blob: 3f21dc719293a81a238c7eacd36e105795b0aaae [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "bosch_bmm150_slave.h"
void bmm150SaveDigData(struct MagTask *magTask, uint8_t *data, size_t offset)
{
// magnetometer temperature calibration data is read in 3 bursts of 8 byte
// length each.
memcpy(&magTask->raw_dig_data[offset], data, 8);
if (offset == 16) {
// we have all the raw data.
static const size_t first_reg = BMM150_REG_DIG_X1;
magTask->dig_x1 = magTask->raw_dig_data[BMM150_REG_DIG_X1 - first_reg];
magTask->dig_y1 = magTask->raw_dig_data[BMM150_REG_DIG_Y1 - first_reg];
magTask->dig_x2 = magTask->raw_dig_data[BMM150_REG_DIG_X2 - first_reg];
magTask->dig_y2 = magTask->raw_dig_data[BMM150_REG_DIG_Y2 - first_reg];
magTask->dig_xy2 = magTask->raw_dig_data[BMM150_REG_DIG_XY2 - first_reg];
magTask->dig_xy1 = magTask->raw_dig_data[BMM150_REG_DIG_XY1 - first_reg];
magTask->dig_z1 = *(uint16_t *)(&magTask->raw_dig_data[BMM150_REG_DIG_Z1_LSB - first_reg]);
magTask->dig_z2 = *(int16_t *)(&magTask->raw_dig_data[BMM150_REG_DIG_Z2_LSB - first_reg]);
magTask->dig_z3 = *(int16_t *)(&magTask->raw_dig_data[BMM150_REG_DIG_Z3_LSB - first_reg]);
magTask->dig_z4 = *(int16_t *)(&magTask->raw_dig_data[BMM150_REG_DIG_Z4_LSB - first_reg]);
magTask->dig_xyz1 = *(uint16_t *)(&magTask->raw_dig_data[BMM150_REG_DIG_XYZ1_LSB - first_reg]);
}
}
static int32_t bmm150TempCompensateX(struct MagTask *magTask, int16_t mag_x, uint16_t rhall)
{
int32_t inter_retval = 0;
// some temp var to made the long calculation easier to read
int32_t temp_1, temp_2, temp_3, temp_4;
// no overflow
if (mag_x != BMM150_MAG_FLIP_OVERFLOW_ADCVAL) {
if ((rhall != 0) && (magTask->dig_xyz1 != 0)) {
inter_retval = ((int32_t)(((uint16_t) ((((int32_t)magTask->dig_xyz1) << 14)
/ (rhall != 0 ? rhall : magTask->dig_xyz1))) - ((uint16_t)0x4000)));
} else {
inter_retval = BMM150_MAG_OVERFLOW_OUTPUT;
return inter_retval;
}
temp_1 = ((int32_t)magTask->dig_xy2) * ((((int32_t)inter_retval) * ((int32_t)inter_retval)) >> 7);
temp_2 = ((int32_t)inter_retval) * ((int32_t)(((int16_t)magTask->dig_xy1) << 7));
temp_3 = ((temp_1 + temp_2) >> 9) + ((int32_t)BMM150_CALIB_HEX_LACKS);
temp_4 = ((int32_t)mag_x) * ((temp_3 * ((int32_t)(((int16_t)magTask->dig_x2) + ((int16_t)0xa0)))) >> 12);
inter_retval = ((int32_t)(temp_4 >> 13)) + (((int16_t)magTask->dig_x1) << 3);
// check the overflow output
if (inter_retval == (int32_t)BMM150_MAG_OVERFLOW_OUTPUT)
inter_retval = BMM150_MAG_OVERFLOW_OUTPUT_S32;
} else {
// overflow
inter_retval = BMM150_MAG_OVERFLOW_OUTPUT;
}
return inter_retval;
}
static int32_t bmm150TempCompensateY(struct MagTask *magTask, int16_t mag_y, uint16_t rhall)
{
int32_t inter_retval = 0;
// some temp var to made the long calculation easier to read
int32_t temp_1, temp_2, temp_3, temp_4;
// no overflow
if (mag_y != BMM150_MAG_FLIP_OVERFLOW_ADCVAL) {
if ((rhall != 0) && (magTask->dig_xyz1 != 0)) {
inter_retval = ((int32_t)(((uint16_t)((( (int32_t)magTask->dig_xyz1) << 14)
/ (rhall != 0 ? rhall : magTask->dig_xyz1))) - ((uint16_t)0x4000)));
} else {
inter_retval = BMM150_MAG_OVERFLOW_OUTPUT;
return inter_retval;
}
temp_1 = ((int32_t)magTask->dig_xy2) * ((((int32_t) inter_retval) * ((int32_t)inter_retval)) >> 7);
temp_2 = ((int32_t)inter_retval) * ((int32_t)(((int16_t)magTask->dig_xy1) << 7));
temp_3 = ((temp_1 + temp_2) >> 9) + ((int32_t)BMM150_CALIB_HEX_LACKS);
temp_4 = ((int32_t)mag_y) * ((temp_3 * ((int32_t)(((int16_t)magTask->dig_y2) + ((int16_t)0xa0)))) >> 12);
inter_retval = ((int32_t)(temp_4 >> 13)) + (((int16_t)magTask->dig_y1) << 3);
// check the overflow output
if (inter_retval == (int32_t)BMM150_MAG_OVERFLOW_OUTPUT)
inter_retval = BMM150_MAG_OVERFLOW_OUTPUT_S32;
} else {
// overflow
inter_retval = BMM150_MAG_OVERFLOW_OUTPUT;
}
return inter_retval;
}
static int32_t bmm150TempCompensateZ(struct MagTask *magTask, int16_t mag_z, uint16_t rhall)
{
int32_t retval = 0;
if (mag_z != BMM150_MAG_HALL_OVERFLOW_ADCVAL) {
if ((rhall != 0) && (magTask->dig_z2 != 0) && (magTask->dig_z1 != 0)) {
retval = ((((int32_t)(mag_z - magTask->dig_z4)) << 15)
- ((((int32_t)magTask->dig_z3) * ((int32_t)(((int16_t)rhall) - ((int16_t)magTask->dig_xyz1)))) >> 2));
retval /= (magTask->dig_z2
+ ((int16_t)(((((int32_t)magTask->dig_z1) * ((((int16_t)rhall) << 1))) + (1 << 15)) >> 16)));
}
} else {
retval = BMM150_MAG_OVERFLOW_OUTPUT;
}
return retval;
}
void parseMagData(struct MagTask *magTask, uint8_t *buf, float *x, float *y, float *z) {
int32_t mag_x = (*(int16_t *)&buf[0]) >> 3;
int32_t mag_y = (*(int16_t *)&buf[2]) >> 3;
int32_t mag_z = (*(int16_t *)&buf[4]) >> 1;
uint32_t mag_rhall = (*(uint16_t *)&buf[6]) >> 2;
int32_t raw_x = bmm150TempCompensateX(magTask, mag_x, mag_rhall);
int32_t raw_y = bmm150TempCompensateY(magTask, mag_y, mag_rhall);
int32_t raw_z = bmm150TempCompensateZ(magTask, mag_z, mag_rhall);
*x = (float)raw_x * kScale_mag;
*y = (float)raw_y * kScale_mag;
*z = (float)raw_z * kScale_mag;
}