| /** @file | |
| RTC Architectural Protocol GUID as defined in DxeCis 0.96. | |
| Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR> | |
| This program and the accompanying materials | |
| are licensed and made available under the terms and conditions of the BSD License | |
| which accompanies this distribution. The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #include "PcRtc.h" | |
| // | |
| // Days of month. | |
| // | |
| UINTN mDayOfMonth[] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; | |
| // | |
| // The name of NV variable to store the timezone and daylight saving information. | |
| // | |
| CHAR16 mTimeZoneVariableName[] = L"RTC"; | |
| /** | |
| Compare the Hour, Minute and Second of the From time and the To time. | |
| Only compare H/M/S in EFI_TIME and ignore other fields here. | |
| @param From the first time | |
| @param To the second time | |
| @return >0 The H/M/S of the From time is later than those of To time | |
| @return ==0 The H/M/S of the From time is same as those of To time | |
| @return <0 The H/M/S of the From time is earlier than those of To time | |
| **/ | |
| INTN | |
| CompareHMS ( | |
| IN EFI_TIME *From, | |
| IN EFI_TIME *To | |
| ); | |
| /** | |
| To check if second date is later than first date within 24 hours. | |
| @param From the first date | |
| @param To the second date | |
| @retval TRUE From is previous to To within 24 hours. | |
| @retval FALSE From is later, or it is previous to To more than 24 hours. | |
| **/ | |
| BOOLEAN | |
| IsWithinOneDay ( | |
| IN EFI_TIME *From, | |
| IN EFI_TIME *To | |
| ); | |
| /** | |
| Read RTC content through its registers. | |
| @param Address Address offset of RTC. It is recommended to use macros such as | |
| RTC_ADDRESS_SECONDS. | |
| @return The data of UINT8 type read from RTC. | |
| **/ | |
| UINT8 | |
| RtcRead ( | |
| IN UINT8 Address | |
| ) | |
| { | |
| IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80))); | |
| return IoRead8 (PCAT_RTC_DATA_REGISTER); | |
| } | |
| /** | |
| Write RTC through its registers. | |
| @param Address Address offset of RTC. It is recommended to use macros such as | |
| RTC_ADDRESS_SECONDS. | |
| @param Data The content you want to write into RTC. | |
| **/ | |
| VOID | |
| RtcWrite ( | |
| IN UINT8 Address, | |
| IN UINT8 Data | |
| ) | |
| { | |
| IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80))); | |
| IoWrite8 (PCAT_RTC_DATA_REGISTER, Data); | |
| } | |
| /** | |
| Initialize RTC. | |
| @param Global For global use inside this module. | |
| @retval EFI_DEVICE_ERROR Initialization failed due to device error. | |
| @retval EFI_SUCCESS Initialization successful. | |
| **/ | |
| EFI_STATUS | |
| PcRtcInit ( | |
| IN PC_RTC_MODULE_GLOBALS *Global | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| RTC_REGISTER_A RegisterA; | |
| RTC_REGISTER_B RegisterB; | |
| RTC_REGISTER_D RegisterD; | |
| EFI_TIME Time; | |
| UINTN DataSize; | |
| UINT32 TimerVar; | |
| BOOLEAN Enabled; | |
| BOOLEAN Pending; | |
| // | |
| // Acquire RTC Lock to make access to RTC atomic | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiAcquireLock (&Global->RtcLock); | |
| } | |
| // | |
| // Initialize RTC Register | |
| // | |
| // Make sure Division Chain is properly configured, | |
| // or RTC clock won't "tick" -- time won't increment | |
| // | |
| RegisterA.Data = RTC_INIT_REGISTER_A; | |
| RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data); | |
| // | |
| // Read Register B | |
| // | |
| RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
| // | |
| // Clear RTC flag register | |
| // | |
| RtcRead (RTC_ADDRESS_REGISTER_C); | |
| // | |
| // Clear RTC register D | |
| // | |
| RegisterD.Data = RTC_INIT_REGISTER_D; | |
| RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data); | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be updated | |
| // | |
| Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // Set the variable with default value if the RTC is functioning incorrectly. | |
| // | |
| Global->SavedTimeZone = EFI_UNSPECIFIED_TIMEZONE; | |
| Global->Daylight = 0; | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Get the Time/Date/Daylight Savings values. | |
| // | |
| Time.Second = RtcRead (RTC_ADDRESS_SECONDS); | |
| Time.Minute = RtcRead (RTC_ADDRESS_MINUTES); | |
| Time.Hour = RtcRead (RTC_ADDRESS_HOURS); | |
| Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
| Time.Month = RtcRead (RTC_ADDRESS_MONTH); | |
| Time.Year = RtcRead (RTC_ADDRESS_YEAR); | |
| // | |
| // Set RTC configuration after get original time | |
| // The value of bit AIE should be reserved. | |
| // | |
| RegisterB.Data = RTC_INIT_REGISTER_B | (RegisterB.Data & BIT5); | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| // | |
| // Release RTC Lock. | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| // | |
| // Get the data of Daylight saving and time zone, if they have been | |
| // stored in NV variable during previous boot. | |
| // | |
| DataSize = sizeof (UINT32); | |
| Status = EfiGetVariable ( | |
| mTimeZoneVariableName, | |
| &gEfiCallerIdGuid, | |
| NULL, | |
| &DataSize, | |
| &TimerVar | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| Time.TimeZone = (INT16) TimerVar; | |
| Time.Daylight = (UINT8) (TimerVar >> 16); | |
| } else { | |
| Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE; | |
| Time.Daylight = 0; | |
| } | |
| // | |
| // Validate time fields | |
| // | |
| Status = ConvertRtcTimeToEfiTime (&Time, RegisterB); | |
| if (!EFI_ERROR (Status)) { | |
| Status = RtcTimeFieldsValid (&Time); | |
| } | |
| if (EFI_ERROR (Status)) { | |
| // | |
| // Report Status Code to indicate that the RTC has bad date and time | |
| // | |
| REPORT_STATUS_CODE ( | |
| EFI_ERROR_CODE | EFI_ERROR_MINOR, | |
| (EFI_SOFTWARE_DXE_RT_DRIVER | EFI_SW_EC_BAD_DATE_TIME) | |
| ); | |
| Time.Second = RTC_INIT_SECOND; | |
| Time.Minute = RTC_INIT_MINUTE; | |
| Time.Hour = RTC_INIT_HOUR; | |
| Time.Day = RTC_INIT_DAY; | |
| Time.Month = RTC_INIT_MONTH; | |
| Time.Year = PcdGet16 (PcdMinimalValidYear); | |
| Time.Nanosecond = 0; | |
| Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE; | |
| Time.Daylight = 0; | |
| } | |
| // | |
| // Reset time value according to new RTC configuration | |
| // | |
| Status = PcRtcSetTime (&Time, Global); | |
| if (EFI_ERROR (Status)) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Reset wakeup time value to valid state when wakeup alarm is disabled and wakeup time is invalid. | |
| // Global variable has already had valid SavedTimeZone and Daylight, | |
| // so we can use them to get and set wakeup time. | |
| // | |
| Status = PcRtcGetWakeupTime (&Enabled, &Pending, &Time, Global); | |
| if ((Enabled) || (!EFI_ERROR (Status))) { | |
| return EFI_SUCCESS; | |
| } | |
| // | |
| // When wakeup time is disabled and invalid, reset wakeup time register to valid state | |
| // but keep wakeup alarm disabled. | |
| // | |
| Time.Second = RTC_INIT_SECOND; | |
| Time.Minute = RTC_INIT_MINUTE; | |
| Time.Hour = RTC_INIT_HOUR; | |
| Time.Day = RTC_INIT_DAY; | |
| Time.Month = RTC_INIT_MONTH; | |
| Time.Year = PcdGet16 (PcdMinimalValidYear); | |
| Time.Nanosecond = 0; | |
| Time.TimeZone = Global->SavedTimeZone; | |
| Time.Daylight = Global->Daylight;; | |
| // | |
| // Acquire RTC Lock to make access to RTC atomic | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiAcquireLock (&Global->RtcLock); | |
| } | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be updated | |
| // | |
| Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| ConvertEfiTimeToRtcTime (&Time, RegisterB); | |
| // | |
| // Set the Y/M/D info to variable as it has no corresponding hw registers. | |
| // | |
| Status = EfiSetVariable ( | |
| L"RTCALARM", | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE, | |
| sizeof (Time), | |
| &Time | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Inhibit updates of the RTC | |
| // | |
| RegisterB.Bits.Set = 1; | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| // | |
| // Set RTC alarm time registers | |
| // | |
| RtcWrite (RTC_ADDRESS_SECONDS_ALARM, Time.Second); | |
| RtcWrite (RTC_ADDRESS_MINUTES_ALARM, Time.Minute); | |
| RtcWrite (RTC_ADDRESS_HOURS_ALARM, Time.Hour); | |
| // | |
| // Allow updates of the RTC registers | |
| // | |
| RegisterB.Bits.Set = 0; | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| // | |
| // Release RTC Lock. | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Returns the current time and date information, and the time-keeping capabilities | |
| of the hardware platform. | |
| @param Time A pointer to storage to receive a snapshot of the current time. | |
| @param Capabilities An optional pointer to a buffer to receive the real time clock | |
| device's capabilities. | |
| @param Global For global use inside this module. | |
| @retval EFI_SUCCESS The operation completed successfully. | |
| @retval EFI_INVALID_PARAMETER Time is NULL. | |
| @retval EFI_DEVICE_ERROR The time could not be retrieved due to hardware error. | |
| **/ | |
| EFI_STATUS | |
| PcRtcGetTime ( | |
| OUT EFI_TIME *Time, | |
| OUT EFI_TIME_CAPABILITIES *Capabilities, OPTIONAL | |
| IN PC_RTC_MODULE_GLOBALS *Global | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| RTC_REGISTER_B RegisterB; | |
| // | |
| // Check parameters for null pointer | |
| // | |
| if (Time == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Acquire RTC Lock to make access to RTC atomic | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiAcquireLock (&Global->RtcLock); | |
| } | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be updated | |
| // | |
| Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return Status; | |
| } | |
| // | |
| // Read Register B | |
| // | |
| RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
| // | |
| // Get the Time/Date/Daylight Savings values. | |
| // | |
| Time->Second = RtcRead (RTC_ADDRESS_SECONDS); | |
| Time->Minute = RtcRead (RTC_ADDRESS_MINUTES); | |
| Time->Hour = RtcRead (RTC_ADDRESS_HOURS); | |
| Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
| Time->Month = RtcRead (RTC_ADDRESS_MONTH); | |
| Time->Year = RtcRead (RTC_ADDRESS_YEAR); | |
| // | |
| // Release RTC Lock. | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| // | |
| // Get the variable that contains the TimeZone and Daylight fields | |
| // | |
| Time->TimeZone = Global->SavedTimeZone; | |
| Time->Daylight = Global->Daylight; | |
| // | |
| // Make sure all field values are in correct range | |
| // | |
| Status = ConvertRtcTimeToEfiTime (Time, RegisterB); | |
| if (!EFI_ERROR (Status)) { | |
| Status = RtcTimeFieldsValid (Time); | |
| } | |
| if (EFI_ERROR (Status)) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Fill in Capabilities if it was passed in | |
| // | |
| if (Capabilities != NULL) { | |
| Capabilities->Resolution = 1; | |
| // | |
| // 1 hertz | |
| // | |
| Capabilities->Accuracy = 50000000; | |
| // | |
| // 50 ppm | |
| // | |
| Capabilities->SetsToZero = FALSE; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Sets the current local time and date information. | |
| @param Time A pointer to the current time. | |
| @param Global For global use inside this module. | |
| @retval EFI_SUCCESS The operation completed successfully. | |
| @retval EFI_INVALID_PARAMETER A time field is out of range. | |
| @retval EFI_DEVICE_ERROR The time could not be set due due to hardware error. | |
| **/ | |
| EFI_STATUS | |
| PcRtcSetTime ( | |
| IN EFI_TIME *Time, | |
| IN PC_RTC_MODULE_GLOBALS *Global | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_TIME RtcTime; | |
| RTC_REGISTER_B RegisterB; | |
| UINT32 TimerVar; | |
| if (Time == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Make sure that the time fields are valid | |
| // | |
| Status = RtcTimeFieldsValid (Time); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| CopyMem (&RtcTime, Time, sizeof (EFI_TIME)); | |
| // | |
| // Acquire RTC Lock to make access to RTC atomic | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiAcquireLock (&Global->RtcLock); | |
| } | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be updated | |
| // | |
| Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return Status; | |
| } | |
| // | |
| // Write timezone and daylight to RTC variable | |
| // | |
| if ((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) && (Time->Daylight == 0)) { | |
| Status = EfiSetVariable ( | |
| mTimeZoneVariableName, | |
| &gEfiCallerIdGuid, | |
| 0, | |
| 0, | |
| NULL | |
| ); | |
| if (Status == EFI_NOT_FOUND) { | |
| Status = EFI_SUCCESS; | |
| } | |
| } else { | |
| TimerVar = Time->Daylight; | |
| TimerVar = (UINT32) ((TimerVar << 16) | (UINT16)(Time->TimeZone)); | |
| Status = EfiSetVariable ( | |
| mTimeZoneVariableName, | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE, | |
| sizeof (TimerVar), | |
| &TimerVar | |
| ); | |
| } | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Read Register B, and inhibit updates of the RTC | |
| // | |
| RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
| RegisterB.Bits.Set = 1; | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| // | |
| // Store the century value to RTC before converting to BCD format. | |
| // | |
| if (Global->CenturyRtcAddress != 0) { | |
| RtcWrite (Global->CenturyRtcAddress, DecimalToBcd8 ((UINT8) (RtcTime.Year / 100))); | |
| } | |
| ConvertEfiTimeToRtcTime (&RtcTime, RegisterB); | |
| RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second); | |
| RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute); | |
| RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour); | |
| RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day); | |
| RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month); | |
| RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year); | |
| // | |
| // Allow updates of the RTC registers | |
| // | |
| RegisterB.Bits.Set = 0; | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| // | |
| // Release RTC Lock. | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| // | |
| // Set the variable that contains the TimeZone and Daylight fields | |
| // | |
| Global->SavedTimeZone = Time->TimeZone; | |
| Global->Daylight = Time->Daylight; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Returns the current wakeup alarm clock setting. | |
| @param Enabled Indicates if the alarm is currently enabled or disabled. | |
| @param Pending Indicates if the alarm signal is pending and requires acknowledgment. | |
| @param Time The current alarm setting. | |
| @param Global For global use inside this module. | |
| @retval EFI_SUCCESS The alarm settings were returned. | |
| @retval EFI_INVALID_PARAMETER Enabled is NULL. | |
| @retval EFI_INVALID_PARAMETER Pending is NULL. | |
| @retval EFI_INVALID_PARAMETER Time is NULL. | |
| @retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error. | |
| @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform. | |
| **/ | |
| EFI_STATUS | |
| PcRtcGetWakeupTime ( | |
| OUT BOOLEAN *Enabled, | |
| OUT BOOLEAN *Pending, | |
| OUT EFI_TIME *Time, | |
| IN PC_RTC_MODULE_GLOBALS *Global | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| RTC_REGISTER_B RegisterB; | |
| RTC_REGISTER_C RegisterC; | |
| EFI_TIME RtcTime; | |
| UINTN DataSize; | |
| // | |
| // Check parameters for null pointers | |
| // | |
| if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Acquire RTC Lock to make access to RTC atomic | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiAcquireLock (&Global->RtcLock); | |
| } | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be updated | |
| // | |
| Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Read Register B and Register C | |
| // | |
| RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
| RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C); | |
| // | |
| // Get the Time/Date/Daylight Savings values. | |
| // | |
| *Enabled = RegisterB.Bits.Aie; | |
| *Pending = RegisterC.Bits.Af; | |
| Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM); | |
| Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM); | |
| Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM); | |
| Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
| Time->Month = RtcRead (RTC_ADDRESS_MONTH); | |
| Time->Year = RtcRead (RTC_ADDRESS_YEAR); | |
| Time->TimeZone = Global->SavedTimeZone; | |
| Time->Daylight = Global->Daylight; | |
| // | |
| // Get the alarm info from variable | |
| // | |
| DataSize = sizeof (EFI_TIME); | |
| Status = EfiGetVariable ( | |
| L"RTCALARM", | |
| &gEfiCallerIdGuid, | |
| NULL, | |
| &DataSize, | |
| &RtcTime | |
| ); | |
| if (!EFI_ERROR (Status)) { | |
| // | |
| // The alarm variable exists. In this case, we read variable to get info. | |
| // | |
| Time->Day = RtcTime.Day; | |
| Time->Month = RtcTime.Month; | |
| Time->Year = RtcTime.Year; | |
| } | |
| // | |
| // Release RTC Lock. | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| // | |
| // Make sure all field values are in correct range | |
| // | |
| Status = ConvertRtcTimeToEfiTime (Time, RegisterB); | |
| if (!EFI_ERROR (Status)) { | |
| Status = RtcTimeFieldsValid (Time); | |
| } | |
| if (EFI_ERROR (Status)) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Sets the system wakeup alarm clock time. | |
| @param Enabled Enable or disable the wakeup alarm. | |
| @param Time If Enable is TRUE, the time to set the wakeup alarm for. | |
| If Enable is FALSE, then this parameter is optional, and may be NULL. | |
| @param Global For global use inside this module. | |
| @retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. | |
| If Enable is FALSE, then the wakeup alarm was disabled. | |
| @retval EFI_INVALID_PARAMETER A time field is out of range. | |
| @retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error. | |
| @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform. | |
| **/ | |
| EFI_STATUS | |
| PcRtcSetWakeupTime ( | |
| IN BOOLEAN Enable, | |
| IN EFI_TIME *Time, OPTIONAL | |
| IN PC_RTC_MODULE_GLOBALS *Global | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_TIME RtcTime; | |
| RTC_REGISTER_B RegisterB; | |
| EFI_TIME_CAPABILITIES Capabilities; | |
| ZeroMem (&RtcTime, sizeof (RtcTime)); | |
| if (Enable) { | |
| if (Time == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Make sure that the time fields are valid | |
| // | |
| Status = RtcTimeFieldsValid (Time); | |
| if (EFI_ERROR (Status)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // Just support set alarm time within 24 hours | |
| // | |
| PcRtcGetTime (&RtcTime, &Capabilities, Global); | |
| Status = RtcTimeFieldsValid (&RtcTime); | |
| if (EFI_ERROR (Status)) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if (!IsWithinOneDay (&RtcTime, Time)) { | |
| return EFI_UNSUPPORTED; | |
| } | |
| // | |
| // Make a local copy of the time and date | |
| // | |
| CopyMem (&RtcTime, Time, sizeof (EFI_TIME)); | |
| } | |
| // | |
| // Acquire RTC Lock to make access to RTC atomic | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiAcquireLock (&Global->RtcLock); | |
| } | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be updated | |
| // | |
| Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout)); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Read Register B | |
| // | |
| RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); | |
| if (Enable) { | |
| ConvertEfiTimeToRtcTime (&RtcTime, RegisterB); | |
| } else { | |
| // | |
| // if the alarm is disable, record the current setting. | |
| // | |
| RtcTime.Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM); | |
| RtcTime.Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM); | |
| RtcTime.Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM); | |
| RtcTime.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); | |
| RtcTime.Month = RtcRead (RTC_ADDRESS_MONTH); | |
| RtcTime.Year = RtcRead (RTC_ADDRESS_YEAR); | |
| RtcTime.TimeZone = Global->SavedTimeZone; | |
| RtcTime.Daylight = Global->Daylight; | |
| } | |
| // | |
| // Set the Y/M/D info to variable as it has no corresponding hw registers. | |
| // | |
| Status = EfiSetVariable ( | |
| L"RTCALARM", | |
| &gEfiCallerIdGuid, | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE, | |
| sizeof (RtcTime), | |
| &RtcTime | |
| ); | |
| if (EFI_ERROR (Status)) { | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Inhibit updates of the RTC | |
| // | |
| RegisterB.Bits.Set = 1; | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| if (Enable) { | |
| // | |
| // Set RTC alarm time | |
| // | |
| RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second); | |
| RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute); | |
| RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour); | |
| RegisterB.Bits.Aie = 1; | |
| } else { | |
| RegisterB.Bits.Aie = 0; | |
| } | |
| // | |
| // Allow updates of the RTC registers | |
| // | |
| RegisterB.Bits.Set = 0; | |
| RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); | |
| // | |
| // Release RTC Lock. | |
| // | |
| if (!EfiAtRuntime ()) { | |
| EfiReleaseLock (&Global->RtcLock); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Checks an 8-bit BCD value, and converts to an 8-bit value if valid. | |
| This function checks the 8-bit BCD value specified by Value. | |
| If valid, the function converts it to an 8-bit value and returns it. | |
| Otherwise, return 0xff. | |
| @param Value The 8-bit BCD value to check and convert | |
| @return The 8-bit value converted. Or 0xff if Value is invalid. | |
| **/ | |
| UINT8 | |
| CheckAndConvertBcd8ToDecimal8 ( | |
| IN UINT8 Value | |
| ) | |
| { | |
| if ((Value < 0xa0) && ((Value & 0xf) < 0xa)) { | |
| return BcdToDecimal8 (Value); | |
| } | |
| return 0xff; | |
| } | |
| /** | |
| Converts time read from RTC to EFI_TIME format defined by UEFI spec. | |
| This function converts raw time data read from RTC to the EFI_TIME format | |
| defined by UEFI spec. | |
| If data mode of RTC is BCD, then converts it to decimal, | |
| If RTC is in 12-hour format, then converts it to 24-hour format. | |
| @param Time On input, the time data read from RTC to convert | |
| On output, the time converted to UEFI format | |
| @param RegisterB Value of Register B of RTC, indicating data mode | |
| and hour format. | |
| @retval EFI_INVALID_PARAMETER Parameters passed in are invalid. | |
| @retval EFI_SUCCESS Convert RTC time to EFI time successfully. | |
| **/ | |
| EFI_STATUS | |
| ConvertRtcTimeToEfiTime ( | |
| IN OUT EFI_TIME *Time, | |
| IN RTC_REGISTER_B RegisterB | |
| ) | |
| { | |
| BOOLEAN IsPM; | |
| UINT8 Century; | |
| if ((Time->Hour & 0x80) != 0) { | |
| IsPM = TRUE; | |
| } else { | |
| IsPM = FALSE; | |
| } | |
| Time->Hour = (UINT8) (Time->Hour & 0x7f); | |
| if (RegisterB.Bits.Dm == 0) { | |
| Time->Year = CheckAndConvertBcd8ToDecimal8 ((UINT8) Time->Year); | |
| Time->Month = CheckAndConvertBcd8ToDecimal8 (Time->Month); | |
| Time->Day = CheckAndConvertBcd8ToDecimal8 (Time->Day); | |
| Time->Hour = CheckAndConvertBcd8ToDecimal8 (Time->Hour); | |
| Time->Minute = CheckAndConvertBcd8ToDecimal8 (Time->Minute); | |
| Time->Second = CheckAndConvertBcd8ToDecimal8 (Time->Second); | |
| } | |
| if (Time->Year == 0xff || Time->Month == 0xff || Time->Day == 0xff || | |
| Time->Hour == 0xff || Time->Minute == 0xff || Time->Second == 0xff) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| // | |
| // For minimal/maximum year range [1970, 2069], | |
| // Century is 19 if RTC year >= 70, | |
| // Century is 20 otherwise. | |
| // | |
| Century = (UINT8) (PcdGet16 (PcdMinimalValidYear) / 100); | |
| if (Time->Year < PcdGet16 (PcdMinimalValidYear) % 100) { | |
| Century++; | |
| } | |
| Time->Year = (UINT16) (Century * 100 + Time->Year); | |
| // | |
| // If time is in 12 hour format, convert it to 24 hour format | |
| // | |
| if (RegisterB.Bits.Mil == 0) { | |
| if (IsPM && Time->Hour < 12) { | |
| Time->Hour = (UINT8) (Time->Hour + 12); | |
| } | |
| if (!IsPM && Time->Hour == 12) { | |
| Time->Hour = 0; | |
| } | |
| } | |
| Time->Nanosecond = 0; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Wait for a period for the RTC to be ready. | |
| @param Timeout Tell how long it should take to wait. | |
| @retval EFI_DEVICE_ERROR RTC device error. | |
| @retval EFI_SUCCESS RTC is updated and ready. | |
| **/ | |
| EFI_STATUS | |
| RtcWaitToUpdate ( | |
| UINTN Timeout | |
| ) | |
| { | |
| RTC_REGISTER_A RegisterA; | |
| RTC_REGISTER_D RegisterD; | |
| // | |
| // See if the RTC is functioning correctly | |
| // | |
| RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D); | |
| if (RegisterD.Bits.Vrt == 0) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| // | |
| // Wait for up to 0.1 seconds for the RTC to be ready. | |
| // | |
| Timeout = (Timeout / 10) + 1; | |
| RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A); | |
| while (RegisterA.Bits.Uip == 1 && Timeout > 0) { | |
| MicroSecondDelay (10); | |
| RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A); | |
| Timeout--; | |
| } | |
| RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D); | |
| if (Timeout == 0 || RegisterD.Bits.Vrt == 0) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| See if all fields of a variable of EFI_TIME type is correct. | |
| @param Time The time to be checked. | |
| @retval EFI_INVALID_PARAMETER Some fields of Time are not correct. | |
| @retval EFI_SUCCESS Time is a valid EFI_TIME variable. | |
| **/ | |
| EFI_STATUS | |
| RtcTimeFieldsValid ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| if (Time->Year < PcdGet16 (PcdMinimalValidYear) || | |
| Time->Year > PcdGet16 (PcdMaximalValidYear) || | |
| Time->Month < 1 || | |
| Time->Month > 12 || | |
| (!DayValid (Time)) || | |
| Time->Hour > 23 || | |
| Time->Minute > 59 || | |
| Time->Second > 59 || | |
| Time->Nanosecond > 999999999 || | |
| (!(Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE || (Time->TimeZone >= -1440 && Time->TimeZone <= 1440))) || | |
| ((Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT))) != 0)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| See if field Day of an EFI_TIME is correct. | |
| @param Time Its Day field is to be checked. | |
| @retval TRUE Day field of Time is correct. | |
| @retval FALSE Day field of Time is NOT correct. | |
| **/ | |
| BOOLEAN | |
| DayValid ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| // | |
| // The validity of Time->Month field should be checked before | |
| // | |
| ASSERT (Time->Month >=1); | |
| ASSERT (Time->Month <=12); | |
| if (Time->Day < 1 || | |
| Time->Day > mDayOfMonth[Time->Month - 1] || | |
| (Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28)) | |
| ) { | |
| return FALSE; | |
| } | |
| return TRUE; | |
| } | |
| /** | |
| Check if it is a leap year. | |
| @param Time The time to be checked. | |
| @retval TRUE It is a leap year. | |
| @retval FALSE It is NOT a leap year. | |
| **/ | |
| BOOLEAN | |
| IsLeapYear ( | |
| IN EFI_TIME *Time | |
| ) | |
| { | |
| if (Time->Year % 4 == 0) { | |
| if (Time->Year % 100 == 0) { | |
| if (Time->Year % 400 == 0) { | |
| return TRUE; | |
| } else { | |
| return FALSE; | |
| } | |
| } else { | |
| return TRUE; | |
| } | |
| } else { | |
| return FALSE; | |
| } | |
| } | |
| /** | |
| Converts time from EFI_TIME format defined by UEFI spec to RTC's. | |
| This function converts time from EFI_TIME format defined by UEFI spec to RTC's. | |
| If data mode of RTC is BCD, then converts EFI_TIME to it. | |
| If RTC is in 12-hour format, then converts EFI_TIME to it. | |
| @param Time On input, the time data read from UEFI to convert | |
| On output, the time converted to RTC format | |
| @param RegisterB Value of Register B of RTC, indicating data mode | |
| **/ | |
| VOID | |
| ConvertEfiTimeToRtcTime ( | |
| IN OUT EFI_TIME *Time, | |
| IN RTC_REGISTER_B RegisterB | |
| ) | |
| { | |
| BOOLEAN IsPM; | |
| IsPM = TRUE; | |
| // | |
| // Adjust hour field if RTC is in 12 hour mode | |
| // | |
| if (RegisterB.Bits.Mil == 0) { | |
| if (Time->Hour < 12) { | |
| IsPM = FALSE; | |
| } | |
| if (Time->Hour >= 13) { | |
| Time->Hour = (UINT8) (Time->Hour - 12); | |
| } else if (Time->Hour == 0) { | |
| Time->Hour = 12; | |
| } | |
| } | |
| // | |
| // Set the Time/Date values. | |
| // | |
| Time->Year = (UINT16) (Time->Year % 100); | |
| if (RegisterB.Bits.Dm == 0) { | |
| Time->Year = DecimalToBcd8 ((UINT8) Time->Year); | |
| Time->Month = DecimalToBcd8 (Time->Month); | |
| Time->Day = DecimalToBcd8 (Time->Day); | |
| Time->Hour = DecimalToBcd8 (Time->Hour); | |
| Time->Minute = DecimalToBcd8 (Time->Minute); | |
| Time->Second = DecimalToBcd8 (Time->Second); | |
| } | |
| // | |
| // If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field. | |
| // | |
| if (RegisterB.Bits.Mil == 0 && IsPM) { | |
| Time->Hour = (UINT8) (Time->Hour | 0x80); | |
| } | |
| } | |
| /** | |
| Compare the Hour, Minute and Second of the From time and the To time. | |
| Only compare H/M/S in EFI_TIME and ignore other fields here. | |
| @param From the first time | |
| @param To the second time | |
| @return >0 The H/M/S of the From time is later than those of To time | |
| @return ==0 The H/M/S of the From time is same as those of To time | |
| @return <0 The H/M/S of the From time is earlier than those of To time | |
| **/ | |
| INTN | |
| CompareHMS ( | |
| IN EFI_TIME *From, | |
| IN EFI_TIME *To | |
| ) | |
| { | |
| if ((From->Hour > To->Hour) || | |
| ((From->Hour == To->Hour) && (From->Minute > To->Minute)) || | |
| ((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second > To->Second))) { | |
| return 1; | |
| } else if ((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second == To->Second)) { | |
| return 0; | |
| } else { | |
| return -1; | |
| } | |
| } | |
| /** | |
| To check if second date is later than first date within 24 hours. | |
| @param From the first date | |
| @param To the second date | |
| @retval TRUE From is previous to To within 24 hours. | |
| @retval FALSE From is later, or it is previous to To more than 24 hours. | |
| **/ | |
| BOOLEAN | |
| IsWithinOneDay ( | |
| IN EFI_TIME *From, | |
| IN EFI_TIME *To | |
| ) | |
| { | |
| BOOLEAN Adjacent; | |
| Adjacent = FALSE; | |
| // | |
| // The validity of From->Month field should be checked before | |
| // | |
| ASSERT (From->Month >=1); | |
| ASSERT (From->Month <=12); | |
| if (From->Year == To->Year) { | |
| if (From->Month == To->Month) { | |
| if ((From->Day + 1) == To->Day) { | |
| if ((CompareHMS(From, To) >= 0)) { | |
| Adjacent = TRUE; | |
| } | |
| } else if (From->Day == To->Day) { | |
| if ((CompareHMS(From, To) <= 0)) { | |
| Adjacent = TRUE; | |
| } | |
| } | |
| } else if (((From->Month + 1) == To->Month) && (To->Day == 1)) { | |
| if ((From->Month == 2) && !IsLeapYear(From)) { | |
| if (From->Day == 28) { | |
| if ((CompareHMS(From, To) >= 0)) { | |
| Adjacent = TRUE; | |
| } | |
| } | |
| } else if (From->Day == mDayOfMonth[From->Month - 1]) { | |
| if ((CompareHMS(From, To) >= 0)) { | |
| Adjacent = TRUE; | |
| } | |
| } | |
| } | |
| } else if (((From->Year + 1) == To->Year) && | |
| (From->Month == 12) && | |
| (From->Day == 31) && | |
| (To->Month == 1) && | |
| (To->Day == 1)) { | |
| if ((CompareHMS(From, To) >= 0)) { | |
| Adjacent = TRUE; | |
| } | |
| } | |
| return Adjacent; | |
| } | |
| /** | |
| This function find ACPI table with the specified signature in RSDT or XSDT. | |
| @param Sdt ACPI RSDT or XSDT. | |
| @param Signature ACPI table signature. | |
| @param TablePointerSize Size of table pointer: 4 or 8. | |
| @return ACPI table or NULL if not found. | |
| **/ | |
| VOID * | |
| ScanTableInSDT ( | |
| IN EFI_ACPI_DESCRIPTION_HEADER *Sdt, | |
| IN UINT32 Signature, | |
| IN UINTN TablePointerSize | |
| ) | |
| { | |
| UINTN Index; | |
| UINTN EntryCount; | |
| UINTN EntryBase; | |
| EFI_ACPI_DESCRIPTION_HEADER *Table; | |
| EntryCount = (Sdt->Length - sizeof (EFI_ACPI_DESCRIPTION_HEADER)) / TablePointerSize; | |
| EntryBase = (UINTN) (Sdt + 1); | |
| for (Index = 0; Index < EntryCount; Index++) { | |
| // | |
| // When TablePointerSize is 4 while sizeof (VOID *) is 8, make sure the upper 4 bytes are zero. | |
| // | |
| Table = 0; | |
| CopyMem (&Table, (VOID *) (EntryBase + Index * TablePointerSize), TablePointerSize); | |
| if (Table == NULL) { | |
| continue; | |
| } | |
| if (Table->Signature == Signature) { | |
| return Table; | |
| } | |
| } | |
| return NULL; | |
| } | |
| /** | |
| Get the century RTC address from the ACPI FADT table. | |
| @return The century RTC address or 0 if not found. | |
| **/ | |
| UINT8 | |
| GetCenturyRtcAddress ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp; | |
| EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt; | |
| Status = EfiGetSystemConfigurationTable (&gEfiAcpiTableGuid, (VOID **) &Rsdp); | |
| if (EFI_ERROR (Status)) { | |
| Status = EfiGetSystemConfigurationTable (&gEfiAcpi10TableGuid, (VOID **) &Rsdp); | |
| } | |
| if (EFI_ERROR (Status) || (Rsdp == NULL)) { | |
| return 0; | |
| } | |
| Fadt = NULL; | |
| // | |
| // Find FADT in XSDT | |
| // | |
| if (Rsdp->Revision >= EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER_REVISION && Rsdp->XsdtAddress != 0) { | |
| Fadt = ScanTableInSDT ( | |
| (EFI_ACPI_DESCRIPTION_HEADER *) (UINTN) Rsdp->XsdtAddress, | |
| EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE, | |
| sizeof (UINTN) | |
| ); | |
| } | |
| // | |
| // Find FADT in RSDT | |
| // | |
| if (Fadt == NULL && Rsdp->RsdtAddress != 0) { | |
| Fadt = ScanTableInSDT ( | |
| (EFI_ACPI_DESCRIPTION_HEADER *) (UINTN) Rsdp->RsdtAddress, | |
| EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE, | |
| sizeof (UINT32) | |
| ); | |
| } | |
| if ((Fadt != NULL) && | |
| (Fadt->Century > RTC_ADDRESS_REGISTER_D) && (Fadt->Century < 0x80) | |
| ) { | |
| return Fadt->Century; | |
| } else { | |
| return 0; | |
| } | |
| } | |
| /** | |
| Notification function of ACPI Table change. | |
| This is a notification function registered on ACPI Table change event. | |
| It saves the Century address stored in ACPI FADT table. | |
| @param Event Event whose notification function is being invoked. | |
| @param Context Pointer to the notification function's context. | |
| **/ | |
| VOID | |
| EFIAPI | |
| PcRtcAcpiTableChangeCallback ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_TIME Time; | |
| UINT8 CenturyRtcAddress; | |
| UINT8 Century; | |
| CenturyRtcAddress = GetCenturyRtcAddress (); | |
| if ((CenturyRtcAddress != 0) && (mModuleGlobal.CenturyRtcAddress != CenturyRtcAddress)) { | |
| mModuleGlobal.CenturyRtcAddress = CenturyRtcAddress; | |
| Status = PcRtcGetTime (&Time, NULL, &mModuleGlobal); | |
| if (!EFI_ERROR (Status)) { | |
| Century = (UINT8) (Time.Year / 100); | |
| Century = DecimalToBcd8 (Century); | |
| DEBUG ((EFI_D_INFO, "PcRtc: Write 0x%x to CMOS location 0x%x\n", Century, mModuleGlobal.CenturyRtcAddress)); | |
| RtcWrite (mModuleGlobal.CenturyRtcAddress, Century); | |
| } | |
| } | |
| } |