blob: 234f7da322f19f60802a3f567256da610ddd077f [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "sensors"
#define LOG_NDEBUG 1
#include <utils/Log.h>
#include "hubconnection.h"
#include "sensorlist.h"
#include "sensors.h"
#include <cutils/ashmem.h>
#include <errno.h>
#include <math.h>
#include <media/stagefright/foundation/ADebug.h>
#include <string.h>
#include <sys/mman.h>
#include <stdlib.h>
#ifdef DYNAMIC_SENSOR_EXT_ENABLED
#include <DynamicSensorManager.h>
#include <SensorEventCallback.h>
#endif
#ifdef LEFTY_SERVICE_ENABLED
#include "lefty_service.h"
#endif
using namespace android;
////////////////////////////////////////////////////////////////////////////////
SensorContext::SensorContext(const struct hw_module_t *module)
: mSensorList(kSensorList, kSensorList + kSensorCount),
mHubConnection(HubConnection::getInstance()) {
memset(&device, 0, sizeof(device));
device.common.tag = HARDWARE_DEVICE_TAG;
device.common.version = SENSORS_DEVICE_API_VERSION_1_4;
device.common.module = const_cast<hw_module_t *>(module);
device.common.close = CloseWrapper;
device.activate = ActivateWrapper;
device.setDelay = SetDelayWrapper;
device.poll = PollWrapper;
device.batch = BatchWrapper;
device.flush = FlushWrapper;
device.inject_sensor_data = InjectSensorDataWrapper;
mHubConnection->setRawScale(kScaleAccel, kScaleMag);
if (mHubConnection->isDirectReportSupported()) {
device.register_direct_channel = RegisterDirectChannelWrapper;
device.config_direct_report = ConfigDirectReportWrapper;
}
mOperationHandler.emplace_back(new HubConnectionOperation(mHubConnection));
initializeHalExtension();
}
int SensorContext::close() {
ALOGV("close");
delete this;
return 0;
}
int SensorContext::activate(int handle, int enabled) {
ALOGV("activate");
for (auto &h : mOperationHandler) {
if (h->owns(handle)) {
return h->activate(handle, enabled);
}
}
return INVALID_OPERATION;
}
int SensorContext::setDelay(int handle, int64_t delayNs) {
ALOGV("setDelay");
for (auto &h: mOperationHandler) {
if (h->owns(handle)) {
return h->setDelay(handle, delayNs);
}
}
return INVALID_OPERATION;
}
int SensorContext::poll(sensors_event_t *data, int count) {
ALOGV("poll");
// Release wakelock if held and no more events in ring buffer
mHubConnection->releaseWakeLockIfAppropriate();
return mHubConnection->read(data, count);
}
int SensorContext::batch(
int handle,
int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
ALOGV("batch");
for (auto &h : mOperationHandler) {
if (h->owns(handle)) {
return h->batch(handle, sampling_period_ns, max_report_latency_ns);
}
}
return INVALID_OPERATION;
}
int SensorContext::flush(int handle) {
ALOGV("flush");
for (auto &h : mOperationHandler) {
if (h->owns(handle)) {
return h->flush(handle);
}
}
return INVALID_OPERATION;
}
int SensorContext::register_direct_channel(
const struct sensors_direct_mem_t *mem, int32_t channel_handle) {
if (mem) {
//add
return mHubConnection->addDirectChannel(mem);
} else {
//remove
mHubConnection->removeDirectChannel(channel_handle);
return NO_ERROR;
}
}
int SensorContext::config_direct_report(
int32_t sensor_handle, int32_t channel_handle, const struct sensors_direct_cfg_t * config) {
int rate_level = config->rate_level;
return mHubConnection->configDirectReport(sensor_handle, channel_handle, rate_level);
}
// static
int SensorContext::CloseWrapper(struct hw_device_t *dev) {
return reinterpret_cast<SensorContext *>(dev)->close();
}
// static
int SensorContext::ActivateWrapper(
struct sensors_poll_device_t *dev, int handle, int enabled) {
return reinterpret_cast<SensorContext *>(dev)->activate(handle, enabled);
}
// static
int SensorContext::SetDelayWrapper(
struct sensors_poll_device_t *dev, int handle, int64_t delayNs) {
return reinterpret_cast<SensorContext *>(dev)->setDelay(handle, delayNs);
}
// static
int SensorContext::PollWrapper(
struct sensors_poll_device_t *dev, sensors_event_t *data, int count) {
return reinterpret_cast<SensorContext *>(dev)->poll(data, count);
}
// static
int SensorContext::BatchWrapper(
struct sensors_poll_device_1 *dev,
int handle,
int flags,
int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
(void) flags;
return reinterpret_cast<SensorContext *>(dev)->batch(
handle, sampling_period_ns, max_report_latency_ns);
}
// static
int SensorContext::FlushWrapper(struct sensors_poll_device_1 *dev, int handle) {
return reinterpret_cast<SensorContext *>(dev)->flush(handle);
}
// static
int SensorContext::RegisterDirectChannelWrapper(struct sensors_poll_device_1 *dev,
const struct sensors_direct_mem_t* mem, int channel_handle) {
return reinterpret_cast<SensorContext *>(dev)->register_direct_channel(
mem, channel_handle);
}
// static
int SensorContext::ConfigDirectReportWrapper(struct sensors_poll_device_1 *dev,
int sensor_handle, int channel_handle, const sensors_direct_cfg_t * config) {
return reinterpret_cast<SensorContext *>(dev)->config_direct_report(
sensor_handle, channel_handle, config);
}
int SensorContext::inject_sensor_data(const sensors_event_t *event) {
ALOGV("inject_sensor_data");
// only support set operation parameter, which will have handle == 0
if (event == nullptr || event->type != SENSOR_TYPE_ADDITIONAL_INFO) {
return -EINVAL;
}
if (event->sensor != SENSORS_HANDLE_BASE - 1) {
return -ENOSYS;
}
if (event->additional_info.type == AINFO_BEGIN
|| event->additional_info.type == AINFO_END) {
return 0;
}
mHubConnection->setOperationParameter(event->additional_info);
return 0;
}
// static
int SensorContext::InjectSensorDataWrapper(struct sensors_poll_device_1 *dev,
const struct sensors_event_t *event) {
return reinterpret_cast<SensorContext *>(dev)->inject_sensor_data(event);
}
bool SensorContext::getHubAlive() {
return (mHubConnection->initCheck() == OK && mHubConnection->getAliveCheck() == OK);
}
size_t SensorContext::getSensorList(sensor_t const **list) {
ALOGE("sensor p = %p, n = %zu", mSensorList.data(), mSensorList.size());
*list = mSensorList.data();
return mSensorList.size();
}
// HubConnectionOperation functions
SensorContext::HubConnectionOperation::HubConnectionOperation(sp<HubConnection> hubConnection)
: mHubConnection(hubConnection) {
for (size_t i = 0; i < kSensorCount; i++) {
mHandles.emplace(kSensorList[i].handle);
}
}
bool SensorContext::HubConnectionOperation::owns(int handle) {
return mHandles.find(handle) != mHandles.end();
}
int SensorContext::HubConnectionOperation::activate(int handle, int enabled) {
mHubConnection->queueActivate(handle, enabled);
return 0;
}
int SensorContext::HubConnectionOperation::setDelay(int handle, int64_t delayNs) {
// clamp sample rate based on minDelay and maxDelay defined in kSensorList
int64_t delayNsClamped = delayNs;
for (size_t i = 0; i < kSensorCount; i++) {
sensor_t sensor = kSensorList[i];
if (sensor.handle != handle) {
continue;
}
if ((sensor.flags & REPORTING_MODE_MASK) == SENSOR_FLAG_CONTINUOUS_MODE) {
if ((delayNs/1000) < sensor.minDelay) {
delayNsClamped = sensor.minDelay * 1000;
} else if ((delayNs/1000) > sensor.maxDelay) {
delayNsClamped = sensor.maxDelay * 1000;
}
}
break;
}
mHubConnection->queueSetDelay(handle, delayNsClamped);
return 0;
}
int SensorContext::HubConnectionOperation::batch(
int handle, int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
// clamp sample rate based on minDelay and maxDelay defined in kSensorList
int64_t sampling_period_ns_clamped = sampling_period_ns;
for (size_t i = 0; i < kSensorCount; i++) {
sensor_t sensor = kSensorList[i];
if (sensor.handle != handle) {
continue;
}
if ((sensor.flags & REPORTING_MODE_MASK) == SENSOR_FLAG_CONTINUOUS_MODE) {
if ((sampling_period_ns/1000) < sensor.minDelay) {
sampling_period_ns_clamped = sensor.minDelay * 1000;
} else if ((sampling_period_ns/1000) > sensor.maxDelay) {
sampling_period_ns_clamped = sensor.maxDelay * 1000;
}
}
break;
}
mHubConnection->queueBatch(handle, sampling_period_ns_clamped,
max_report_latency_ns);
return 0;
}
int SensorContext::HubConnectionOperation::flush(int handle) {
mHubConnection->queueFlush(handle);
return 0;
}
#ifdef DYNAMIC_SENSOR_EXT_ENABLED
namespace {
// adaptor class
class Callback : public SensorEventCallback {
public:
Callback(sp<HubConnection> hubConnection) : mHubConnection(hubConnection) {}
virtual int submitEvent(sp<BaseSensorObject> source, const sensors_event_t &e) override;
private:
sp<HubConnection> mHubConnection;
};
int Callback::submitEvent(sp<BaseSensorObject> source, const sensors_event_t &e) {
(void) source; // irrelavent in this context
return (mHubConnection->write(&e, 1) == 1) ? 0 : -ENOSPC;
}
} // anonymous namespace
SensorContext::DynamicSensorManagerOperation::DynamicSensorManagerOperation(DynamicSensorManager* manager)
: mDynamicSensorManager(manager) {
}
bool SensorContext::DynamicSensorManagerOperation::owns(int handle) {
return mDynamicSensorManager->owns(handle);
}
int SensorContext::DynamicSensorManagerOperation::activate(int handle, int enabled) {
return mDynamicSensorManager->activate(handle, enabled);
}
int SensorContext::DynamicSensorManagerOperation::setDelay(int handle, int64_t delayNs) {
return mDynamicSensorManager->setDelay(handle, delayNs);
}
int SensorContext::DynamicSensorManagerOperation::batch(int handle, int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
return mDynamicSensorManager->batch(handle, sampling_period_ns, max_report_latency_ns);
}
int SensorContext::DynamicSensorManagerOperation::flush(int handle) {
return mDynamicSensorManager->flush(handle);
}
#endif
void SensorContext::initializeHalExtension() {
#ifdef DYNAMIC_SENSOR_EXT_ENABLED
// initialize callback and dynamic sensor manager
mEventCallback.reset(new Callback(mHubConnection));
DynamicSensorManager* manager = DynamicSensorManager::createInstance(
kDynamicHandleBase, kMaxDynamicHandleCount, mEventCallback.get());
// add meta sensor to list
mSensorList.push_back(manager->getDynamicMetaSensor());
// register operation
mOperationHandler.emplace_back(new DynamicSensorManagerOperation(manager));
#endif
}
////////////////////////////////////////////////////////////////////////////////
static bool gHubAlive;
static sensor_t const *sensor_list;
static int n_sensor;
static int open_sensors(
const struct hw_module_t *module,
const char *,
struct hw_device_t **dev) {
ALOGV("open_sensors");
SensorContext *ctx = new SensorContext(module);
n_sensor = ctx->getSensorList(&sensor_list);
gHubAlive = ctx->getHubAlive();
*dev = &ctx->device.common;
#ifdef LEFTY_SERVICE_ENABLED
register_lefty_service();
#endif
return 0;
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
static int get_sensors_list(
struct sensors_module_t *,
struct sensor_t const **list) {
ALOGV("get_sensors_list");
if (gHubAlive && sensor_list != nullptr) {
*list = sensor_list;
return n_sensor;
} else {
*list = {};
return 0;
}
}
static int set_operation_mode(unsigned int mode) {
ALOGV("set_operation_mode");
// This is no-op because there is no sensor in the hal that system can
// inject events. Only operation parameter injection is implemented, which
// works in both data injection and normal mode.
(void) mode;
return 0;
}
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "Google Sensor module",
.author = "Google",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = get_sensors_list,
.set_operation_mode = set_operation_mode,
};