blob: 5ad996a9f61c019a7e0b300992d1d5e485b563d2 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Vibrator.h"
#include <glob.h>
#include <hardware/hardware.h>
#include <hardware/vibrator.h>
#include <log/log.h>
#include <stdio.h>
#include <utils/Trace.h>
#include <cinttypes>
#include <cmath>
#include <fstream>
#include <iostream>
#include <sstream>
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof((x)) / sizeof((x)[0]))
#endif
#ifdef LOG_TAG
#undef LOG_TAG
#define LOG_TAG std::getenv("HAPTIC_NAME")
#endif
namespace aidl {
namespace android {
namespace hardware {
namespace vibrator {
static constexpr uint8_t FF_CUSTOM_DATA_LEN = 2;
static constexpr uint16_t FF_CUSTOM_DATA_LEN_MAX_COMP = 2044; // (COMPOSE_SIZE_MAX + 1) * 8 + 4
static constexpr uint16_t FF_CUSTOM_DATA_LEN_MAX_PWLE = 2302;
static constexpr uint32_t WAVEFORM_DOUBLE_CLICK_SILENCE_MS = 100;
static constexpr uint32_t WAVEFORM_LONG_VIBRATION_THRESHOLD_MS = 50;
static constexpr uint8_t VOLTAGE_SCALE_MAX = 100;
static constexpr int8_t MAX_COLD_START_LATENCY_MS = 6; // I2C Transaction + DSP Return-From-Standby
static constexpr int8_t MAX_PAUSE_TIMING_ERROR_MS = 1; // ALERT Irq Handling
static constexpr uint32_t MAX_TIME_MS = UINT16_MAX;
static constexpr float SETTING_TIME_OVERHEAD = 26; // This time was combined by
// HAL set the effect to
// driver and the kernel
// executes the effect before
// chip play the effect
static constexpr auto ASYNC_COMPLETION_TIMEOUT = std::chrono::milliseconds(100);
static constexpr auto POLLING_TIMEOUT = 20;
static constexpr int32_t COMPOSE_DELAY_MAX_MS = 10000;
/* nsections is 8 bits. Need to preserve 1 section for the first delay before the first effect. */
static constexpr int32_t COMPOSE_SIZE_MAX = 254;
static constexpr int32_t COMPOSE_PWLE_SIZE_MAX_DEFAULT = 127;
// Measured resonant frequency, f0_measured, is represented by Q10.14 fixed
// point format on cs40l26 devices. The expression to calculate f0 is:
// f0 = f0_measured / 2^Q14_BIT_SHIFT
// See the LRA Calibration Support documentation for more details.
static constexpr int32_t Q14_BIT_SHIFT = 14;
// Measured Q factor, q_measured, is represented by Q8.16 fixed
// point format on cs40l26 devices. The expression to calculate q is:
// q = q_measured / 2^Q16_BIT_SHIFT
// See the LRA Calibration Support documentation for more details.
static constexpr int32_t Q16_BIT_SHIFT = 16;
static constexpr int32_t COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS = 16383;
static constexpr uint32_t WT_LEN_CALCD = 0x00800000;
static constexpr uint8_t PWLE_CHIRP_BIT = 0x8; // Dynamic/static frequency and voltage
static constexpr uint8_t PWLE_BRAKE_BIT = 0x4;
static constexpr uint8_t PWLE_AMP_REG_BIT = 0x2;
static constexpr float PWLE_LEVEL_MIN = 0.0;
static constexpr float PWLE_LEVEL_MAX = 1.0;
static constexpr float CS40L26_PWLE_LEVEL_MIX = -1.0;
static constexpr float CS40L26_PWLE_LEVEL_MAX = 0.9995118;
static constexpr float PWLE_FREQUENCY_RESOLUTION_HZ = 1.00;
static constexpr float PWLE_FREQUENCY_MIN_HZ = 1.00;
static constexpr float PWLE_FREQUENCY_MAX_HZ = 1000.00;
static constexpr float PWLE_BW_MAP_SIZE =
1 + ((PWLE_FREQUENCY_MAX_HZ - PWLE_FREQUENCY_MIN_HZ) / PWLE_FREQUENCY_RESOLUTION_HZ);
/*
* [15] Edge, 0:Falling, 1:Rising
* [14:12] GPI_NUM, 1:GPI1 (with CS40L26A, 1 is the only supported GPI)
* [8] BANK, 0:RAM, 1:R0M
* [7] USE_BUZZGEN, 0:Not buzzgen, 1:buzzgen
* [6:0] WAVEFORM_INDEX
* 0x9100 = 1001 0001 0000 0000: Rising + GPI1 + RAM + Not buzzgen
*/
static constexpr uint16_t GPIO_TRIGGER_CONFIG = 0x9100;
static uint16_t amplitudeToScale(float amplitude, float maximum) {
float ratio = 100; /* Unit: % */
if (maximum != 0)
ratio = amplitude / maximum * 100;
if (maximum == 0 || ratio > 100)
ratio = 100;
return std::round(ratio);
}
enum WaveformBankID : uint8_t {
RAM_WVFRM_BANK,
ROM_WVFRM_BANK,
OWT_WVFRM_BANK,
};
enum WaveformIndex : uint16_t {
/* Physical waveform */
WAVEFORM_LONG_VIBRATION_EFFECT_INDEX = 0,
WAVEFORM_RESERVED_INDEX_1 = 1,
WAVEFORM_CLICK_INDEX = 2,
WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX = 3,
WAVEFORM_THUD_INDEX = 4,
WAVEFORM_SPIN_INDEX = 5,
WAVEFORM_QUICK_RISE_INDEX = 6,
WAVEFORM_SLOW_RISE_INDEX = 7,
WAVEFORM_QUICK_FALL_INDEX = 8,
WAVEFORM_LIGHT_TICK_INDEX = 9,
WAVEFORM_LOW_TICK_INDEX = 10,
WAVEFORM_RESERVED_MFG_1,
WAVEFORM_RESERVED_MFG_2,
WAVEFORM_RESERVED_MFG_3,
WAVEFORM_MAX_PHYSICAL_INDEX,
/* OWT waveform */
WAVEFORM_COMPOSE = WAVEFORM_MAX_PHYSICAL_INDEX,
WAVEFORM_PWLE,
/*
* Refer to <linux/input.h>, the WAVEFORM_MAX_INDEX must not exceed 96.
* #define FF_GAIN 0x60 // 96 in decimal
* #define FF_MAX_EFFECTS FF_GAIN
*/
WAVEFORM_MAX_INDEX,
};
std::vector<CompositePrimitive> defaultSupportedPrimitives = {
ndk::enum_range<CompositePrimitive>().begin(), ndk::enum_range<CompositePrimitive>().end()};
enum vibe_state {
VIBE_STATE_STOPPED = 0,
VIBE_STATE_HAPTIC,
VIBE_STATE_ASP,
};
static int min(int x, int y) {
return x < y ? x : y;
}
static int floatToUint16(float input, uint16_t *output, float scale, float min, float max) {
if (input < min || input > max)
return -ERANGE;
*output = roundf(input * scale);
return 0;
}
struct dspmem_chunk {
uint8_t *head;
uint8_t *current;
uint8_t *max;
int bytes;
uint32_t cache;
int cachebits;
};
static dspmem_chunk *dspmem_chunk_create(void *data, int size) {
auto ch = new dspmem_chunk{
.head = reinterpret_cast<uint8_t *>(data),
.current = reinterpret_cast<uint8_t *>(data),
.max = reinterpret_cast<uint8_t *>(data) + size,
};
return ch;
}
static bool dspmem_chunk_end(struct dspmem_chunk *ch) {
return ch->current == ch->max;
}
static int dspmem_chunk_bytes(struct dspmem_chunk *ch) {
return ch->bytes;
}
static int dspmem_chunk_write(struct dspmem_chunk *ch, int nbits, uint32_t val) {
int nwrite, i;
nwrite = min(24 - ch->cachebits, nbits);
ch->cache <<= nwrite;
ch->cache |= val >> (nbits - nwrite);
ch->cachebits += nwrite;
nbits -= nwrite;
if (ch->cachebits == 24) {
if (dspmem_chunk_end(ch))
return -ENOSPC;
ch->cache &= 0xFFFFFF;
for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= 8)
*ch->current++ = (ch->cache & 0xFF000000) >> 24;
ch->bytes += sizeof(ch->cache);
ch->cachebits = 0;
}
if (nbits)
return dspmem_chunk_write(ch, nbits, val);
return 0;
}
static int dspmem_chunk_flush(struct dspmem_chunk *ch) {
if (!ch->cachebits)
return 0;
return dspmem_chunk_write(ch, 24 - ch->cachebits, 0);
}
Vibrator::Vibrator(std::unique_ptr<HwApi> hwApiDefault, std::unique_ptr<HwCal> hwCalDefault,
std::unique_ptr<HwApi> hwApiDual, std::unique_ptr<HwCal> hwCalDual,
std::unique_ptr<HwGPIO> hwgpio)
: mHwApiDef(std::move(hwApiDefault)),
mHwCalDef(std::move(hwCalDefault)),
mHwApiDual(std::move(hwApiDual)),
mHwCalDual(std::move(hwCalDual)),
mHwGPIO(std::move(hwgpio)),
mAsyncHandle(std::async([] {})) {
int32_t longFrequencyShift;
std::string caldata{8, '0'};
uint32_t calVer;
// ==================Single actuators and dual actuators checking =============================
if ((mHwApiDual != nullptr) && (mHwCalDual != nullptr))
mIsDual = true;
// ==================INPUT Devices== Base =================
const char *inputEventName = std::getenv("INPUT_EVENT_NAME");
const char *inputEventPathName = std::getenv("INPUT_EVENT_PATH");
if ((strstr(inputEventName, "cs40l26") != nullptr) ||
(strstr(inputEventName, "cs40l26_dual_input") != nullptr)) {
glob_t inputEventPaths;
int fd = -1;
int ret;
uint32_t val = 0;
char str[20] = {0x00};
for (uint8_t retry = 0; retry < 10; retry++) {
ret = glob(inputEventPathName, 0, nullptr, &inputEventPaths);
if (ret) {
ALOGE("Failed to get input event paths (%d): %s", errno, strerror(errno));
} else {
for (int i = 0; i < inputEventPaths.gl_pathc; i++) {
fd = TEMP_FAILURE_RETRY(open(inputEventPaths.gl_pathv[i], O_RDWR));
if (fd > 0) {
if (ioctl(fd, EVIOCGBIT(0, sizeof(val)), &val) > 0 &&
(val & (1 << EV_FF)) && ioctl(fd, EVIOCGNAME(sizeof(str)), &str) > 0 &&
strstr(str, inputEventName) != nullptr) {
mInputFd.reset(fd);
ALOGI("Control %s through %s", inputEventName,
inputEventPaths.gl_pathv[i]);
break;
}
close(fd);
}
}
}
if (ret == 0) {
globfree(&inputEventPaths);
}
if (mInputFd.ok()) {
break;
}
sleep(1);
ALOGW("Retry #%d to search in %zu input devices.", retry, inputEventPaths.gl_pathc);
}
if (!mInputFd.ok()) {
ALOGE("Failed to get an input event with name %s", inputEventName);
}
} else {
ALOGE("The input name %s is not cs40l26_input or cs40l26_dual_input", inputEventName);
}
// ==================INPUT Devices== Flip =================
if (mIsDual) {
const char *inputEventNameDual = std::getenv("INPUT_EVENT_NAME_DUAL");
if ((strstr(inputEventNameDual, "cs40l26_dual_input") != nullptr)) {
glob_t inputEventPaths;
int fd = -1;
int ret;
uint32_t val = 0;
char str[20] = {0x00};
for (uint8_t retry = 0; retry < 10; retry++) {
ret = glob(inputEventPathName, 0, nullptr, &inputEventPaths);
if (ret) {
ALOGE("Failed to get flip's input event paths (%d): %s", errno,
strerror(errno));
} else {
for (int i = 0; i < inputEventPaths.gl_pathc; i++) {
fd = TEMP_FAILURE_RETRY(open(inputEventPaths.gl_pathv[i], O_RDWR));
if (fd > 0) {
if (ioctl(fd, EVIOCGBIT(0, sizeof(val)), &val) > 0 &&
(val & (1 << EV_FF)) &&
ioctl(fd, EVIOCGNAME(sizeof(str)), &str) > 0 &&
strstr(str, inputEventNameDual) != nullptr) {
mInputFdDual.reset(fd);
ALOGI("Control %s through %s", inputEventNameDual,
inputEventPaths.gl_pathv[i]);
break;
}
close(fd);
}
}
}
if (ret == 0) {
globfree(&inputEventPaths);
}
if (mInputFdDual.ok()) {
break;
}
sleep(1);
ALOGW("Retry #%d to search in %zu input devices.", retry, inputEventPaths.gl_pathc);
}
if (!mInputFdDual.ok()) {
ALOGE("Failed to get an input event with name %s", inputEventNameDual);
}
ALOGE("HWAPI: %s", std::getenv("HWAPI_PATH_PREFIX"));
} else {
ALOGE("The input name %s is not cs40l26_dual_input", inputEventNameDual);
}
}
// ====================HAL internal effect table== Base ==================================
mFfEffects.resize(WAVEFORM_MAX_INDEX);
mEffectDurations.resize(WAVEFORM_MAX_INDEX);
mEffectDurations = {
1000, 100, 32, 1000, 300, 130, 150, 500, 100, 10, 12, 1000, 1000, 1000,
}; /* 11+3 waveforms. The duration must < UINT16_MAX */
uint8_t effectIndex;
for (effectIndex = 0; effectIndex < WAVEFORM_MAX_INDEX; effectIndex++) {
if (effectIndex < WAVEFORM_MAX_PHYSICAL_INDEX) {
/* Initialize physical waveforms. */
mFfEffects[effectIndex] = {
.type = FF_PERIODIC,
.id = -1,
.replay.length = static_cast<uint16_t>(mEffectDurations[effectIndex]),
.u.periodic.waveform = FF_CUSTOM,
.u.periodic.custom_data = new int16_t[2]{RAM_WVFRM_BANK, effectIndex},
.u.periodic.custom_len = FF_CUSTOM_DATA_LEN,
};
// Bypass the waveform update due to different input name
if ((strstr(inputEventName, "cs40l26") != nullptr) ||
(strstr(inputEventName, "cs40l26_dual_input") != nullptr)) {
if (!mHwApiDef->setFFEffect(
mInputFd, &mFfEffects[effectIndex],
static_cast<uint16_t>(mFfEffects[effectIndex].replay.length))) {
ALOGE("Failed upload effect %d (%d): %s", effectIndex, errno, strerror(errno));
}
}
if (mFfEffects[effectIndex].id != effectIndex) {
ALOGW("Unexpected effect index: %d -> %d", effectIndex, mFfEffects[effectIndex].id);
}
} else {
/* Initiate placeholders for OWT effects. */
mFfEffects[effectIndex] = {
.type = FF_PERIODIC,
.id = -1,
.replay.length = 0,
.u.periodic.waveform = FF_CUSTOM,
.u.periodic.custom_data = nullptr,
.u.periodic.custom_len = 0,
};
}
}
// ====================HAL internal effect table== Flip ==================================
if (mIsDual) {
mFfEffectsDual.resize(WAVEFORM_MAX_INDEX);
for (effectIndex = 0; effectIndex < WAVEFORM_MAX_INDEX; effectIndex++) {
if (effectIndex < WAVEFORM_MAX_PHYSICAL_INDEX) {
/* Initialize physical waveforms. */
mFfEffectsDual[effectIndex] = {
.type = FF_PERIODIC,
.id = -1,
.replay.length = static_cast<uint16_t>(mEffectDurations[effectIndex]),
.u.periodic.waveform = FF_CUSTOM,
.u.periodic.custom_data = new int16_t[2]{RAM_WVFRM_BANK, effectIndex},
.u.periodic.custom_len = FF_CUSTOM_DATA_LEN,
};
// Bypass the waveform update due to different input name
if ((strstr(inputEventName, "cs40l26") != nullptr) ||
(strstr(inputEventName, "cs40l26_dual_input") != nullptr)) {
if (!mHwApiDual->setFFEffect(
mInputFdDual, &mFfEffectsDual[effectIndex],
static_cast<uint16_t>(mFfEffectsDual[effectIndex].replay.length))) {
ALOGE("Failed upload flip's effect %d (%d): %s", effectIndex, errno,
strerror(errno));
}
}
if (mFfEffectsDual[effectIndex].id != effectIndex) {
ALOGW("Unexpected effect index: %d -> %d", effectIndex,
mFfEffectsDual[effectIndex].id);
}
} else {
/* Initiate placeholders for OWT effects. */
mFfEffectsDual[effectIndex] = {
.type = FF_PERIODIC,
.id = -1,
.replay.length = 0,
.u.periodic.waveform = FF_CUSTOM,
.u.periodic.custom_data = nullptr,
.u.periodic.custom_len = 0,
};
}
}
}
// ==============Calibration data checking======================================
if (mHwCalDef->getF0(&caldata)) {
mHwApiDef->setF0(caldata);
}
if (mHwCalDef->getRedc(&caldata)) {
mHwApiDef->setRedc(caldata);
}
if (mHwCalDef->getQ(&caldata)) {
mHwApiDef->setQ(caldata);
}
if (mHwCalDef->getF0SyncOffset(&mF0Offset)) {
ALOGD("Vibrator::Vibrator: F0 offset calculated from both base and flip calibration data: "
"%u",
mF0Offset);
} else {
mHwCalDef->getLongFrequencyShift(&longFrequencyShift);
if (longFrequencyShift > 0) {
mF0Offset = longFrequencyShift * std::pow(2, 14);
} else if (longFrequencyShift < 0) {
mF0Offset = std::pow(2, 24) - std::abs(longFrequencyShift) * std::pow(2, 14);
} else {
mF0Offset = 0;
}
ALOGD("Vibrator::Vibrator: F0 offset calculated from long shift frequency: %u", mF0Offset);
}
if (mIsDual) {
if (mHwCalDual->getF0(&caldata)) {
mHwApiDual->setF0(caldata);
}
if (mHwCalDual->getRedc(&caldata)) {
mHwApiDual->setRedc(caldata);
}
if (mHwCalDual->getQ(&caldata)) {
mHwApiDual->setQ(caldata);
}
if (mHwCalDual->getF0SyncOffset(&mF0OffsetDual)) {
ALOGD("Vibrator::Vibrator: Dual: F0 offset calculated from both base and flip "
"calibration data: "
"%u",
mF0OffsetDual);
}
}
mHwCalDef->getVersion(&calVer);
if (calVer == 2) {
mHwCalDef->getTickVolLevels(&(mTickEffectVol));
mHwCalDef->getClickVolLevels(&(mClickEffectVol));
mHwCalDef->getLongVolLevels(&(mLongEffectVol));
} else {
ALOGW("Unsupported calibration version! Using the default calibration value");
mHwCalDef->getTickVolLevels(&(mTickEffectVol));
mHwCalDef->getClickVolLevels(&(mClickEffectVol));
mHwCalDef->getLongVolLevels(&(mLongEffectVol));
}
// ================Project specific setting to driver===============================
mHwApiDef->setF0CompEnable(mHwCalDef->isF0CompEnabled());
mHwApiDef->setRedcCompEnable(mHwCalDef->isRedcCompEnabled());
mHwApiDef->setMinOnOffInterval(MIN_ON_OFF_INTERVAL_US);
if (mIsDual) {
mHwApiDual->setF0CompEnable(mHwCalDual->isF0CompEnabled());
mHwApiDual->setRedcCompEnable(mHwCalDual->isRedcCompEnabled());
mHwApiDual->setMinOnOffInterval(MIN_ON_OFF_INTERVAL_US);
}
// ===============Audio coupled haptics bool init ========
mIsUnderExternalControl = false;
// =============== Compose PWLE check =====================================
mIsChirpEnabled = mHwCalDef->isChirpEnabled();
mHwCalDef->getSupportedPrimitives(&mSupportedPrimitivesBits);
if (mSupportedPrimitivesBits > 0) {
for (auto e : defaultSupportedPrimitives) {
if (mSupportedPrimitivesBits & (1 << uint32_t(e))) {
mSupportedPrimitives.emplace_back(e);
}
}
} else {
for (auto e : defaultSupportedPrimitives) {
mSupportedPrimitivesBits |= (1 << uint32_t(e));
}
mSupportedPrimitives = defaultSupportedPrimitives;
}
mPrimitiveMaxScale = {1.0f, 0.95f, 0.75f, 0.9f, 1.0f, 1.0f, 1.0f, 0.75f, 0.75f};
mPrimitiveMinScale = {0.0f, 0.01f, 0.11f, 0.23f, 0.0f, 0.25f, 0.02f, 0.03f, 0.16f};
// ====== Get GPIO status and init it ================
mGPIOStatus = mHwGPIO->getGPIO();
if (!mGPIOStatus || !mHwGPIO->initGPIO()) {
ALOGE("Vibrator: GPIO initialization process error");
}
}
ndk::ScopedAStatus Vibrator::getCapabilities(int32_t *_aidl_return) {
ATRACE_NAME("Vibrator::getCapabilities");
int32_t ret = IVibrator::CAP_ON_CALLBACK | IVibrator::CAP_PERFORM_CALLBACK |
IVibrator::CAP_AMPLITUDE_CONTROL | IVibrator::CAP_GET_RESONANT_FREQUENCY |
IVibrator::CAP_GET_Q_FACTOR;
if (hasHapticAlsaDevice()) {
ret |= IVibrator::CAP_EXTERNAL_CONTROL;
} else {
ALOGE("No haptics ALSA device");
}
if (mHwApiDef->hasOwtFreeSpace()) {
ret |= IVibrator::CAP_COMPOSE_EFFECTS;
if (mIsChirpEnabled) {
ret |= IVibrator::CAP_FREQUENCY_CONTROL | IVibrator::CAP_COMPOSE_PWLE_EFFECTS;
}
}
*_aidl_return = ret;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::off() {
ATRACE_NAME("Vibrator::off");
bool ret{true};
const std::scoped_lock<std::mutex> lock(mActiveId_mutex);
if (mActiveId >= 0) {
ALOGD("Off: Stop the active effect: %d", mActiveId);
/* Stop the active effect. */
if (!mHwApiDef->setFFPlay(mInputFd, mActiveId, false)) {
ALOGE("Off: Failed to stop effect %d (%d): %s", mActiveId, errno, strerror(errno));
ret = false;
}
if (mIsDual && (!mHwApiDual->setFFPlay(mInputFdDual, mActiveId, false))) {
ALOGE("Off: Failed to stop flip's effect %d (%d): %s", mActiveId, errno,
strerror(errno));
ret = false;
}
if (!mHwGPIO->setGPIOOutput(false)) {
ALOGE("Off: Failed to reset GPIO(%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
} else {
ALOGD("Off: Vibrator is already off");
}
setGlobalAmplitude(false);
if (mF0Offset) {
mHwApiDef->setF0Offset(0);
if (mIsDual && mF0OffsetDual) {
mHwApiDual->setF0Offset(0);
}
}
if (ret) {
ALOGD("Off: Done.");
mActiveId = -1;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
ndk::ScopedAStatus Vibrator::on(int32_t timeoutMs,
const std::shared_ptr<IVibratorCallback> &callback) {
ATRACE_NAME("Vibrator::on");
ALOGD("Vibrator::on");
if (timeoutMs > MAX_TIME_MS) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
const uint16_t index = (timeoutMs < WAVEFORM_LONG_VIBRATION_THRESHOLD_MS)
? WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX
: WAVEFORM_LONG_VIBRATION_EFFECT_INDEX;
if (MAX_COLD_START_LATENCY_MS <= MAX_TIME_MS - timeoutMs) {
timeoutMs += MAX_COLD_START_LATENCY_MS;
}
setGlobalAmplitude(true);
if (mF0Offset) {
mHwApiDef->setF0Offset(mF0Offset);
if (mIsDual && mF0OffsetDual) {
mHwApiDual->setF0Offset(mF0OffsetDual);
}
}
return on(timeoutMs, index, nullptr /*ignored*/, callback);
}
ndk::ScopedAStatus Vibrator::perform(Effect effect, EffectStrength strength,
const std::shared_ptr<IVibratorCallback> &callback,
int32_t *_aidl_return) {
ATRACE_NAME("Vibrator::perform");
ALOGD("Vibrator::perform");
return performEffect(effect, strength, callback, _aidl_return);
}
ndk::ScopedAStatus Vibrator::getSupportedEffects(std::vector<Effect> *_aidl_return) {
*_aidl_return = {Effect::TEXTURE_TICK, Effect::TICK, Effect::CLICK, Effect::HEAVY_CLICK,
Effect::DOUBLE_CLICK};
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setAmplitude(float amplitude) {
ATRACE_NAME("Vibrator::setAmplitude");
if (amplitude <= 0.0f || amplitude > 1.0f) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
mLongEffectScale = amplitude;
if (!isUnderExternalControl()) {
return setGlobalAmplitude(true);
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::setExternalControl(bool enabled) {
ATRACE_NAME("Vibrator::setExternalControl");
setGlobalAmplitude(enabled);
if (mHasHapticAlsaDevice || mConfigHapticAlsaDeviceDone || hasHapticAlsaDevice()) {
if (!mHwApiDef->setHapticPcmAmp(&mHapticPcm, enabled, mCard, mDevice)) {
ALOGE("Failed to %s haptic pcm device: %d", (enabled ? "enable" : "disable"), mDevice);
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
} else {
ALOGE("No haptics ALSA device");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
mIsUnderExternalControl = enabled;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getCompositionDelayMax(int32_t *maxDelayMs) {
ATRACE_NAME("Vibrator::getCompositionDelayMax");
*maxDelayMs = COMPOSE_DELAY_MAX_MS;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getCompositionSizeMax(int32_t *maxSize) {
ATRACE_NAME("Vibrator::getCompositionSizeMax");
*maxSize = COMPOSE_SIZE_MAX;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getSupportedPrimitives(std::vector<CompositePrimitive> *supported) {
*supported = mSupportedPrimitives;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getPrimitiveDuration(CompositePrimitive primitive,
int32_t *durationMs) {
ndk::ScopedAStatus status;
uint32_t effectIndex;
if (primitive != CompositePrimitive::NOOP) {
status = getPrimitiveDetails(primitive, &effectIndex);
if (!status.isOk()) {
return status;
}
// Please check the overhead time detail in b/261841035
*durationMs = mEffectDurations[effectIndex] + SETTING_TIME_OVERHEAD;
} else {
*durationMs = 0;
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::compose(const std::vector<CompositeEffect> &composite,
const std::shared_ptr<IVibratorCallback> &callback) {
ATRACE_NAME("Vibrator::compose");
ALOGD("Vibrator::compose");
uint16_t size;
uint16_t nextEffectDelay;
uint16_t totalDuration = 0;
auto ch = dspmem_chunk_create(new uint8_t[FF_CUSTOM_DATA_LEN_MAX_COMP]{0x00},
FF_CUSTOM_DATA_LEN_MAX_COMP);
if (composite.size() > COMPOSE_SIZE_MAX || composite.empty()) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
/* Check if there is a wait before the first effect. */
nextEffectDelay = composite.front().delayMs;
totalDuration += nextEffectDelay;
if (nextEffectDelay > COMPOSE_DELAY_MAX_MS || nextEffectDelay < 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
} else if (nextEffectDelay > 0) {
size = composite.size() + 1;
} else {
size = composite.size();
}
dspmem_chunk_write(ch, 8, 0); /* Padding */
dspmem_chunk_write(ch, 8, (uint8_t)(0xFF & size)); /* nsections */
dspmem_chunk_write(ch, 8, 0); /* repeat */
uint8_t header_count = dspmem_chunk_bytes(ch);
/* Insert 1 section for a wait before the first effect. */
if (nextEffectDelay) {
dspmem_chunk_write(ch, 32, 0); /* amplitude, index, repeat & flags */
dspmem_chunk_write(ch, 16, (uint16_t)(0xFFFF & nextEffectDelay)); /* delay */
}
for (uint32_t i_curr = 0, i_next = 1; i_curr < composite.size(); i_curr++, i_next++) {
auto &e_curr = composite[i_curr];
uint32_t effectIndex = 0;
uint32_t effectVolLevel = 0;
float effectScale = e_curr.scale;
if (effectScale < 0.0f || effectScale > 1.0f) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (e_curr.primitive != CompositePrimitive::NOOP) {
ndk::ScopedAStatus status;
status = getPrimitiveDetails(e_curr.primitive, &effectIndex);
if (!status.isOk()) {
return status;
}
// Add a max and min threshold to prevent the device crash(overcurrent) or no
// feeling
if (effectScale > mPrimitiveMaxScale[static_cast<uint32_t>(e_curr.primitive)]) {
effectScale = mPrimitiveMaxScale[static_cast<uint32_t>(e_curr.primitive)];
}
if (effectScale < mPrimitiveMinScale[static_cast<uint32_t>(e_curr.primitive)]) {
effectScale = mPrimitiveMinScale[static_cast<uint32_t>(e_curr.primitive)];
}
effectVolLevel = intensityToVolLevel(effectScale, effectIndex);
totalDuration += mEffectDurations[effectIndex];
}
/* Fetch the next composite effect delay and fill into the current section */
nextEffectDelay = 0;
if (i_next < composite.size()) {
auto &e_next = composite[i_next];
int32_t delay = e_next.delayMs;
if (delay > COMPOSE_DELAY_MAX_MS || delay < 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
nextEffectDelay = delay;
totalDuration += delay;
}
if (effectIndex == 0 && nextEffectDelay == 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
dspmem_chunk_write(ch, 8, (uint8_t)(0xFF & effectVolLevel)); /* amplitude */
dspmem_chunk_write(ch, 8, (uint8_t)(0xFF & effectIndex)); /* index */
dspmem_chunk_write(ch, 8, 0); /* repeat */
dspmem_chunk_write(ch, 8, 0); /* flags */
dspmem_chunk_write(ch, 16, (uint16_t)(0xFFFF & nextEffectDelay)); /* delay */
}
dspmem_chunk_flush(ch);
if (header_count == dspmem_chunk_bytes(ch)) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
} else {
mFfEffects[WAVEFORM_COMPOSE].replay.length = totalDuration;
if (mIsDual) {
mFfEffectsDual[WAVEFORM_COMPOSE].replay.length = totalDuration;
}
return performEffect(WAVEFORM_MAX_INDEX /*ignored*/, VOLTAGE_SCALE_MAX /*ignored*/, ch,
callback);
}
}
ndk::ScopedAStatus Vibrator::on(uint32_t timeoutMs, uint32_t effectIndex, dspmem_chunk *ch,
const std::shared_ptr<IVibratorCallback> &callback) {
ndk::ScopedAStatus status = ndk::ScopedAStatus::ok();
if (effectIndex >= FF_MAX_EFFECTS) {
ALOGE("Invalid waveform index %d", effectIndex);
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (mAsyncHandle.wait_for(ASYNC_COMPLETION_TIMEOUT) != std::future_status::ready) {
ALOGE("Previous vibration pending: prev: %d, curr: %d", mActiveId, effectIndex);
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (ch) {
/* Upload OWT effect. */
if (ch->head == nullptr) {
ALOGE("Invalid OWT bank");
delete ch;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
bool isPwle = (*reinterpret_cast<uint16_t *>(ch->head) != 0x0000);
effectIndex = isPwle ? WAVEFORM_PWLE : WAVEFORM_COMPOSE;
uint32_t freeBytes;
mHwApiDef->getOwtFreeSpace(&freeBytes);
if (dspmem_chunk_bytes(ch) > freeBytes) {
ALOGE("Invalid OWT length: Effect %d: %d > %d!", effectIndex, dspmem_chunk_bytes(ch),
freeBytes);
delete ch;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (mIsDual) {
mHwApiDual->getOwtFreeSpace(&freeBytes);
if (dspmem_chunk_bytes(ch) > freeBytes) {
ALOGE("Invalid OWT length in flip: Effect %d: %d > %d!", effectIndex,
dspmem_chunk_bytes(ch), freeBytes);
delete ch;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
}
int errorStatus;
if (mGPIOStatus && mIsDual) {
mFfEffects[effectIndex].trigger.button = GPIO_TRIGGER_CONFIG | effectIndex;
mFfEffectsDual[effectIndex].trigger.button = GPIO_TRIGGER_CONFIG | effectIndex;
} else {
ALOGD("Not dual haptics HAL and GPIO status fail");
}
if (!mHwApiDef->uploadOwtEffect(mInputFd, ch->head, dspmem_chunk_bytes(ch),
&mFfEffects[effectIndex], &effectIndex, &errorStatus)) {
delete ch;
ALOGE("Invalid uploadOwtEffect");
return ndk::ScopedAStatus::fromExceptionCode(errorStatus);
}
if (mIsDual && !mHwApiDual->uploadOwtEffect(mInputFdDual, ch->head, dspmem_chunk_bytes(ch),
&mFfEffectsDual[effectIndex], &effectIndex,
&errorStatus)) {
delete ch;
ALOGE("Invalid uploadOwtEffect in flip");
return ndk::ScopedAStatus::fromExceptionCode(errorStatus);
}
delete ch;
} else if (effectIndex == WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX ||
effectIndex == WAVEFORM_LONG_VIBRATION_EFFECT_INDEX) {
/* Update duration for long/short vibration. */
mFfEffects[effectIndex].replay.length = static_cast<uint16_t>(timeoutMs);
if (mGPIOStatus && mIsDual) {
mFfEffects[effectIndex].trigger.button = GPIO_TRIGGER_CONFIG | effectIndex;
mFfEffectsDual[effectIndex].trigger.button = GPIO_TRIGGER_CONFIG | effectIndex;
} else {
ALOGD("Not dual haptics HAL and GPIO status fail");
}
if (!mHwApiDef->setFFEffect(mInputFd, &mFfEffects[effectIndex],
static_cast<uint16_t>(timeoutMs))) {
ALOGE("Failed to edit effect %d (%d): %s", effectIndex, errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (mIsDual) {
mFfEffectsDual[effectIndex].replay.length = static_cast<uint16_t>(timeoutMs);
if (!mHwApiDual->setFFEffect(mInputFdDual, &mFfEffectsDual[effectIndex],
static_cast<uint16_t>(timeoutMs))) {
ALOGE("Failed to edit flip's effect %d (%d): %s", effectIndex, errno,
strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
}
{
const std::scoped_lock<std::mutex> lock(mActiveId_mutex);
/* Play the event now. */
mActiveId = effectIndex;
if (!mGPIOStatus) {
ALOGE("GetVibrator: GPIO status error");
// Do playcode to play effect
if (!mHwApiDef->setFFPlay(mInputFd, effectIndex, true)) {
ALOGE("Failed to play effect %d (%d): %s", effectIndex, errno, strerror(errno));
mActiveId = -1;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (mIsDual && !mHwApiDual->setFFPlay(mInputFdDual, effectIndex, true)) {
ALOGE("Failed to play flip's effect %d (%d): %s", effectIndex, errno,
strerror(errno));
mActiveId = -1;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
} else {
// Using GPIO to play effect
if ((effectIndex == WAVEFORM_CLICK_INDEX || effectIndex == WAVEFORM_LIGHT_TICK_INDEX)) {
mFfEffects[effectIndex].trigger.button = GPIO_TRIGGER_CONFIG | effectIndex;
if (!mHwApiDef->setFFEffect(mInputFd, &mFfEffects[effectIndex],
mFfEffects[effectIndex].replay.length)) {
ALOGE("Failed to edit effect %d (%d): %s", effectIndex, errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (mIsDual) {
mFfEffectsDual[effectIndex].trigger.button = GPIO_TRIGGER_CONFIG | effectIndex;
if (!mHwApiDual->setFFEffect(mInputFdDual, &mFfEffectsDual[effectIndex],
mFfEffectsDual[effectIndex].replay.length)) {
ALOGE("Failed to edit flip's effect %d (%d): %s", effectIndex, errno,
strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
}
if (!mHwGPIO->setGPIOOutput(true)) {
ALOGE("Failed to trigger effect %d (%d) by GPIO: %s", effectIndex, errno,
strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
}
mAsyncHandle = std::async(&Vibrator::waitForComplete, this, callback);
ALOGD("Vibrator::on, set done.");
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setEffectAmplitude(float amplitude, float maximum) {
uint16_t scale = amplitudeToScale(amplitude, maximum);
if (!mHwApiDef->setFFGain(mInputFd, scale)) {
ALOGE("Failed to set the gain to %u (%d): %s", scale, errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (mIsDual) {
if (!mHwApiDual->setFFGain(mInputFdDual, scale)) {
ALOGE("Failed to set flip's gain to %u (%d): %s", scale, errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::setGlobalAmplitude(bool set) {
uint8_t amplitude = set ? roundf(mLongEffectScale * mLongEffectVol[1]) : VOLTAGE_SCALE_MAX;
if (!set) {
mLongEffectScale = 1.0; // Reset the scale for the later new effect.
}
return setEffectAmplitude(amplitude, VOLTAGE_SCALE_MAX);
}
ndk::ScopedAStatus Vibrator::getSupportedAlwaysOnEffects(std::vector<Effect> * /*_aidl_return*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::alwaysOnEnable(int32_t /*id*/, Effect /*effect*/,
EffectStrength /*strength*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::alwaysOnDisable(int32_t /*id*/) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus Vibrator::getResonantFrequency(float *resonantFreqHz) {
std::string caldata{8, '0'};
if (!mHwCalDef->getF0(&caldata)) {
ALOGE("Failed to get resonant frequency (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
*resonantFreqHz = static_cast<float>(std::stoul(caldata, nullptr, 16)) / (1 << Q14_BIT_SHIFT);
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getQFactor(float *qFactor) {
std::string caldata{8, '0'};
if (!mHwCalDef->getQ(&caldata)) {
ALOGE("Failed to get q factor (%d): %s", errno, strerror(errno));
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
*qFactor = static_cast<float>(std::stoul(caldata, nullptr, 16)) / (1 << Q16_BIT_SHIFT);
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getFrequencyResolution(float *freqResolutionHz) {
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
*freqResolutionHz = PWLE_FREQUENCY_RESOLUTION_HZ;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::getFrequencyMinimum(float *freqMinimumHz) {
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
*freqMinimumHz = PWLE_FREQUENCY_MIN_HZ;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::getBandwidthAmplitudeMap(std::vector<float> *_aidl_return) {
// TODO(b/170919640): complete implementation
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
std::vector<float> bandwidthAmplitudeMap(PWLE_BW_MAP_SIZE, 1.0);
*_aidl_return = bandwidthAmplitudeMap;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::getPwlePrimitiveDurationMax(int32_t *durationMs) {
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
*durationMs = COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::getPwleCompositionSizeMax(int32_t *maxSize) {
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
*maxSize = COMPOSE_PWLE_SIZE_MAX_DEFAULT;
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
ndk::ScopedAStatus Vibrator::getSupportedBraking(std::vector<Braking> *supported) {
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
*supported = {
Braking::NONE,
};
return ndk::ScopedAStatus::ok();
} else {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
}
static void resetPreviousEndAmplitudeEndFrequency(float *prevEndAmplitude,
float *prevEndFrequency) {
const float reset = -1.0;
*prevEndAmplitude = reset;
*prevEndFrequency = reset;
}
static void incrementIndex(int *index) {
*index += 1;
}
static void constructPwleSegment(dspmem_chunk *ch, uint16_t delay, uint16_t amplitude,
uint16_t frequency, uint8_t flags, uint32_t vbemfTarget = 0) {
dspmem_chunk_write(ch, 16, delay);
dspmem_chunk_write(ch, 12, amplitude);
dspmem_chunk_write(ch, 12, frequency);
/* feature flags to control the chirp, CLAB braking, back EMF amplitude regulation */
dspmem_chunk_write(ch, 8, (flags | 1) << 4);
if (flags & PWLE_AMP_REG_BIT) {
dspmem_chunk_write(ch, 24, vbemfTarget); /* target back EMF voltage */
}
}
static int constructActiveSegment(dspmem_chunk *ch, int duration, float amplitude, float frequency,
bool chirp) {
uint16_t delay = 0;
uint16_t amp = 0;
uint16_t freq = 0;
uint8_t flags = 0x0;
if ((floatToUint16(duration, &delay, 4, 0.0f, COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) < 0) ||
(floatToUint16(amplitude, &amp, 2048, CS40L26_PWLE_LEVEL_MIX, CS40L26_PWLE_LEVEL_MAX) <
0) ||
(floatToUint16(frequency, &freq, 4, PWLE_FREQUENCY_MIN_HZ, PWLE_FREQUENCY_MAX_HZ) < 0)) {
ALOGE("Invalid argument: %d, %f, %f", duration, amplitude, frequency);
return -ERANGE;
}
if (chirp) {
flags |= PWLE_CHIRP_BIT;
}
constructPwleSegment(ch, delay, amp, freq, flags, 0 /*ignored*/);
return 0;
}
static int constructBrakingSegment(dspmem_chunk *ch, int duration, Braking brakingType) {
uint16_t delay = 0;
uint16_t freq = 0;
uint8_t flags = 0x00;
if (floatToUint16(duration, &delay, 4, 0.0f, COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) < 0) {
ALOGE("Invalid argument: %d", duration);
return -ERANGE;
}
floatToUint16(PWLE_FREQUENCY_MIN_HZ, &freq, 4, PWLE_FREQUENCY_MIN_HZ, PWLE_FREQUENCY_MAX_HZ);
if (static_cast<std::underlying_type<Braking>::type>(brakingType)) {
flags |= PWLE_BRAKE_BIT;
}
constructPwleSegment(ch, delay, 0 /*ignored*/, freq, flags, 0 /*ignored*/);
return 0;
}
static void updateWLength(dspmem_chunk *ch, uint32_t totalDuration) {
totalDuration *= 8; /* Unit: 0.125 ms (since wlength played @ 8kHz). */
totalDuration |= WT_LEN_CALCD; /* Bit 23 is for WT_LEN_CALCD; Bit 22 is for WT_INDEFINITE. */
*(ch->head + 0) = (totalDuration >> 24) & 0xFF;
*(ch->head + 1) = (totalDuration >> 16) & 0xFF;
*(ch->head + 2) = (totalDuration >> 8) & 0xFF;
*(ch->head + 3) = totalDuration & 0xFF;
}
static void updateNSection(dspmem_chunk *ch, int segmentIdx) {
*(ch->head + 7) |= (0xF0 & segmentIdx) >> 4; /* Bit 4 to 7 */
*(ch->head + 9) |= (0x0F & segmentIdx) << 4; /* Bit 3 to 0 */
}
ndk::ScopedAStatus Vibrator::composePwle(const std::vector<PrimitivePwle> &composite,
const std::shared_ptr<IVibratorCallback> &callback) {
ATRACE_NAME("Vibrator::composePwle");
int32_t capabilities;
Vibrator::getCapabilities(&capabilities);
if ((capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) == 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
if (composite.empty() || composite.size() > COMPOSE_PWLE_SIZE_MAX_DEFAULT) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
std::vector<Braking> supported;
Vibrator::getSupportedBraking(&supported);
bool isClabSupported =
std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
int segmentIdx = 0;
uint32_t totalDuration = 0;
float prevEndAmplitude;
float prevEndFrequency;
resetPreviousEndAmplitudeEndFrequency(&prevEndAmplitude, &prevEndFrequency);
auto ch = dspmem_chunk_create(new uint8_t[FF_CUSTOM_DATA_LEN_MAX_PWLE]{0x00},
FF_CUSTOM_DATA_LEN_MAX_PWLE);
bool chirp = false;
dspmem_chunk_write(ch, 24, 0x000000); /* Waveform length placeholder */
dspmem_chunk_write(ch, 8, 0); /* Repeat */
dspmem_chunk_write(ch, 12, 0); /* Wait time between repeats */
dspmem_chunk_write(ch, 8, 0x00); /* nsections placeholder */
for (auto &e : composite) {
switch (e.getTag()) {
case PrimitivePwle::active: {
auto active = e.get<PrimitivePwle::active>();
if (active.duration < 0 ||
active.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (active.startAmplitude < PWLE_LEVEL_MIN ||
active.startAmplitude > PWLE_LEVEL_MAX ||
active.endAmplitude < PWLE_LEVEL_MIN || active.endAmplitude > PWLE_LEVEL_MAX) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (active.startAmplitude > CS40L26_PWLE_LEVEL_MAX) {
active.startAmplitude = CS40L26_PWLE_LEVEL_MAX;
}
if (active.endAmplitude > CS40L26_PWLE_LEVEL_MAX) {
active.endAmplitude = CS40L26_PWLE_LEVEL_MAX;
}
if (active.startFrequency < PWLE_FREQUENCY_MIN_HZ ||
active.startFrequency > PWLE_FREQUENCY_MAX_HZ ||
active.endFrequency < PWLE_FREQUENCY_MIN_HZ ||
active.endFrequency > PWLE_FREQUENCY_MAX_HZ) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (!((active.startAmplitude == prevEndAmplitude) &&
(active.startFrequency == prevEndFrequency))) {
if (constructActiveSegment(ch, 0, active.startAmplitude, active.startFrequency,
false) < 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
incrementIndex(&segmentIdx);
}
if (active.startFrequency != active.endFrequency) {
chirp = true;
}
if (constructActiveSegment(ch, active.duration, active.endAmplitude,
active.endFrequency, chirp) < 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
incrementIndex(&segmentIdx);
prevEndAmplitude = active.endAmplitude;
prevEndFrequency = active.endFrequency;
totalDuration += active.duration;
chirp = false;
break;
}
case PrimitivePwle::braking: {
auto braking = e.get<PrimitivePwle::braking>();
if (braking.braking > Braking::CLAB) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
} else if (!isClabSupported && (braking.braking == Braking::CLAB)) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (braking.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (constructBrakingSegment(ch, 0, braking.braking) < 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
incrementIndex(&segmentIdx);
if (constructBrakingSegment(ch, braking.duration, braking.braking) < 0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
incrementIndex(&segmentIdx);
resetPreviousEndAmplitudeEndFrequency(&prevEndAmplitude, &prevEndFrequency);
totalDuration += braking.duration;
break;
}
}
if (segmentIdx > COMPOSE_PWLE_SIZE_MAX_DEFAULT) {
ALOGE("Too many PrimitivePwle section!");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
}
dspmem_chunk_flush(ch);
/* Update wlength */
totalDuration += MAX_COLD_START_LATENCY_MS;
if (totalDuration > 0x7FFFF) {
ALOGE("Total duration is too long (%d)!", totalDuration);
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
updateWLength(ch, totalDuration);
/* Update nsections */
updateNSection(ch, segmentIdx);
return performEffect(WAVEFORM_MAX_INDEX /*ignored*/, VOLTAGE_SCALE_MAX /*ignored*/, ch,
callback);
}
bool Vibrator::isUnderExternalControl() {
return mIsUnderExternalControl;
}
// BnCInterface APIs
binder_status_t Vibrator::dump(int fd, const char **args, uint32_t numArgs) {
if (fd < 0) {
ALOGE("Called debug() with invalid fd.");
return STATUS_OK;
}
(void)args;
(void)numArgs;
dprintf(fd, "AIDL:\n");
dprintf(fd, " F0 Offset: base: %" PRIu32 " flip: %" PRIu32 "\n", mF0Offset, mF0OffsetDual);
dprintf(fd, " Voltage Levels:\n");
dprintf(fd, " Tick Effect Min: %" PRIu32 " Max: %" PRIu32 "\n", mTickEffectVol[0],
mTickEffectVol[1]);
dprintf(fd, " Click Effect Min: %" PRIu32 " Max: %" PRIu32 "\n", mClickEffectVol[0],
mClickEffectVol[1]);
dprintf(fd, " Long Effect Min: %" PRIu32 " Max: %" PRIu32 "\n", mLongEffectVol[0],
mLongEffectVol[1]);
dprintf(fd, " FF effect:\n");
dprintf(fd, " Physical waveform:\n");
dprintf(fd, "==== Base ====\n\tId\tIndex\tt ->\tt'\ttrigger button\n");
uint8_t effectId;
for (effectId = 0; effectId < WAVEFORM_MAX_PHYSICAL_INDEX; effectId++) {
dprintf(fd, "\t%d\t%d\t%d\t%d\t%X\n", mFfEffects[effectId].id,
mFfEffects[effectId].u.periodic.custom_data[1], mEffectDurations[effectId],
mFfEffects[effectId].replay.length, mFfEffects[effectId].trigger.button);
}
if (mIsDual) {
dprintf(fd, "==== Flip ====\n\tId\tIndex\tt ->\tt'\ttrigger button\n");
for (effectId = 0; effectId < WAVEFORM_MAX_PHYSICAL_INDEX; effectId++) {
dprintf(fd, "\t%d\t%d\t%d\t%d\t%X\n", mFfEffectsDual[effectId].id,
mFfEffectsDual[effectId].u.periodic.custom_data[1], mEffectDurations[effectId],
mFfEffectsDual[effectId].replay.length,
mFfEffectsDual[effectId].trigger.button);
}
}
dprintf(fd, "Base: OWT waveform:\n");
dprintf(fd, "\tId\tBytes\tData\tt\ttrigger button\n");
for (effectId = WAVEFORM_MAX_PHYSICAL_INDEX; effectId < WAVEFORM_MAX_INDEX; effectId++) {
uint32_t numBytes = mFfEffects[effectId].u.periodic.custom_len * 2;
std::stringstream ss;
ss << " ";
for (int i = 0; i < numBytes; i++) {
ss << std::uppercase << std::setfill('0') << std::setw(2) << std::hex
<< (uint16_t)(*(
reinterpret_cast<uint8_t *>(mFfEffects[effectId].u.periodic.custom_data) +
i))
<< " ";
}
dprintf(fd, "\t%d\t%d\t{%s}\t%u\t%X\n", mFfEffects[effectId].id, numBytes, ss.str().c_str(),
mFfEffectsDual[effectId].replay.length, mFfEffects[effectId].trigger.button);
}
if (mIsDual) {
dprintf(fd, "Flip: OWT waveform:\n");
dprintf(fd, "\tId\tBytes\tData\tt\ttrigger button\n");
for (effectId = WAVEFORM_MAX_PHYSICAL_INDEX; effectId < WAVEFORM_MAX_INDEX; effectId++) {
uint32_t numBytes = mFfEffectsDual[effectId].u.periodic.custom_len * 2;
std::stringstream ss;
ss << " ";
for (int i = 0; i < numBytes; i++) {
ss << std::uppercase << std::setfill('0') << std::setw(2) << std::hex
<< (uint16_t)(*(reinterpret_cast<uint8_t *>(
mFfEffectsDual[effectId].u.periodic.custom_data) +
i))
<< " ";
}
dprintf(fd, "\t%d\t%d\t{%s}\t%u\t%X\n", mFfEffectsDual[effectId].id, numBytes,
ss.str().c_str(), mFfEffectsDual[effectId].replay.length,
mFfEffectsDual[effectId].trigger.button);
}
}
dprintf(fd, "\n");
dprintf(fd, "\n");
mHwApiDef->debug(fd);
dprintf(fd, "\n");
mHwCalDef->debug(fd);
if (mIsDual) {
mHwApiDual->debug(fd);
dprintf(fd, "\n");
mHwCalDual->debug(fd);
}
fsync(fd);
return STATUS_OK;
}
bool Vibrator::hasHapticAlsaDevice() {
// We need to call findHapticAlsaDevice once only. Calling in the
// constructor is too early in the boot process and the pcm file contents
// are empty. Hence we make the call here once only right before we need to.
if (!mConfigHapticAlsaDeviceDone) {
if (mHwApiDef->getHapticAlsaDevice(&mCard, &mDevice)) {
mHasHapticAlsaDevice = true;
mConfigHapticAlsaDeviceDone = true;
} else {
ALOGE("Haptic ALSA device not supported");
}
} else {
ALOGD("Haptic ALSA device configuration done.");
}
return mHasHapticAlsaDevice;
}
ndk::ScopedAStatus Vibrator::getSimpleDetails(Effect effect, EffectStrength strength,
uint32_t *outEffectIndex, uint32_t *outTimeMs,
uint32_t *outVolLevel) {
uint32_t effectIndex;
uint32_t timeMs;
float intensity;
uint32_t volLevel;
switch (strength) {
case EffectStrength::LIGHT:
intensity = 0.5f;
break;
case EffectStrength::MEDIUM:
intensity = 0.7f;
break;
case EffectStrength::STRONG:
intensity = 1.0f;
break;
default:
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
switch (effect) {
case Effect::TEXTURE_TICK:
effectIndex = WAVEFORM_LIGHT_TICK_INDEX;
intensity *= 0.5f;
break;
case Effect::TICK:
effectIndex = WAVEFORM_CLICK_INDEX;
intensity *= 0.5f;
break;
case Effect::CLICK:
effectIndex = WAVEFORM_CLICK_INDEX;
intensity *= 0.7f;
break;
case Effect::HEAVY_CLICK:
effectIndex = WAVEFORM_CLICK_INDEX;
intensity *= 1.0f;
// WAVEFORM_CLICK_INDEX is 2, but the primitive CLICK index is 1.
if (intensity > mPrimitiveMaxScale[WAVEFORM_CLICK_INDEX - 1]) {
intensity = mPrimitiveMaxScale[WAVEFORM_CLICK_INDEX - 1];
}
break;
default:
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
volLevel = intensityToVolLevel(intensity, effectIndex);
timeMs = mEffectDurations[effectIndex] + MAX_COLD_START_LATENCY_MS;
*outEffectIndex = effectIndex;
*outTimeMs = timeMs;
*outVolLevel = volLevel;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getCompoundDetails(Effect effect, EffectStrength strength,
uint32_t *outTimeMs, dspmem_chunk *outCh) {
ndk::ScopedAStatus status;
uint32_t timeMs = 0;
uint32_t thisEffectIndex;
uint32_t thisTimeMs;
uint32_t thisVolLevel;
switch (effect) {
case Effect::DOUBLE_CLICK:
dspmem_chunk_write(outCh, 8, 0); /* Padding */
dspmem_chunk_write(outCh, 8, 2); /* nsections */
dspmem_chunk_write(outCh, 8, 0); /* repeat */
status = getSimpleDetails(Effect::CLICK, strength, &thisEffectIndex, &thisTimeMs,
&thisVolLevel);
if (!status.isOk()) {
return status;
}
timeMs += thisTimeMs;
dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisVolLevel)); /* amplitude */
dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisEffectIndex)); /* index */
dspmem_chunk_write(outCh, 8, 0); /* repeat */
dspmem_chunk_write(outCh, 8, 0); /* flags */
dspmem_chunk_write(outCh, 16,
(uint16_t)(0xFFFF & WAVEFORM_DOUBLE_CLICK_SILENCE_MS)); /* delay */
timeMs += WAVEFORM_DOUBLE_CLICK_SILENCE_MS + MAX_PAUSE_TIMING_ERROR_MS;
status = getSimpleDetails(Effect::HEAVY_CLICK, strength, &thisEffectIndex, &thisTimeMs,
&thisVolLevel);
if (!status.isOk()) {
return status;
}
timeMs += thisTimeMs;
dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisVolLevel)); /* amplitude */
dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisEffectIndex)); /* index */
dspmem_chunk_write(outCh, 8, 0); /* repeat */
dspmem_chunk_write(outCh, 8, 0); /* flags */
dspmem_chunk_write(outCh, 16, 0); /* delay */
dspmem_chunk_flush(outCh);
break;
default:
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
*outTimeMs = timeMs;
mFfEffects[WAVEFORM_COMPOSE].replay.length = static_cast<uint16_t>(timeMs);
if (mIsDual) {
mFfEffectsDual[WAVEFORM_COMPOSE].replay.length = static_cast<uint16_t>(timeMs);
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::getPrimitiveDetails(CompositePrimitive primitive,
uint32_t *outEffectIndex) {
uint32_t effectIndex;
uint32_t primitiveBit = 1 << int32_t(primitive);
if ((primitiveBit & mSupportedPrimitivesBits) == 0x0) {
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
switch (primitive) {
case CompositePrimitive::NOOP:
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
case CompositePrimitive::CLICK:
effectIndex = WAVEFORM_CLICK_INDEX;
break;
case CompositePrimitive::THUD:
effectIndex = WAVEFORM_THUD_INDEX;
break;
case CompositePrimitive::SPIN:
effectIndex = WAVEFORM_SPIN_INDEX;
break;
case CompositePrimitive::QUICK_RISE:
effectIndex = WAVEFORM_QUICK_RISE_INDEX;
break;
case CompositePrimitive::SLOW_RISE:
effectIndex = WAVEFORM_SLOW_RISE_INDEX;
break;
case CompositePrimitive::QUICK_FALL:
effectIndex = WAVEFORM_QUICK_FALL_INDEX;
break;
case CompositePrimitive::LIGHT_TICK:
effectIndex = WAVEFORM_LIGHT_TICK_INDEX;
break;
case CompositePrimitive::LOW_TICK:
effectIndex = WAVEFORM_LOW_TICK_INDEX;
break;
default:
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
*outEffectIndex = effectIndex;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus Vibrator::performEffect(Effect effect, EffectStrength strength,
const std::shared_ptr<IVibratorCallback> &callback,
int32_t *outTimeMs) {
ndk::ScopedAStatus status;
uint32_t effectIndex;
uint32_t timeMs = 0;
uint32_t volLevel;
dspmem_chunk *ch = nullptr;
switch (effect) {
case Effect::TEXTURE_TICK:
// fall-through
case Effect::TICK:
// fall-through
case Effect::CLICK:
// fall-through
case Effect::HEAVY_CLICK:
status = getSimpleDetails(effect, strength, &effectIndex, &timeMs, &volLevel);
break;
case Effect::DOUBLE_CLICK:
ch = dspmem_chunk_create(new uint8_t[FF_CUSTOM_DATA_LEN_MAX_COMP]{0x00},
FF_CUSTOM_DATA_LEN_MAX_COMP);
status = getCompoundDetails(effect, strength, &timeMs, ch);
volLevel = VOLTAGE_SCALE_MAX;
break;
default:
status = ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
break;
}
if (!status.isOk()) {
goto exit;
}
status = performEffect(effectIndex, volLevel, ch, callback);
exit:
*outTimeMs = timeMs;
return status;
}
ndk::ScopedAStatus Vibrator::performEffect(uint32_t effectIndex, uint32_t volLevel,
dspmem_chunk *ch,
const std::shared_ptr<IVibratorCallback> &callback) {
setEffectAmplitude(volLevel, VOLTAGE_SCALE_MAX);
return on(MAX_TIME_MS, effectIndex, ch, callback);
}
void Vibrator::waitForComplete(std::shared_ptr<IVibratorCallback> &&callback) {
ALOGD("waitForComplete: Callback status in waitForComplete(): callBack: %d",
(callback != nullptr));
// Bypass checking flip part's haptic state
if (!mHwApiDef->pollVibeState(VIBE_STATE_HAPTIC, POLLING_TIMEOUT)) {
ALOGD("Failed to get state \"Haptic\"");
}
mHwApiDef->pollVibeState(VIBE_STATE_STOPPED);
// Check flip's state after base was done
if (mIsDual) {
mHwApiDual->pollVibeState(VIBE_STATE_STOPPED);
}
ALOGD("waitForComplete: get STOP");
{
const std::scoped_lock<std::mutex> lock(mActiveId_mutex);
if (mActiveId >= WAVEFORM_MAX_PHYSICAL_INDEX) {
if (!mHwApiDef->eraseOwtEffect(mInputFd, mActiveId, &mFfEffects)) {
ALOGE("Failed to clean up the composed effect %d", mActiveId);
}
if (mIsDual &&
(!mHwApiDual->eraseOwtEffect(mInputFdDual, mActiveId, &mFfEffectsDual))) {
ALOGE("Failed to clean up flip's composed effect %d", mActiveId);
}
} else {
ALOGD("waitForComplete: Vibrator is already off");
}
mActiveId = -1;
if (mGPIOStatus && !mHwGPIO->setGPIOOutput(false)) {
ALOGE("waitForComplete: Failed to reset GPIO(%d): %s", errno, strerror(errno));
}
// Do waveform number checking
uint32_t effectCount = WAVEFORM_MAX_PHYSICAL_INDEX;
mHwApiDef->getEffectCount(&effectCount);
if (effectCount > WAVEFORM_MAX_PHYSICAL_INDEX) {
// Forcibly clean all OWT waveforms
if (!mHwApiDef->eraseOwtEffect(mInputFd, WAVEFORM_MAX_INDEX, &mFfEffects)) {
ALOGE("Failed to clean up all base's composed effect");
}
}
if (mIsDual) {
// Forcibly clean all OWT waveforms
effectCount = WAVEFORM_MAX_PHYSICAL_INDEX;
mHwApiDual->getEffectCount(&effectCount);
if ((effectCount > WAVEFORM_MAX_PHYSICAL_INDEX) &&
(!mHwApiDual->eraseOwtEffect(mInputFdDual, WAVEFORM_MAX_INDEX, &mFfEffectsDual))) {
ALOGE("Failed to clean up all flip's composed effect");
}
}
}
if (callback) {
auto ret = callback->onComplete();
if (!ret.isOk()) {
ALOGE("Failed completion callback: %d", ret.getExceptionCode());
}
}
ALOGD("waitForComplete: Done.");
}
uint32_t Vibrator::intensityToVolLevel(float intensity, uint32_t effectIndex) {
uint32_t volLevel;
auto calc = [](float intst, std::array<uint32_t, 2> v) -> uint32_t {
return std::lround(intst * (v[1] - v[0])) + v[0];
};
switch (effectIndex) {
case WAVEFORM_LIGHT_TICK_INDEX:
volLevel = calc(intensity, mTickEffectVol);
break;
case WAVEFORM_QUICK_RISE_INDEX:
// fall-through
case WAVEFORM_QUICK_FALL_INDEX:
volLevel = calc(intensity, mLongEffectVol);
break;
case WAVEFORM_CLICK_INDEX:
// fall-through
case WAVEFORM_THUD_INDEX:
// fall-through
case WAVEFORM_SPIN_INDEX:
// fall-through
case WAVEFORM_SLOW_RISE_INDEX:
// fall-through
default:
volLevel = calc(intensity, mClickEffectVol);
break;
}
return volLevel;
}
} // namespace vibrator
} // namespace hardware
} // namespace android
} // namespace aidl