| asd->mean_y = asd->acc_y * inv; |
| asd->mean_z = asd->acc_z * inv; |
| // Calculating g_norm^2. |
| g_norm = asd->mean_x * asd->mean_x + asd->mean_y * asd->mean_y + asd->mean_z * asd->mean_z; |
| // Magnitude check, still passsing when we have worse case offset. |
| if (g_norm < G_NORM_MAX && g_norm > G_NORM_MIN) { |
| complete = 1; |
| asd->n_still += 1; |
| } |
| } |
| asdReset(asd); |
| } |
| return complete; |
| } |
| |
| // Accumulate data for KASA fit. |
| static void accelCalUpdate(struct MagCal *amoc, struct accelStillDet_t *asd) { |
| |
| // Run accumulators. |
| float w = asd->mean_x * asd->mean_x |
| + asd->mean_y * asd->mean_y |
| + asd->mean_z * asd->mean_z; |
| |
| amoc->acc_x += asd->mean_x; |
| amoc->acc_y += asd->mean_y; |
| amoc->acc_z += asd->mean_z; |
| amoc->acc_w += w; |
| |
| amoc->acc_xx += asd->mean_x * asd->mean_x; |
| amoc->acc_xy += asd->mean_x * asd->mean_y; |
| amoc->acc_xz += asd->mean_x * asd->mean_z; |
| amoc->acc_xw += asd->mean_x * w; |
| |
| amoc->acc_yy += asd->mean_y * asd->mean_y; |
| amoc->acc_yz += asd->mean_y * asd->mean_z; |
| amoc->acc_yw += asd->mean_y * w; |
| |
| amoc->acc_zz += asd->mean_z * asd->mean_z; |
| amoc->acc_zw += asd->mean_z * w; |
| amoc->nsamples += 1; |
| } |
| |
| // Good data detection, sorting and accumulate the data for Kasa. |
| static int accelGoodData(struct accelStillDet_t *asd, struct accelCalAlgo_t *ac1, float temp) { |
| |
| int complete = 0; |
| float inv = 0.0f; |
| |
| // Sorting the data in the different buckets and accum |
| // x bucket nx. |
| if (PHI < asd->mean_x && ac1->agd.nx < ac1->agd.nfx) { |
| ac1->agd.nx += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // Negative x bucket nxb. |
| if (PHIb > asd->mean_x && ac1->agd.nxb < ac1->agd.nfxb) { |
| ac1->agd.nxb += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // Y bucket ny. |
| if (PHI < asd->mean_y && ac1->agd.ny < ac1->agd.nfy) { |
| ac1->agd.ny += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // Negative y bucket nyb. |
| if (PHIb > asd->mean_y && ac1->agd.nyb < ac1->agd.nfyb) { |
| ac1->agd.nyb += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // Z bucket nz. |
| if (PHIZ < asd->mean_z && ac1->agd.nz < ac1->agd.nfz) { |
| ac1->agd.nz += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // Negative z bucket nzb. |
| if (PHIZb > asd->mean_z && ac1->agd.nzb < ac1->agd.nfzb) { |
| ac1->agd.nzb += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // The leftover bucket nle. |
| if (PHI > asd->mean_x && PHIb < asd->mean_x && |
| PHI > asd->mean_y && PHIb < asd->mean_y && |
| PHIZ > asd->mean_z && PHIZb < asd->mean_z && |
| ac1->agd.nle < ac1->agd.nfle) { |
| |
| ac1->agd.nle += 1; |
| ac1->agd.acc_t += temp; |
| ac1->agd.acc_tt += temp * temp; |
| accelCalUpdate(&ac1->amoc,asd); |
| } |
| // Checking if all buckets are full. |
| if (ac1->agd.nx == ac1->agd.nfx && ac1->agd.nxb == ac1->agd.nfxb && |
| ac1->agd.ny == ac1->agd.nfy && ac1->agd.nyb == ac1->agd.nfyb && |
| ac1->agd.nz == ac1->agd.nfz && ac1->agd.nzb == ac1->agd.nfzb ) { |
| // Check if amoc->nsamples is zero. |
| if (ac1->amoc.nsamples == 0) { |
| agdReset(&ac1->agd); |
| moc_reset(&ac1->amoc); |
| complete = 0; |
| return complete; |
| } else { |
| // Normalize the data to the sample numbers. |
| inv = 1.0f / ac1->amoc.nsamples; |
| } |
| |
| ac1->amoc.acc_x *= inv; |
| ac1->amoc.acc_y *= inv; |
| ac1->amoc.acc_z *= inv; |
| ac1->amoc.acc_w *= inv; |
| |
| ac1->amoc.acc_xx *= inv; |
| ac1->amoc.acc_xy *= inv; |
| ac1->amoc.acc_xz *= inv; |
| ac1->amoc.acc_xw *= inv; |
| |
| ac1->amoc.acc_yy *= inv; |
| ac1->amoc.acc_yz *= inv; |
| ac1->amoc.acc_yw *= inv; |
| |
| ac1->amoc.acc_zz *= inv; |
| ac1->amoc.acc_zw *= inv; |
| |
| // Calculate the temp VAR and MEA.N |
| ac1->agd.var_t = (ac1->agd.acc_tt - ( ac1->agd.acc_t * ac1->agd.acc_t) * inv ) * inv; |
| ac1->agd.mean_t = ac1->agd.acc_t * inv; |
| complete = 1; |
| } |
| |
| // If any of the buckets has a bigger number as specified, reset and start over. |
| if (ac1->agd.nx > ac1->agd.nfx || ac1->agd.nxb > ac1->agd.nfxb || |
| ac1->agd.ny > ac1->agd.nfy || ac1->agd.nyb > ac1->agd.nfyb || |
| ac1->agd.nz > ac1->agd.nfz || ac1->agd.nzb > ac1->agd.nfzb) { |
| agdReset(&ac1->agd); |
| moc_reset(&ac1->amoc); |
| complete = 0; |
| return complete; |
| } |
| return complete; |
| } |
| |
| // Eigen value magnitude and ratio test. |
| static int mocEigenTest(struct MagCal *moc, struct accelGoodData_t *agd) { |
| |
| // covariance matrix. |
| struct Mat33 S; |
| S.elem[0][0] = moc->acc_xx - moc->acc_x * moc->acc_x; |
| S.elem[0][1] = S.elem[1][0] = moc->acc_xy - moc->acc_x * moc->acc_y; |
| S.elem[0][2] = S.elem[2][0] = moc->acc_xz - moc->acc_x * moc->acc_z; |
| S.elem[1][1] = moc->acc_yy - moc->acc_y * moc->acc_y; |
| S.elem[1][2] = S.elem[2][1] = moc->acc_yz - moc->acc_y * moc->acc_z; |
| S.elem[2][2] = moc->acc_zz - moc->acc_z * moc->acc_z; |
| |
| struct Vec3 eigenvals; |
| struct Mat33 eigenvecs; |
| mat33GetEigenbasis(&S, &eigenvals, &eigenvecs); |
| |
| float evmax = (eigenvals.x > eigenvals.y) ? eigenvals.x : eigenvals.y; |
| evmax = (eigenvals.z > evmax) ? eigenvals.z : evmax; |
| |
| float evmin = (eigenvals.x < eigenvals.y) ? eigenvals.x : eigenvals.y; |
| evmin = (eigenvals.z < evmin) ? eigenvals.z : evmin; |
| |
| float evmag = sqrtf(eigenvals.x + eigenvals.y + eigenvals.z); |
| // Passing when evmin/evmax> EIGEN_RATIO. |
| int eigen_pass = (evmin > evmax * EIGEN_RATIO) |
| && (evmag > EIGEN_MAG); |
| |
| agd->e_x = eigenvals.x; |
| agd->e_y = eigenvals.y; |
| agd->e_z = eigenvals.z; |
| |
| return eigen_pass; |
| } |
| |
| // Updating the new bias. |
| void accelCalUpdateBias(struct accelCal_t *acc) { |
| acc->x_bias = acc->x_bias_new; |
| acc->y_bias = acc->y_bias_new; |
| acc->z_bias = acc->z_bias_new; |
| } |
| |
| // Removing the bias. |
| void accelCalBiasRemove(struct accelCal_t *acc, |
| float *x, float *y, float *z) { |
| *x = *x - acc->x_bias; |
| *y = *y - acc->y_bias; |
| *z = *z - acc->z_bias; |
| } |
| // Accel Cal Runner. |
| void accelCalRun(struct accelCal_t *acc, uint64_t sample_time_nsec, |
| float x, float y, float z,float temp) { |
| |
| // Scaling to 1g, better for the algorithm. |
| x *= KSCALE; |
| y *= KSCALE; |
| z *= KSCALE; |
| |
| int temp_gate = 0; |
| |
| // Temp GATE. |
| if (temp < MAX_TEMP && temp > MIN_TEMP) { |
| |
| // Checking if accel is still. |
| if (accelStillnessDetection(&acc->asd, sample_time_nsec, x, y, z)) { |
| |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| // Creating temp hist data. |
| accelTempHisto(&acc->adf, temp); |
| #endif |
| |
| // Two temp buckets. |
| if (temp < TEMP_CUT) { |
| temp_gate = 0; |
| } else { |
| temp_gate = 1; |
| } |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| accelStatsCounter(&acc->asd, &acc->adf); |
| #endif |
| // If still -> pass the averaged accel data (mean) to the |
| // sorting, counting and accum function. |
| if (accelGoodData(&acc->asd, &acc->ac1[temp_gate], temp)) { |
| |
| // Running the Kasa fit. |
| struct Vec3 bias; |
| float radius; |
| |
| // Grabbing the fit from the MAG cal. |
| moc_fit(&acc->ac1[temp_gate].amoc, &bias, &radius); |
| |
| // If offset is too large don't take. |
| if (fabsf(bias.x) < MAX_OFF && |
| fabsf(bias.y) < MAX_OFF && |
| fabsf(bias.z) < MAX_OFF) { |
| // Eigen Ratio Test. |
| if (mocEigenTest(&acc->ac1[temp_gate].amoc, &acc->ac1[temp_gate].agd)) { |
| // Storing the new offsets. |
| acc->x_bias_new = bias.x * KSCALE2; |
| acc->y_bias_new = bias.y * KSCALE2; |
| acc->z_bias_new = bias.z * KSCALE2; |
| } |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| //// Debug /////// |
| acc->adf.noff += 1; |
| // Resetting the counter for the offset history. |
| if (acc->adf.n_o > HIST_COUNT) { |
| acc->adf.n_o = 0; |
| } |
| |
| // Storing the Debug data. |
| acc->adf.x_o[acc->adf.n_o] = bias.x; |
| acc->adf.y_o[acc->adf.n_o] = bias.y; |
| acc->adf.z_o[acc->adf.n_o] = bias.z; |
| acc->adf.e_x[acc->adf.n_o] = acc->ac1[temp_gate].agd.e_x; |
| acc->adf.e_y[acc->adf.n_o] = acc->ac1[temp_gate].agd.e_y; |
| acc->adf.e_z[acc->adf.n_o] = acc->ac1[temp_gate].agd.e_z; |
| acc->adf.var_t[acc->adf.n_o] = acc->ac1[temp_gate].agd.var_t; |
| acc->adf.mean_t[acc->adf.n_o] = acc->ac1[temp_gate].agd.mean_t; |
| acc->adf.cal_time[acc->adf.n_o] = sample_time_nsec; |
| acc->adf.rad[acc->adf.n_o] = radius; |
| acc->adf.n_o += 1; |
| #endif |
| } else { |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| acc->adf.noff_max += 1; |
| #endif |
| } |
| /////////////// |
| |
| // Resetting the structs for a new accel cal run. |
| agdReset(&acc->ac1[temp_gate].agd); |
| moc_reset(&acc->ac1[temp_gate].amoc); |
| } |
| } |
| } |
| } |
| #ifdef ACCEL_CAL_DBG_ENABLED |
| // Debug Print Output |
| void accelCalDebPrint(struct accelCal_t *acc,float temp) { |
| |
| static int32_t kk = 0; |
| if (++kk == 1000) { |
| // X offset history last 10 values. |
| INFO_PRINT("{MK_ACCEL,11,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(x_off history)\n", |
| ENCODE_FLOAT(acc->adf.x_o[0], 6), |
| ENCODE_FLOAT(acc->adf.x_o[1], 6), |
| ENCODE_FLOAT(acc->adf.x_o[2], 6), |
| ENCODE_FLOAT(acc->adf.x_o[3], 6), |
| ENCODE_FLOAT(acc->adf.x_o[4], 6), |
| ENCODE_FLOAT(acc->adf.x_o[5], 6), |
| ENCODE_FLOAT(acc->adf.x_o[6], 6), |
| ENCODE_FLOAT(acc->adf.x_o[7], 6), |
| ENCODE_FLOAT(acc->adf.x_o[8], 6), |
| ENCODE_FLOAT(acc->adf.x_o[9], 6)); |
| |
| // Y offset history last 10 values. |
| INFO_PRINT("{MK_ACCEL,12,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(y_off history)\n", |
| ENCODE_FLOAT(acc->adf.y_o[0], 6), |
| ENCODE_FLOAT(acc->adf.y_o[1], 6), |
| ENCODE_FLOAT(acc->adf.y_o[2], 6), |
| ENCODE_FLOAT(acc->adf.y_o[3], 6), |
| ENCODE_FLOAT(acc->adf.y_o[4], 6), |
| ENCODE_FLOAT(acc->adf.y_o[5], 6), |
| ENCODE_FLOAT(acc->adf.y_o[6], 6), |
| ENCODE_FLOAT(acc->adf.y_o[7], 6), |
| ENCODE_FLOAT(acc->adf.y_o[8], 6), |
| ENCODE_FLOAT(acc->adf.y_o[9], 6)); |
| |
| // Z offset history last 10 values. |
| INFO_PRINT("{MK_ACCEL,13,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(z_off history)\n", |
| ENCODE_FLOAT(acc->adf.z_o[0], 6), |
| ENCODE_FLOAT(acc->adf.z_o[1], 6), |
| ENCODE_FLOAT(acc->adf.z_o[2], 6), |
| ENCODE_FLOAT(acc->adf.z_o[3], 6), |
| ENCODE_FLOAT(acc->adf.z_o[4], 6), |
| ENCODE_FLOAT(acc->adf.z_o[5], 6), |
| ENCODE_FLOAT(acc->adf.z_o[6], 6), |
| ENCODE_FLOAT(acc->adf.z_o[7], 6), |
| ENCODE_FLOAT(acc->adf.z_o[8], 6), |
| ENCODE_FLOAT(acc->adf.z_o[9], 6)); |
| |
| // Temp history variation VAR of offset. |
| INFO_PRINT("{MK_ACCEL,14,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(VAR temp history)\n", |
| ENCODE_FLOAT(acc->adf.var_t[0], 6), |
| ENCODE_FLOAT(acc->adf.var_t[1], 6), |
| ENCODE_FLOAT(acc->adf.var_t[2], 6), |
| ENCODE_FLOAT(acc->adf.var_t[3], 6), |
| ENCODE_FLOAT(acc->adf.var_t[4], 6), |
| ENCODE_FLOAT(acc->adf.var_t[5], 6), |
| ENCODE_FLOAT(acc->adf.var_t[6], 6), |
| ENCODE_FLOAT(acc->adf.var_t[7], 6), |
| ENCODE_FLOAT(acc->adf.var_t[8], 6), |
| ENCODE_FLOAT(acc->adf.var_t[9], 6)); |
| |
| // Temp mean history of offset. |
| INFO_PRINT("{MK_ACCEL,15,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(MEAN Temp history)\n", |
| ENCODE_FLOAT(acc->adf.mean_t[0], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[1], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[2], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[3], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[4], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[5], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[6], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[7], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[8], 6), |
| ENCODE_FLOAT(acc->adf.mean_t[9], 6)); |
| |
| // KASA radius history. |
| INFO_PRINT("{MK_ACCEL,16,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(radius)\n", |
| ENCODE_FLOAT(acc->adf.rad[0], 6), |
| ENCODE_FLOAT(acc->adf.rad[1], 6), |
| ENCODE_FLOAT(acc->adf.rad[2], 6), |
| ENCODE_FLOAT(acc->adf.rad[3], 6), |
| ENCODE_FLOAT(acc->adf.rad[4], 6), |
| ENCODE_FLOAT(acc->adf.rad[5], 6), |
| ENCODE_FLOAT(acc->adf.rad[6], 6), |
| ENCODE_FLOAT(acc->adf.rad[7], 6), |
| ENCODE_FLOAT(acc->adf.rad[8], 6), |
| ENCODE_FLOAT(acc->adf.rad[9], 6)); |
| kk=0; |
| } |
| |
| if (kk == 750) { |
| // Eigen Vector X. |
| INFO_PRINT("{MK_ACCEL, 7,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(eigen x)\n", |
| ENCODE_FLOAT(acc->adf.e_x[0], 6), |
| ENCODE_FLOAT(acc->adf.e_x[1], 6), |
| ENCODE_FLOAT(acc->adf.e_x[2], 6), |
| ENCODE_FLOAT(acc->adf.e_x[3], 6), |
| ENCODE_FLOAT(acc->adf.e_x[4], 6), |
| ENCODE_FLOAT(acc->adf.e_x[5], 6), |
| ENCODE_FLOAT(acc->adf.e_x[6], 6), |
| ENCODE_FLOAT(acc->adf.e_x[7], 6), |
| ENCODE_FLOAT(acc->adf.e_x[8], 6), |
| ENCODE_FLOAT(acc->adf.e_x[9], 6)); |
| // Y. |
| INFO_PRINT("{MK_ACCEL, 8,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(eigen y)\n", |
| ENCODE_FLOAT(acc->adf.e_y[0], 6), |
| ENCODE_FLOAT(acc->adf.e_y[1], 6), |
| ENCODE_FLOAT(acc->adf.e_y[2], 6), |
| ENCODE_FLOAT(acc->adf.e_y[3], 6), |
| ENCODE_FLOAT(acc->adf.e_y[4], 6), |
| ENCODE_FLOAT(acc->adf.e_y[5], 6), |
| ENCODE_FLOAT(acc->adf.e_y[6], 6), |
| ENCODE_FLOAT(acc->adf.e_y[7], 6), |
| ENCODE_FLOAT(acc->adf.e_y[8], 6), |
| ENCODE_FLOAT(acc->adf.e_y[9], 6)); |
| // Z. |
| INFO_PRINT("{MK_ACCEL, 9,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,%s%d.%06d,}(eigen z)\n", |
| ENCODE_FLOAT(acc->adf.e_z[0], 6), |
| ENCODE_FLOAT(acc->adf.e_z[1], 6), |
| ENCODE_FLOAT(acc->adf.e_z[2], 6), |
| ENCODE_FLOAT(acc->adf.e_z[3], 6), |
| ENCODE_FLOAT(acc->adf.e_z[4], 6), |
| ENCODE_FLOAT(acc->adf.e_z[5], 6), |
| ENCODE_FLOAT(acc->adf.e_z[6], 6), |
| ENCODE_FLOAT(acc->adf.e_z[7], 6), |
| ENCODE_FLOAT(acc->adf.e_z[8], 6), |
| ENCODE_FLOAT(acc->adf.e_z[9], 6)); |
| // Accel Time in ns. |
| INFO_PRINT("{MK_ACCEL,10,%llu,%llu,%llu,%llu,%llu,%llu,%llu,%llu,%llu,%llu,}(timestamp ns)\n", |
| acc->adf.cal_time[0], |
| acc->adf.cal_time[1], |
| acc->adf.cal_time[2], |
| acc->adf.cal_time[3], |
| acc->adf.cal_time[4], |
| acc->adf.cal_time[5], |
| acc->adf.cal_time[6], |
| acc->adf.cal_time[7], |
| acc->adf.cal_time[8], |
| acc->adf.cal_time[9]); |
| } |
| |
| if (kk == 500) { |
| // Total bucket count. |
| INFO_PRINT("{MK_ACCEL, 0,%2d, %2d, %2d, %2d, %2d, %2d, %2d,}(Total Bucket #)\n", |
| (unsigned)acc->adf.ntx,(unsigned)acc->adf.ntxb, |
| (unsigned)acc->adf.nty,(unsigned)acc->adf.ntyb, |
| (unsigned)acc->adf.ntz,(unsigned)acc->adf.ntzb, |
| (unsigned)acc->adf.ntle); |
| // Live bucket count lower. |
| INFO_PRINT("{MK_ACCEL, 1,%2d, %2d, %2d, %2d, %2d, %2d, %2d, %3d,}(Bucket # lower)\n", |
| (unsigned)acc->ac1[0].agd.nx,(unsigned)acc->ac1[0].agd.nxb, |
| (unsigned)acc->ac1[0].agd.ny,(unsigned)acc->ac1[0].agd.nyb, |
| (unsigned)acc->ac1[0].agd.nz,(unsigned)acc->ac1[0].agd.nzb, |
| (unsigned)acc->ac1[0].agd.nle,(unsigned)acc->ac1[0].amoc.nsamples); |
| // Live bucket count hogher. |
| INFO_PRINT("{MK_ACCEL, 2,%2d, %2d, %2d, %2d, %2d, %2d, %2d, %3d,}(Bucket # higher)\n", |
| (unsigned)acc->ac1[1].agd.nx,(unsigned)acc->ac1[1].agd.nxb, |
| (unsigned)acc->ac1[1].agd.ny,(unsigned)acc->ac1[1].agd.nyb, |
| (unsigned)acc->ac1[1].agd.nz,(unsigned)acc->ac1[1].agd.nzb, |
| (unsigned)acc->ac1[1].agd.nle,(unsigned)acc->ac1[1].amoc.nsamples); |
| // Offset used. |
| INFO_PRINT("{MK_ACCEL, 3,%s%d.%06d, %s%d.%06d, %s%d.%06d, %s%d.%06d,}(updated offset x,y,z, live temp)\n", |
| ENCODE_FLOAT(acc->x_bias, 6), |
| ENCODE_FLOAT(acc->y_bias, 6), |
| ENCODE_FLOAT(acc->z_bias, 6), |
| ENCODE_FLOAT(temp, 6)); |
| // Offset New. |
| INFO_PRINT("{MK_ACCEL, 4,%s%d.%06d, %s%d.%06d, %s%d.%06d, %s%d.%06d,}(New offset x,y,z, live temp)\n", |
| ENCODE_FLOAT(acc->x_bias_new, 6), |
| ENCODE_FLOAT(acc->y_bias_new, 6), |
| ENCODE_FLOAT(acc->z_bias_new, 6), |
| ENCODE_FLOAT(temp, 6)); |
| // Temp Histogram. |
| INFO_PRINT("{MK_ACCEL, 5,%7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d,}(temp histo)\n", |
| (unsigned)acc->adf.t_hist[0], |
| (unsigned)acc->adf.t_hist[1], |
| (unsigned)acc->adf.t_hist[2], |
| (unsigned)acc->adf.t_hist[3], |
| (unsigned)acc->adf.t_hist[4], |
| (unsigned)acc->adf.t_hist[5], |
| (unsigned)acc->adf.t_hist[6], |
| (unsigned)acc->adf.t_hist[7], |
| (unsigned)acc->adf.t_hist[8], |
| (unsigned)acc->adf.t_hist[9], |
| (unsigned)acc->adf.t_hist[10], |
| (unsigned)acc->adf.t_hist[11], |
| (unsigned)acc->adf.t_hist[12]); |
| INFO_PRINT("M{K_ACCEL, 6,%7d, %7d, %7d,%7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d, %7d,}(temp histo)\n", |
| (unsigned)acc->adf.t_hist[13], |
| (unsigned)acc->adf.t_hist[14], |
| (unsigned)acc->adf.t_hist[15], |
| (unsigned)acc->adf.t_hist[16], |
| (unsigned)acc->adf.t_hist[17], |
| (unsigned)acc->adf.t_hist[18], |
| (unsigned)acc->adf.t_hist[19], |
| (unsigned)acc->adf.t_hist[20], |
| (unsigned)acc->adf.t_hist[21], |
| (unsigned)acc->adf.t_hist[22], |
| (unsigned)acc->adf.t_hist[23], |
| (unsigned)acc->adf.t_hist[24]); |
| } |
| } |
| #endif |