blob: f3d01e4139ea5f43c0366c7eebdf5a51324a36e5 [file] [log] [blame]
/* //device/system/reference-ril/reference-ril.c
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <telephony/ril_cdma_sms.h>
#include <telephony/librilutils.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <inttypes.h>
#include <fcntl.h>
#include <pthread.h>
#include <alloca.h>
#include "atchannel.h"
#include "at_tok.h"
#include "base64util.h"
#include "misc.h"
#include <getopt.h>
#include <sys/socket.h>
#include <cutils/properties.h>
#include <cutils/sockets.h>
#include <termios.h>
#include <sys/wait.h>
#include <stdbool.h>
#include <net/if.h>
#include <netinet/in.h>
#include <linux/vm_sockets.h>
#include <arpa/inet.h>
#include "guest/hals/ril/reference-libril/ril.h"
#define LOG_TAG "RIL"
#include <utils/Log.h>
static void *noopRemoveWarning( void *a ) { return a; }
#define RIL_UNUSED_PARM(a) noopRemoveWarning((void *)&(a));
#define MAX_AT_RESPONSE 0x1000
#define MAX_PDP 11 // max LTE bearers
/* pathname returned from RIL_REQUEST_SETUP_DATA_CALL / RIL_REQUEST_SETUP_DEFAULT_PDP */
// This is used if Wifi is not supported, plain old eth0
#ifdef CUTTLEFISH_ENABLE
#define PPP_TTY_PATH_ETH0 "buried_eth0"
#else
#define PPP_TTY_PATH_ETH0 "eth0"
#endif
// This is used for emulator
#define EMULATOR_RADIO_INTERFACE "eth0"
// for sim
#define AUTH_CONTEXT_EAP_SIM 128
#define AUTH_CONTEXT_EAP_AKA 129
#define SIM_AUTH_RESPONSE_SUCCESS 0
#define SIM_AUTH_RESPONSE_SYNC_FAILURE 3
// Default MTU value
#define DEFAULT_MTU 1500
#ifdef USE_TI_COMMANDS
// Enable a workaround
// 1) Make incoming call, do not answer
// 2) Hangup remote end
// Expected: call should disappear from CLCC line
// Actual: Call shows as "ACTIVE" before disappearing
#define WORKAROUND_ERRONEOUS_ANSWER 1
// Some variants of the TI stack do not support the +CGEV unsolicited
// response. However, they seem to send an unsolicited +CME ERROR: 150
#define WORKAROUND_FAKE_CGEV 1
#endif
/* Modem Technology bits */
#define MDM_GSM 0x01
#define MDM_WCDMA 0x02
#define MDM_CDMA 0x04
#define MDM_EVDO 0x08
#define MDM_TDSCDMA 0x10
#define MDM_LTE 0x20
#define MDM_NR 0x40
typedef struct {
int supportedTechs; // Bitmask of supported Modem Technology bits
int currentTech; // Technology the modem is currently using (in the format used by modem)
int isMultimode;
// Preferred mode bitmask. This is actually 4 byte-sized bitmasks with different priority values,
// in which the byte number from LSB to MSB give the priority.
//
// |MSB| | |LSB
// value: |00 |00 |00 |00
// byte #: |3 |2 |1 |0
//
// Higher byte order give higher priority. Thus, a value of 0x0000000f represents
// a preferred mode of GSM, WCDMA, CDMA, and EvDo in which all are equally preferrable, whereas
// 0x00000201 represents a mode with GSM and WCDMA, in which WCDMA is preferred over GSM
int32_t preferredNetworkMode;
int subscription_source;
} ModemInfo;
static ModemInfo *sMdmInfo;
// TECH returns the current technology in the format used by the modem.
// It can be used as an l-value
#define TECH(mdminfo) ((mdminfo)->currentTech)
// TECH_BIT returns the bitmask equivalent of the current tech
#define TECH_BIT(mdminfo) (1 << ((mdminfo)->currentTech))
#define IS_MULTIMODE(mdminfo) ((mdminfo)->isMultimode)
#define TECH_SUPPORTED(mdminfo, tech) ((mdminfo)->supportedTechs & (tech))
#define PREFERRED_NETWORK(mdminfo) ((mdminfo)->preferredNetworkMode)
// CDMA Subscription Source
#define SSOURCE(mdminfo) ((mdminfo)->subscription_source)
static int net2modem[] = {
MDM_GSM | MDM_WCDMA, // 0 - GSM / WCDMA Pref
MDM_GSM, // 1 - GSM only
MDM_WCDMA, // 2 - WCDMA only
MDM_GSM | MDM_WCDMA, // 3 - GSM / WCDMA Auto
MDM_CDMA | MDM_EVDO, // 4 - CDMA / EvDo Auto
MDM_CDMA, // 5 - CDMA only
MDM_EVDO, // 6 - EvDo only
MDM_GSM | MDM_WCDMA | MDM_CDMA | MDM_EVDO, // 7 - GSM/WCDMA, CDMA, EvDo
MDM_LTE | MDM_CDMA | MDM_EVDO, // 8 - LTE, CDMA and EvDo
MDM_LTE | MDM_GSM | MDM_WCDMA, // 9 - LTE, GSM/WCDMA
MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_GSM | MDM_WCDMA, // 10 - LTE, CDMA, EvDo, GSM/WCDMA
MDM_LTE, // 11 - LTE only
MDM_LTE | MDM_WCDMA, // 12 - LTE and WCDMA
MDM_TDSCDMA, // 13 - TD-SCDMA only
MDM_WCDMA | MDM_TDSCDMA, // 14 - TD-SCDMA and WCDMA
MDM_LTE | MDM_TDSCDMA, // 15 - LTE and TD-SCDMA
MDM_TDSCDMA | MDM_GSM, // 16 - TD-SCDMA and GSM
MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 17 - TD-SCDMA, GSM and LTE
MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 18 - TD-SCDMA, GSM and WCDMA
MDM_LTE | MDM_WCDMA | MDM_TDSCDMA, // 19 - LTE, TD-SCDMA and WCDMA
MDM_LTE | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 20 - LTE, TD-SCDMA, GSM, and WCDMA
MDM_EVDO | MDM_CDMA | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 21 - TD-SCDMA, CDMA, EVDO, GSM and WCDMA
MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 22 - LTE, TDCSDMA, CDMA, EVDO, GSM and WCDMA
MDM_NR, // 23 - NR 5G only mode
MDM_NR | MDM_LTE, // 24 - NR 5G, LTE
MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO, // 25 - NR 5G, LTE, CDMA and EvDo
MDM_NR | MDM_LTE | MDM_WCDMA | MDM_GSM, // 26 - NR 5G, LTE, GSM and WCDMA
MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 27 - NR 5G, LTE, CDMA, EvDo, GSM and WCDMA
MDM_NR | MDM_LTE | MDM_WCDMA, // 28 - NR 5G, LTE and WCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA, // 29 - NR 5G, LTE and TDSCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 30 - NR 5G, LTE, TD-SCDMA and GSM
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA, // 31 - NR 5G, LTE, TD-SCDMA, WCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA | MDM_GSM, // 32 - NR 5G, LTE, TD-SCDMA, GSM and WCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 33 - NR 5G, LTE, TD-SCDMA, CDMA, EVDO, GSM and WCDMA
};
static int32_t net2pmask[] = {
MDM_GSM | (MDM_WCDMA << 8), // 0 - GSM / WCDMA Pref
MDM_GSM, // 1 - GSM only
MDM_WCDMA, // 2 - WCDMA only
MDM_GSM | MDM_WCDMA, // 3 - GSM / WCDMA Auto
MDM_CDMA | MDM_EVDO, // 4 - CDMA / EvDo Auto
MDM_CDMA, // 5 - CDMA only
MDM_EVDO, // 6 - EvDo only
MDM_GSM | MDM_WCDMA | MDM_CDMA | MDM_EVDO, // 7 - GSM/WCDMA, CDMA, EvDo
MDM_LTE | MDM_CDMA | MDM_EVDO, // 8 - LTE, CDMA and EvDo
MDM_LTE | MDM_GSM | MDM_WCDMA, // 9 - LTE, GSM/WCDMA
MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_GSM | MDM_WCDMA, // 10 - LTE, CDMA, EvDo, GSM/WCDMA
MDM_LTE, // 11 - LTE only
MDM_LTE | MDM_WCDMA, // 12 - LTE and WCDMA
MDM_TDSCDMA, // 13 - TD-SCDMA only
MDM_WCDMA | MDM_TDSCDMA, // 14 - TD-SCDMA and WCDMA
MDM_LTE | MDM_TDSCDMA, // 15 - LTE and TD-SCDMA
MDM_TDSCDMA | MDM_GSM, // 16 - TD-SCDMA and GSM
MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 17 - TD-SCDMA, GSM and LTE
MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 18 - TD-SCDMA, GSM and WCDMA
MDM_LTE | MDM_WCDMA | MDM_TDSCDMA, // 19 - LTE, TD-SCDMA and WCDMA
MDM_LTE | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 20 - LTE, TD-SCDMA, GSM, and WCDMA
MDM_EVDO | MDM_CDMA | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM, // 21 - TD-SCDMA, CDMA, EVDO, GSM and WCDMA
MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 22 - LTE, TDCSDMA, CDMA, EVDO, GSM and WCDMA
MDM_NR, // 23 - NR 5G only mode
MDM_NR | MDM_LTE, // 24 - NR 5G, LTE
MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO, // 25 - NR 5G, LTE, CDMA and EvDo
MDM_NR | MDM_LTE | MDM_WCDMA | MDM_GSM, // 26 - NR 5G, LTE, GSM and WCDMA
MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 27 - NR 5G, LTE, CDMA, EvDo, GSM and WCDMA
MDM_NR | MDM_LTE | MDM_WCDMA, // 28 - NR 5G, LTE and WCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA, // 29 - NR 5G, LTE and TDSCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_GSM, // 30 - NR 5G, LTE, TD-SCDMA and GSM
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA, // 31 - NR 5G, LTE, TD-SCDMA, WCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA | MDM_GSM, // 32 - NR 5G, LTE, TD-SCDMA, GSM and WCDMA
MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM, // 33 - NR 5G, LTE, TD-SCDMA, CDMA, EVDO, GSM and WCDMA
};
#define GSM (RAF_GSM | RAF_GPRS | RAF_EDGE)
#define CDMA (RAF_IS95A | RAF_IS95B | RAF_1xRTT)
#define EVDO (RAF_EVDO_0 | RAF_EVDO_A | RAF_EVDO_B | RAF_EHRPD)
#define WCDMA (RAF_HSUPA | RAF_HSDPA | RAF_HSPA | RAF_HSPAP | RAF_UMTS)
#define LTE (RAF_LTE)
#define NR (RAF_NR)
typedef struct {
int bitmap;
int type;
} NetworkTypeBitmap;
static NetworkTypeBitmap s_networkMask[] = {
{WCDMA | GSM, MDM_GSM | (MDM_WCDMA << 8)}, // 0 - GSM / WCDMA Pref
{GSM, MDM_GSM}, // 1 - GSM only
{WCDMA, MDM_WCDMA}, // 2 - WCDMA only
{WCDMA | GSM, MDM_GSM | MDM_WCDMA}, // 3 - GSM / WCDMA Auto
{CDMA | EVDO, MDM_CDMA | MDM_EVDO}, // 4 - CDMA / EvDo Auto
{CDMA, MDM_CDMA}, // 5 - CDMA only
{EVDO, MDM_EVDO}, // 6 - EvDo only
{GSM | WCDMA | CDMA | EVDO, MDM_GSM | MDM_WCDMA | MDM_CDMA | MDM_EVDO}, // 7 - GSM/WCDMA, CDMA, EvDo
{LTE | CDMA | EVDO, MDM_LTE | MDM_CDMA | MDM_EVDO}, // 8 - LTE, CDMA and EvDo
{LTE | GSM | WCDMA, MDM_LTE | MDM_GSM | MDM_WCDMA}, // 9 - LTE, GSM/WCDMA
{LTE | CDMA | EVDO | GSM | WCDMA, MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_GSM | MDM_WCDMA}, // 10 - LTE, CDMA, EvDo, GSM/WCDMA
{LTE, MDM_LTE}, // 11 - LTE only
{LTE | WCDMA, MDM_LTE | MDM_WCDMA}, // 12 - LTE and WCDMA
{RAF_TD_SCDMA, MDM_TDSCDMA}, // 13 - TD-SCDMA only
{RAF_TD_SCDMA | WCDMA, MDM_WCDMA | MDM_TDSCDMA}, // 14 - TD-SCDMA and WCDMA
{LTE | RAF_TD_SCDMA, MDM_LTE | MDM_TDSCDMA}, // 15 - LTE and TD-SCDMA
{RAF_TD_SCDMA | GSM, MDM_TDSCDMA | MDM_GSM}, // 16 - TD-SCDMA and GSM
{LTE | RAF_TD_SCDMA | GSM, MDM_LTE | MDM_TDSCDMA | MDM_GSM}, // 17 - TD-SCDMA, GSM and LTE
{RAF_TD_SCDMA | GSM | WCDMA, MDM_WCDMA | MDM_TDSCDMA | MDM_GSM}, // 18 - TD-SCDMA, GSM and WCDMA
{LTE | RAF_TD_SCDMA | WCDMA, MDM_LTE | MDM_WCDMA | MDM_TDSCDMA}, // 19 - LTE, TD-SCDMA and WCDMA
{LTE | RAF_TD_SCDMA | GSM | WCDMA,MDM_LTE | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM}, // 20 - LTE, TD-SCDMA, GSM, and WCDMA
{RAF_TD_SCDMA | CDMA | EVDO | GSM | WCDMA, MDM_EVDO | MDM_CDMA | MDM_WCDMA | MDM_TDSCDMA | MDM_GSM}, // 21 - TD-SCDMA, CDMA, EVDO, GSM and WCDMA
{LTE | RAF_TD_SCDMA | CDMA | EVDO | GSM | WCDMA, MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM}, // 22 - LTE, TDCSDMA, CDMA, EVDO, GSM and WCDMA
{NR, MDM_NR}, // 23 - NR 5G only mode
{NR | LTE, MDM_NR | MDM_LTE}, // 24 - NR 5G, LTE
{NR | LTE | CDMA | EVDO, MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO}, // 25 - NR 5G, LTE, CDMA and EvDo
{NR | LTE | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_WCDMA | MDM_GSM}, // 26 - NR 5G, LTE, GSM and WCDMA
{NR | LTE | CDMA | EVDO | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM}, // 27 - NR 5G, LTE, CDMA, EvDo, GSM and WCDMA
{NR | LTE | WCDMA, MDM_NR | MDM_LTE | MDM_WCDMA}, // 28 - NR 5G, LTE and WCDMA
{NR | LTE | RAF_TD_SCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA}, // 29 - NR 5G, LTE and TDSCDMA
{NR | LTE | RAF_TD_SCDMA | GSM, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_GSM}, // 30 - NR 5G, LTE, TD-SCDMA and GSM
{NR | LTE | RAF_TD_SCDMA | WCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA}, // 31 - NR 5G, LTE, TD-SCDMA, WCDMA
{NR | LTE | RAF_TD_SCDMA | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_WCDMA | MDM_GSM}, // 32 - NR 5G, LTE, TD-SCDMA, GSM and WCDMA
{NR | LTE | RAF_TD_SCDMA | CDMA | EVDO | GSM | WCDMA, MDM_NR | MDM_LTE | MDM_TDSCDMA | MDM_CDMA | MDM_EVDO | MDM_WCDMA | MDM_GSM}, // 33 - NR 5G, LTE, TD-SCDMA, CDMA, EVDO, GSM and WCDMA
};
static int is3gpp2(int radioTech) {
switch (radioTech) {
case RADIO_TECH_IS95A:
case RADIO_TECH_IS95B:
case RADIO_TECH_1xRTT:
case RADIO_TECH_EVDO_0:
case RADIO_TECH_EVDO_A:
case RADIO_TECH_EVDO_B:
case RADIO_TECH_EHRPD:
return 1;
default:
return 0;
}
}
typedef enum {
SIM_ABSENT = 0,
SIM_NOT_READY = 1,
SIM_READY = 2,
SIM_PIN = 3,
SIM_PUK = 4,
SIM_NETWORK_PERSONALIZATION = 5,
RUIM_ABSENT = 6,
RUIM_NOT_READY = 7,
RUIM_READY = 8,
RUIM_PIN = 9,
RUIM_PUK = 10,
RUIM_NETWORK_PERSONALIZATION = 11,
ISIM_ABSENT = 12,
ISIM_NOT_READY = 13,
ISIM_READY = 14,
ISIM_PIN = 15,
ISIM_PUK = 16,
ISIM_NETWORK_PERSONALIZATION = 17,
} SIM_Status;
static void onRequest (int request, void *data, size_t datalen, RIL_Token t);
static RIL_RadioState currentState();
static int onSupports (int requestCode);
static void onCancel (RIL_Token t);
static const char *getVersion();
static int isRadioOn();
static SIM_Status getSIMStatus();
static int getCardStatus(RIL_CardStatus_v1_5 **pp_card_status);
static void freeCardStatus(RIL_CardStatus_v1_5 *p_card_status);
static void onDataCallListChanged(void *param);
bool areUiccApplicationsEnabled = true;
extern const char * requestToString(int request);
extern uint8_t hexCharToInt(uint8_t c);
extern uint8_t * convertHexStringToBytes(void *response, size_t responseLen);
/*** Static Variables ***/
static const RIL_RadioFunctions s_callbacks = {
RIL_VERSION,
onRequest,
currentState,
onSupports,
onCancel,
getVersion
};
#ifdef RIL_SHLIB
static const struct RIL_Env *s_rilenv;
#define RIL_onRequestComplete(t, e, response, responselen) s_rilenv->OnRequestComplete(t,e, response, responselen)
#define RIL_onUnsolicitedResponse(a,b,c) s_rilenv->OnUnsolicitedResponse(a,b,c)
#define RIL_requestTimedCallback(a,b,c) s_rilenv->RequestTimedCallback(a,b,c)
#endif
static RIL_RadioState sState = RADIO_STATE_UNAVAILABLE;
static bool isNrDualConnectivityEnabled = true;
static pthread_mutex_t s_state_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t s_state_cond = PTHREAD_COND_INITIALIZER;
static int s_port = -1;
static const char * s_device_path = NULL;
static int s_device_socket = 0;
static uint32_t s_modem_simulator_port = -1;
/* trigger change to this with s_state_cond */
static int s_closed = 0;
static int sFD; /* file desc of AT channel */
static char sATBuffer[MAX_AT_RESPONSE+1];
static char *sATBufferCur = NULL;
static const struct timeval TIMEVAL_SIMPOLL = {1,0};
static const struct timeval TIMEVAL_CALLSTATEPOLL = {0,500000};
static const struct timeval TIMEVAL_0 = {0,0};
static int s_ims_registered = 0; // 0==unregistered
static int s_ims_services = 1; // & 0x1 == sms over ims supported
static int s_ims_format = 1; // FORMAT_3GPP(1) vs FORMAT_3GPP2(2);
static int s_ims_cause_retry = 0; // 1==causes sms over ims to temp fail
static int s_ims_cause_perm_failure = 0; // 1==causes sms over ims to permanent fail
static int s_ims_gsm_retry = 0; // 1==causes sms over gsm to temp fail
static int s_ims_gsm_fail = 0; // 1==causes sms over gsm to permanent fail
#ifdef WORKAROUND_ERRONEOUS_ANSWER
// Max number of times we'll try to repoll when we think
// we have a AT+CLCC race condition
#define REPOLL_CALLS_COUNT_MAX 4
// Line index that was incoming or waiting at last poll, or -1 for none
static int s_incomingOrWaitingLine = -1;
// Number of times we've asked for a repoll of AT+CLCC
static int s_repollCallsCount = 0;
// Should we expect a call to be answered in the next CLCC?
static int s_expectAnswer = 0;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */
static int s_cell_info_rate_ms = INT_MAX;
static int s_mcc = 0;
static int s_mnc = 0;
static int s_mncLength = 2;
static int s_lac = 0;
static int s_cid = 0;
// STK
static bool s_stkServiceRunning = false;
static char *s_stkUnsolResponse = NULL;
// Next available handle for keep alive session
static uint32_t s_session_handle = 1;
typedef enum {
STK_UNSOL_EVENT_UNKNOWN,
STK_UNSOL_EVENT_NOTIFY,
STK_UNSOL_PROACTIVE_CMD,
} StkUnsolEvent;
typedef enum {
STK_RUN_AT = 0x34,
STK_SEND_DTMF = 0x14,
STK_SEND_SMS = 0x13,
STK_SEND_SS = 0x11,
STK_SEND_USSD = 0x12,
STK_PLAY_TONE = 0x20,
STK_OPEN_CHANNEL = 0x40,
STK_CLOSE_CHANNEL = 0x41,
STK_RECEIVE_DATA = 0x42,
STK_SEND_DATA = 0x43,
STK_GET_CHANNEL_STATUS = 0x44,
STK_REFRESH = 0x01,
} StkCmdType;
enum PDPState {
PDP_IDLE,
PDP_BUSY,
};
struct PDPInfo {
int cid;
enum PDPState state;
};
struct PDPInfo s_PDP[] = {
{1, PDP_IDLE}, {2, PDP_IDLE}, {3, PDP_IDLE}, {4, PDP_IDLE}, {5, PDP_IDLE}, {6, PDP_IDLE},
{7, PDP_IDLE}, {8, PDP_IDLE}, {9, PDP_IDLE}, {10, PDP_IDLE}, {11, PDP_IDLE},
};
static void pollSIMState (void *param);
static void setRadioState(RIL_RadioState newState);
static void setRadioTechnology(ModemInfo *mdm, int newtech);
static int query_ctec(ModemInfo *mdm, int *current, int32_t *preferred);
static int parse_technology_response(const char *response, int *current, int32_t *preferred);
static int techFromModemType(int mdmtype);
static void getIccId(char *iccid, int size);
static int clccStateToRILState(int state, RIL_CallState *p_state)
{
switch(state) {
case 0: *p_state = RIL_CALL_ACTIVE; return 0;
case 1: *p_state = RIL_CALL_HOLDING; return 0;
case 2: *p_state = RIL_CALL_DIALING; return 0;
case 3: *p_state = RIL_CALL_ALERTING; return 0;
case 4: *p_state = RIL_CALL_INCOMING; return 0;
case 5: *p_state = RIL_CALL_WAITING; return 0;
default: return -1;
}
}
void convertBytesToHexString(char *bin_ptr, int length, unsigned char *hex_ptr) {
int i;
unsigned char tmp;
if (bin_ptr == NULL || hex_ptr == NULL) {
return;
}
for (i = 0; i < length; i++) {
tmp = (unsigned char)((bin_ptr[i] & 0xf0) >> 4);
if (tmp <= 9) {
*hex_ptr = (unsigned char)(tmp + '0');
} else {
*hex_ptr = (unsigned char)(tmp + 'A' - 10);
}
hex_ptr++;
tmp = (unsigned char)(bin_ptr[i] & 0x0f);
if (tmp <= 9) {
*hex_ptr = (unsigned char)(tmp + '0');
} else {
*hex_ptr = (unsigned char)(tmp + 'A' - 10);
}
hex_ptr++;
}
}
/**
* Note: directly modified line and has *p_call point directly into
* modified line
*/
static int callFromCLCCLine(char *line, RIL_Call *p_call)
{
//+CLCC: 1,0,2,0,0,\"+18005551212\",145
// index,isMT,state,mode,isMpty(,number,TOA)?
int err;
int state;
int mode;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &(p_call->index));
if (err < 0) goto error;
err = at_tok_nextbool(&line, &(p_call->isMT));
if (err < 0) goto error;
err = at_tok_nextint(&line, &state);
if (err < 0) goto error;
err = clccStateToRILState(state, &(p_call->state));
if (err < 0) goto error;
err = at_tok_nextint(&line, &mode);
if (err < 0) goto error;
p_call->isVoice = (mode == 0);
err = at_tok_nextbool(&line, &(p_call->isMpty));
if (err < 0) goto error;
if (at_tok_hasmore(&line)) {
err = at_tok_nextstr(&line, &(p_call->number));
/* tolerate null here */
if (err < 0) return 0;
// Some lame implementations return strings
// like "NOT AVAILABLE" in the CLCC line
if (p_call->number != NULL
&& 0 == strspn(p_call->number, "+0123456789")
) {
p_call->number = NULL;
}
err = at_tok_nextint(&line, &p_call->toa);
if (err < 0) goto error;
}
p_call->uusInfo = NULL;
return 0;
error:
RLOGE("invalid CLCC line\n");
return -1;
}
static int parseSimResponseLine(char* line, RIL_SIM_IO_Response* response) {
int err;
err = at_tok_start(&line);
if (err < 0) return err;
err = at_tok_nextint(&line, &response->sw1);
if (err < 0) return err;
err = at_tok_nextint(&line, &response->sw2);
if (err < 0) return err;
if (at_tok_hasmore(&line)) {
err = at_tok_nextstr(&line, &response->simResponse);
if (err < 0) return err;
}
return 0;
}
#ifdef CUTTLEFISH_ENABLE
static void set_Ip_Addr(const char *addr, const char* radioInterfaceName) {
RLOGD("%s %d setting ip addr %s on interface %s", __func__, __LINE__, addr,
radioInterfaceName);
struct ifreq request;
int status = 0;
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock == -1) {
RLOGE("Failed to open interface socket: %s (%d)", strerror(errno), errno);
return;
}
memset(&request, 0, sizeof(request));
strncpy(request.ifr_name, radioInterfaceName, sizeof(request.ifr_name));
request.ifr_name[sizeof(request.ifr_name) - 1] = '\0';
char *myaddr = strdup(addr);
char *pch = NULL;
pch = strchr(myaddr, '/');
if (pch) {
*pch = '\0';
}
struct sockaddr_in *sin = (struct sockaddr_in *)&request.ifr_addr;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr(myaddr);
if (ioctl(sock, SIOCSIFADDR, &request) < 0) {
RLOGE("%s: failed.", __func__);
}
close(sock);
free(myaddr);
RLOGD("%s %d done.", __func__, __LINE__);
}
#endif
enum InterfaceState {
kInterfaceUp,
kInterfaceDown,
};
static RIL_Errno setInterfaceState(const char* interfaceName,
enum InterfaceState state) {
struct ifreq request;
int status = 0;
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock == -1) {
RLOGE("Failed to open interface socket: %s (%d)",
strerror(errno), errno);
return RIL_E_GENERIC_FAILURE;
}
memset(&request, 0, sizeof(request));
strncpy(request.ifr_name, interfaceName, sizeof(request.ifr_name));
request.ifr_name[sizeof(request.ifr_name) - 1] = '\0';
status = ioctl(sock, SIOCGIFFLAGS, &request);
if (status != 0) {
RLOGE("Failed to get interface flags for %s: %s (%d)",
interfaceName, strerror(errno), errno);
close(sock);
return RIL_E_RADIO_NOT_AVAILABLE;
}
bool isUp = (request.ifr_flags & IFF_UP);
if ((state == kInterfaceUp && isUp) || (state == kInterfaceDown && !isUp)) {
// Interface already in desired state
close(sock);
return RIL_E_SUCCESS;
}
// Simply toggle the flag since we know it's the opposite of what we want
request.ifr_flags ^= IFF_UP;
status = ioctl(sock, SIOCSIFFLAGS, &request);
if (status != 0) {
RLOGE("Failed to set interface flags for %s: %s (%d)",
interfaceName, strerror(errno), errno);
close(sock);
return RIL_E_GENERIC_FAILURE;
}
close(sock);
return RIL_E_SUCCESS;
}
/** do post-AT+CFUN=1 initialization */
static void onRadioPowerOn()
{
#ifdef USE_TI_COMMANDS
/* Must be after CFUN=1 */
/* TI specific -- notifications for CPHS things such */
/* as CPHS message waiting indicator */
at_send_command("AT%CPHS=1", NULL);
/* TI specific -- enable NITZ unsol notifs */
at_send_command("AT%CTZV=1", NULL);
#endif
pollSIMState(NULL);
}
/** do post- SIM ready initialization */
static void onSIMReady()
{
at_send_command_singleline("AT+CSMS=1", "+CSMS:", NULL);
/*
* Always send SMS messages directly to the TE
*
* mode = 1 // discard when link is reserved (link should never be
* reserved)
* mt = 2 // most messages routed to TE
* bm = 2 // new cell BM's routed to TE
* ds = 1 // Status reports routed to TE
* bfr = 1 // flush buffer
*/
at_send_command("AT+CNMI=1,2,2,1,1", NULL);
}
static void requestRadioPower(void *data, size_t datalen __unused, RIL_Token t)
{
int onOff;
int err;
ATResponse *p_response = NULL;
assert (datalen >= sizeof(int *));
onOff = ((int *)data)[0];
if (onOff == 0 && sState != RADIO_STATE_OFF) {
err = at_send_command("AT+CFUN=0", &p_response);
if (err < 0 || p_response->success == 0) goto error;
setRadioState(RADIO_STATE_OFF);
} else if (onOff > 0 && sState == RADIO_STATE_OFF) {
err = at_send_command("AT+CFUN=1", &p_response);
if (err < 0|| p_response->success == 0) {
// Some stacks return an error when there is no SIM,
// but they really turn the RF portion on
// So, if we get an error, let's check to see if it
// turned on anyway
if (isRadioOn() != 1) {
goto error;
}
}
setRadioState(RADIO_STATE_ON);
}
at_response_free(p_response);
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
return;
error:
at_response_free(p_response);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void requestShutdown(RIL_Token t)
{
int onOff;
ATResponse *p_response = NULL;
if (sState != RADIO_STATE_OFF) {
at_send_command("AT+CFUN=0", &p_response);
setRadioState(RADIO_STATE_UNAVAILABLE);
}
at_response_free(p_response);
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
return;
}
static void requestNvResetConfig(void* data, size_t datalen __unused, RIL_Token t) {
assert(datalen >= sizeof(int*));
int nvConfig = ((int*)data)[0];
if (nvConfig == 1 /* ResetNvType::RELOAD */) {
setRadioState(RADIO_STATE_OFF);
// Wait for FW to process radio off before sending radio on for reboot
sleep(5);
setRadioState(RADIO_STATE_ON);
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static void requestOrSendDataCallList(int cid, RIL_Token *t);
static void onDataCallListChanged(void *param __unused)
{
requestOrSendDataCallList(-1, NULL);
}
static void requestDataCallList(void *data __unused, size_t datalen __unused, RIL_Token t)
{
requestOrSendDataCallList(-1, &t);
}
// Hang up, reject, conference, call waiting
static void requestCallSelection(
void *data __unused, size_t datalen __unused, RIL_Token t, int request)
{
// 3GPP 22.030 6.5.5
static char hangupWaiting[] = "AT+CHLD=0";
static char hangupForeground[] = "AT+CHLD=1";
static char switchWaiting[] = "AT+CHLD=2";
static char conference[] = "AT+CHLD=3";
static char reject[] = "ATH";
char* atCommand;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
return;
}
switch(request) {
case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:
// "Releases all held calls or sets User Determined User Busy
// (UDUB) for a waiting call."
atCommand = hangupWaiting;
break;
case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:
// "Releases all active calls (if any exist) and accepts
// the other (held or waiting) call."
atCommand = hangupForeground;
break;
case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:
// "Places all active calls (if any exist) on hold and accepts
// the other (held or waiting) call."
atCommand = switchWaiting;
#ifdef WORKAROUND_ERRONEOUS_ANSWER
s_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */
break;
case RIL_REQUEST_CONFERENCE:
// "Adds a held call to the conversation"
atCommand = conference;
break;
case RIL_REQUEST_UDUB:
// User determined user busy (reject)
atCommand = reject;
break;
default:
assert(0);
}
at_send_command(atCommand, NULL);
// Success or failure is ignored by the upper layer here.
// It will call GET_CURRENT_CALLS and determine success that way.
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static const char* getRadioInterfaceName()
{
if (isInEmulator()) {
return EMULATOR_RADIO_INTERFACE;
}
return PPP_TTY_PATH_ETH0;
}
static void requestOrSendDataCallList(int cid, RIL_Token *t)
{
ATResponse *p_response = NULL;
ATLine *p_cur = NULL;
int err = -1;
int n = 0;
char *out = NULL;
char propValue[PROP_VALUE_MAX] = {0};
const char* radioInterfaceName = getRadioInterfaceName();
err = at_send_command_multiline ("AT+CGACT?", "+CGACT:", &p_response);
if (err != 0 || p_response->success == 0) {
if (t != NULL)
RIL_onRequestComplete(*t, RIL_E_GENERIC_FAILURE, NULL, 0);
else
RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED,
NULL, 0);
return;
}
for (p_cur = p_response->p_intermediates; p_cur != NULL;
p_cur = p_cur->p_next)
n++;
RIL_Data_Call_Response_v11 *responses =
alloca(n * sizeof(RIL_Data_Call_Response_v11));
int i;
for (i = 0; i < n; i++) {
responses[i].status = -1;
responses[i].suggestedRetryTime = -1;
responses[i].cid = -1;
responses[i].active = -1;
responses[i].type = "";
responses[i].ifname = "";
responses[i].addresses = "";
responses[i].dnses = "";
responses[i].gateways = "";
responses[i].pcscf = "";
responses[i].mtu = 0;
}
RIL_Data_Call_Response_v11 *response = responses;
for (p_cur = p_response->p_intermediates; p_cur != NULL;
p_cur = p_cur->p_next) {
char *line = p_cur->line;
err = at_tok_start(&line);
if (err < 0)
goto error;
err = at_tok_nextint(&line, &response->cid);
if (err < 0)
goto error;
err = at_tok_nextint(&line, &response->active);
if (err < 0)
goto error;
response++;
}
at_response_free(p_response);
err = at_send_command_multiline ("AT+CGDCONT?", "+CGDCONT:", &p_response);
if (err != 0 || p_response->success == 0) {
if (t != NULL)
RIL_onRequestComplete(*t, RIL_E_GENERIC_FAILURE, NULL, 0);
else
RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED,
NULL, 0);
return;
}
for (p_cur = p_response->p_intermediates; p_cur != NULL;
p_cur = p_cur->p_next) {
char *line = p_cur->line;
int ncid;
err = at_tok_start(&line);
if (err < 0)
goto error;
err = at_tok_nextint(&line, &ncid);
if (err < 0)
goto error;
if (cid != ncid)
continue;
i = ncid - 1;
// Assume no error
responses[i].status = 0;
// type
err = at_tok_nextstr(&line, &out);
if (err < 0)
goto error;
int type_size = strlen(out) + 1;
responses[i].type = alloca(type_size);
strlcpy(responses[i].type, out, type_size);
// APN ignored for v5
err = at_tok_nextstr(&line, &out);
if (err < 0)
goto error;
int ifname_size = strlen(radioInterfaceName) + 1;
responses[i].ifname = alloca(ifname_size);
strlcpy(responses[i].ifname, radioInterfaceName, ifname_size);
err = at_tok_nextstr(&line, &out);
if (err < 0)
goto error;
int addresses_size = strlen(out) + 1;
responses[i].addresses = alloca(addresses_size);
strlcpy(responses[i].addresses, out, addresses_size);
#ifdef CUTTLEFISH_ENABLE
set_Ip_Addr(responses[i].addresses, radioInterfaceName);
#endif
if (isInEmulator()) {
/* We are in the emulator - the dns servers are listed
* by the following system properties, setup in
* /system/etc/init.goldfish.sh:
* - vendor.net.eth0.dns1
* - vendor.net.eth0.dns2
* - vendor.net.eth0.dns3
* - vendor.net.eth0.dns4
*/
const int dnslist_sz = 128;
char* dnslist = alloca(dnslist_sz);
const char* separator = "";
int nn;
dnslist[0] = 0;
for (nn = 1; nn <= 4; nn++) {
/* Probe vendor.net.eth0.dns<n> */
char propName[PROP_NAME_MAX];
char propValue[PROP_VALUE_MAX];
snprintf(propName, sizeof propName, "vendor.net.eth0.dns%d", nn);
/* Ignore if undefined */
if (property_get(propName, propValue, "") <= 0) {
continue;
}
/* Append the DNS IP address */
strlcat(dnslist, separator, dnslist_sz);
strlcat(dnslist, propValue, dnslist_sz);
separator = " ";
}
responses[i].dnses = dnslist;
if (property_get("vendor.net.eth0.gw", propValue, "") > 0) {
responses[i].gateways = propValue;
} else {
responses[i].gateways = "";
}
responses[i].mtu = DEFAULT_MTU;
} else {
/* I don't know where we are, so use the public Google DNS
* servers by default and no gateway.
*/
responses[i].dnses = "8.8.8.8 8.8.4.4";
responses[i].gateways = "";
}
}
// If cid = -1, return the data call list without processing CGCONTRDP (setupDataCall)
if (cid == -1) {
if (t != NULL)
RIL_onRequestComplete(*t, RIL_E_SUCCESS, &responses[0],
sizeof(RIL_Data_Call_Response_v11));
else
RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED, responses,
n * sizeof(RIL_Data_Call_Response_v11));
at_response_free(p_response);
p_response = NULL;
return;
}
at_response_free(p_response);
p_response = NULL;
char cmd[64] = {0};
snprintf(cmd, sizeof(cmd), "AT+CGCONTRDP=%d", cid);
err = at_send_command_singleline(cmd, "+CGCONTRDP:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
int skip = 0;
char *sskip = NULL;
char *input = p_response->p_intermediates->line;
int ncid = -1;
err = at_tok_start(&input);
if (err < 0) goto error;
err = at_tok_nextint(&input, &ncid); // cid
if (err < 0) goto error;
if (cid != ncid) goto error;
i = ncid - 1;
err = at_tok_nextint(&input, &skip); // bearer_id
if (err < 0) goto error;
err = at_tok_nextstr(&input, &sskip); // apn
if (err < 0) goto error;
err = at_tok_nextstr(&input, &sskip); // local_addr_and_subnet_mask
if (err < 0) goto error;
err = at_tok_nextstr(&input, &responses[i].gateways); // gw_addr
if (err < 0) goto error;
err = at_tok_nextstr(&input, &responses[i].dnses); // dns_prim_addr
if (err < 0) goto error;
if (t != NULL)
RIL_onRequestComplete(*t, RIL_E_SUCCESS, &responses[i],
sizeof(RIL_Data_Call_Response_v11));
else
RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED,
responses,
n * sizeof(RIL_Data_Call_Response_v11));
at_response_free(p_response);
return;
error:
if (t != NULL)
RIL_onRequestComplete(*t, RIL_E_GENERIC_FAILURE, NULL, 0);
else
RIL_onUnsolicitedResponse(RIL_UNSOL_DATA_CALL_LIST_CHANGED,
NULL, 0);
at_response_free(p_response);
}
static void requestQueryNetworkSelectionMode(
void *data __unused, size_t datalen __unused, RIL_Token t)
{
int err;
ATResponse *p_response = NULL;
int response = 0;
char *line;
err = at_send_command_singleline("AT+COPS?", "+COPS:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) {
goto error;
}
err = at_tok_nextint(&line, &response);
if (err < 0) {
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(int));
at_response_free(p_response);
return;
error:
at_response_free(p_response);
RLOGE("requestQueryNetworkSelectionMode must never return error when radio is on");
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void sendCallStateChanged(void *param __unused)
{
RIL_onUnsolicitedResponse (
RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED,
NULL, 0);
}
static void requestGetCurrentCalls(void *data __unused, size_t datalen __unused, RIL_Token t)
{
int err;
ATResponse *p_response;
ATLine *p_cur;
int countCalls;
int countValidCalls;
RIL_Call *p_calls;
RIL_Call **pp_calls;
int i;
int needRepoll = 0;
#ifdef WORKAROUND_ERRONEOUS_ANSWER
int prevIncomingOrWaitingLine;
prevIncomingOrWaitingLine = s_incomingOrWaitingLine;
s_incomingOrWaitingLine = -1;
#endif /*WORKAROUND_ERRONEOUS_ANSWER*/
err = at_send_command_multiline ("AT+CLCC", "+CLCC:", &p_response);
if (err != 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
/* count the calls */
for (countCalls = 0, p_cur = p_response->p_intermediates
; p_cur != NULL
; p_cur = p_cur->p_next
) {
countCalls++;
}
/* yes, there's an array of pointers and then an array of structures */
pp_calls = (RIL_Call **)alloca(countCalls * sizeof(RIL_Call *));
p_calls = (RIL_Call *)alloca(countCalls * sizeof(RIL_Call));
memset (p_calls, 0, countCalls * sizeof(RIL_Call));
/* init the pointer array */
for(i = 0; i < countCalls ; i++) {
pp_calls[i] = &(p_calls[i]);
}
for (countValidCalls = 0, p_cur = p_response->p_intermediates
; p_cur != NULL
; p_cur = p_cur->p_next
) {
err = callFromCLCCLine(p_cur->line, p_calls + countValidCalls);
if (err != 0) {
continue;
}
#ifdef WORKAROUND_ERRONEOUS_ANSWER
if (p_calls[countValidCalls].state == RIL_CALL_INCOMING
|| p_calls[countValidCalls].state == RIL_CALL_WAITING
) {
s_incomingOrWaitingLine = p_calls[countValidCalls].index;
}
#endif /*WORKAROUND_ERRONEOUS_ANSWER*/
if (p_calls[countValidCalls].state != RIL_CALL_ACTIVE
&& p_calls[countValidCalls].state != RIL_CALL_HOLDING
) {
needRepoll = 1;
}
countValidCalls++;
}
#ifdef WORKAROUND_ERRONEOUS_ANSWER
// Basically:
// A call was incoming or waiting
// Now it's marked as active
// But we never answered it
//
// This is probably a bug, and the call will probably
// disappear from the call list in the next poll
if (prevIncomingOrWaitingLine >= 0
&& s_incomingOrWaitingLine < 0
&& s_expectAnswer == 0
) {
for (i = 0; i < countValidCalls ; i++) {
if (p_calls[i].index == prevIncomingOrWaitingLine
&& p_calls[i].state == RIL_CALL_ACTIVE
&& s_repollCallsCount < REPOLL_CALLS_COUNT_MAX
) {
RLOGI(
"Hit WORKAROUND_ERRONOUS_ANSWER case."
" Repoll count: %d\n", s_repollCallsCount);
s_repollCallsCount++;
goto error;
}
}
}
s_expectAnswer = 0;
s_repollCallsCount = 0;
#endif /*WORKAROUND_ERRONEOUS_ANSWER*/
RIL_onRequestComplete(t, RIL_E_SUCCESS, pp_calls,
countValidCalls * sizeof (RIL_Call *));
at_response_free(p_response);
#ifdef POLL_CALL_STATE
if (countValidCalls) { // We don't seem to get a "NO CARRIER" message from
// smd, so we're forced to poll until the call ends.
#else
if (needRepoll) {
#endif
RIL_requestTimedCallback (sendCallStateChanged, NULL, &TIMEVAL_CALLSTATEPOLL);
}
return;
#ifdef WORKAROUND_ERRONEOUS_ANSWER
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
#endif
}
static void requestDial(void *data, size_t datalen __unused, RIL_Token t)
{
RIL_Dial *p_dial;
char *cmd;
const char *clir;
p_dial = (RIL_Dial *)data;
switch (p_dial->clir) {
case 1: clir = "I"; break; /*invocation*/
case 2: clir = "i"; break; /*suppression*/
default:
case 0: clir = ""; break; /*subscription default*/
}
asprintf(&cmd, "ATD%s%s;", p_dial->address, clir);
at_send_command(cmd, NULL);
free(cmd);
/* success or failure is ignored by the upper layer here.
it will call GET_CURRENT_CALLS and determine success that way */
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static void requestWriteSmsToSim(void *data, size_t datalen __unused, RIL_Token t)
{
RIL_SMS_WriteArgs *p_args;
char *cmd;
int length;
int err;
ATResponse *p_response = NULL;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0);
return;
}
p_args = (RIL_SMS_WriteArgs *)data;
length = strlen(p_args->pdu)/2;
asprintf(&cmd, "AT+CMGW=%d,%d", length, p_args->status);
err = at_send_command_sms(cmd, p_args->pdu, "+CMGW:", &p_response);
if (err != 0 || p_response->success == 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestHangup(void *data, size_t datalen __unused, RIL_Token t)
{
int *p_line;
char *cmd;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0);
return;
}
p_line = (int *)data;
// 3GPP 22.030 6.5.5
// "Releases a specific active call X"
asprintf(&cmd, "AT+CHLD=1%d", p_line[0]);
at_send_command(cmd, NULL);
free(cmd);
/* success or failure is ignored by the upper layer here.
it will call GET_CURRENT_CALLS and determine success that way */
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static void requestSignalStrength(void *data __unused, size_t datalen __unused, RIL_Token t)
{
ATResponse *p_response = NULL;
int err;
char *line;
int count = 0;
// Accept a response that is at least v6, and up to v12
int minNumOfElements=sizeof(RIL_SignalStrength_v6)/sizeof(int);
int maxNumOfElements=sizeof(RIL_SignalStrength_v12)/sizeof(int);
int response[maxNumOfElements];
memset(response, 0, sizeof(response));
// TODO(b/206814247): Rename AT+CSQ command.
err = at_send_command_singleline("AT+CSQ", "+CSQ:", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
for (count = 0; count < maxNumOfElements; count++) {
err = at_tok_nextint(&line, &(response[count]));
if (err < 0 && count < minNumOfElements) goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response));
at_response_free(p_response);
return;
error:
RLOGE("requestSignalStrength must never return an error when radio is on");
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
/**
* networkModePossible. Decides whether the network mode is appropriate for the
* specified modem
*/
static int networkModePossible(ModemInfo *mdm, int nm)
{
const int asize = sizeof(net2modem) / sizeof(net2modem[0]);
if (nm >= asize || nm < 0) {
RLOGW("%s %d: invalid net2modem index: %d", __func__, __LINE__, nm);
return 0;
}
if ((net2modem[nm] & mdm->supportedTechs) == net2modem[nm]) {
return 1;
}
return 0;
}
int getPreferredFromBitmap(int value, int *index) {
for (unsigned int i = 0; i < sizeof(s_networkMask) / sizeof(NetworkTypeBitmap); i++) {
if (s_networkMask[i].bitmap == value) {
if (index) *index = i;
return s_networkMask[i].type;
}
}
// set default value here, since there is no match found
// ref.
//{LTE | GSM | WCDMA, MDM_LTE | MDM_GSM | MDM_WCDMA}, // 9 - LTE, GSM/WCDMA
//
const int DEFAULT_PREFERRED_INDEX = 9;
const int DEFAULT_PREFERRED_BITMAP = MDM_LTE | MDM_GSM | MDM_WCDMA;
assert(s_networkMask[DEFAULT_PREFERRED_INDEX] == DEFAULT_PREFERRED_BITMAP);
if (index) {
*index = DEFAULT_PREFERRED_INDEX;
}
RLOGD("getPreferredFromBitmap %d not match", value);
return DEFAULT_PREFERRED_BITMAP;
}
unsigned getBitmapFromPreferred(int value) {
for (unsigned int i = 0; i < sizeof(s_networkMask) / sizeof(NetworkTypeBitmap); i++) {
if (s_networkMask[i].type == value) {
return s_networkMask[i].bitmap;
}
}
RLOGD("getBitmapFromPreferred %d not match", value);
return LTE | GSM | WCDMA;
}
static void requestSetPreferredNetworkType(int request, void *data,
size_t datalen __unused, RIL_Token t )
{
ATResponse *p_response = NULL;
char *cmd = NULL;
int value = *(int *)data;
int index = value;
int current, old;
int err;
int32_t preferred;
if (request == RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE) {
preferred = net2pmask[value];
} else {
preferred = getPreferredFromBitmap(value, &index);
}
RLOGD("requestSetPreferredNetworkType: current: %x. New: %x", PREFERRED_NETWORK(sMdmInfo), preferred);
if (!networkModePossible(sMdmInfo, index)) {
RIL_onRequestComplete(t, RIL_E_MODE_NOT_SUPPORTED, NULL, 0);
return;
}
if (query_ctec(sMdmInfo, &current, NULL) < 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
old = PREFERRED_NETWORK(sMdmInfo);
RLOGD("old != preferred: %d", old != preferred);
if (old != preferred) {
asprintf(&cmd, "AT+CTEC=%d,\"%x\"", current, preferred);
RLOGD("Sending command: <%s>", cmd);
err = at_send_command_singleline(cmd, "+CTEC:", &p_response);
free(cmd);
if (err || !p_response->success) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
PREFERRED_NETWORK(sMdmInfo) = value;
if (!strstr( p_response->p_intermediates->line, "DONE") ) {
int current;
int res = parse_technology_response(p_response->p_intermediates->line, &current, NULL);
switch (res) {
case -1: // Error or unable to parse
break;
case 1: // Only able to parse current
case 0: // Both current and preferred were parsed
setRadioTechnology(sMdmInfo, current);
break;
}
}
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static void requestGetPreferredNetworkType(int request __unused, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int preferred;
unsigned i;
switch ( query_ctec(sMdmInfo, NULL, &preferred) ) {
case -1: // Error or unable to parse
case 1: // Only able to parse current
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
break;
case 0: // Both current and preferred were parsed
for ( i = 0 ; i < sizeof(net2pmask) / sizeof(int32_t) ; i++ ) {
if (preferred == net2pmask[i]) {
goto done;
}
}
RLOGE("Unknown preferred mode received from modem: %d", preferred);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
done:
if (request == RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE_BITMAP ||
request == RIL_REQUEST_GET_ALLOWED_NETWORK_TYPES_BITMAP) {
i = getBitmapFromPreferred(preferred);
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, &i, sizeof(i));
}
static void requestGetCarrierRestrictions(void* data, size_t datalen, RIL_Token t) {
RIL_UNUSED_PARM(datalen);
RIL_UNUSED_PARM(data);
// Fixed values. TODO: query modem
RIL_Carrier allowed_carriers = {
"123", // mcc
"456", // mnc
RIL_MATCH_ALL, // match_type
"", // match_data
};
RIL_Carrier excluded_carriers;
RIL_CarrierRestrictionsWithPriority restrictions = {
1, // len_allowed_carriers
0, // len_excluded_carriers
&allowed_carriers, // allowed_carriers
&excluded_carriers, // excluded_carriers
1, // allowedCarriersPrioritized
NO_MULTISIM_POLICY // multiSimPolicy
};
RIL_onRequestComplete(t, RIL_E_SUCCESS, &restrictions, sizeof(restrictions));
}
static void requestCdmaPrlVersion(int request __unused, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int err;
char * responseStr;
ATResponse *p_response = NULL;
const char *cmd;
char *line;
err = at_send_command_singleline("AT+WPRL?", "+WPRL:", &p_response);
if (err < 0 || !p_response->success) goto error;
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &responseStr);
if (err < 0 || !responseStr) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, strlen(responseStr));
at_response_free(p_response);
return;
error:
at_response_free(p_response);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void requestCdmaBaseBandVersion(int request __unused, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int err;
char * responseStr;
ATResponse *p_response = NULL;
const char *cmd;
const char *prefix;
char *line, *p;
int commas;
int skip;
int count = 4;
// Fixed values. TODO: query modem
responseStr = strdup("1.0.0.0");
RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, sizeof(responseStr));
free(responseStr);
}
static void requestDeviceIdentity(int request __unused, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int err;
int response[4];
char * responseStr[4];
ATResponse *p_response = NULL;
const char *cmd;
const char *prefix;
char *line, *p;
int commas;
int skip;
int count = 4;
// Fixed values. TODO: Query modem
responseStr[0] ="358240051111110";
responseStr[1] = "";
responseStr[2] = "77777777";
responseStr[3] = ""; // default empty for non-CDMA
err = at_send_command_numeric("AT+CGSN", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
} else {
if (TECH_BIT(sMdmInfo) == MDM_CDMA) {
responseStr[3] = p_response->p_intermediates->line;
} else {
responseStr[0] = p_response->p_intermediates->line;
}
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, count*sizeof(char*));
at_response_free(p_response);
}
static void requestCdmaGetSubscriptionSource(int request __unused, void *data,
size_t datalen __unused, RIL_Token t)
{
int err;
int *ss = (int *)data;
ATResponse *p_response = NULL;
char *cmd = NULL;
char *line = NULL;
int response;
asprintf(&cmd, "AT+CCSS?");
if (!cmd) goto error;
err = at_send_command_singleline(cmd, "+CCSS:", &p_response);
if (err < 0 || !p_response->success)
goto error;
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &response);
free(cmd);
cmd = NULL;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response));
return;
error:
free(cmd);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void requestCdmaSetSubscriptionSource(int request __unused, void *data,
size_t datalen, RIL_Token t)
{
int err;
int *ss = (int *)data;
ATResponse *p_response = NULL;
char *cmd = NULL;
if (!ss || !datalen) {
RLOGE("RIL_REQUEST_CDMA_SET_SUBSCRIPTION without data!");
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
asprintf(&cmd, "AT+CCSS=%d", ss[0]);
if (!cmd) goto error;
err = at_send_command(cmd, &p_response);
if (err < 0 || !p_response->success)
goto error;
free(cmd);
cmd = NULL;
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
RIL_onUnsolicitedResponse(RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, ss, sizeof(ss[0]));
return;
error:
free(cmd);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void requestCdmaSubscription(int request __unused, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int err;
int response[5];
char * responseStr[5];
ATResponse *p_response = NULL;
const char *cmd;
const char *prefix;
char *line, *p;
int commas;
int skip;
int count = 5;
// Fixed values. TODO: Query modem
responseStr[0] = "8587777777"; // MDN
responseStr[1] = "1"; // SID
responseStr[2] = "1"; // NID
responseStr[3] = "8587777777"; // MIN
responseStr[4] = "1"; // PRL Version
RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, count*sizeof(char*));
}
static void requestCdmaGetRoamingPreference(int request __unused, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int roaming_pref = -1;
ATResponse *p_response = NULL;
char *line;
int res;
res = at_send_command_singleline("AT+WRMP?", "+WRMP:", &p_response);
if (res < 0 || !p_response->success) {
goto error;
}
line = p_response->p_intermediates->line;
res = at_tok_start(&line);
if (res < 0) goto error;
res = at_tok_nextint(&line, &roaming_pref);
if (res < 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &roaming_pref, sizeof(roaming_pref));
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void requestCdmaSetRoamingPreference(int request __unused, void *data,
size_t datalen __unused, RIL_Token t)
{
int *pref = (int *)data;
ATResponse *p_response = NULL;
char *line;
int res;
char *cmd = NULL;
asprintf(&cmd, "AT+WRMP=%d", *pref);
if (cmd == NULL) goto error;
res = at_send_command(cmd, &p_response);
if (res < 0 || !p_response->success)
goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
free(cmd);
return;
error:
free(cmd);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static int parseRegistrationState(char *str, int *type, int *items, int **response)
{
int err;
char *line = str, *p;
int *resp = NULL;
int skip;
int commas;
s_lac = -1;
s_cid = -1;
RLOGD("parseRegistrationState. Parsing: %s",str);
err = at_tok_start(&line);
if (err < 0) goto error;
/* Ok you have to be careful here
* The solicited version of the CREG response is
* +CREG: n, stat, [lac, cid]
* and the unsolicited version is
* +CREG: stat, [lac, cid]
* The <n> parameter is basically "is unsolicited creg on?"
* which it should always be
*
* Now we should normally get the solicited version here,
* but the unsolicited version could have snuck in
* so we have to handle both
*
* Also since the LAC and CID are only reported when registered,
* we can have 1, 2, 3, or 4 arguments here
*
* finally, a +CGREG: answer may have a fifth value that corresponds
* to the network type, as in;
*
* +CGREG: n, stat [,lac, cid [,networkType]]
*/
/* count number of commas */
commas = 0;
for (p = line ; *p != '\0' ;p++) {
if (*p == ',') commas++;
}
resp = (int *)calloc(commas + 1, sizeof(int));
if (!resp) goto error;
switch (commas) {
case 0: /* +CREG: <stat> */
err = at_tok_nextint(&line, &resp[0]);
if (err < 0) goto error;
break;
case 1: /* +CREG: <n>, <stat> */
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
err = at_tok_nextint(&line, &resp[0]);
if (err < 0) goto error;
break;
case 2: /* +CREG: <stat>, <lac>, <cid> */
err = at_tok_nextint(&line, &resp[0]);
if (err < 0) goto error;
err = at_tok_nexthexint(&line, &resp[1]);
if (err < 0) goto error;
err = at_tok_nexthexint(&line, &resp[2]);
if (err < 0) goto error;
break;
case 3: /* +CREG: <n>, <stat>, <lac>, <cid> */
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
err = at_tok_nextint(&line, &resp[0]);
if (err < 0) goto error;
err = at_tok_nexthexint(&line, &resp[1]);
if (err < 0) goto error;
err = at_tok_nexthexint(&line, &resp[2]);
if (err < 0) goto error;
break;
/* special case for CGREG, there is a fourth parameter
* that is the network type (unknown/gprs/edge/umts)
*/
case 4: /* +CGREG: <n>, <stat>, <lac>, <cid>, <networkType> */
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
err = at_tok_nextint(&line, &resp[0]);
if (err < 0) goto error;
err = at_tok_nexthexint(&line, &resp[1]);
if (err < 0) goto error;
err = at_tok_nexthexint(&line, &resp[2]);
if (err < 0) goto error;
err = at_tok_nextint(&line, &resp[3]);
if (err < 0) goto error;
break;
default:
goto error;
}
if (commas >= 2) {
s_lac = resp[1];
s_cid = resp[2];
}
if (response)
*response = resp;
if (items)
*items = commas + 1;
if (type)
*type = techFromModemType(TECH(sMdmInfo));
return 0;
error:
free(resp);
return -1;
}
static int mapNetworkRegistrationResponse(int in_response) {
int out_response = 0;
switch (in_response) {
case 0:
out_response = RADIO_TECH_GPRS; /* GPRS */
break;
case 3:
out_response = RADIO_TECH_EDGE; /* EDGE */
break;
case 2:
out_response = RADIO_TECH_UMTS; /* TD */
break;
case 4:
out_response = RADIO_TECH_HSDPA; /* HSDPA */
break;
case 5:
out_response = RADIO_TECH_HSUPA; /* HSUPA */
break;
case 6:
out_response = RADIO_TECH_HSPA; /* HSPA */
break;
case 15:
out_response = RADIO_TECH_HSPAP; /* HSPA+ */
break;
case 7:
out_response = RADIO_TECH_LTE; /* LTE */
break;
case 16:
out_response = RADIO_TECH_LTE_CA; /* LTE_CA */
break;
case 11: // NR connected to a 5GCN
case 12: // NG-RAN
case 13: // E-UTRA-NR dual connectivity
out_response = RADIO_TECH_NR; /* NR */
break;
default:
out_response = RADIO_TECH_UNKNOWN; /* UNKNOWN */
break;
}
return out_response;
}
#define REG_STATE_LEN 18
#define REG_DATA_STATE_LEN 14
static void requestRegistrationState(int request, void *data __unused,
size_t datalen __unused, RIL_Token t)
{
int err;
int *registration;
char **responseStr = NULL;
ATResponse *p_response = NULL;
const char *cmd;
const char *prefix;
char *line;
int i = 0, j, numElements = 0;
int count = 3;
int type, startfrom;
RLOGD("requestRegistrationState");
if (request == RIL_REQUEST_VOICE_REGISTRATION_STATE) {
cmd = "AT+CREG?";
prefix = "+CREG:";
numElements = REG_STATE_LEN;
} else if (request == RIL_REQUEST_DATA_REGISTRATION_STATE) {
cmd = "AT+CGREG?";
prefix = "+CGREG:";
numElements = REG_DATA_STATE_LEN;
if (TECH_BIT(sMdmInfo) == MDM_LTE) {
cmd = "AT+CEREG?";
prefix = "+CEREG:";
}
} else {
assert(0);
goto error;
}
err = at_send_command_singleline(cmd, prefix, &p_response);
if (err < 0 || !p_response->success) goto error;
line = p_response->p_intermediates->line;
if (parseRegistrationState(line, &type, &count, &registration)) goto error;
responseStr = malloc(numElements * sizeof(char *));
if (!responseStr) goto error;
memset(responseStr, 0, numElements * sizeof(char *));
/**
* The first '4' bytes for both registration states remain the same.
* But if the request is 'DATA_REGISTRATION_STATE',
* the 5th and 6th byte(s) are optional.
*/
if (is3gpp2(type) == 1) {
RLOGD("registration state type: 3GPP2");
// TODO: Query modem
startfrom = 3;
if(request == RIL_REQUEST_VOICE_REGISTRATION_STATE) {
asprintf(&responseStr[3], "8"); // EvDo revA
asprintf(&responseStr[4], "1"); // BSID
asprintf(&responseStr[5], "123"); // Latitude
asprintf(&responseStr[6], "222"); // Longitude
asprintf(&responseStr[7], "0"); // CSS Indicator
asprintf(&responseStr[8], "4"); // SID
asprintf(&responseStr[9], "65535"); // NID
asprintf(&responseStr[10], "0"); // Roaming indicator
asprintf(&responseStr[11], "1"); // System is in PRL
asprintf(&responseStr[12], "0"); // Default Roaming indicator
asprintf(&responseStr[13], "0"); // Reason for denial
asprintf(&responseStr[14], "0"); // Primary Scrambling Code of Current cell
} else if (request == RIL_REQUEST_DATA_REGISTRATION_STATE) {
asprintf(&responseStr[3], "8"); // Available data radio technology
}
} else { // type == RADIO_TECH_3GPP
RLOGD("registration state type: 3GPP");
startfrom = 0;
if (count > 1) {
asprintf(&responseStr[1], "%x", registration[1]);
}
if (count > 2) {
asprintf(&responseStr[2], "%x", registration[2]);
}
if (count > 3) {
asprintf(&responseStr[3], "%d", mapNetworkRegistrationResponse(registration[3]));
}
}
asprintf(&responseStr[0], "%d", registration[0]);
/**
* Optional bytes for DATA_REGISTRATION_STATE request
* 4th byte : Registration denial code
* 5th byte : The max. number of simultaneous Data Calls
*/
if (request == RIL_REQUEST_DATA_REGISTRATION_STATE) {
// asprintf(&responseStr[4], "3");
// asprintf(&responseStr[5], "1");
asprintf(&responseStr[11], "%d", s_mcc);
asprintf(&responseStr[12], "%d", s_mnc);
if (s_mncLength == 2) {
asprintf(&responseStr[13], "%03d%02d", s_mcc, s_mnc);
} else {
asprintf(&responseStr[13], "%03d%03d", s_mcc, s_mnc);
}
} else { // Voice
asprintf(&responseStr[15], "%d", s_mcc);
asprintf(&responseStr[16], "%d", s_mnc);
if (s_mncLength == 2) {
asprintf(&responseStr[17], "%03d%02d", s_mcc, s_mnc);
} else {
asprintf(&responseStr[17], "%03d%03d", s_mcc, s_mnc);
}
}
for (j = startfrom; j < numElements; j++) {
if (!responseStr[i]) goto error;
}
free(registration);
registration = NULL;
RIL_onRequestComplete(t, RIL_E_SUCCESS, responseStr, numElements*sizeof(responseStr));
for (j = 0; j < numElements; j++ ) {
free(responseStr[j]);
responseStr[j] = NULL;
}
free(responseStr);
responseStr = NULL;
at_response_free(p_response);
return;
error:
if (responseStr) {
for (j = 0; j < numElements; j++) {
free(responseStr[j]);
responseStr[j] = NULL;
}
free(responseStr);
responseStr = NULL;
}
RLOGE("requestRegistrationState must never return an error when radio is on");
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestOperator(void *data __unused, size_t datalen __unused, RIL_Token t)
{
int err;
int i;
int skip;
ATLine *p_cur;
char *response[3];
memset(response, 0, sizeof(response));
ATResponse *p_response = NULL;
err = at_send_command_multiline(
"AT+COPS=3,0;+COPS?;+COPS=3,1;+COPS?;+COPS=3,2;+COPS?",
"+COPS:", &p_response);
/* we expect 3 lines here:
* +COPS: 0,0,"T - Mobile"
* +COPS: 0,1,"TMO"
* +COPS: 0,2,"310170"
*/
if (err != 0) goto error;
for (i = 0, p_cur = p_response->p_intermediates
; p_cur != NULL
; p_cur = p_cur->p_next, i++
) {
char *line = p_cur->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
// If we're unregistered, we may just get
// a "+COPS: 0" response
if (!at_tok_hasmore(&line)) {
response[i] = NULL;
continue;
}
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
// a "+COPS: 0, n" response is also possible
if (!at_tok_hasmore(&line)) {
response[i] = NULL;
continue;
}
err = at_tok_nextstr(&line, &(response[i]));
if (err < 0) goto error;
// Simple assumption that mcc and mnc are 3 digits each
int length = strlen(response[i]);
if (length == 6) {
s_mncLength = 3;
if (sscanf(response[i], "%3d%3d", &s_mcc, &s_mnc) != 2) {
RLOGE("requestOperator expected mccmnc to be 6 decimal digits");
}
} else if (length == 5) {
s_mncLength = 2;
if (sscanf(response[i], "%3d%2d", &s_mcc, &s_mnc) != 2) {
RLOGE("requestOperator expected mccmnc to be 5 decimal digits");
}
}
}
if (i != 3) {
/* expect 3 lines exactly */
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response));
at_response_free(p_response);
return;
error:
RLOGE("requestOperator must not return error when radio is on");
s_mncLength = 0;
s_mcc = 0;
s_mnc = 0;
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestCdmaSendSMS(void *data, size_t datalen, RIL_Token t)
{
int err = 1; // Set to go to error:
RIL_SMS_Response response;
RIL_CDMA_SMS_Message* rcsm;
memset(&response, 0, sizeof(response));
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0);
return;
}
RLOGD("requestCdmaSendSMS datalen=%zu, sizeof(RIL_CDMA_SMS_Message)=%zu",
datalen, sizeof(RIL_CDMA_SMS_Message));
// verify data content to test marshalling/unmarshalling:
rcsm = (RIL_CDMA_SMS_Message*)data;
RLOGD("TeleserviceID=%d, bIsServicePresent=%d, \
uServicecategory=%d, sAddress.digit_mode=%d, \
sAddress.Number_mode=%d, sAddress.number_type=%d, ",
rcsm->uTeleserviceID, rcsm->bIsServicePresent,
rcsm->uServicecategory,rcsm->sAddress.digit_mode,
rcsm->sAddress.number_mode,rcsm->sAddress.number_type);
if (err != 0) goto error;
// Cdma Send SMS implementation will go here:
// But it is not implemented yet.
response.messageRef = 1;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response));
return;
error:
// Cdma Send SMS will always cause send retry error.
response.messageRef = -1;
RIL_onRequestComplete(t, RIL_E_SMS_SEND_FAIL_RETRY, &response, sizeof(response));
}
static void requestSendSMS(void *data, size_t datalen, RIL_Token t)
{
int err;
const char *smsc;
const char *pdu;
int tpLayerLength;
char *cmd1, *cmd2;
RIL_SMS_Response response;
ATResponse *p_response = NULL;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0);
return;
}
memset(&response, 0, sizeof(response));
RLOGD("requestSendSMS datalen =%zu", datalen);
if (s_ims_gsm_fail != 0) goto error;
if (s_ims_gsm_retry != 0) goto error2;
smsc = ((const char **)data)[0];
pdu = ((const char **)data)[1];
tpLayerLength = strlen(pdu)/2;
// "NULL for default SMSC"
if (smsc == NULL) {
smsc= "00";
}
asprintf(&cmd1, "AT+CMGS=%d", tpLayerLength);
asprintf(&cmd2, "%s%s", smsc, pdu);
err = at_send_command_sms(cmd1, cmd2, "+CMGS:", &p_response);
free(cmd1);
free(cmd2);
if (err != 0 || p_response->success == 0) goto error;
int messageRef = 1;
char *line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &messageRef);
if (err < 0) goto error;
/* FIXME fill in ackPDU */
response.messageRef = messageRef;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response));
at_response_free(p_response);
return;
error:
response.messageRef = -2;
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, &response, sizeof(response));
at_response_free(p_response);
return;
error2:
// send retry error.
response.messageRef = -1;
RIL_onRequestComplete(t, RIL_E_SMS_SEND_FAIL_RETRY, &response, sizeof(response));
at_response_free(p_response);
return;
}
static void requestImsSendSMS(void *data, size_t datalen, RIL_Token t)
{
RIL_IMS_SMS_Message *p_args;
RIL_SMS_Response response;
memset(&response, 0, sizeof(response));
RLOGD("requestImsSendSMS: datalen=%zu, "
"registered=%d, service=%d, format=%d, ims_perm_fail=%d, "
"ims_retry=%d, gsm_fail=%d, gsm_retry=%d",
datalen, s_ims_registered, s_ims_services, s_ims_format,
s_ims_cause_perm_failure, s_ims_cause_retry, s_ims_gsm_fail,
s_ims_gsm_retry);
// figure out if this is gsm/cdma format
// then route it to requestSendSMS vs requestCdmaSendSMS respectively
p_args = (RIL_IMS_SMS_Message *)data;
if (0 != s_ims_cause_perm_failure ) goto error;
// want to fail over ims and this is first request over ims
if (0 != s_ims_cause_retry && 0 == p_args->retry) goto error2;
if (RADIO_TECH_3GPP == p_args->tech) {
return requestSendSMS(p_args->message.gsmMessage,
datalen - sizeof(RIL_RadioTechnologyFamily),
t);
} else if (RADIO_TECH_3GPP2 == p_args->tech) {
return requestCdmaSendSMS(p_args->message.cdmaMessage,
datalen - sizeof(RIL_RadioTechnologyFamily),
t);
} else {
RLOGE("requestImsSendSMS invalid format value =%d", p_args->tech);
}
error:
response.messageRef = -2;
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, &response, sizeof(response));
return;
error2:
response.messageRef = -1;
RIL_onRequestComplete(t, RIL_E_SMS_SEND_FAIL_RETRY, &response, sizeof(response));
}
/**
* Add for CTS test
* If open logical channel with AID NULL, this means open logical channel to MF.
* If there is P2 value, this P2 value is used for SELECT command.
* In addition, if SELECT command returns 61xx, GET RESPONSE command needs to send to get data.
*/
static int sendCmdAgainForOpenChannelWithP2( char *data,
int p2, int *response, int *rspLen) {
int len = 0;
int err = -1;
char *line = NULL;
char cmd[64] = {0};
RIL_Errno errType = RIL_E_GENERIC_FAILURE;
ATResponse *p_response = NULL;
RIL_SIM_IO_Response sr;
memset(&sr, 0, sizeof(sr));
sscanf(data, "%2x", &(response[0])); // response[0] is channel number
// Send SELECT command to MF
snprintf(cmd, sizeof(cmd), "AT+CGLA=%d,14,00A400%02X023F00", response[0],
p2);
err = at_send_command_singleline(cmd, "+CGLA:", &p_response);
if (err < 0) goto done;
if (p_response->success == 0) {
if (!strcmp(p_response->finalResponse, "+CME ERROR: 21") ||
!strcmp(p_response->finalResponse, "+CME ERROR: 50")) {
errType = RIL_E_GENERIC_FAILURE;
}
goto done;
}
line = p_response->p_intermediates->line;
if (at_tok_start(&line) < 0 || at_tok_nextint(&line, &len) < 0 ||
at_tok_nextstr(&line, &(sr.simResponse)) < 0) {
goto done;
}
sscanf(&(sr.simResponse[len - 4]), "%02x%02x", &(sr.sw1), &(sr.sw2));
if (sr.sw1 == 0x90 && sr.sw2 == 0x00) { // 9000 is successful
int length = len / 2;
for (*rspLen = 1; *rspLen <= length; (*rspLen)++) {
sscanf(sr.simResponse, "%02x", &(response[*rspLen]));
sr.simResponse += 2;
}
errType = RIL_E_SUCCESS;
} else { // close channel
snprintf(cmd, sizeof(cmd), "AT+CCHC=%d", response[0]);
at_send_command( cmd, NULL);
}
done:
at_response_free(p_response);
return errType;
}
static void requestSimOpenChannel(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(datalen);
ATResponse *p_response = NULL;
int response[260] = {0};
int responseLen = 1;
int32_t session_id;
int err;
char cmd[64] = {0};
char complex;
char *line = NULL;
int skip = 0;
char *statusWord = NULL;
int err_no = RIL_E_GENERIC_FAILURE;
RIL_OpenChannelParams *params = (RIL_OpenChannelParams *)data;
// Max length is 16 bytes according to 3GPP spec 27.007 section 8.45
if (params->aidPtr == NULL) {
err = at_send_command_singleline("AT+CSIM=10,\"0070000001\"", "+CSIM:", &p_response);
} else {
snprintf(cmd, sizeof(cmd), "AT+CCHO=%s", params->aidPtr);
err = at_send_command_numeric(cmd, &p_response);
}
if (err < 0 || p_response == NULL || p_response->success == 0) {
ALOGE("Error %d opening logical channel: %d",
err, p_response ? p_response->success : 0);
goto error;
}
// Ensure integer only by scanning for an extra char but expect one result
line = p_response->p_intermediates->line;
if (params->aidPtr == NULL) {
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &statusWord);
if (err < 0) goto error;
if (params->p2 < 0) {
int length = strlen(statusWord) / 2;
for (responseLen = 0; responseLen < length; responseLen++) {
sscanf(statusWord, "%02x", &(response[responseLen]));
statusWord += 2;
}
err_no = RIL_E_SUCCESS;
} else {
response[0] = 1;
err_no = sendCmdAgainForOpenChannelWithP2(statusWord,
params->p2, response, &responseLen);
if (err_no != RIL_E_SUCCESS) {
goto error;
}
}
RIL_onRequestComplete(t, err_no, response, responseLen * sizeof(int));
at_response_free(p_response);
return;
} else {
if (sscanf(line, "%" SCNd32 "%c", &session_id, &complex) != 1) {
ALOGE("Invalid AT response, expected integer, was '%s'", line);
goto error;
}
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, &session_id, sizeof(session_id));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, err_no, NULL, 0);
at_response_free(p_response);
return;
}
static void requestSimCloseChannel(void *data, size_t datalen, RIL_Token t)
{
ATResponse *p_response = NULL;
int32_t session_id;
int err;
char cmd[32];
if (data == NULL || datalen != sizeof(session_id)) {
ALOGE("Invalid data passed to requestSimCloseChannel");
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
session_id = ((int32_t *)data)[0];
if (session_id == 0) {
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
return;
}
snprintf(cmd, sizeof(cmd), "AT+CCHC=%" PRId32, session_id);
err = at_send_command_singleline(cmd, "+CCHC", &p_response);
if (err < 0 || p_response == NULL || p_response->success == 0) {
ALOGE("Error %d closing logical channel %d: %d",
err, session_id, p_response ? p_response->success : 0);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
return;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
at_response_free(p_response);
}
static void requestSimTransmitApduChannel(void *data,
size_t datalen,
RIL_Token t)
{
ATResponse *p_response = NULL;
int err;
int len = 0;
char *cmd;
char *line = NULL;
size_t cmd_size;
RIL_SIM_IO_Response sr = {0};
RIL_SIM_APDU *apdu = (RIL_SIM_APDU *)data;
if (apdu == NULL || datalen != sizeof(RIL_SIM_APDU)) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
cmd_size = 10 + (apdu->data ? strlen(apdu->data) : 0);
asprintf(&cmd, "AT+CGLA=%d,%zu,%02x%02x%02x%02x%02x%s",
apdu->sessionid, cmd_size, apdu->cla, apdu->instruction,
apdu->p1, apdu->p2, apdu->p3, apdu->data ? apdu->data : "");
err = at_send_command_singleline(cmd, "+CGLA:", &p_response);
free(cmd);
if (err < 0 || p_response == NULL || p_response->success == 0) {
ALOGE("Error %d transmitting APDU: %d",
err, p_response ? p_response->success : 0);
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &len);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &(sr.simResponse));
if (err < 0) goto error;
len = strlen(sr.simResponse);
if (len < 4) goto error;
sscanf(&(sr.simResponse[len - 4]), "%02x%02x", &(sr.sw1), &(sr.sw2));
sr.simResponse[len - 4] = '\0';
RIL_onRequestComplete(t, RIL_E_SUCCESS, &sr, sizeof(sr));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestSimAuthentication(int authContext, char* authData, RIL_Token t) {
int err = -1, ret = 0;
int status = 0;
int binSimResponseLen = 0;
char *cmd = NULL;
char *line = NULL;
// Input data
int randLen = 0, autnLen = 0;
char *rand = NULL, *autn = NULL;
// EAP-SIM response data
int kcLen = 0, sresLen = 0;
char *kc = NULL, *sres = NULL;
// EAP-AKA response data
int ckLen = 0, ikLen = 0, resAutsLen = 0;
char *ck = NULL, *ik = NULL, *resAuts = NULL;
unsigned char *binSimResponse = NULL;
unsigned char *binAuthData = NULL;
unsigned char *hexAuthData = NULL;
ATResponse *p_response = NULL;
RIL_SIM_IO_Response response;
memset(&response, 0, sizeof(response));
response.sw1 = 0x90;
response.sw2 = 0;
binAuthData =
(unsigned char *)malloc(sizeof(*binAuthData) * strlen(authData));
if (binAuthData == NULL) {
goto error;
}
if(base64_decode(authData, binAuthData) <= 0) {
RLOGE("base64_decode failed %s %d", __func__, __LINE__);
goto error;
}
hexAuthData =
(unsigned char *)malloc(strlen(authData) * 2 + sizeof(char));
if (hexAuthData == NULL) {
goto error;
}
memset(hexAuthData, 0, strlen(authData) * 2 + sizeof(char));
convertBytesToHexString((char *)binAuthData, strlen(authData), hexAuthData);
randLen = binAuthData[0];
rand = (char *)malloc(sizeof(char) * (randLen * 2 + sizeof(char)));
if (rand == NULL) {
goto error;
}
memcpy(rand, hexAuthData + 2, randLen * 2);
memcpy(rand + randLen * 2, "\0", 1);
if (authContext == AUTH_CONTEXT_EAP_AKA) {
// There's the autn value to parse as well.
autnLen = binAuthData[1 + randLen];
autn = (char*)malloc(sizeof(char) * (autnLen * 2 + sizeof(char)));
if (autn == NULL) {
goto error;
}
memcpy(autn, hexAuthData + 2 + randLen * 2 + 2, autnLen * 2);
memcpy(autn + autnLen * 2, "\0", 1);
}
if (authContext == AUTH_CONTEXT_EAP_SIM) {
ret = asprintf(&cmd, "AT^MBAU=\"%s\"", rand);
} else {
ret = asprintf(&cmd, "AT^MBAU=\"%s,%s\"", rand, autn);
}
if (ret < 0) {
RLOGE("Failed to asprintf");
goto error;
}
err = at_send_command_singleline( cmd, "^MBAU:", &p_response);
free(cmd);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &status);
if (err < 0) goto error;
if (status != SIM_AUTH_RESPONSE_SUCCESS) {
goto error;
}
if (authContext == AUTH_CONTEXT_EAP_SIM) {
err = at_tok_nextstr(&line, &kc);
if (err < 0) goto error;
kcLen = strlen(kc);
err = at_tok_nextstr(&line, &sres);
if (err < 0) goto error;
sresLen = strlen(sres);
// sresLen + sres + kcLen + kc + '\0'
binSimResponseLen = (kcLen + sresLen) / 2 + 3 * sizeof(char);
binSimResponse = (unsigned char*)malloc(binSimResponseLen + sizeof(char));
if (binSimResponse == NULL) goto error;
memset(binSimResponse, 0, binSimResponseLen);
// set sresLen and sres
binSimResponse[0] = (sresLen / 2) & 0xFF;
uint8_t* tmpBinSimResponse = convertHexStringToBytes(sres, sresLen);
snprintf((char*)(binSimResponse + 1), sresLen / 2, "%s", tmpBinSimResponse);
free(tmpBinSimResponse);
tmpBinSimResponse = NULL;
// set kcLen and kc
binSimResponse[1 + sresLen / 2] = (kcLen / 2) & 0xFF;
tmpBinSimResponse = convertHexStringToBytes(kc, kcLen);
snprintf((char*)(binSimResponse + 1 + sresLen / 2 + 1), kcLen / 2, "%s", tmpBinSimResponse);
free(tmpBinSimResponse);
tmpBinSimResponse = NULL;
} else { // AUTH_CONTEXT_EAP_AKA
err = at_tok_nextstr(&line, &ck);
if (err < 0) goto error;
ckLen = strlen(ck);
err = at_tok_nextstr(&line, &ik);
if (err < 0) goto error;
ikLen = strlen(ik);
err = at_tok_nextstr(&line, &resAuts);
if (err < 0) goto error;
resAutsLen = strlen(resAuts);
// 0xDB + ckLen + ck + ikLen + ik + resAutsLen + resAuts + '\0'
binSimResponseLen = (ckLen + ikLen + resAutsLen) / 2 + 5 * sizeof(char);
binSimResponse = (unsigned char*)malloc(binSimResponseLen + sizeof(char));
if (binSimResponse == NULL) goto error;
memset(binSimResponse, 0, binSimResponseLen);
// The DB prefix indicates successful auth. Not produced by the SIM.
binSimResponse[0] = 0xDB;
// Set ckLen and ck
binSimResponse[1] = (ckLen / 2) & 0xFF;
uint8_t* tmpBinSimResponse = convertHexStringToBytes(ck, ckLen);
snprintf((char*)(binSimResponse + 2), ckLen / 2 + 1, "%s", tmpBinSimResponse);
free(tmpBinSimResponse);
tmpBinSimResponse = NULL;
// Set ikLen and ik
binSimResponse[2 + ckLen / 2] = (ikLen / 2) & 0xFF;
tmpBinSimResponse = convertHexStringToBytes(ik, ikLen);
snprintf((char*)(binSimResponse + 2 + ckLen / 2 + 1), ikLen / 2 + 1, "%s",
tmpBinSimResponse);
free(tmpBinSimResponse);
tmpBinSimResponse = NULL;
// Set resAutsLen and resAuts
binSimResponse[2 + ckLen / 2 + 1 + ikLen / 2] = (resAutsLen / 2) & 0xFF;
tmpBinSimResponse = convertHexStringToBytes(resAuts, resAutsLen);
snprintf((char*)(binSimResponse + 2 + ckLen / 2 + 1 + ikLen / 2 + 1), resAutsLen / 2 + 1,
"%s", tmpBinSimResponse);
free(tmpBinSimResponse);
tmpBinSimResponse = NULL;
}
response.simResponse = (char*)malloc(2 * binSimResponseLen + sizeof(char));
if (response.simResponse == NULL) goto error;
if (NULL == base64_encode(binSimResponse, response.simResponse, binSimResponseLen - 1)) {
RLOGE("Failed to call base64_encode %s %d", __func__, __LINE__);
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response));
at_response_free(p_response);
free(binAuthData);
free(hexAuthData);
free(rand);
free(autn);
free(response.simResponse);
free(binSimResponse);
return;
error:
free(binAuthData);
free(hexAuthData);
free(rand);
free(autn);
free(response.simResponse);
free(binSimResponse);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestTransmitApduBasic( void *data, size_t datalen,
RIL_Token t) {
RIL_UNUSED_PARM(datalen);
int err, len;
char *cmd = NULL;
char *line = NULL;
RIL_SIM_APDU *p_args = NULL;
ATResponse *p_response = NULL;
RIL_SIM_IO_Response sr;
memset(&sr, 0, sizeof(sr));
p_args = (RIL_SIM_APDU *)data;
if ((p_args->data == NULL) || (strlen(p_args->data) == 0)) {
if (p_args->p3 < 0) {
asprintf(&cmd, "AT+CSIM=%d,\"%02x%02x%02x%02x\"", 8, p_args->cla,
p_args->instruction, p_args->p1, p_args->p2);
} else {
asprintf(&cmd, "AT+CSIM=%d,\"%02x%02x%02x%02x%02x\"", 10,
p_args->cla, p_args->instruction, p_args->p1, p_args->p2,
p_args->p3);
}
} else {
asprintf(&cmd, "AT+CSIM=%d,\"%02x%02x%02x%02x%02x%s\"",
10 + (int)strlen(p_args->data), p_args->cla,
p_args->instruction, p_args->p1, p_args->p2, p_args->p3,
p_args->data);
}
err = at_send_command_singleline(cmd, "+CSIM:", &p_response);
free(cmd);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &len);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &(sr.simResponse));
if (err < 0) goto error;
sscanf(&(sr.simResponse[len - 4]), "%02x%02x", &(sr.sw1), &(sr.sw2));
sr.simResponse[len - 4] = '\0';
RIL_onRequestComplete(t, RIL_E_SUCCESS, &sr, sizeof(sr));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static int getPDP() {
int ret = -1;
for (int i = 0; i < MAX_PDP; i++) {
if (s_PDP[i].state == PDP_IDLE) {
s_PDP[i].state = PDP_BUSY;
ret = s_PDP[i].cid;
break;
}
}
return ret;
}
static void putPDP(int cid) {
if (cid < 1 || cid > MAX_PDP ) {
return;
}
s_PDP[cid - 1].state = PDP_IDLE;
}
static void requestSetupDataCall(void *data, size_t datalen, RIL_Token t)
{
const char *apn = NULL;
char *cmd = NULL;
int err = -1;
int cid = -1;
ATResponse *p_response = NULL;
apn = ((const char **)data)[2];
#ifdef USE_TI_COMMANDS
// Config for multislot class 10 (probably default anyway eh?)
err = at_send_command("AT%CPRIM=\"GMM\",\"CONFIG MULTISLOT_CLASS=<10>\"",
NULL);
err = at_send_command("AT%DATA=2,\"UART\",1,,\"SER\",\"UART\",0", NULL);
#endif /* USE_TI_COMMANDS */
int fd, qmistatus;
size_t cur = 0;
size_t len;
ssize_t written, rlen;
char status[32] = {0};
int retry = 10;
const char *pdp_type;
RLOGD("requesting data connection to APN '%s'", apn);
fd = open ("/dev/qmi", O_RDWR);
if (fd >= 0) { /* the device doesn't exist on the emulator */
RLOGD("opened the qmi device\n");
asprintf(&cmd, "up:%s", apn);
len = strlen(cmd);
while (cur < len) {
do {
written = write (fd, cmd + cur, len - cur);
} while (written < 0 && errno == EINTR);
if (written < 0) {
RLOGE("### ERROR writing to /dev/qmi");
close(fd);
goto error;
}
cur += written;
}
// wait for interface to come online
do {
sleep(1);
do {
rlen = read(fd, status, 31);
} while (rlen < 0 && errno == EINTR);
if (rlen < 0) {
RLOGE("### ERROR reading from /dev/qmi");
close(fd);
goto error;
} else {
status[rlen] = '\0';
RLOGD("### status: %s", status);
}
} while (strncmp(status, "STATE=up", 8) && strcmp(status, "online") && --retry);
close(fd);
if (retry == 0) {
RLOGE("### Failed to get data connection up\n");
goto error;
}
qmistatus = system("netcfg buried_eth0 dhcp");
RLOGD("netcfg buried_eth0 dhcp: status %d\n", qmistatus);
if (qmistatus < 0) goto error;
} else {
const char* radioInterfaceName = getRadioInterfaceName();
if (setInterfaceState(radioInterfaceName, kInterfaceUp) != RIL_E_SUCCESS) {
goto error;
}
if (datalen > 6 * sizeof(char *)) {
pdp_type = ((const char **)data)[6];
} else {
pdp_type = "IP";
}
cid = getPDP();
if (cid < 1) {
RLOGE("SETUP_DATA_CALL MAX_PDP reached.");
RIL_Data_Call_Response_v11 response;
response.status = 0x41 /* PDP_FAIL_MAX_ACTIVE_PDP_CONTEXT_REACHED */;
response.suggestedRetryTime = -1;
response.cid = cid;
response.active = -1;
response.type = "";
response.ifname = "";
response.addresses = "";
response.dnses = "";
response.gateways = "";
response.pcscf = "";
response.mtu = 0;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(RIL_Data_Call_Response_v11));
at_response_free(p_response);
return;
}
asprintf(&cmd, "AT+CGDCONT=%d,\"%s\",\"%s\",,0,0", cid, pdp_type, apn);
//FIXME check for error here
err = at_send_command(cmd, NULL);
free(cmd);
// Set required QoS params to default
err = at_send_command("AT+CGQREQ=1", NULL);
// Set minimum QoS params to default
err = at_send_command("AT+CGQMIN=1", NULL);
// packet-domain event reporting
err = at_send_command("AT+CGEREP=1,0", NULL);
// Hangup anything that's happening there now
err = at_send_command("AT+CGACT=1,0", NULL);
// Start data on PDP context 1
err = at_send_command("ATD*99***1#", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
}
requestOrSendDataCallList(cid, &t);
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestDeactivateDataCall(void *data, RIL_Token t)
{
const char *p_cid = ((const char **)data)[0];
int cid = p_cid ? atoi(p_cid) : -1;
RIL_Errno rilErrno = RIL_E_GENERIC_FAILURE;
if (cid < 1 || cid > MAX_PDP) {
RIL_onRequestComplete(t, rilErrno, NULL, 0);
return;
}
const char* radioInterfaceName = getRadioInterfaceName();
rilErrno = setInterfaceState(radioInterfaceName, kInterfaceDown);
RIL_onRequestComplete(t, rilErrno, NULL, 0);
putPDP(cid);
requestOrSendDataCallList(-1, NULL);
}
static void requestSMSAcknowledge(void *data, size_t datalen __unused, RIL_Token t)
{
int ackSuccess;
int err;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
return;
}
ackSuccess = ((int *)data)[0];
if (ackSuccess == 1) {
err = at_send_command("AT+CNMA=1", NULL);
if (err < 0) {
goto error;
}
} else if (ackSuccess == 0) {
err = at_send_command("AT+CNMA=2", NULL);
if (err < 0) {
goto error;
}
} else {
RLOGE("unsupported arg to RIL_REQUEST_SMS_ACKNOWLEDGE\n");
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
void convertBytesToHex(uint8_t *bytes, int length, uint8_t *hex_str) {
int i;
unsigned char tmp;
if (bytes == NULL || hex_str == NULL) {
return;
}
for (i = 0; i < length; i++) {
tmp = (unsigned char)((bytes[i] & 0xf0) >> 4);
if (tmp <= 9) {
*hex_str = (unsigned char)(tmp + '0');
} else {
*hex_str = (unsigned char)(tmp + 'A' - 10);
}
hex_str++;
tmp = (unsigned char)(bytes[i] & 0x0f);
if (tmp <= 9) {
*hex_str = (unsigned char)(tmp + '0');
} else {
*hex_str = (unsigned char)(tmp + 'A' - 10);
}
hex_str++;
}
}
#define TYPE_EF 4
#define RESPONSE_EF_SIZE 15
#define TYPE_FILE_DES_LEN 5
#define RESPONSE_DATA_FILE_DES_FLAG 2
#define RESPONSE_DATA_FILE_DES_LEN_FLAG 3
#define RESPONSE_DATA_FILE_TYPE 6
#define RESPONSE_DATA_FILE_SIZE_1 2
#define RESPONSE_DATA_FILE_SIZE_2 3
#define RESPONSE_DATA_STRUCTURE 13
#define RESPONSE_DATA_RECORD_LENGTH 14
#define RESPONSE_DATA_FILE_RECORD_LEN_1 6
#define RESPONSE_DATA_FILE_RECORD_LEN_2 7
#define EF_TYPE_TRANSPARENT 0x01
#define EF_TYPE_LINEAR_FIXED 0x02
#define EF_TYPE_CYCLIC 0x06
#define USIM_DATA_OFFSET_2 2
#define USIM_DATA_OFFSET_3 3
#define USIM_FILE_DES_TAG 0x82
#define USIM_FILE_SIZE_TAG 0x80
bool convertUsimToSim(uint8_t *byteUSIM, int len, uint8_t *hexSIM) {
int desIndex = 0;
int sizeIndex = 0;
int i = 0;
uint8_t byteSIM[RESPONSE_EF_SIZE] = {0};
for (i = 0; i < len; i++) {
if (byteUSIM[i] == USIM_FILE_DES_TAG) {
desIndex = i;
break;
}
}
for (i = desIndex; i < len;) {
if (byteUSIM[i] == USIM_FILE_SIZE_TAG) {
sizeIndex = i;
break;
} else {
i += (byteUSIM[i + 1] + 2);
}
}
byteSIM[RESPONSE_DATA_FILE_SIZE_1] =
byteUSIM[sizeIndex + USIM_DATA_OFFSET_2];
byteSIM[RESPONSE_DATA_FILE_SIZE_2] =
byteUSIM[sizeIndex + USIM_DATA_OFFSET_3];
byteSIM[RESPONSE_DATA_FILE_TYPE] = TYPE_EF;
if ((byteUSIM[desIndex + RESPONSE_DATA_FILE_DES_FLAG] & 0x07) ==
EF_TYPE_TRANSPARENT) {
byteSIM[RESPONSE_DATA_STRUCTURE] = 0;
} else if ((byteUSIM[desIndex + RESPONSE_DATA_FILE_DES_FLAG] & 0x07) ==
EF_TYPE_LINEAR_FIXED) {
if (USIM_FILE_DES_TAG != byteUSIM[RESPONSE_DATA_FILE_DES_FLAG]) {
RLOGE("USIM_FILE_DES_TAG != ...");
goto error;
}
if (TYPE_FILE_DES_LEN != byteUSIM[RESPONSE_DATA_FILE_DES_LEN_FLAG]) {
goto error;
}
byteSIM[RESPONSE_DATA_STRUCTURE] = 1;
byteSIM[RESPONSE_DATA_RECORD_LENGTH] =
((byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_1] & 0xff) << 8) +
(byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_2] & 0xff);
} else if ((byteUSIM[desIndex + RESPONSE_DATA_FILE_DES_FLAG] & 0x07) ==
EF_TYPE_CYCLIC) {
byteSIM[RESPONSE_DATA_STRUCTURE] = 3;
byteSIM[RESPONSE_DATA_RECORD_LENGTH] =
((byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_1] & 0xff) << 8) +
(byteUSIM[RESPONSE_DATA_FILE_RECORD_LEN_2] & 0xff);
}
convertBytesToHex(byteSIM, RESPONSE_EF_SIZE, hexSIM);
return true;
error:
return false;
}
static void requestSIM_IO(void *data, size_t datalen __unused, RIL_Token t)
{
ATResponse *p_response = NULL;
RIL_SIM_IO_Response sr;
int err;
char *cmd = NULL;
RIL_SIM_IO_v6 *p_args;
char *line;
/* For Convert USIM to SIM */
uint8_t hexSIM[RESPONSE_EF_SIZE * 2 + sizeof(char)] = {0};
memset(&sr, 0, sizeof(sr));
p_args = (RIL_SIM_IO_v6 *)data;
/* FIXME handle pin2 */
if (p_args->data == NULL) {
asprintf(&cmd, "AT+CRSM=%d,%d,%d,%d,%d",
p_args->command, p_args->fileid,
p_args->p1, p_args->p2, p_args->p3);
} else {
asprintf(&cmd, "AT+CRSM=%d,%d,%d,%d,%d,%s",
p_args->command, p_args->fileid,
p_args->p1, p_args->p2, p_args->p3, p_args->data);
}
err = at_send_command_singleline(cmd, "+CRSM:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = parseSimResponseLine(line, &sr);
if (err < 0) {
goto error;
}
if (sr.simResponse != NULL && // Default to be USIM card
p_args->command == 192) { // Get response
uint8_t *bytes = convertHexStringToBytes(sr.simResponse, strlen(sr.simResponse));
if (bytes == NULL) {
RLOGE("Failed to convert sim response to bytes");
goto error;
}
if (bytes[0] != 0x62) {
RLOGE("Wrong FCP flag, unable to convert to sim ");
free(bytes);
goto error;
}
if (convertUsimToSim(bytes, strlen(sr.simResponse) / 2, hexSIM)) {
sr.simResponse = (char *)hexSIM;
}
free(bytes);
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, &sr, sizeof(sr));
at_response_free(p_response);
free(cmd);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
free(cmd);
}
static int getSimlockRemainTimes(const char* type) {
int err = -1;
int remain_times = -1;
char cmd[32] = {0};
char *line = NULL;
char *lock_type = NULL;
ATResponse *p_response = NULL;
snprintf(cmd, sizeof(cmd), "AT+CPINR=\"%s\"", type);
err = at_send_command_multiline(cmd, "+CPINR:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &lock_type);
if (err < 0) goto error;
err = at_tok_nextint(&line, &remain_times);
if (err < 0) goto error;
error:
at_response_free(p_response);
return remain_times;
}
static void requestEnterSimPin(int request, void* data, size_t datalen, RIL_Token t)
{
ATResponse *p_response = NULL;
int err;
int remaintimes = -1;
char* cmd = NULL;
const char** strings = (const char**)data;;
if (datalen == sizeof(char*) || datalen == 2 * sizeof(char*)) {
asprintf(&cmd, "AT+CPIN=%s", strings[0]);
} else
goto error;
err = at_send_command_singleline(cmd, "+CPIN:", &p_response);
free(cmd);
if (err < 0 || p_response->success == 0) {
error:
if (request == RIL_REQUEST_ENTER_SIM_PIN) {
remaintimes = getSimlockRemainTimes("SIM PIN");
} else if (request == RIL_REQUEST_ENTER_SIM_PIN2) {
remaintimes = getSimlockRemainTimes("SIM PIN2");
}
RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, &remaintimes,
sizeof(remaintimes));
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestChangeSimPin(int request, void* data, size_t datalen, RIL_Token t)
{
ATResponse *p_response = NULL;
int err;
int remaintimes = -1;
char* cmd = NULL;
const char** strings = (const char**)data;;
if (datalen == 2 * sizeof(char*) || datalen == 3 * sizeof(char*)) {
asprintf(&cmd, "AT+CPIN=%s,%s", strings[0], strings[1]);
} else
goto error;
err = at_send_command_singleline(cmd, "+CPIN:", &p_response);
free(cmd);
if (err < 0 || p_response->success == 0) {
error:
if (request == RIL_REQUEST_CHANGE_SIM_PIN) {
remaintimes = getSimlockRemainTimes("SIM PIN");
} else if (request == RIL_REQUEST_ENTER_SIM_PUK) {
remaintimes = getSimlockRemainTimes("SIM PUK");
} else if (request == RIL_REQUEST_ENTER_SIM_PUK2) {
remaintimes = getSimlockRemainTimes("SIM PUK2");
}
RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, &remaintimes,
sizeof(remaintimes));
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestChangeSimPin2(void *data, size_t datalen, RIL_Token t) {
int err, ret;
int remaintime = -1;
char cmd[64] = {0};
const char **strings = (const char **)data;
ATResponse *p_response = NULL;
if (datalen != 3 * sizeof(char *)) {
goto error;
}
snprintf(cmd, sizeof(cmd), "AT+CPWD=\"P2\",\"%s\",\"%s\"", strings[0],
strings[1]);
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
remaintime = getSimlockRemainTimes("SIM PIN2");
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, &remaintime,
sizeof(remaintime));
at_response_free(p_response);
}
static void requestSendUSSD(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(datalen);
int err = -1;
char cmd[128] = {0};
const char *ussdRequest = (char *)(data);
ATResponse *p_response = NULL;
snprintf(cmd, sizeof(cmd), "AT+CUSD=1,\"%s\"", ussdRequest);
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestExitEmergencyMode(void *data __unused, size_t datalen __unused, RIL_Token t)
{
int err;
ATResponse *p_response = NULL;
err = at_send_command("AT+WSOS=0", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static uint64_t s_last_activity_info_query = 0;
static void requestGetActivityInfo(void *data __unused, size_t datalen __unused, RIL_Token t)
{
uint64_t curTime = ril_nano_time();
RIL_ActivityStatsInfo stats =
{
0, // sleep_mode_time_ms
((curTime - s_last_activity_info_query) / 1000000) - 1, // idle_mode_time_ms
{0, 0, 0, 0, 0}, // tx_mode_time_ms
0 // rx_mode_time_ms
};
s_last_activity_info_query = curTime;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &stats, sizeof(stats));
}
// TODO: Use all radio types
static int techFromModemType(int mdmtype)
{
int ret = -1;
switch (mdmtype) {
case MDM_CDMA:
ret = RADIO_TECH_1xRTT;
break;
case MDM_EVDO:
ret = RADIO_TECH_EVDO_A;
break;
case MDM_GSM:
ret = RADIO_TECH_GPRS;
break;
case MDM_WCDMA:
ret = RADIO_TECH_HSPA;
break;
case MDM_LTE:
ret = RADIO_TECH_LTE;
case MDM_NR:
ret = RADIO_TECH_NR;
break;
}
return ret;
}
static void requestGetCellInfoList(void *data __unused, size_t datalen __unused, RIL_Token t)
{
uint64_t curTime = ril_nano_time();
RIL_CellInfo_v12 ci[1] =
{
{ // ci[0]
1, // cellInfoType
1, // registered
RIL_TIMESTAMP_TYPE_MODEM,
curTime - 1000, // Fake some time in the past
{ // union CellInfo
{ // RIL_CellInfoGsm gsm
{ // gsm.cellIdneityGsm
s_mcc, // mcc
s_mnc, // mnc
s_lac, // lac
s_cid, // cid
0, //arfcn unknown
0x1, // Base Station Identity Code set to arbitrarily 1
},
{ // gsm.signalStrengthGsm
10, // signalStrength
0 // bitErrorRate
, INT_MAX // timingAdvance invalid value
}
}
}
}
};
RIL_onRequestComplete(t, RIL_E_SUCCESS, ci, sizeof(ci));
}
static void requestGetCellInfoList_1_6(void* data __unused, size_t datalen __unused, RIL_Token t) {
RIL_CellInfo_v16 ci[1] = {{ // ci[0]
3, // cellInfoType
1, // registered
CELL_CONNECTION_PRIMARY_SERVING,
{ // union CellInfo
.lte = {// RIL_CellInfoLte_v12 lte
{
// RIL_CellIdentityLte_v12
// lte.cellIdentityLte
s_mcc, // mcc
s_mnc, // mnc
s_cid, // ci
0, // pci
s_lac, // tac
7, // earfcn
},
{
// RIL_LTE_SignalStrength_v8
// lte.signalStrengthLte
10, // signalStrength
44, // rsrp
3, // rsrq
30, // rssnr
0, // cqi
INT_MAX // timingAdvance invalid value
}}}}};
RIL_onRequestComplete(t, RIL_E_SUCCESS, ci, sizeof(ci));
}
static void requestSetCellInfoListRate(void *data, size_t datalen __unused, RIL_Token t)
{
// For now we'll save the rate but no RIL_UNSOL_CELL_INFO_LIST messages
// will be sent.
assert (datalen == sizeof(int));
s_cell_info_rate_ms = ((int *)data)[0];
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static void requestGetHardwareConfig(void *data, size_t datalen, RIL_Token t)
{
// TODO - hook this up with real query/info from radio.
RIL_HardwareConfig hwCfg;
RIL_UNUSED_PARM(data);
RIL_UNUSED_PARM(datalen);
hwCfg.type = -1;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &hwCfg, sizeof(hwCfg));
}
static void requestGetTtyMode(void *data, size_t datalen, RIL_Token t)
{
int ttyModeResponse;
RIL_UNUSED_PARM(data);
RIL_UNUSED_PARM(datalen);
ttyModeResponse = (getSIMStatus() == SIM_READY) ? 1 // TTY Full
: 0; // TTY Off
RIL_onRequestComplete(t, RIL_E_SUCCESS, &ttyModeResponse, sizeof(ttyModeResponse));
}
static void requestGetRadioCapability(void *data, size_t datalen, RIL_Token t)
{
RIL_RadioCapability radioCapability;
RIL_UNUSED_PARM(data);
RIL_UNUSED_PARM(datalen);
radioCapability.version = RIL_RADIO_CAPABILITY_VERSION;
radioCapability.session = 0;
radioCapability.phase = 0;
radioCapability.rat = NR | LTE | WCDMA | GSM;
strncpy(radioCapability.logicalModemUuid, "com.android.modem.simulator", MAX_UUID_LENGTH);
radioCapability.status = RC_STATUS_SUCCESS;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &radioCapability, sizeof(radioCapability));
}
static void requestSetRadioCapability(void *data, size_t datalen, RIL_Token t)
{
RIL_RadioCapability* rc = (RIL_RadioCapability*)data;
RLOGV(
"RadioCapability version %d session %d phase %d rat %d "
"logicalModemUuid %s status %d",
rc->version, rc->session, rc->phase, rc->rat, rc->logicalModemUuid,
rc->status);
// TODO(ender): do something about these numbers.
RIL_onRequestComplete(t, RIL_E_SUCCESS, rc, datalen);
}
static void requestGetMute(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(data);
RIL_UNUSED_PARM(datalen);
int err = -1;
int muteResponse = 0; // Mute disabled
char *line = NULL;
ATResponse *p_response = NULL;
err = at_send_command_singleline("AT+CMUT?", "+CMUT:", &p_response);
if (err < 0 || p_response->success) {
goto done;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto done;
at_tok_nextint(&line, &muteResponse);
done:
RIL_onRequestComplete(t, RIL_E_SUCCESS, &muteResponse, sizeof(muteResponse));
at_response_free(p_response);
}
static void requestSetMute(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(datalen);
int err = -1;
char cmd[64] = {0};
ATResponse *p_response = NULL;
snprintf(cmd, sizeof(cmd), "AT+CMUT=%d", ((int *)data)[0]);
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestScreenState(void *data, RIL_Token t)
{
int status = *((int *)data);
if (!status) {
/* Suspend */
at_send_command("AT+CEREG=1", NULL);
at_send_command("AT+CREG=1", NULL);
at_send_command("AT+CGREG=1", NULL);
} else {
/* Resume */
at_send_command("AT+CEREG=2", NULL);
at_send_command("AT+CREG=2", NULL);
at_send_command("AT+CGREG=2", NULL);
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
static void requestQueryClip(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(datalen);
RIL_UNUSED_PARM(data);
int err = -1;
int skip = 0;
int response = 0;
char *line = NULL;
ATResponse *p_response = NULL;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0);
return;
}
err = at_send_command_singleline("AT+CLIP?", "+CLIP:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &skip);
if (err < 0) goto error;
err = at_tok_nextint(&line, &response);
if (err < 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &response, sizeof(response));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestQueryClir(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(datalen);
RIL_UNUSED_PARM(data);
int err = -1;
int response[2] = {1, 1};
char *line = NULL;
ATResponse *p_response = NULL;
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0);
return;
}
err = at_send_command_singleline("AT+CLIR?", "+CLIR:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &response[0]);
if (err < 0) goto error;
err = at_tok_nextint(&line, &response[1]);
if (err < 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestSetClir(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(datalen);
int err = -1;
int n = ((int *)data)[0];
char cmd[64] = {0};
ATResponse *p_response = NULL;
snprintf(cmd, sizeof(cmd), "AT+CLIR=%d", n);
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static int forwardFromCCFCULine(char *line, RIL_CallForwardInfo *p_forward) {
int err = -1;
int i = 0;
if (line == NULL || p_forward == NULL) {
goto error;
}
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &(p_forward->status));
if (err < 0) goto error;
err = at_tok_nextint(&line, &(p_forward->serviceClass));
if (err < 0) goto error;
if (at_tok_hasmore(&line)) {
int numberType = 0;
err = at_tok_nextint(&line, &numberType);
if (err < 0) goto error;
err = at_tok_nextint(&line, &p_forward->toa);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &(p_forward->number));
/* tolerate null here */
if (err < 0) return 0;
if (at_tok_hasmore(&line)) {
for (i = 0; i < 2; i++) {
skipNextComma(&line);
}
if (at_tok_hasmore(&line)) {
err = at_tok_nextint(&line, &p_forward->timeSeconds);
if (err < 0) {
p_forward->timeSeconds = 0;
}
}
}
}
return 0;
error:
return -1;
}
static void requestSetCallForward(RIL_CallForwardInfo *data,
size_t datalen, RIL_Token t) {
int err = -1;
char cmd[128] = {0};
size_t offset = 0;
ATResponse *p_response = NULL;
if (datalen != sizeof(*data) ||
(data->status == 3 && data->number == NULL)) {
goto error;
}
snprintf(cmd, sizeof(cmd), "AT+CCFCU=%d,%d,%d,%d,\"%s\",%d",
data->reason,
data->status,
2,
data->toa,
data->number ? data->number : "",
data->serviceClass);
offset += strlen(cmd);
if (data->serviceClass == 0) {
if (data->timeSeconds != 0 && data->status == 3) {
snprintf(cmd + offset, sizeof(cmd) - offset, ",\"\",\"\",,%d",
data->timeSeconds);
}
} else {
if (data->timeSeconds != 0 && data->status == 3) {
snprintf(cmd + offset, sizeof(cmd) - offset, ",\"\",\"\",,%d",
data->timeSeconds);
} else {
strlcat(cmd, ",\"\"", sizeof(cmd) - offset);
}
}
err = at_send_command_multiline(cmd, "+CCFCU:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestQueryCallForward(RIL_CallForwardInfo *data,
size_t datalen, RIL_Token t) {
int err = -1;
char cmd[128] = {0};
ATResponse *p_response = NULL;
ATLine *p_cur = NULL;
if (datalen != sizeof(*data)) {
goto error;
}
snprintf(cmd, sizeof(cmd), "AT+CCFCU=%d,2,%d,%d,\"%s\",%d", data->reason, 2,
data->toa, data->number ? data->number : "", data->serviceClass);
err = at_send_command_multiline(cmd, "+CCFCU:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
RIL_CallForwardInfo **forwardList = NULL, *forwardPool = NULL;
int forwardCount = 0;
int validCount = 0;
int i = 0;
for (p_cur = p_response->p_intermediates; p_cur != NULL;
p_cur = p_cur->p_next, forwardCount++) {
}
forwardList = (RIL_CallForwardInfo **)
alloca(forwardCount * sizeof(RIL_CallForwardInfo *));
forwardPool = (RIL_CallForwardInfo *)
alloca(forwardCount * sizeof(RIL_CallForwardInfo));
memset(forwardPool, 0, forwardCount * sizeof(RIL_CallForwardInfo));
/* init the pointer array */
for (i = 0; i < forwardCount; i++) {
forwardList[i] = &(forwardPool[i]);
}
for (p_cur = p_response->p_intermediates; p_cur != NULL;
p_cur = p_cur->p_next) {
err = forwardFromCCFCULine(p_cur->line, forwardList[validCount]);
forwardList[validCount]->reason = data->reason;
if (err == 0) validCount++;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, validCount ? forwardList : NULL,
validCount * sizeof (RIL_CallForwardInfo *));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestQueryCallWaiting(void *data, size_t datalen, RIL_Token t) {
RIL_UNUSED_PARM(datalen);
int err = -1, mode = 0;
int serviceClass = ((int *)data)[0];
int response[2] = {0, 0};
char cmd[32] = {0};
char *line;
ATLine *p_cur;
ATResponse *p_response = NULL;
if (serviceClass == 0) {
snprintf(cmd, sizeof(cmd), "AT+CCWA=1,2");
} else {
snprintf(cmd, sizeof(cmd), "AT+CCWA=1,2,%d", serviceClass);
}
err = at_send_command_multiline(cmd, "+CCWA:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
for (p_cur = p_response->p_intermediates; p_cur != NULL;
p_cur = p_cur->p_next) {
line = p_cur->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &mode);
if (err < 0) goto error;
err = at_tok_nextint(&line, &serviceClass);
if (err < 0) goto error;
response[0] = mode;
response[1] |= serviceClass;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, response, sizeof(response));
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void requestSetCallWaiting(void *data, size_t datalen, RIL_Token t) {
RIL_UNUSED_PARM(datalen);
ATResponse *p_response = NULL;
int err = -1;
char cmd[32] = {0};
int enable = ((int *)data)[0];
int serviceClass = ((int *)data)[1];
if (serviceClass == 0) {
snprintf(cmd, sizeof(cmd), "AT+CCWA=1,%d", enable);
} else {
snprintf(cmd, sizeof(cmd), "AT+CCWA=1,%d,%d", enable, serviceClass);
}
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestSetSuppServiceNotifications(void *data, size_t datalen,
RIL_Token t) {
RIL_UNUSED_PARM(datalen);
int err = 0;
ATResponse *p_response = NULL;
int mode = ((int *)data)[0];
char cmd[32] = {0};
snprintf(cmd, sizeof(cmd), "AT+CSSN=%d,%d", mode, mode);
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestChangeBarringPassword(char **data, size_t datalen, RIL_Token t) {
int err = -1;
int result;
char cmd[64] = {0};
ATResponse *p_response = NULL;
if (datalen != 3 * sizeof(char *) || data[0] == NULL || data[1] == NULL ||
data[2] == NULL || strlen(data[0]) == 0 || strlen(data[1]) == 0 ||
strlen(data[2]) == 0) {
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
return;
}
snprintf(cmd, sizeof(cmd), "AT+CPWD=\"%s\",\"%s\",\"%s\"", data[0], data[1],
data[2]);
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_PASSWORD_INCORRECT, NULL, 0);
at_response_free(p_response);
}
static void requestFacilityLock(int request, char **data,
size_t datalen, RIL_Token t) {
int err = -1;
int status = 0;
int serviceClass = 0;
int remainTimes = 10;
char cmd[128] = {0};
char *line = NULL;
ATLine *p_cur = NULL;
ATResponse *p_response = NULL;
RIL_Errno errnoType = RIL_E_GENERIC_FAILURE;
char *type = data[0];
if (datalen != 5 * sizeof(char *)) {
goto error;
}
if (data[0] == NULL || data[1] == NULL ||
(data[2] == NULL && request == RIL_REQUEST_SET_FACILITY_LOCK) ||
strlen(data[0]) == 0 || strlen(data[1]) == 0 ||
(request == RIL_REQUEST_SET_FACILITY_LOCK && strlen(data[2]) == 0 )) {
errnoType = RIL_E_INVALID_ARGUMENTS;
RLOGE("FacilityLock invalid arguments");
goto error;
}
serviceClass = atoi(data[3]);
if (serviceClass == 0) {
snprintf(cmd, sizeof(cmd), "AT+CLCK=\"%s\",%c,\"%s\"", data[0], *data[1],
data[2]);
} else {
snprintf(cmd, sizeof(cmd), "AT+CLCK=\"%s\",%c,\"%s\",%s", data[0],
*data[1], data[2], data[3]);
}
if (*data[1] == '2') { // query status
err = at_send_command_multiline(cmd, "+CLCK: ", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &status);
if (err < 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &status, sizeof(int));
at_response_free(p_response);
return;
} else { // unlock/lock this facility
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
errnoType = RIL_E_PASSWORD_INCORRECT;
goto error;
}
errnoType = RIL_E_SUCCESS;
}
error:
if (!strcmp(data[0], "SC")) {
remainTimes = getSimlockRemainTimes("SIM PIN");
} else if (!strcmp(data[0], "FD")) {
remainTimes = getSimlockRemainTimes("SIM PIN2");
} else {
remainTimes = 1;
}
RIL_onRequestComplete(t, errnoType, &remainTimes, sizeof(remainTimes));
at_response_free(p_response);
}
static void requestSetSmscAddress(void *data, size_t datalen, RIL_Token t)
{
ATResponse *p_response = NULL;
char cmd[64] = {0};
int err = -1;
if (getSIMStatus() != SIM_READY) {
RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0);
return;
}
if (data == NULL || strlen(data) == 0) {
RLOGE("SET_SMSC_ADDRESS invalid address: %s", (char *)data);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
return;
}
snprintf(cmd, sizeof(cmd), "AT+CSCA=%s,%d", (char *)data, (int)datalen);
err = at_send_command_singleline(cmd, "+CSCA:", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestGetSmscAddress(void *data, size_t datalen, RIL_Token t)
{
RIL_UNUSED_PARM(data);
RIL_UNUSED_PARM(datalen);
ATResponse *p_response = NULL;
int err = -1;
char *decidata = NULL;
err = at_send_command_singleline( "AT+CSCA?", "+CSCA:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
char *line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &decidata);
if (err < 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, decidata, strlen(decidata) + 1);
at_response_free(p_response);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
at_response_free(p_response);
}
static void setGsmBroadcastConfigData(int from, int to, int id, int outStrSize, char *outStr) {
if (from < 0 || from > 0xffff || to < 0 || to > 0xffff) {
RLOGE("setGsmBroadcastConfig data is invalid, [%d, %d]", from, to);
return;
}
if (id != 0) {
strlcat(outStr, ",", outStrSize);
}
int len = strlen(outStr);
if (from == to) {
snprintf(outStr + len, outStrSize - len, "%d", from);
} else {
snprintf(outStr + len, outStrSize - len, "%d-%d", from, to);
}
}
static void requestSetSmsBroadcastConfig(void *data, size_t datalen,
RIL_Token t) {
int i = 0;
int count = datalen / sizeof(RIL_GSM_BroadcastSmsConfigInfo *);
int size = count * 16;
char cmd[256] = {0};
char *channel = (char *)alloca(size);
char *languageId = (char *)alloca(size);
ATResponse *p_response = NULL;
RIL_GSM_BroadcastSmsConfigInfo **pGsmBci =
(RIL_GSM_BroadcastSmsConfigInfo **)data;
RIL_GSM_BroadcastSmsConfigInfo gsmBci = {0};
memset(channel, 0, size);
memset(languageId, 0, size);
RLOGD("requestSetGsmBroadcastConfig %zu, count %d", datalen, count);
for (i = 0; i < count; i++) {
gsmBci = *(pGsmBci[i]);
setGsmBroadcastConfigData(gsmBci.fromServiceId, gsmBci.toServiceId, i,
size, channel);
setGsmBroadcastConfigData(gsmBci.fromCodeScheme, gsmBci.toCodeScheme, i,
size, languageId);
}
snprintf(cmd, sizeof(cmd), "AT+CSCB=%d,\"%s\",\"%s\"",
(*pGsmBci[0]).selected ? 0 : 1, channel, languageId);
int err = at_send_command_singleline( cmd, "+CSCB:", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestGetSmsBroadcastConfig(void *data, size_t datalen,
RIL_Token t) {
RIL_UNUSED_PARM(data);
RIL_UNUSED_PARM(datalen);
ATResponse *p_response = NULL;
int err = -1, mode, commas = 0, i = 0;
char *line = NULL;
char *serviceIds = NULL, *codeSchemes = NULL, *p = NULL;
char *serviceId = NULL, *codeScheme = NULL;
err = at_send_command_singleline("AT+CSCB?", "+CSCB:", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextint(&line, &mode);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &serviceIds);
if (err < 0) goto error;
err = at_tok_nextstr(&line, &codeSchemes);
if (err < 0) goto error;
for (p = serviceIds; *p != '\0'; p++) {
if (*p == ',') {
commas++;
}
}
RIL_GSM_BroadcastSmsConfigInfo **pGsmBci =
(RIL_GSM_BroadcastSmsConfigInfo **)alloca((commas + 1) *
sizeof(RIL_GSM_BroadcastSmsConfigInfo *));
memset(pGsmBci, 0, (commas + 1) * sizeof(RIL_GSM_BroadcastSmsConfigInfo *));
for (i = 0; i < commas + 1; i++) {
pGsmBci[i] = (RIL_GSM_BroadcastSmsConfigInfo *)alloca(
sizeof(RIL_GSM_BroadcastSmsConfigInfo));
memset(pGsmBci[i], 0, sizeof(RIL_GSM_BroadcastSmsConfigInfo));
err = at_tok_nextstr(&serviceIds, &serviceId);
if (err < 0) goto error;
pGsmBci[i]->toServiceId = pGsmBci[i]->fromServiceId = 0;
if (strstr(serviceId, "-")) {
sscanf(serviceId,"%d-%d", &pGsmBci[i]->fromServiceId,
&pGsmBci[i]->toServiceId);
}
err = at_tok_nextstr(&codeSchemes, &codeScheme);
if (err < 0) goto error;
pGsmBci[i]->toCodeScheme = pGsmBci[i]->fromCodeScheme = 0;
if (strstr(codeScheme, "-")) {
sscanf(codeScheme, "%d-%d", &pGsmBci[i]->fromCodeScheme,
&pGsmBci[i]->toCodeScheme);
}
pGsmBci[i]->selected = (mode == 0 ? false : true);
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, pGsmBci,
(commas + 1) * sizeof(RIL_GSM_BroadcastSmsConfigInfo *));
at_response_free(p_response);
return;
error:
at_response_free(p_response);
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
/**
* <AcT>: integer type; access technology selected
* 0 GSM
* 1 GSM Compact
* 2 UTRAN
* 3 GSM w/EGPRS (see NOTE 1)
* 4 UTRAN w/HSDPA (see NOTE 2)
* 5 UTRAN w/HSUPA (see NOTE 2)
* 6 UTRAN w/HSDPA and HSUPA (see NOTE 2)
* 7 E-UTRAN
* 8 EC-GSM-IoT (A/Gb mode) (see NOTE 3)
* 9 E-UTRAN (NB-S1 mode) (see NOTE 4)
* 10 E-UTRA connected to a 5GCN (see NOTE 5)
* 11 NR connected to a 5GCN (see NOTE 5)
* 12 NG-RAN
* 13 E-UTRA-NR dual connectivity (see NOTE 6)
*/
int mapRadioAccessNetworkToTech(RIL_RadioAccessNetworks network) {
switch (network) {
case GERAN: // GSM EDGE
return 3;
case UTRAN:
return 6;
case EUTRAN:
return 7;
case NGRAN:
return 11;
default:
return 7; // LTE
}
}
static void requestSetNetworlSelectionManual(void *data, RIL_Token t) {
int err = -1;
char cmd[64] = {0};
ATResponse *p_response = NULL;
RIL_NetworkOperator *operator = (RIL_NetworkOperator *)data;
if (operator->act != UNKNOWN) {
snprintf(cmd, sizeof(cmd), "AT+COPS=1,2,\"%s\"", operator->operatorNumeric);
} else {
snprintf(cmd, sizeof(cmd), "AT+COPS=1,2,\"%s\",%d",
operator->operatorNumeric, operator->act);
}
err = at_send_command(cmd, &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
at_response_free(p_response);
return;
error:
if (p_response != NULL &&
!strcmp(p_response->finalResponse, "+CME ERROR: 30")) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
at_response_free(p_response);
}
static void requestStkServiceIsRunning(RIL_Token t)
{
int err = -1;
ATResponse *p_response = NULL;
s_stkServiceRunning = true;
if (NULL != s_stkUnsolResponse) {
RIL_onUnsolicitedResponse(RIL_UNSOL_STK_PROACTIVE_COMMAND,
s_stkUnsolResponse, strlen(s_stkUnsolResponse) + 1);
free(s_stkUnsolResponse);
s_stkUnsolResponse = NULL;
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
return;
}
err = at_send_command_singleline("AT+CUSATD?", "+CUSATD:", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestStkSendEnvelope(void *data, RIL_Token t)
{
int ret = -1, err = -1;
char cmd[128] = {0};
ATResponse *p_response = NULL;
if (data == NULL || strlen((char *)data) == 0) {
RLOGE("STK sendEnvelope data is invalid");
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
return;
}
snprintf(cmd, sizeof(cmd), "AT+CUSATE=\"%s\"", (char *)data);
err = at_send_command_singleline(cmd, "+CUSATE:", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
// type of alpha data is 85, such as 850C546F6F6C6B6974204D656E75
char *p = strstr(p_response->p_intermediates->line, "85");
if (p != NULL) {
char alphaStrHexLen[3] = {0};
char alphaStr[1024] = {0};
uint8_t *alphaBytes = NULL;
int len = 0;
p = p + strlen("85");
strncpy(alphaStrHexLen, p, 2);
len = strtoul(alphaStrHexLen, NULL, 16);
strncpy(alphaStr, p + 2, len * 2);
alphaBytes = convertHexStringToBytes(alphaStr, strlen(alphaStr));
RIL_onUnsolicitedResponse(RIL_UNSOL_STK_CC_ALPHA_NOTIFY, alphaBytes,
strlen((char *)alphaBytes));
free(alphaBytes);
}
}
at_response_free(p_response);
}
static void requestStksendTerminalResponse(void *data, RIL_Token t)
{
int ret = -1, err = -1;
char cmd[128] = {0};
ATResponse *p_response = NULL;
if (data == NULL || strlen((char *)data) == 0) {
RLOGE("STK sendTerminalResponse data is invalid");
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
return;
}
snprintf(cmd, sizeof(cmd), "AT+CUSATT=\"%s\"", (char *)data);
err = at_send_command_singleline( cmd, "+CUSATT:", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
}
static void requestEccDial(void *data, RIL_Token t) {
char cmd[64] = {0};
const char *clir = NULL;
int err = -1;
RIL_EmergencyDial *p_eccDial = (RIL_EmergencyDial *)data;
switch (p_eccDial->dialInfo.clir) {
case 0: /* subscription default */
clir = "";
break;
case 1: /* invocation */
clir = "I";
break;
case 2: /* suppression */
clir = "i";
break;
default:
break;
}
if (p_eccDial->routing == ROUTING_MERGENCY ||
p_eccDial->routing == ROUTING_UNKNOWN) {
if (p_eccDial->categories == CATEGORY_UNSPECIFIED) {
snprintf(cmd, sizeof(cmd), "ATD%s@,#%s;", p_eccDial->dialInfo.address, clir);
} else {
snprintf(cmd, sizeof(cmd), "ATD%s@%d,#%s;", p_eccDial->dialInfo.address,
p_eccDial->categories, clir);
}
} else { // ROUTING_NORMAL
snprintf(cmd, sizeof(cmd), "ATD%s%s;", p_eccDial->dialInfo.address, clir);
}
err = at_send_command(cmd, NULL);
if (err != 0) goto error;
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
return;
error:
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
static void requestStartKeepalive(RIL_Token t) {
RIL_KeepaliveStatus resp;
resp.sessionHandle = s_session_handle++;
resp.code = KEEPALIVE_ACTIVE;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &resp, sizeof(resp));
}
void getConfigSlotStatus(RIL_SimSlotStatus_V1_2 *pSimSlotStatus) {
if (pSimSlotStatus == NULL) {
return;
}
if (getSIMStatus() == SIM_ABSENT) {
pSimSlotStatus->base.cardState = RIL_CARDSTATE_ABSENT;
} else {
pSimSlotStatus->base.cardState = RIL_CARDSTATE_PRESENT;
}
// TODO: slot state is always active now
pSimSlotStatus->base.slotState = SLOT_STATE_ACTIVE;
if (pSimSlotStatus->base.cardState != RIL_CARDSTATE_ABSENT) {
pSimSlotStatus->base.atr = "";
pSimSlotStatus->base.iccid = (char *)calloc(64, sizeof(char));
getIccId(pSimSlotStatus->base.iccid, 64);
}
pSimSlotStatus->base.logicalSlotId = 0;
pSimSlotStatus->eid = "";
}
void sendUnsolNetworkScanResult() {
RIL_NetworkScanResult scanr;
memset(&scanr, 0, sizeof(scanr));
scanr.status = COMPLETE;
scanr.error = RIL_E_SUCCESS;
scanr.network_infos = NULL;
scanr.network_infos_length = 0;
RIL_onUnsolicitedResponse(RIL_UNSOL_NETWORK_SCAN_RESULT, &scanr, sizeof(scanr));
}
void onIccSlotStatus(RIL_Token t) {
RIL_SimSlotStatus_V1_2 *pSimSlotStatusList =
(RIL_SimSlotStatus_V1_2 *)calloc(SIM_COUNT, sizeof(RIL_SimSlotStatus_V1_2));
getConfigSlotStatus(pSimSlotStatusList);
if (t == NULL) {
RIL_onUnsolicitedResponse(RIL_UNSOL_CONFIG_ICC_SLOT_STATUS, pSimSlotStatusList,
SIM_COUNT * sizeof(RIL_SimSlotStatus_V1_2));
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, pSimSlotStatusList,
SIM_COUNT * sizeof(RIL_SimSlotStatus_V1_2));
}
if (pSimSlotStatusList != NULL) {
free(pSimSlotStatusList->base.iccid);
free(pSimSlotStatusList);
}
}
/*** Callback methods from the RIL library to us ***/
/**
* Call from RIL to us to make a RIL_REQUEST
*
* Must be completed with a call to RIL_onRequestComplete()
*
* RIL_onRequestComplete() may be called from any thread, before or after
* this function returns.
*
* Because onRequest function could be called from multiple different thread,
* we must ensure that the underlying at_send_command_* function
* is atomic.
*/
static void
onRequest (int request, void *data, size_t datalen, RIL_Token t)
{
ATResponse *p_response;
int err;
RLOGD("onRequest: %s, sState: %d", requestToString(request), sState);
/* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS
* when RADIO_STATE_UNAVAILABLE.
*/
if (sState == RADIO_STATE_UNAVAILABLE
&& request != RIL_REQUEST_GET_SIM_STATUS
) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
return;
}
/* Ignore all non-power requests when RADIO_STATE_OFF
* (except RIL_REQUEST_GET_SIM_STATUS)
*/
if (sState == RADIO_STATE_OFF) {
switch(request) {
case RIL_REQUEST_BASEBAND_VERSION:
case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE:
case RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE:
case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE:
case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE:
case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE:
case RIL_REQUEST_CDMA_SUBSCRIPTION:
case RIL_REQUEST_DEVICE_IDENTITY:
case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE:
case RIL_REQUEST_GET_ACTIVITY_INFO:
case RIL_REQUEST_GET_CARRIER_RESTRICTIONS:
case RIL_REQUEST_GET_CURRENT_CALLS:
case RIL_REQUEST_GET_IMEI:
case RIL_REQUEST_GET_MUTE:
case RIL_REQUEST_SET_MUTE:
case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS:
case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE:
case RIL_REQUEST_GET_RADIO_CAPABILITY:
case RIL_REQUEST_GET_SIM_STATUS:
case RIL_REQUEST_NV_RESET_CONFIG:
case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE:
case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:
case RIL_REQUEST_QUERY_TTY_MODE:
case RIL_REQUEST_RADIO_POWER:
case RIL_REQUEST_SET_BAND_MODE:
case RIL_REQUEST_SET_CARRIER_RESTRICTIONS:
case RIL_REQUEST_SET_LOCATION_UPDATES:
case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE:
case RIL_REQUEST_SET_TTY_MODE:
case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE:
case RIL_REQUEST_STOP_LCE:
case RIL_REQUEST_VOICE_RADIO_TECH:
case RIL_REQUEST_SCREEN_STATE:
// Process all the above, even though the radio is off
break;
default:
// For all others, say NOT_AVAILABLE because the radio is off
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
return;
}
}
switch (request) {
case RIL_REQUEST_GET_SIM_STATUS: {
RIL_CardStatus_v1_5 *p_card_status;
char *p_buffer;
int buffer_size;
int result = getCardStatus(&p_card_status);
if (result == RIL_E_SUCCESS) {
p_buffer = (char *)p_card_status;
buffer_size = sizeof(*p_card_status);
} else {
p_buffer = NULL;
buffer_size = 0;
}
RIL_onRequestComplete(t, result, p_buffer, buffer_size);
freeCardStatus(p_card_status);
break;
}
case RIL_REQUEST_GET_CURRENT_CALLS:
requestGetCurrentCalls(data, datalen, t);
break;
case RIL_REQUEST_DIAL:
requestDial(data, datalen, t);
break;
case RIL_REQUEST_HANGUP:
requestHangup(data, datalen, t);
break;
case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:
case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:
case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:
case RIL_REQUEST_CONFERENCE:
case RIL_REQUEST_UDUB:
requestCallSelection(data, datalen, t, request);
break;
case RIL_REQUEST_ANSWER:
at_send_command("ATA", NULL);
#ifdef WORKAROUND_ERRONEOUS_ANSWER
s_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */
if (getSIMStatus() != SIM_READY) {
RIL_onRequestComplete(t, RIL_E_MODEM_ERR, NULL, 0);
} else {
// Success or failure is ignored by the upper layer here.
// It will call GET_CURRENT_CALLS and determine success that way.
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
break;
case RIL_REQUEST_SEPARATE_CONNECTION:
{
char cmd[12];
int party = ((int*)data)[0];
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
return;
}
// Make sure that party is in a valid range.
// (Note: The Telephony middle layer imposes a range of 1 to 7.
// It's sufficient for us to just make sure it's single digit.)
if (party > 0 && party < 10) {
sprintf(cmd, "AT+CHLD=2%d", party);
at_send_command(cmd, NULL);
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
}
break;
case RIL_REQUEST_SIGNAL_STRENGTH:
requestSignalStrength(data, datalen, t);
break;
case RIL_REQUEST_VOICE_REGISTRATION_STATE:
case RIL_REQUEST_DATA_REGISTRATION_STATE:
requestRegistrationState(request, data, datalen, t);
break;
case RIL_REQUEST_OPERATOR:
requestOperator(data, datalen, t);
break;
case RIL_REQUEST_RADIO_POWER:
requestRadioPower(data, datalen, t);
break;
case RIL_REQUEST_DTMF: {
char c = ((char *)data)[0];
char *cmd;
asprintf(&cmd, "AT+VTS=%c", (int)c);
at_send_command(cmd, NULL);
free(cmd);
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
}
case RIL_REQUEST_SEND_SMS:
case RIL_REQUEST_SEND_SMS_EXPECT_MORE:
requestSendSMS(data, datalen, t);
break;
case RIL_REQUEST_CDMA_SEND_SMS:
requestCdmaSendSMS(data, datalen, t);
break;
case RIL_REQUEST_IMS_SEND_SMS:
requestImsSendSMS(data, datalen, t);
break;
case RIL_REQUEST_SIM_OPEN_CHANNEL:
requestSimOpenChannel(data, datalen, t);
break;
case RIL_REQUEST_SIM_CLOSE_CHANNEL:
requestSimCloseChannel(data, datalen, t);
break;
case RIL_REQUEST_SIM_TRANSMIT_APDU_CHANNEL:
requestSimTransmitApduChannel(data, datalen, t);
break;
case RIL_REQUEST_SIM_AUTHENTICATION: {
RIL_SimAuthentication *sim_auth = (RIL_SimAuthentication *)data;
if ((sim_auth->authContext == AUTH_CONTEXT_EAP_SIM ||
sim_auth->authContext == AUTH_CONTEXT_EAP_AKA) &&
sim_auth->authData != NULL) {
requestSimAuthentication(sim_auth->authContext, sim_auth->authData, t);
} else {
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
}
break;
}
case RIL_REQUEST_SIM_TRANSMIT_APDU_BASIC:
requestTransmitApduBasic(data, datalen, t);
break;
case RIL_REQUEST_SETUP_DATA_CALL:
requestSetupDataCall(data, datalen, t);
break;
case RIL_REQUEST_DEACTIVATE_DATA_CALL:
requestDeactivateDataCall(data, t);
break;
case RIL_REQUEST_SMS_ACKNOWLEDGE:
requestSMSAcknowledge(data, datalen, t);
break;
case RIL_REQUEST_GET_IMSI:
p_response = NULL;
err = at_send_command_numeric("AT+CIMI", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS,
p_response->p_intermediates->line, sizeof(char *));
}
at_response_free(p_response);
break;
case RIL_REQUEST_GET_IMEI:
p_response = NULL;
err = at_send_command_numeric("AT+CGSN", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS,
p_response->p_intermediates->line, sizeof(char *));
}
at_response_free(p_response);
break;
case RIL_REQUEST_SIM_IO:
requestSIM_IO(data,datalen,t);
break;
case RIL_REQUEST_SEND_USSD:
requestSendUSSD(data, datalen, t);
break;
case RIL_REQUEST_CANCEL_USSD:
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
break;
}
p_response = NULL;
err = at_send_command_numeric("AT+CUSD=2", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS,
p_response->p_intermediates->line, sizeof(char *));
}
at_response_free(p_response);
break;
case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
break;
}
p_response = NULL;
err = at_send_command("AT+COPS=0", &p_response);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
break;
case RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL:
requestSetNetworlSelectionManual(data, t);
break;
case RIL_REQUEST_DATA_CALL_LIST:
requestDataCallList(data, datalen, t);
break;
case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:
requestQueryNetworkSelectionMode(data, datalen, t);
break;
case RIL_REQUEST_OEM_HOOK_RAW:
// echo back data
RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);
break;
case RIL_REQUEST_OEM_HOOK_STRINGS: {
int i;
const char ** cur;
RLOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);
for (i = (datalen / sizeof (char *)), cur = (const char **)data ;
i > 0 ; cur++, i --) {
RLOGD("> '%s'", *cur);
}
// echo back strings
RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);
break;
}
case RIL_REQUEST_WRITE_SMS_TO_SIM:
requestWriteSmsToSim(data, datalen, t);
break;
case RIL_REQUEST_DELETE_SMS_ON_SIM: {
char * cmd;
p_response = NULL;
asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]);
err = at_send_command(cmd, &p_response);
free(cmd);
if (err < 0 || p_response->success == 0) {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
at_response_free(p_response);
break;
}
case RIL_REQUEST_ENTER_SIM_PIN:
case RIL_REQUEST_ENTER_SIM_PIN2:
requestEnterSimPin(request, data, datalen, t);
break;
case RIL_REQUEST_ENTER_SIM_PUK:
case RIL_REQUEST_ENTER_SIM_PUK2:
case RIL_REQUEST_CHANGE_SIM_PIN:
requestChangeSimPin(request, data, datalen, t);
break;
case RIL_REQUEST_CHANGE_SIM_PIN2:
requestChangeSimPin2(data, datalen, t);
break;
case RIL_REQUEST_IMS_REGISTRATION_STATE: {
int reply[2];
//0==unregistered, 1==registered
reply[0] = s_ims_registered;
//to be used when changed to include service supporated info
//reply[1] = s_ims_services;
// FORMAT_3GPP(1) vs FORMAT_3GPP2(2);
reply[1] = s_ims_format;
RLOGD("IMS_REGISTRATION=%d, format=%d ",
reply[0], reply[1]);
if (reply[1] != -1) {
RIL_onRequestComplete(t, RIL_E_SUCCESS, reply, sizeof(reply));
} else {
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
}
break;
}
case RIL_REQUEST_VOICE_RADIO_TECH:
{
int tech = techFromModemType(TECH(sMdmInfo));
if (tech < 0 )
RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
else
RIL_onRequestComplete(t, RIL_E_SUCCESS, &tech, sizeof(tech));
}
break;
case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE:
requestSetPreferredNetworkType(request, data, datalen, t);
break;
case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE:
requestGetPreferredNetworkType(request, data, datalen, t);
break;
case RIL_REQUEST_GET_CELL_INFO_LIST:
requestGetCellInfoList(data, datalen, t);
break;
case RIL_REQUEST_GET_CELL_INFO_LIST_1_6:
requestGetCellInfoList_1_6(data, datalen, t);
break;
case RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE:
requestSetCellInfoListRate(data, datalen, t);
break;
case RIL_REQUEST_GET_HARDWARE_CONFIG:
requestGetHardwareConfig(data, datalen, t);
break;
case RIL_REQUEST_SHUTDOWN:
requestShutdown(t);
break;
case RIL_REQUEST_QUERY_TTY_MODE:
requestGetTtyMode(data, datalen, t);
break;
case RIL_REQUEST_GET_RADIO_CAPABILITY:
requestGetRadioCapability(data, datalen, t);
break;
case RIL_REQUEST_SET_RADIO_CAPABILITY:
requestSetRadioCapability(data, datalen, t);
break;
case RIL_REQUEST_GET_MUTE:
requestGetMute(data, datalen, t);
break;
case RIL_REQUEST_SET_MUTE:
requestSetMute(data, datalen, t);
break;
case RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE: {
int size = 5;
int response[20] = {0};
for (int i = 1; i <= size; i++) {
response[i] = i - 1;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS, response, (size + 1) * sizeof(int));
break;
}
case RIL_REQUEST_SET_INITIAL_ATTACH_APN:
case RIL_REQUEST_ALLOW_DATA:
case RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION:
case RIL_REQUEST_SET_BAND_MODE:
case RIL_REQUEST_SET_CARRIER_RESTRICTIONS:
case RIL_REQUEST_GET_NEIGHBORING_CELL_IDS:
case RIL_REQUEST_SET_LOCATION_UPDATES:
case RIL_REQUEST_SET_TTY_MODE:
case RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_NV_RESET_CONFIG:
requestNvResetConfig(data, datalen, t);
break;
case RIL_REQUEST_BASEBAND_VERSION:
requestCdmaBaseBandVersion(request, data, datalen, t);
break;
case RIL_REQUEST_DEVICE_IDENTITY:
requestDeviceIdentity(request, data, datalen, t);
break;
case RIL_REQUEST_CDMA_SUBSCRIPTION:
requestCdmaSubscription(request, data, datalen, t);
break;
case RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE:
requestCdmaGetSubscriptionSource(request, data, datalen, t);
break;
case RIL_REQUEST_START_LCE:
case RIL_REQUEST_STOP_LCE:
case RIL_REQUEST_PULL_LCEDATA:
if (getSIMStatus() == SIM_ABSENT) {
RIL_onRequestComplete(t, RIL_E_SIM_ABSENT, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_LCE_NOT_SUPPORTED, NULL, 0);
}
break;
case RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE:
if (TECH_BIT(sMdmInfo) == MDM_CDMA) {
requestCdmaGetRoamingPreference(request, data, datalen, t);
} else {
RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);
}
break;
case RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE:
if (TECH_BIT(sMdmInfo) == MDM_CDMA) {
requestCdmaSetSubscriptionSource(request, data, datalen, t);
} else {
// VTS tests expect us to silently do nothing
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
break;
case RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE:
if (TECH_BIT(sMdmInfo) == MDM_CDMA) {
requestCdmaSetRoamingPreference(request, data, datalen, t);
} else {
// VTS tests expect us to silently do nothing
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
break;
case RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE:
if (TECH_BIT(sMdmInfo) == MDM_CDMA) {
requestExitEmergencyMode(data, datalen, t);
} else {
// VTS tests expect us to silently do nothing
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
break;
case RIL_REQUEST_GET_ACTIVITY_INFO:
requestGetActivityInfo(data, datalen, t);
break;
case RIL_REQUEST_SCREEN_STATE:
requestScreenState(data, t);
break;
case RIL_REQUEST_SET_DATA_PROFILE:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_QUERY_CALL_FORWARD_STATUS:
requestQueryCallForward(data, datalen, t);
break;
case RIL_REQUEST_SET_CALL_FORWARD:
requestSetCallForward(data, datalen, t);
break;
case RIL_REQUEST_QUERY_CLIP:
requestQueryClip(data, datalen, t);
break;
case RIL_REQUEST_GET_CLIR:
requestQueryClir(data, datalen, t);
break;
case RIL_REQUEST_SET_CLIR:
requestSetClir(data, datalen, t);
break;
case RIL_REQUEST_QUERY_CALL_WAITING:
requestQueryCallWaiting(data, datalen, t);
break;
case RIL_REQUEST_SET_CALL_WAITING:
requestSetCallWaiting(data, datalen, t);
break;
case RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION:
requestSetSuppServiceNotifications(data, datalen, t);
break;
case RIL_REQUEST_CHANGE_BARRING_PASSWORD:
requestChangeBarringPassword(data, datalen, t);
break;
case RIL_REQUEST_QUERY_FACILITY_LOCK: {
char *lockData[4];
lockData[0] = ((char **)data)[0];
lockData[1] = "2";
lockData[2] = ((char **)data)[1];
lockData[3] = ((char **)data)[2];
requestFacilityLock(request, lockData, datalen + sizeof(char *), t);
break;
}
case RIL_REQUEST_SET_FACILITY_LOCK:
requestFacilityLock(request, data, datalen, t);
break;
case RIL_REQUEST_GET_SMSC_ADDRESS:
requestGetSmscAddress(data, datalen, t);
break;
case RIL_REQUEST_SET_SMSC_ADDRESS:
requestSetSmscAddress(data, datalen, t);
break;
case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:
requestSetSmsBroadcastConfig(data, datalen, t);
break;
case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:
requestGetSmsBroadcastConfig(data, datalen, t);
break;
case RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING:
requestStkServiceIsRunning(t);
break;
case RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND:
requestStkSendEnvelope(data, t);
break;
case RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE:
requestStksendTerminalResponse(data, t);
break;
// New requests after P.
case RIL_REQUEST_START_NETWORK_SCAN:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
// send unsol network scan results after a short while
RIL_requestTimedCallback (sendUnsolNetworkScanResult, NULL, &TIMEVAL_SIMPOLL);
break;
case RIL_REQUEST_GET_MODEM_STACK_STATUS:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_ENABLE_MODEM:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_EMERGENCY_DIAL:
requestEccDial(data, t);
break;
case RIL_REQUEST_SET_SIM_CARD_POWER:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE_BITMAP:
requestSetPreferredNetworkType(request, data, datalen, t);
break;
case RIL_REQUEST_SET_ALLOWED_NETWORK_TYPES_BITMAP:
requestSetPreferredNetworkType(request, data, datalen, t);
break;
case RIL_REQUEST_GET_ALLOWED_NETWORK_TYPES_BITMAP:
requestGetPreferredNetworkType(request, data, datalen, t);
case RIL_REQUEST_ENABLE_NR_DUAL_CONNECTIVITY:
if (data == NULL || datalen != sizeof(int)) {
RIL_onRequestComplete(t, RIL_E_INTERNAL_ERR, NULL, 0);
break;
}
int nrDualConnectivityState = *(int *)(data);
isNrDualConnectivityEnabled = (nrDualConnectivityState == 1) ? true : false;
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_IS_NR_DUAL_CONNECTIVITY_ENABLED:
RIL_onRequestComplete(t, RIL_E_SUCCESS, &isNrDualConnectivityEnabled,
sizeof(isNrDualConnectivityEnabled));
break;
case RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE_BITMAP:
requestGetPreferredNetworkType(request, data, datalen, t);
break;
case RIL_REQUEST_SET_SYSTEM_SELECTION_CHANNELS:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_GET_SLICING_CONFIG:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_GET_CARRIER_RESTRICTIONS:
requestGetCarrierRestrictions(data, datalen, t);
// Radio config requests
case RIL_REQUEST_CONFIG_GET_SLOT_STATUS:
RIL_requestTimedCallback(onIccSlotStatus, (void *)t, NULL);
break;
case RIL_REQUEST_CONFIG_SET_SLOT_MAPPING:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_CONFIG_GET_PHONE_CAPABILITY: {
RIL_PhoneCapability *phoneCapability =
(RIL_PhoneCapability *)alloca(sizeof(RIL_PhoneCapability));
phoneCapability->maxActiveData = 1;
// DSDS is 1, and DSDA is 2, now only support DSDS
phoneCapability->maxActiveInternetData = 1;
// DSDA can support internet lingering
phoneCapability->isInternetLingeringSupported = false;
for (int num = 0; num < SIM_COUNT; num++) {
phoneCapability->logicalModemList[num].modemId = num;
}
RIL_onRequestComplete(t, RIL_E_SUCCESS,
phoneCapability, sizeof(RIL_PhoneCapability));
break;
}
case RIL_REQUEST_CONFIG_SET_MODEM_CONFIG: {
RIL_ModemConfig *mdConfig = (RIL_ModemConfig*)(data);
if (mdConfig == NULL || mdConfig->numOfLiveModems != 1) {
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
break;
}
case RIL_REQUEST_CONFIG_GET_MODEM_CONFIG: {
RIL_ModemConfig mdConfig;
mdConfig.numOfLiveModems = 1;
RIL_onRequestComplete(t, RIL_E_SUCCESS, &mdConfig, sizeof(RIL_ModemConfig));
break;
}
case RIL_REQUEST_CONFIG_SET_PREFER_DATA_MODEM: {
int *modemId = (int*)(data);
if (modemId == NULL || *modemId != 0) {
RIL_onRequestComplete(t, RIL_E_INVALID_ARGUMENTS, NULL, 0);
} else {
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
break;
}
case RIL_REQUEST_SET_SIGNAL_STRENGTH_REPORTING_CRITERIA:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_SET_LINK_CAPACITY_REPORTING_CRITERIA:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_ENABLE_UICC_APPLICATIONS: {
if (data == NULL || datalen != sizeof(int)) {
RIL_onRequestComplete(t, RIL_E_INTERNAL_ERR, NULL, 0);
break;
}
areUiccApplicationsEnabled = *(int *)(data);
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
}
case RIL_REQUEST_ARE_UICC_APPLICATIONS_ENABLED:
RIL_onRequestComplete(t, RIL_E_SUCCESS, &areUiccApplicationsEnabled,
sizeof(areUiccApplicationsEnabled));
break;
case RIL_REQUEST_CDMA_SEND_SMS_EXPECT_MORE:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_GET_BARRING_INFO:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_SET_DATA_THROTTLING:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_START_KEEPALIVE:
requestStartKeepalive(t);
break;
case RIL_REQUEST_STOP_KEEPALIVE:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
case RIL_REQUEST_SET_UNSOLICITED_RESPONSE_FILTER:
RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
break;
default:
RLOGD("Request not supported. Tech: %d",TECH(sMdmInfo));
RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);
break;
}
}
/**
* Synchronous call from the RIL to us to return current radio state.
* RADIO_STATE_UNAVAILABLE should be the initial state.
*/
static RIL_RadioState
currentState()
{
return sState;
}
/**
* Call from RIL to us to find out whether a specific request code
* is supported by this implementation.
*
* Return 1 for "supported" and 0 for "unsupported"
*/
static int
onSupports (int requestCode __unused)
{
//@@@ todo
return 1;
}
static void onCancel (RIL_Token t __unused)
{
//@@@todo
}
static const char * getVersion(void)
{
return "android reference-ril 1.0";
}
static void
setRadioTechnology(ModemInfo *mdm, int newtech)
{
RLOGD("setRadioTechnology(%d)", newtech);
int oldtech = TECH(mdm);
if (newtech != oldtech) {
RLOGD("Tech change (%d => %d)", oldtech, newtech);
TECH(mdm) = newtech;
if (techFromModemType(newtech) != techFromModemType(oldtech)) {
int tech = techFromModemType(TECH(sMdmInfo));
if (tech > 0 ) {
RIL_onUnsolicitedResponse(RIL_UNSOL_VOICE_RADIO_TECH_CHANGED,
&tech, sizeof(tech));
}
}
}
}
static void
setRadioState(RIL_RadioState newState)
{
RLOGD("setRadioState(%d)", newState);
RIL_RadioState oldState;
pthread_mutex_lock(&s_state_mutex);
oldState = sState;
if (s_closed > 0) {
// If we're closed, the only reasonable state is
// RADIO_STATE_UNAVAILABLE
// This is here because things on the main thread
// may attempt to change the radio state after the closed
// event happened in another thread
newState = RADIO_STATE_UNAVAILABLE;
}
if (sState != newState || s_closed > 0) {
sState = newState;
pthread_cond_broadcast (&s_state_cond);
}
pthread_mutex_unlock(&s_state_mutex);
/* do these outside of the mutex */
if (sState != oldState) {
RIL_onUnsolicitedResponse (RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED,
NULL, 0);
// Sim state can change as result of radio state change
RIL_onUnsolicitedResponse (RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED,
NULL, 0);
/* FIXME onSimReady() and onRadioPowerOn() cannot be called
* from the AT reader thread
* Currently, this doesn't happen, but if that changes then these
* will need to be dispatched on the request thread
*/
if (sState == RADIO_STATE_ON) {
onRadioPowerOn();
}
}
}
/** Returns RUIM_NOT_READY on error */
static SIM_Status
getRUIMStatus()
{
ATResponse *p_response = NULL;
int err;
int ret;
char *cpinLine;
char *cpinResult;
if (sState == RADIO_STATE_OFF || sState == RADIO_STATE_UNAVAILABLE) {
ret = SIM_NOT_READY;
goto done;
}
err = at_send_command_singleline("AT+CPIN?", "+CPIN:", &p_response);
if (err != 0) {
ret = SIM_NOT_READY;
goto done;
}
switch (at_get_cme_error(p_response)) {
case CME_SUCCESS:
break;
case CME_SIM_NOT_INSERTED:
ret = SIM_ABSENT;
goto done;
default:
ret = SIM_NOT_READY;
goto done;
}
/* CPIN? has succeeded, now look at the result */
cpinLine = p_response->p_intermediates->line;
err = at_tok_start (&cpinLine);
if (err < 0) {
ret = SIM_NOT_READY;
goto done;
}
err = at_tok_nextstr(&cpinLine, &cpinResult);
if (err < 0) {
ret = SIM_NOT_READY;
goto done;
}
if (0 == strcmp (cpinResult, "SIM PIN")) {
ret = SIM_PIN;
goto done;
} else if (0 == strcmp (cpinResult, "SIM PUK")) {
ret = SIM_PUK;
goto done;
} else if (0 == strcmp (cpinResult, "PH-NET PIN")) {
return SIM_NETWORK_PERSONALIZATION;
} else if (0 != strcmp (cpinResult, "READY")) {
/* we're treating unsupported lock types as "sim absent" */
ret = SIM_ABSENT;
goto done;
}
at_response_free(p_response);
p_response = NULL;
cpinResult = NULL;
ret = SIM_READY;
done:
at_response_free(p_response);
return ret;
}
/** Returns SIM_NOT_READY on error */
static SIM_Status
getSIMStatus()
{
ATResponse *p_response = NULL;
int err;
int ret;
char *cpinLine;
char *cpinResult;
RLOGD("getSIMStatus(). sState: %d",sState);
err = at_send_command_singleline("AT+CPIN?", "+CPIN:", &p_response);
if (err != 0) {
ret = SIM_NOT_READY;
goto done;
}
switch (at_get_cme_error(p_response)) {
case CME_SUCCESS:
break;
case CME_SIM_NOT_INSERTED:
ret = SIM_ABSENT;
goto done;
default:
ret = SIM_NOT_READY;
goto done;
}
/* CPIN? has succeeded, now look at the result */
cpinLine = p_response->p_intermediates->line;
err = at_tok_start (&cpinLine);
if (err < 0) {
ret = SIM_NOT_READY;
goto done;
}
err = at_tok_nextstr(&cpinLine, &cpinResult);
if (err < 0) {
ret = SIM_NOT_READY;
goto done;
}
if (0 == strcmp (cpinResult, "SIM PIN")) {
ret = SIM_PIN;
goto done;
} else if (0 == strcmp (cpinResult, "SIM PUK")) {
ret = SIM_PUK;
goto done;
} else if (0 == strcmp (cpinResult, "PH-NET PIN")) {
return SIM_NETWORK_PERSONALIZATION;
} else if (0 != strcmp (cpinResult, "READY")) {
/* we're treating unsupported lock types as "sim absent" */
ret = SIM_ABSENT;
goto done;
}
at_response_free(p_response);
p_response = NULL;
cpinResult = NULL;
ret = (sState == RADIO_STATE_ON) ? SIM_READY : SIM_NOT_READY;
done:
at_response_free(p_response);
return ret;
}
static void getIccId(char *iccid, int size) {
int err = 0;
ATResponse *p_response = NULL;
if (iccid == NULL) {
RLOGE("iccid buffer is null");
return;
}
err = at_send_command_numeric("AT+CICCID", &p_response);
if (err < 0 || p_response->success == 0) {
goto error;
}
snprintf(iccid, size, "%s", p_response->p_intermediates->line);
error:
at_response_free(p_response);
}
/**
* Get the current card status.
*
* This must be freed using freeCardStatus.
* @return: On success returns RIL_E_SUCCESS
*/
static int getCardStatus(RIL_CardStatus_v1_5 **pp_card_status) {
static RIL_AppStatus app_status_array[] = {
// SIM_ABSENT = 0
{ RIL_APPTYPE_UNKNOWN, RIL_APPSTATE_UNKNOWN, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// SIM_NOT_READY = 1
{ RIL_APPTYPE_USIM, RIL_APPSTATE_DETECTED, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// SIM_READY = 2
{ RIL_APPTYPE_USIM, RIL_APPSTATE_READY, RIL_PERSOSUBSTATE_READY,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// SIM_PIN = 3
{ RIL_APPTYPE_USIM, RIL_APPSTATE_PIN, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN },
// SIM_PUK = 4
{ RIL_APPTYPE_USIM, RIL_APPSTATE_PUK, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_BLOCKED, RIL_PINSTATE_UNKNOWN },
// SIM_NETWORK_PERSONALIZATION = 5
{ RIL_APPTYPE_USIM, RIL_APPSTATE_SUBSCRIPTION_PERSO, RIL_PERSOSUBSTATE_SIM_NETWORK,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN },
// RUIM_ABSENT = 6
{ RIL_APPTYPE_UNKNOWN, RIL_APPSTATE_UNKNOWN, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// RUIM_NOT_READY = 7
{ RIL_APPTYPE_RUIM, RIL_APPSTATE_DETECTED, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// RUIM_READY = 8
{ RIL_APPTYPE_RUIM, RIL_APPSTATE_READY, RIL_PERSOSUBSTATE_READY,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// RUIM_PIN = 9
{ RIL_APPTYPE_RUIM, RIL_APPSTATE_PIN, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN },
// RUIM_PUK = 10
{ RIL_APPTYPE_RUIM, RIL_APPSTATE_PUK, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_BLOCKED, RIL_PINSTATE_UNKNOWN },
// RUIM_NETWORK_PERSONALIZATION = 11
{ RIL_APPTYPE_RUIM, RIL_APPSTATE_SUBSCRIPTION_PERSO, RIL_PERSOSUBSTATE_SIM_NETWORK,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN },
// ISIM_ABSENT = 12
{ RIL_APPTYPE_UNKNOWN, RIL_APPSTATE_UNKNOWN, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// ISIM_NOT_READY = 13
{ RIL_APPTYPE_ISIM, RIL_APPSTATE_DETECTED, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// ISIM_READY = 14
{ RIL_APPTYPE_ISIM, RIL_APPSTATE_READY, RIL_PERSOSUBSTATE_READY,
NULL, NULL, 0, RIL_PINSTATE_UNKNOWN, RIL_PINSTATE_UNKNOWN },
// ISIM_PIN = 15
{ RIL_APPTYPE_ISIM, RIL_APPSTATE_PIN, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN },
// ISIM_PUK = 16
{ RIL_APPTYPE_ISIM, RIL_APPSTATE_PUK, RIL_PERSOSUBSTATE_UNKNOWN,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_BLOCKED, RIL_PINSTATE_UNKNOWN },
// ISIM_NETWORK_PERSONALIZATION = 17
{ RIL_APPTYPE_ISIM, RIL_APPSTATE_SUBSCRIPTION_PERSO, RIL_PERSOSUBSTATE_SIM_NETWORK,
NULL, NULL, 0, RIL_PINSTATE_ENABLED_NOT_VERIFIED, RIL_PINSTATE_UNKNOWN },
};
RIL_CardState card_state;
int num_apps;
int sim_status = getSIMStatus();
if (sim_status == SIM_ABSENT) {
card_state = RIL_CARDSTATE_ABSENT;
num_apps = 0;
} else {
card_state = RIL_CARDSTATE_PRESENT;
num_apps = 3;
}
// Allocate and initialize base card status.
RIL_CardStatus_v1_5 *p_card_status = calloc(1, sizeof(RIL_CardStatus_v1_5));
p_card_status->base.base.base.card_state = card_state;
p_card_status->base.base.base.universal_pin_state = RIL_PINSTATE_UNKNOWN;
p_card_status->base.base.base.gsm_umts_subscription_app_index = -1;
p_card_status->base.base.base.cdma_subscription_app_index = -1;
p_card_status->base.base.base.ims_subscription_app_index = -1;
p_card_status->base.base.base.num_applications = num_apps;
p_card_status->base.base.physicalSlotId = 0;
p_card_status->base.base.atr = NULL;
p_card_status->base.base.iccid = NULL;
p_card_status->base.eid = "";
if (sim_status != SIM_ABSENT) {
p_card_status->base.base.iccid = (char *)calloc(64, sizeof(char));
getIccId(p_card_status->base.base.iccid, 64);
}
// Initialize application status
int i;
for (i = 0; i < RIL_CARD_MAX_APPS; i++) {
p_card_status->base.base.base.applications[i] = app_status_array[SIM_ABSENT];
}
RLOGD("enter getCardStatus module, num_apps= %d",num_apps);
// Pickup the appropriate application status
// that reflects sim_status for gsm.
if (num_apps != 0) {
p_card_status->base.base.base.num_applications = 3;
p_card_status->base.base.base.gsm_umts_subscription_app_index = 0;
p_card_status->base.base.base.cdma_subscription_app_index = 1;
p_card_status->base.base.base.ims_subscription_app_index = 2;
// Get the correct app status
p_card_status->base.base.base.applications[0] = app_status_array[sim_status];
p_card_status->base.base.base.applications[1] = app_status_array[sim_status + RUIM_ABSENT];
p_card_status->base.base.base.applications[2] = app_status_array[sim_status + ISIM_ABSENT];
}
*pp_card_status = p_card_status;
return RIL_E_SUCCESS;
}
/**
* Free the card status returned by getCardStatus
*/
static void freeCardStatus(RIL_CardStatus_v1_5 *p_card_status) {
if (p_card_status == NULL) {
return;
}
free(p_card_status->base.base.iccid);
free(p_card_status);
}
/**
* SIM ready means any commands that access the SIM will work, including:
* AT+CPIN, AT+CSMS, AT+CNMI, AT+CRSM
* (all SMS-related commands)
*/
static void pollSIMState (void *param __unused)
{
ATResponse *p_response;
int ret;
if (sState != RADIO_STATE_UNAVAILABLE) {
// no longer valid to poll
return;
}
switch(getSIMStatus()) {
case SIM_ABSENT:
case SIM_PIN:
case SIM_PUK:
case SIM_NETWORK_PERSONALIZATION:
default:
RLOGI("SIM ABSENT or LOCKED");
RIL_onUnsolicitedResponse(RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0);
return;
case SIM_NOT_READY:
RIL_requestTimedCallback (pollSIMState, NULL, &TIMEVAL_SIMPOLL);
return;
case SIM_READY:
RLOGI("SIM_READY");
onSIMReady();
RIL_onUnsolicitedResponse(RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, NULL, 0);
return;
}
}
/** returns 1 if on, 0 if off, and -1 on error */
static int isRadioOn()
{
ATResponse *p_response = NULL;
int err;
char *line;
char ret;
err = at_send_command_singleline("AT+CFUN?", "+CFUN:", &p_response);
if (err < 0 || p_response->success == 0) {
// assume radio is off
goto error;
}
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err < 0) goto error;
err = at_tok_nextbool(&line, &ret);
if (err < 0) goto error;
at_response_free(p_response);
return (int)ret;
error:
at_response_free(p_response);
return -1;
}
/**
* Parse the response generated by a +CTEC AT command
* The values read from the response are stored in current and preferred.
* Both current and preferred may be null. The corresponding value is ignored in that case.
*
* @return: -1 if some error occurs (or if the modem doesn't understand the +CTEC command)
* 1 if the response includes the current technology only
* 0 if the response includes both current technology and preferred mode
*/
int parse_technology_response( const char *response, int *current, int32_t *preferred )
{
int err;
char *line, *p;
int ct;
int32_t pt = 0;
char *str_pt;
line = p = strdup(response);
RLOGD("Response: %s", line);
err = at_tok_start(&p);
if (err || !at_tok_hasmore(&p)) {
RLOGD("err: %d. p: %s", err, p);
free(line);
return -1;
}
err = at_tok_nextint(&p, &ct);
if (err) {
free(line);
return -1;
}
if (current) *current = ct;
RLOGD("line remaining after int: %s", p);
err = at_tok_nexthexint(&p, &pt);
if (err) {
free(line);
return 1;
}
if (preferred) {
*preferred = pt;
}
free(line);
return 0;
}
int query_supported_techs( ModemInfo *mdm __unused, int *supported )
{
ATResponse *p_response;
int err, val, techs = 0;
char *tok;
char *line;
RLOGD("query_supported_techs");
err = at_send_command_singleline("AT+CTEC=?", "+CTEC:", &p_response);
if (err || !p_response->success)
goto error;
line = p_response->p_intermediates->line;
err = at_tok_start(&line);
if (err || !at_tok_hasmore(&line))
goto error;
while (!at_tok_nextint(&line, &val)) {
techs |= ( 1 << val );
}
if (supported) *supported = techs;
return 0;
error:
at_response_free(p_response);
return -1;
}
/**
* query_ctec. Send the +CTEC AT command to the modem to query the current
* and preferred modes. It leaves values in the addresses pointed to by
* current and preferred. If any of those pointers are NULL, the corresponding value
* is ignored, but the return value will still reflect if retrieving and parsing of the
* values succeeded.
*
* @mdm Currently unused
* @current A pointer to store the current mode returned by the modem. May be null.
* @preferred A pointer to store the preferred mode returned by the modem. May be null.
* @return -1 on error (or failure to parse)
* 1 if only the current mode was returned by modem (or failed to parse preferred)
* 0 if both current and preferred were returned correctly
*/
int query_ctec(ModemInfo *mdm __unused, int *current, int32_t *preferred)
{
ATResponse *response = NULL;
int err;
int res;
RLOGD("query_ctec. current: %p, preferred: %p", current, preferred);
err = at_send_command_singleline("AT+CTEC?", "+CTEC:", &response);
if (!err && response->success) {
res = parse_technology_response(response->p_intermediates->line, current, preferred);
at_response_free(response);
return res;
}
RLOGE("Error executing command: %d. response: %p. status: %d", err, response, response? response->success : -1);
at_response_free(response);
return -1;
}
int is_multimode_modem(ModemInfo *mdm)
{
ATResponse *response;
int err;
char *line;
int tech;
int32_t preferred;
if (query_ctec(mdm, &tech, &preferred) == 0) {
mdm->currentTech = tech;
mdm->preferredNetworkMode = preferred;
if (query_supported_techs(mdm, &mdm->supportedTechs)) {
return 0;
}
return 1;
}
return 0;
}
/**
* Find out if our modem is GSM, CDMA or both (Multimode)
*/
static void probeForModemMode(ModemInfo *info)
{
ATResponse *response;
int err;
assert (info);
// Currently, our only known multimode modem is qemu's android modem,
// which implements the AT+CTEC command to query and set mode.
// Try that first
if (is_multimode_modem(info)) {
RLOGI("Found Multimode Modem. Supported techs mask: %8.8x. Current tech: %d",
info->supportedTechs, info->currentTech);
return;
}
/* Being here means that our modem is not multimode */
info->isMultimode = 0;
/* CDMA Modems implement the AT+WNAM command */
err = at_send_command_singleline("AT+WNAM","+WNAM:", &response);
if (!err && response->success) {
at_response_free(response);
// TODO: find out if we really support EvDo
info->supportedTechs = MDM_CDMA | MDM_EVDO;
info->currentTech = MDM_CDMA;
RLOGI("Found CDMA Modem");
return;
}
if (!err) at_response_free(response);
// TODO: find out if modem really supports WCDMA/LTE
info->supportedTechs = MDM_GSM | MDM_WCDMA | MDM_LTE;
info->currentTech = MDM_GSM;
RLOGI("Found GSM Modem");
}
/**
* Initialize everything that can be configured while we're still in
* AT+CFUN=0
*/
static void initializeCallback(void *param __unused)
{
ATResponse *p_response = NULL;
int err;
setRadioState (RADIO_STATE_OFF);
at_handshake();
probeForModemMode(sMdmInfo);
/* note: we don't check errors here. Everything important will
be handled in onATTimeout and onATReaderClosed */
/* atchannel is tolerant of echo but it must */
/* have verbose result codes */
at_send_command("ATE0Q0V1", NULL);
/* No auto-answer */
at_send_command("ATS0=0", NULL);
/* Extended errors */
at_send_command("AT+CMEE=1", NULL);
/* Network registration events */
err = at_send_command("AT+CREG=2", &p_response);
/* some handsets -- in tethered mode -- don't support CREG=2 */
if (err < 0 || p_response->success == 0) {
at_send_command("AT+CREG=1", NULL);
}
at_response_free(p_response);
/* GPRS registration events */
at_send_command("AT+CGREG=1", NULL);
/* Call Waiting notifications */
at_send_command("AT+CCWA=1", NULL);
/* Alternating voice/data off */
at_send_command("AT+CMOD=0", NULL);
/* Not muted */
at_send_command("AT+CMUT=0", NULL);
/* +CSSU unsolicited supp service notifications */
at_send_command("AT+CSSN=0,1", NULL);
/* no connected line identification */
at_send_command("AT+COLP=0", NULL);
/* HEX character set */
at_send_command("AT+CSCS=\"HEX\"", NULL);
/* USSD unsolicited */
at_send_command("AT+CUSD=1", NULL);
/* Enable +CGEV GPRS event notifications, but don't buffer */
at_send_command("AT+CGEREP=1,0", NULL);
/* SMS PDU mode */
at_send_command("AT+CMGF=0", NULL);
#ifdef USE_TI_COMMANDS
at_send_command("AT%CPI=3", NULL);
/* TI specific -- notifications when SMS is ready (currently ignored) */
at_send_command("AT%CSTAT=1", NULL);
#endif /* USE_TI_COMMANDS */
/* assume radio is off on error */
if (isRadioOn() > 0) {
setRadioState (RADIO_STATE_ON);
}
}
static void waitForClose()
{
pthread_mutex_lock(&s_state_mutex);
while (s_closed == 0) {
pthread_cond_wait(&s_state_cond, &s_state_mutex);
}
pthread_mutex_unlock(&s_state_mutex);
}
static void sendUnsolImsNetworkStateChanged()
{
#if 0 // to be used when unsol is changed to return data.
int reply[2];
reply[0] = s_ims_registered;
reply[1] = s_ims_services;
reply[1] = s_ims_format;
#endif
RIL_onUnsolicitedResponse(RIL_UNSOL_RESPONSE_IMS_NETWORK_STATE_CHANGED,
NULL, 0);
}
static int parseProactiveCmdInd(char *response) {
int typePos = 0;
int cmdType = 0;
char tempStr[3] = {0};
char *end = NULL;
StkUnsolEvent ret = STK_UNSOL_EVENT_UNKNOWN;
if (response == NULL || strlen(response) < 3) {
return ret;
}
if (response[2] <= '7') {
typePos = 10;
} else {
typePos = 12;
}
if ((int)strlen(response) < typePos + 1) {
return ret;
}
memcpy(tempStr, &(response[typePos]), 2);
cmdType = strtoul(tempStr, &end, 16);
cmdType = 0xFF & cmdType;
RLOGD("cmdType: %d",cmdType);
switch (cmdType) {
case STK_RUN_AT:
case STK_SEND_DTMF:
case STK_SEND_SMS:
case STK_SEND_SS:
case STK_SEND_USSD:
case STK_PLAY_TONE:
case STK_CLOSE_CHANNEL:
ret = STK_UNSOL_EVENT_NOTIFY;
break;
case STK_REFRESH:
if (strncasecmp(&(response[typePos + 2]), "04", 2) == 0) { // SIM_RESET
RLOGD("Type of Refresh is SIM_RESET");
s_stkServiceRunning = false;
ret = STK_UNSOL_PROACTIVE_CMD;
} else {
ret = STK_UNSOL_EVENT_NOTIFY;
}
break;
default:
ret = STK_UNSOL_PROACTIVE_CMD;
break;
}
if (getSIMStatus() == SIM_ABSENT && s_stkServiceRunning) {
s_stkServiceRunning = false;
}
if (false == s_stkServiceRunning) {
ret = STK_UNSOL_EVENT_UNKNOWN;
s_stkUnsolResponse = (char *)calloc((strlen(response) + 1), sizeof(char));
snprintf(s_stkUnsolResponse, strlen(response) + 1, "%s", response);
RLOGD("STK service is not running [%s]", s_stkUnsolResponse);
}
return ret;
}
/**
* Called by atchannel when an unsolicited line appears
* This is called on atchannel's reader thread. AT commands may
* not be issued here
*/
static void onUnsolicited (const char *s, const char *sms_pdu)
{
char *line = NULL, *p;
int err;
/* Ignore unsolicited responses until we're initialized.
* This is OK because the RIL library will poll for initial state
*/
if (sState == RADIO_STATE_UNAVAILABLE) {
return;
}
#define CGFPCCFG "%CGFPCCFG:"
if (strStartsWith(s, CGFPCCFG)) {
/* cuttlefish/goldfish specific
*/
char *response;
line = p = strdup(s);
RLOGD("got CGFPCCFG line %s and %s\n", s, p);
err = at_tok_start(&line);
if(err) {
RLOGE("invalid CGFPCCFG line %s and %s\n", s, p);
}
#define kSize 5
int configs[kSize];
for (int i=0; i < kSize && !err; ++i) {
err = at_tok_nextint(&line, &(configs[i]));
RLOGD("got i %d, val = %d", i, configs[i]);
}
if(err) {
RLOGE("invalid CGFPCCFG line %s and %s\n", s, p);
} else {
int modem_tech = configs[2];
configs[2] = techFromModemType(modem_tech);
RIL_onUnsolicitedResponse (
RIL_UNSOL_PHYSICAL_CHANNEL_CONFIGS,
configs, kSize);
}
free(p);
} else if (strStartsWith(s, "%CTZV:")) {
/* TI specific -- NITZ time */
char *response;
line = p = strdup(s);
at_tok_start(&p);
err = at_tok_nextstr(&p, &response);
if (err != 0) {
RLOGE("invalid NITZ line %s\n", s);
} else {
RIL_onUnsolicitedResponse (
RIL_UNSOL_NITZ_TIME_RECEIVED,
response, strlen(response) + 1);
}
free(line);
} else if (strStartsWith(s,"+CRING:")
|| strStartsWith(s,"RING")
|| strStartsWith(s,"NO CARRIER")
|| strStartsWith(s,"+CCWA")
) {
RIL_onUnsolicitedResponse (
RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED,
NULL, 0);
#ifdef WORKAROUND_FAKE_CGEV
RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL); //TODO use new function
#endif /* WORKAROUND_FAKE_CGEV */
} else if (strStartsWith(s,"+CREG:")
|| strStartsWith(s,"+CGREG:")
) {
RIL_onUnsolicitedResponse (
RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED,
NULL, 0);
#ifdef WORKAROUND_FAKE_CGEV
RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL);
#endif /* WORKAROUND_FAKE_CGEV */
} else if (strStartsWith(s, "+CMT:")) {
RIL_onUnsolicitedResponse (
RIL_UNSOL_RESPONSE_NEW_SMS,
sms_pdu, strlen(sms_pdu));
} else if (strStartsWith(s, "+CDS:")) {
RIL_onUnsolicitedResponse (
RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT,
sms_pdu, strlen(sms_pdu));
} else if (strStartsWith(s, "+CGEV:")) {
/* Really, we can ignore NW CLASS and ME CLASS events here,
* but right now we don't since extranous
* RIL_UNSOL_DATA_CALL_LIST_CHANGED calls are tolerated
*/
/* can't issue AT commands here -- call on main thread */
RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL);
#ifdef WORKAROUND_FAKE_CGEV
} else if (strStartsWith(s, "+CME ERROR: 150")) {
RIL_requestTimedCallback (onDataCallListChanged, NULL, NULL);
#endif /* WORKAROUND_FAKE_CGEV */
} else if (strStartsWith(s, "+CTEC: ")) {
int tech, mask;
switch (parse_technology_response(s, &tech, NULL))
{
case -1: // no argument could be parsed.
RLOGE("invalid CTEC line %s\n", s);
break;
case 1: // current mode correctly parsed
case 0: // preferred mode correctly parsed
mask = 1 << tech;
if (mask != MDM_GSM && mask != MDM_CDMA &&
mask != MDM_WCDMA && mask != MDM_LTE) {
RLOGE("Unknown technology %d\n", tech);
} else {
setRadioTechnology(sMdmInfo, tech);
}
break;
}
} else if (strStartsWith(s, "+CCSS: ")) {
int source = 0;
line = p = strdup(s);
if (!line) {
RLOGE("+CCSS: Unable to allocate memory");
return;
}
if (at_tok_start(&p) < 0) {
free(line);
return;
}
if (at_tok_nextint(&p, &source) < 0) {
RLOGE("invalid +CCSS response: %s", line);
free(line);
return;
}
SSOURCE(sMdmInfo) = source;
RIL_onUnsolicitedResponse(RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED,
&source, sizeof(source));
free(line);
} else if (strStartsWith(s, "+WSOS: ")) {
char state = 0;
int unsol;
line = p = strdup(s);
if (!line) {
RLOGE("+WSOS: Unable to allocate memory");
return;
}
if (at_tok_start(&p) < 0) {
free(line);
return;
}
if (at_tok_nextbool(&p, &state) < 0) {
RLOGE("invalid +WSOS response: %s", line);
free(line);
return;
}
free(line);
unsol = state ?
RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE : RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE;
RIL_onUnsolicitedResponse(unsol, NULL, 0);
} else if (strStartsWith(s, "+WPRL: ")) {
int version = -1;
line = p = strdup(s);
if (!line) {
RLOGE("+WPRL: Unable to allocate memory");
return;
}
if (at_tok_start(&p) < 0) {
RLOGE("invalid +WPRL response: %s", s);
free(line);
return;
}
if (at_tok_nextint(&p, &version) < 0) {
RLOGE("invalid +WPRL response: %s", s);
free(line);
return;
}
free(line);
RIL_onUnsolicitedResponse(RIL_UNSOL_CDMA_PRL_CHANGED, &version, sizeof(version));
} else if (strStartsWith(s, "+CFUN: 0")) {
setRadioState(RADIO_STATE_OFF);
} else if (strStartsWith(s, "+CSQ: ")) {
// Accept a response that is at least v6, and up to v12
int minNumOfElements=sizeof(RIL_SignalStrength_v6)/sizeof(int);
int maxNumOfElements=sizeof(RIL_SignalStrength_v12)/sizeof(int);
int response[maxNumOfElements];
memset(response, 0, sizeof(response));
line = p = strdup(s);
at_tok_start(&p);
for (int count = 0; count < maxNumOfElements; count++) {
err = at_tok_nextint(&p, &(response[count]));
if (err < 0 && count < minNumOfElements) {
free(line);
return;
}
}
RIL_onUnsolicitedResponse(RIL_UNSOL_SIGNAL_STRENGTH,
response, sizeof(response));
free(line);
} else if (strStartsWith(s, "+CUSATEND")) { // session end
RIL_onUnsolicitedResponse(RIL_UNSOL_STK_SESSION_END, NULL, 0);
} else if (strStartsWith(s, "+CUSATP:")) {
line = p = strdup(s);
if (!line) {
RLOGE("+CUSATP: Unable to allocate memory");
return;
}
if (at_tok_start(&p) < 0) {
RLOGE("invalid +CUSATP response: %s", s);
free(line);
return;
}
char *response = NULL;
if (at_tok_nextstr(&p, &response) < 0) {
RLOGE("%s fail", s);
free(line);
return;
}
StkUnsolEvent ret = parseProactiveCmdInd(response);
if (ret == STK_UNSOL_EVENT_NOTIFY) {
RIL_onUnsolicitedResponse(RIL_UNSOL_STK_EVENT_NOTIFY, response,
strlen(response) + 1);
} else if (ret == STK_UNSOL_PROACTIVE_CMD) {
RIL_onUnsolicitedResponse(RIL_UNSOL_STK_PROACTIVE_COMMAND, response,
strlen(response) + 1);
}
free(line);
}
}
/* Called on command or reader thread */
static void onATReaderClosed()
{
RLOGI("AT channel closed\n");
at_close();
s_closed = 1;
setRadioState (RADIO_STATE_UNAVAILABLE);
}
/* Called on command thread */
static void onATTimeout()
{
RLOGI("AT channel timeout; closing\n");
at_close();
s_closed = 1;
/* FIXME cause a radio reset here */
setRadioState (RADIO_STATE_UNAVAILABLE);
}
/* Called to pass hardware configuration information to telephony
* framework.
*/
static void setHardwareConfiguration(int num, RIL_HardwareConfig *cfg)
{
RIL_onUnsolicitedResponse(RIL_UNSOL_HARDWARE_CONFIG_CHANGED, cfg, num*sizeof(*cfg));
}
static void usage(char *s __unused)
{
#ifdef RIL_SHLIB
fprintf(stderr, "reference-ril requires: -p <tcp port> or -d /dev/tty_device\n");
#else
fprintf(stderr, "usage: %s [-p <tcp port>] [-d /dev/tty_device]\n", s);
exit(-1);
#endif
}
static void *
mainLoop(void *param __unused)
{
int fd;
int ret;
AT_DUMP("== ", "entering mainLoop()", -1 );
at_set_on_reader_closed(onATReaderClosed);
at_set_on_timeout(onATTimeout);
for (;;) {
fd = -1;
while (fd < 0) {
if (isInEmulator()) {
fd = qemu_open_modem_port();
RLOGD("opening qemu_modem_port %d!", fd);
} else if (s_port > 0) {
fd = socket_network_client("localhost", s_port, SOCK_STREAM);
} else if (s_modem_simulator_port >= 0) {
fd = socket(AF_VSOCK, SOCK_STREAM, 0);
if (fd < 0) {
RLOGD("Can't create AF_VSOCK socket!");
continue;
}
struct sockaddr_vm sa;
memset(&sa, 0, sizeof(struct sockaddr_vm));
sa.svm_family = AF_VSOCK;
sa.svm_cid = VMADDR_CID_HOST;
sa.svm_port = s_modem_simulator_port;
if (connect(fd, (struct sockaddr *)(&sa), sizeof(sa)) < 0) {
RLOGD("Can't connect to port:%ud, errno: %s",
s_modem_simulator_port, strerror(errno));
close(fd);
fd = -1;
continue;
}
} else if (s_device_socket) {
fd = socket_local_client(s_device_path,
ANDROID_SOCKET_NAMESPACE_FILESYSTEM,
SOCK_STREAM);
} else if (s_device_path != NULL) {
fd = open (s_device_path, O_RDWR);
if ( fd >= 0 && !memcmp( s_device_path, "/dev/ttyS", 9 ) ) {
/* disable echo on serial ports */
struct termios ios;
tcgetattr( fd, &ios );
ios.c_lflag = 0; /* disable ECHO, ICANON, etc... */
tcsetattr( fd, TCSANOW, &ios );
}
}
if (fd < 0) {
perror ("opening AT interface. retrying...");
sleep(10);
/* never returns */
}
}
s_closed = 0;
ret = at_open(fd, onUnsolicited);
if (ret < 0) {
RLOGE ("AT error %d on at_open\n", ret);
return 0;
}
RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);
// Give initializeCallback a chance to dispatched, since
// we don't presently have a cancellation mechanism
sleep(1);
waitForClose();
RLOGI("Re-opening after close");
}
}
#ifdef RIL_SHLIB
pthread_t s_tid_mainloop;
const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv)
{
int ret;
int fd = -1;
int opt;
pthread_attr_t attr;
s_rilenv = env;
RLOGD("RIL_Init");
while ( -1 != (opt = getopt(argc, argv, "p:d:s:c:m:"))) {
switch (opt) {
case 'p':
s_port = atoi(optarg);
if (s_port == 0) {
usage(argv[0]);
return NULL;
}
RLOGI("Opening loopback port %d\n", s_port);
break;
case 'd':
s_device_path = optarg;
RLOGI("Opening tty device %s\n", s_device_path);
break;
case 's':
s_device_path = optarg;
s_device_socket = 1;
RLOGI("Opening socket %s\n", s_device_path);
break;
case 'c':
RLOGI("Client id received %s\n", optarg);
break;
case 'm':
s_modem_simulator_port = strtoul(optarg, NULL, 10);
RLOGI("Opening modem simulator port %ud\n", s_modem_simulator_port);
break;
default:
usage(argv[0]);
return NULL;
}
}
if (s_port < 0 && s_device_path == NULL && !isInEmulator() &&
s_modem_simulator_port < 0) {
usage(argv[0]);
return NULL;
}
sMdmInfo = calloc(1, sizeof(ModemInfo));
if (!sMdmInfo) {
RLOGE("Unable to alloc memory for ModemInfo");
return NULL;
}
pthread_attr_init (&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
ret = pthread_create(&s_tid_mainloop, &attr, mainLoop, NULL);
if (ret < 0) {
RLOGE("pthread_create: %s:", strerror(errno));
return NULL;
}
return &s_callbacks;
}
#else /* RIL_SHLIB */
int main (int argc, char **argv)
{
int ret;
int fd = -1;
int opt;
while ( -1 != (opt = getopt(argc, argv, "p:d:"))) {
switch (opt) {
case 'p':
s_port = atoi(optarg);
if (s_port == 0) {
usage(argv[0]);
}
RLOGI("Opening loopback port %d\n", s_port);
break;
case 'd':
s_device_path = optarg;
RLOGI("Opening tty device %s\n", s_device_path);
break;
case 's':
s_device_path = optarg;
s_device_socket = 1;
RLOGI("Opening socket %s\n", s_device_path);
break;
default:
usage(argv[0]);
}
}
if (s_port < 0 && s_device_path == NULL && !isInEmulator()) {
usage(argv[0]);
}
RIL_register(&s_callbacks);
mainLoop(NULL);
return 0;
}
#endif /* RIL_SHLIB */