| /** @file | |
| Construct MP Services Protocol on top of the EMU Thread protocol. | |
| This code makes APs show up in the emulator. PcdEmuApCount is the | |
| number of APs the emulator should produce. | |
| The MP Services Protocol provides a generalized way of performing following tasks: | |
| - Retrieving information of multi-processor environment and MP-related status of | |
| specific processors. | |
| - Dispatching user-provided function to APs. | |
| - Maintain MP-related processor status. | |
| The MP Services Protocol must be produced on any system with more than one logical | |
| processor. | |
| The Protocol is available only during boot time. | |
| MP Services Protocol is hardware-independent. Most of the logic of this protocol | |
| is architecturally neutral. It abstracts the multi-processor environment and | |
| status of processors, and provides interfaces to retrieve information, maintain, | |
| and dispatch. | |
| MP Services Protocol may be consumed by ACPI module. The ACPI module may use this | |
| protocol to retrieve data that are needed for an MP platform and report them to OS. | |
| MP Services Protocol may also be used to program and configure processors, such | |
| as MTRR synchronization for memory space attributes setting in DXE Services. | |
| MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot | |
| by taking advantage of the processing capabilities of the APs, for example, using | |
| APs to help test system memory in parallel with other device initialization. | |
| Diagnostics applications may also use this protocol for multi-processor. | |
| Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR> | |
| Portitions Copyright (c) 2011, Apple Inc. All rights reserved. | |
| This program and the accompanying materials are licensed and made available under | |
| the terms and conditions of the BSD License that accompanies this distribution. | |
| The full text of the license may be found at | |
| http://opensource.org/licenses/bsd-license.php. | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
| **/ | |
| #include "CpuDriver.h" | |
| MP_SYSTEM_DATA gMPSystem; | |
| EMU_THREAD_THUNK_PROTOCOL *gThread = NULL; | |
| EFI_EVENT gReadToBootEvent; | |
| BOOLEAN gReadToBoot = FALSE; | |
| UINTN gPollInterval; | |
| BOOLEAN | |
| IsBSP ( | |
| VOID | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN ProcessorNumber; | |
| Status = CpuMpServicesWhoAmI (&mMpServicesTemplate, &ProcessorNumber); | |
| if (EFI_ERROR (Status)) { | |
| return FALSE; | |
| } | |
| return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0; | |
| } | |
| VOID | |
| SetApProcedure ( | |
| IN PROCESSOR_DATA_BLOCK *Processor, | |
| IN EFI_AP_PROCEDURE Procedure, | |
| IN VOID *ProcedureArgument | |
| ) | |
| { | |
| gThread->MutexLock (Processor->ProcedureLock); | |
| Processor->Parameter = ProcedureArgument; | |
| Processor->Procedure = Procedure; | |
| gThread->MutexUnlock (Processor->ProcedureLock); | |
| } | |
| EFI_STATUS | |
| GetNextBlockedNumber ( | |
| OUT UINTN *NextNumber | |
| ) | |
| { | |
| UINTN Number; | |
| PROCESSOR_STATE ProcessorState; | |
| PROCESSOR_DATA_BLOCK *Data; | |
| for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
| Data = &gMPSystem.ProcessorData[Number]; | |
| if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
| // Skip BSP | |
| continue; | |
| } | |
| gThread->MutexLock (Data->StateLock); | |
| ProcessorState = Data->State; | |
| gThread->MutexUnlock (Data->StateLock); | |
| if (ProcessorState == CPU_STATE_BLOCKED) { | |
| *NextNumber = Number; | |
| return EFI_SUCCESS; | |
| } | |
| } | |
| return EFI_NOT_FOUND; | |
| } | |
| /** | |
| * Calculated and stalled the interval time by BSP to check whether | |
| * the APs have finished. | |
| * | |
| * @param[in] Timeout The time limit in microseconds for | |
| * APs to return from Procedure. | |
| * | |
| * @retval StallTime Time of execution stall. | |
| **/ | |
| UINTN | |
| CalculateAndStallInterval ( | |
| IN UINTN Timeout | |
| ) | |
| { | |
| UINTN StallTime; | |
| if (Timeout < gPollInterval && Timeout != 0) { | |
| StallTime = Timeout; | |
| } else { | |
| StallTime = gPollInterval; | |
| } | |
| gBS->Stall (StallTime); | |
| return StallTime; | |
| } | |
| /** | |
| This service retrieves the number of logical processor in the platform | |
| and the number of those logical processors that are enabled on this boot. | |
| This service may only be called from the BSP. | |
| This function is used to retrieve the following information: | |
| - The number of logical processors that are present in the system. | |
| - The number of enabled logical processors in the system at the instant | |
| this call is made. | |
| Because MP Service Protocol provides services to enable and disable processors | |
| dynamically, the number of enabled logical processors may vary during the | |
| course of a boot session. | |
| If this service is called from an AP, then EFI_DEVICE_ERROR is returned. | |
| If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then | |
| EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors | |
| is returned in NumberOfProcessors, the number of currently enabled processor | |
| is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned. | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
| instance. | |
| @param[out] NumberOfProcessors Pointer to the total number of logical | |
| processors in the system, including the BSP | |
| and disabled APs. | |
| @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical | |
| processors that exist in system, including | |
| the BSP. | |
| @retval EFI_SUCCESS The number of logical processors and enabled | |
| logical processors was retrieved. | |
| @retval EFI_DEVICE_ERROR The calling processor is an AP. | |
| @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL. | |
| @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesGetNumberOfProcessors ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| OUT UINTN *NumberOfProcessors, | |
| OUT UINTN *NumberOfEnabledProcessors | |
| ) | |
| { | |
| if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (!IsBSP ()) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| *NumberOfProcessors = gMPSystem.NumberOfProcessors; | |
| *NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors; | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Gets detailed MP-related information on the requested processor at the | |
| instant this call is made. This service may only be called from the BSP. | |
| This service retrieves detailed MP-related information about any processor | |
| on the platform. Note the following: | |
| - The processor information may change during the course of a boot session. | |
| - The information presented here is entirely MP related. | |
| Information regarding the number of caches and their sizes, frequency of operation, | |
| slot numbers is all considered platform-related information and is not provided | |
| by this service. | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
| instance. | |
| @param[in] ProcessorNumber The handle number of processor. | |
| @param[out] ProcessorInfoBuffer A pointer to the buffer where information for | |
| the requested processor is deposited. | |
| @retval EFI_SUCCESS Processor information was returned. | |
| @retval EFI_DEVICE_ERROR The calling processor is an AP. | |
| @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. | |
| @retval EFI_NOT_FOUND The processor with the handle specified by | |
| ProcessorNumber does not exist in the platform. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesGetProcessorInfo ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| IN UINTN ProcessorNumber, | |
| OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer | |
| ) | |
| { | |
| if (ProcessorInfoBuffer == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (!IsBSP ()) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
| return EFI_NOT_FOUND; | |
| } | |
| CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION)); | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This service executes a caller provided function on all enabled APs. APs can | |
| run either simultaneously or one at a time in sequence. This service supports | |
| both blocking and non-blocking requests. The non-blocking requests use EFI | |
| events so the BSP can detect when the APs have finished. This service may only | |
| be called from the BSP. | |
| This function is used to dispatch all the enabled APs to the function specified | |
| by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned | |
| immediately and Procedure is not started on any AP. | |
| If SingleThread is TRUE, all the enabled APs execute the function specified by | |
| Procedure one by one, in ascending order of processor handle number. Otherwise, | |
| all the enabled APs execute the function specified by Procedure simultaneously. | |
| If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all | |
| APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking | |
| mode, and the BSP returns from this service without waiting for APs. If a | |
| non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT | |
| is signaled, then EFI_UNSUPPORTED must be returned. | |
| If the timeout specified by TimeoutInMicroseconds expires before all APs return | |
| from Procedure, then Procedure on the failed APs is terminated. All enabled APs | |
| are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
| and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its | |
| content points to the list of processor handle numbers in which Procedure was | |
| terminated. | |
| Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
| to make sure that the nature of the code that is executed on the BSP and the | |
| dispatched APs is well controlled. The MP Services Protocol does not guarantee | |
| that the Procedure function is MP-safe. Hence, the tasks that can be run in | |
| parallel are limited to certain independent tasks and well-controlled exclusive | |
| code. EFI services and protocols may not be called by APs unless otherwise | |
| specified. | |
| In blocking execution mode, BSP waits until all APs finish or | |
| TimeoutInMicroseconds expires. | |
| In non-blocking execution mode, BSP is freed to return to the caller and then | |
| proceed to the next task without having to wait for APs. The following | |
| sequence needs to occur in a non-blocking execution mode: | |
| -# The caller that intends to use this MP Services Protocol in non-blocking | |
| mode creates WaitEvent by calling the EFI CreateEvent() service. The caller | |
| invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent | |
| is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests | |
| the function specified by Procedure to be started on all the enabled APs, | |
| and releases the BSP to continue with other tasks. | |
| -# The caller can use the CheckEvent() and WaitForEvent() services to check | |
| the state of the WaitEvent created in step 1. | |
| -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP | |
| Service signals WaitEvent by calling the EFI SignalEvent() function. If | |
| FailedCpuList is not NULL, its content is available when WaitEvent is | |
| signaled. If all APs returned from Procedure prior to the timeout, then | |
| FailedCpuList is set to NULL. If not all APs return from Procedure before | |
| the timeout, then FailedCpuList is filled in with the list of the failed | |
| APs. The buffer is allocated by MP Service Protocol using AllocatePool(). | |
| It is the caller's responsibility to free the buffer with FreePool() service. | |
| -# This invocation of SignalEvent() function informs the caller that invoked | |
| EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed | |
| the specified task or a timeout occurred. The contents of FailedCpuList | |
| can be examined to determine which APs did not complete the specified task | |
| prior to the timeout. | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
| instance. | |
| @param[in] Procedure A pointer to the function to be run on | |
| enabled APs of the system. See type | |
| EFI_AP_PROCEDURE. | |
| @param[in] SingleThread If TRUE, then all the enabled APs execute | |
| the function specified by Procedure one by | |
| one, in ascending order of processor handle | |
| number. If FALSE, then all the enabled APs | |
| execute the function specified by Procedure | |
| simultaneously. | |
| @param[in] WaitEvent The event created by the caller with CreateEvent() | |
| service. If it is NULL, then execute in | |
| blocking mode. BSP waits until all APs finish | |
| or TimeoutInMicroseconds expires. If it's | |
| not NULL, then execute in non-blocking mode. | |
| BSP requests the function specified by | |
| Procedure to be started on all the enabled | |
| APs, and go on executing immediately. If | |
| all return from Procedure, or TimeoutInMicroseconds | |
| expires, this event is signaled. The BSP | |
| can use the CheckEvent() or WaitForEvent() | |
| services to check the state of event. Type | |
| EFI_EVENT is defined in CreateEvent() in | |
| the Unified Extensible Firmware Interface | |
| Specification. | |
| @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for | |
| APs to return from Procedure, either for | |
| blocking or non-blocking mode. Zero means | |
| infinity. If the timeout expires before | |
| all APs return from Procedure, then Procedure | |
| on the failed APs is terminated. All enabled | |
| APs are available for next function assigned | |
| by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
| or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). | |
| If the timeout expires in blocking mode, | |
| BSP returns EFI_TIMEOUT. If the timeout | |
| expires in non-blocking mode, WaitEvent | |
| is signaled with SignalEvent(). | |
| @param[in] ProcedureArgument The parameter passed into Procedure for | |
| all APs. | |
| @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise, | |
| if all APs finish successfully, then its | |
| content is set to NULL. If not all APs | |
| finish before timeout expires, then its | |
| content is set to address of the buffer | |
| holding handle numbers of the failed APs. | |
| The buffer is allocated by MP Service Protocol, | |
| and it's the caller's responsibility to | |
| free the buffer with FreePool() service. | |
| In blocking mode, it is ready for consumption | |
| when the call returns. In non-blocking mode, | |
| it is ready when WaitEvent is signaled. The | |
| list of failed CPU is terminated by | |
| END_OF_CPU_LIST. | |
| @retval EFI_SUCCESS In blocking mode, all APs have finished before | |
| the timeout expired. | |
| @retval EFI_SUCCESS In non-blocking mode, function has been dispatched | |
| to all enabled APs. | |
| @retval EFI_UNSUPPORTED A non-blocking mode request was made after the | |
| UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was | |
| signaled. | |
| @retval EFI_DEVICE_ERROR Caller processor is AP. | |
| @retval EFI_NOT_STARTED No enabled APs exist in the system. | |
| @retval EFI_NOT_READY Any enabled APs are busy. | |
| @retval EFI_TIMEOUT In blocking mode, the timeout expired before | |
| all enabled APs have finished. | |
| @retval EFI_INVALID_PARAMETER Procedure is NULL. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesStartupAllAps ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| IN EFI_AP_PROCEDURE Procedure, | |
| IN BOOLEAN SingleThread, | |
| IN EFI_EVENT WaitEvent OPTIONAL, | |
| IN UINTN TimeoutInMicroseconds, | |
| IN VOID *ProcedureArgument OPTIONAL, | |
| OUT UINTN **FailedCpuList OPTIONAL | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| PROCESSOR_DATA_BLOCK *ProcessorData; | |
| UINTN Number; | |
| UINTN NextNumber; | |
| PROCESSOR_STATE APInitialState; | |
| PROCESSOR_STATE ProcessorState; | |
| UINTN Timeout; | |
| if (!IsBSP ()) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if (gMPSystem.NumberOfProcessors == 1) { | |
| return EFI_NOT_STARTED; | |
| } | |
| if (Procedure == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((WaitEvent != NULL) && gReadToBoot) { | |
| return EFI_UNSUPPORTED; | |
| } | |
| for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
| ProcessorData = &gMPSystem.ProcessorData[Number]; | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| // Skip Disabled processors | |
| continue; | |
| } | |
| gThread->MutexLock(ProcessorData->StateLock); | |
| if (ProcessorData->State != CPU_STATE_IDLE) { | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| return EFI_NOT_READY; | |
| } | |
| gThread->MutexUnlock(ProcessorData->StateLock); | |
| } | |
| if (FailedCpuList != NULL) { | |
| gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN)); | |
| if (gMPSystem.FailedList == NULL) { | |
| return EFI_OUT_OF_RESOURCES; | |
| } | |
| SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST); | |
| gMPSystem.FailedListIndex = 0; | |
| *FailedCpuList = gMPSystem.FailedList; | |
| } | |
| Timeout = TimeoutInMicroseconds; | |
| ProcessorData = NULL; | |
| gMPSystem.FinishCount = 0; | |
| gMPSystem.StartCount = 0; | |
| gMPSystem.SingleThread = SingleThread; | |
| APInitialState = CPU_STATE_READY; | |
| for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
| ProcessorData = &gMPSystem.ProcessorData[Number]; | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| // Skip Disabled processors | |
| gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number; | |
| continue; | |
| } | |
| // | |
| // Get APs prepared, and put failing APs into FailedCpuList | |
| // if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready | |
| // state 1 by 1, until the previous 1 finished its task | |
| // if not "SingleThread", all APs are put to ready state from the beginning | |
| // | |
| gThread->MutexLock(ProcessorData->StateLock); | |
| ASSERT (ProcessorData->State == CPU_STATE_IDLE); | |
| ProcessorData->State = APInitialState; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| gMPSystem.StartCount++; | |
| if (SingleThread) { | |
| APInitialState = CPU_STATE_BLOCKED; | |
| } | |
| } | |
| if (WaitEvent != NULL) { | |
| for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
| ProcessorData = &gMPSystem.ProcessorData[Number]; | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| // Skip Disabled processors | |
| continue; | |
| } | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorState = ProcessorData->State; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| if (ProcessorState == CPU_STATE_READY) { | |
| SetApProcedure (ProcessorData, Procedure, ProcedureArgument); | |
| } | |
| } | |
| // | |
| // Save data into private data structure, and create timer to poll AP state before exiting | |
| // | |
| gMPSystem.Procedure = Procedure; | |
| gMPSystem.ProcedureArgument = ProcedureArgument; | |
| gMPSystem.WaitEvent = WaitEvent; | |
| gMPSystem.Timeout = TimeoutInMicroseconds; | |
| gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0); | |
| Status = gBS->SetTimer ( | |
| gMPSystem.CheckAllAPsEvent, | |
| TimerPeriodic, | |
| gPollInterval | |
| ); | |
| return Status; | |
| } | |
| while (TRUE) { | |
| for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { | |
| ProcessorData = &gMPSystem.ProcessorData[Number]; | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| // Skip Disabled processors | |
| continue; | |
| } | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorState = ProcessorData->State; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| switch (ProcessorState) { | |
| case CPU_STATE_READY: | |
| SetApProcedure (ProcessorData, Procedure, ProcedureArgument); | |
| break; | |
| case CPU_STATE_FINISHED: | |
| gMPSystem.FinishCount++; | |
| if (SingleThread) { | |
| Status = GetNextBlockedNumber (&NextNumber); | |
| if (!EFI_ERROR (Status)) { | |
| gThread->MutexLock (gMPSystem.ProcessorData[NextNumber].StateLock); | |
| gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY; | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[NextNumber].StateLock); | |
| } | |
| } | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorData->State = CPU_STATE_IDLE; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| break; | |
| default: | |
| break; | |
| } | |
| } | |
| if (gMPSystem.FinishCount == gMPSystem.StartCount) { | |
| Status = EFI_SUCCESS; | |
| goto Done; | |
| } | |
| if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { | |
| Status = EFI_TIMEOUT; | |
| goto Done; | |
| } | |
| Timeout -= CalculateAndStallInterval (Timeout); | |
| } | |
| Done: | |
| if (FailedCpuList != NULL) { | |
| if (gMPSystem.FailedListIndex == 0) { | |
| FreePool (*FailedCpuList); | |
| *FailedCpuList = NULL; | |
| } | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This service lets the caller get one enabled AP to execute a caller-provided | |
| function. The caller can request the BSP to either wait for the completion | |
| of the AP or just proceed with the next task by using the EFI event mechanism. | |
| See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking | |
| execution support. This service may only be called from the BSP. | |
| This function is used to dispatch one enabled AP to the function specified by | |
| Procedure passing in the argument specified by ProcedureArgument. If WaitEvent | |
| is NULL, execution is in blocking mode. The BSP waits until the AP finishes or | |
| TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. | |
| BSP proceeds to the next task without waiting for the AP. If a non-blocking mode | |
| is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, | |
| then EFI_UNSUPPORTED must be returned. | |
| If the timeout specified by TimeoutInMicroseconds expires before the AP returns | |
| from Procedure, then execution of Procedure by the AP is terminated. The AP is | |
| available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and | |
| EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL | |
| instance. | |
| @param[in] Procedure A pointer to the function to be run on | |
| enabled APs of the system. See type | |
| EFI_AP_PROCEDURE. | |
| @param[in] ProcessorNumber The handle number of the AP. The range is | |
| from 0 to the total number of logical | |
| processors minus 1. The total number of | |
| logical processors can be retrieved by | |
| EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
| @param[in] WaitEvent The event created by the caller with CreateEvent() | |
| service. If it is NULL, then execute in | |
| blocking mode. BSP waits until all APs finish | |
| or TimeoutInMicroseconds expires. If it's | |
| not NULL, then execute in non-blocking mode. | |
| BSP requests the function specified by | |
| Procedure to be started on all the enabled | |
| APs, and go on executing immediately. If | |
| all return from Procedure or TimeoutInMicroseconds | |
| expires, this event is signaled. The BSP | |
| can use the CheckEvent() or WaitForEvent() | |
| services to check the state of event. Type | |
| EFI_EVENT is defined in CreateEvent() in | |
| the Unified Extensible Firmware Interface | |
| Specification. | |
| @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for | |
| APs to return from Procedure, either for | |
| blocking or non-blocking mode. Zero means | |
| infinity. If the timeout expires before | |
| all APs return from Procedure, then Procedure | |
| on the failed APs is terminated. All enabled | |
| APs are available for next function assigned | |
| by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() | |
| or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). | |
| If the timeout expires in blocking mode, | |
| BSP returns EFI_TIMEOUT. If the timeout | |
| expires in non-blocking mode, WaitEvent | |
| is signaled with SignalEvent(). | |
| @param[in] ProcedureArgument The parameter passed into Procedure for | |
| all APs. | |
| @param[out] Finished If NULL, this parameter is ignored. In | |
| blocking mode, this parameter is ignored. | |
| In non-blocking mode, if AP returns from | |
| Procedure before the timeout expires, its | |
| content is set to TRUE. Otherwise, the | |
| value is set to FALSE. The caller can | |
| determine if the AP returned from Procedure | |
| by evaluating this value. | |
| @retval EFI_SUCCESS In blocking mode, specified AP finished before | |
| the timeout expires. | |
| @retval EFI_SUCCESS In non-blocking mode, the function has been | |
| dispatched to specified AP. | |
| @retval EFI_UNSUPPORTED A non-blocking mode request was made after the | |
| UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was | |
| signaled. | |
| @retval EFI_DEVICE_ERROR The calling processor is an AP. | |
| @retval EFI_TIMEOUT In blocking mode, the timeout expired before | |
| the specified AP has finished. | |
| @retval EFI_NOT_READY The specified AP is busy. | |
| @retval EFI_NOT_FOUND The processor with the handle specified by | |
| ProcessorNumber does not exist. | |
| @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. | |
| @retval EFI_INVALID_PARAMETER Procedure is NULL. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesStartupThisAP ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| IN EFI_AP_PROCEDURE Procedure, | |
| IN UINTN ProcessorNumber, | |
| IN EFI_EVENT WaitEvent OPTIONAL, | |
| IN UINTN TimeoutInMicroseconds, | |
| IN VOID *ProcedureArgument OPTIONAL, | |
| OUT BOOLEAN *Finished OPTIONAL | |
| ) | |
| { | |
| UINTN Timeout; | |
| if (!IsBSP ()) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if (Procedure == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
| return EFI_NOT_FOUND; | |
| } | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| gThread->MutexLock(gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { | |
| gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| return EFI_NOT_READY; | |
| } | |
| gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if ((WaitEvent != NULL) && gReadToBoot) { | |
| return EFI_UNSUPPORTED; | |
| } | |
| Timeout = TimeoutInMicroseconds; | |
| gMPSystem.StartCount = 1; | |
| gMPSystem.FinishCount = 0; | |
| SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument); | |
| if (WaitEvent != NULL) { | |
| // Non Blocking | |
| gMPSystem.WaitEvent = WaitEvent; | |
| gBS->SetTimer ( | |
| gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent, | |
| TimerPeriodic, | |
| gPollInterval | |
| ); | |
| return EFI_SUCCESS; | |
| } | |
| // Blocking | |
| while (TRUE) { | |
| gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) { | |
| gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE; | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| break; | |
| } | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { | |
| return EFI_TIMEOUT; | |
| } | |
| Timeout -= CalculateAndStallInterval (Timeout); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This service switches the requested AP to be the BSP from that point onward. | |
| This service changes the BSP for all purposes. This call can only be performed | |
| by the current BSP. | |
| This service switches the requested AP to be the BSP from that point onward. | |
| This service changes the BSP for all purposes. The new BSP can take over the | |
| execution of the old BSP and continue seamlessly from where the old one left | |
| off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT | |
| is signaled. | |
| If the BSP cannot be switched prior to the return from this service, then | |
| EFI_UNSUPPORTED must be returned. | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. | |
| @param[in] ProcessorNumber The handle number of AP that is to become the new | |
| BSP. The range is from 0 to the total number of | |
| logical processors minus 1. The total number of | |
| logical processors can be retrieved by | |
| EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
| @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an | |
| enabled AP. Otherwise, it will be disabled. | |
| @retval EFI_SUCCESS BSP successfully switched. | |
| @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to | |
| this service returning. | |
| @retval EFI_UNSUPPORTED Switching the BSP is not supported. | |
| @retval EFI_SUCCESS The calling processor is an AP. | |
| @retval EFI_NOT_FOUND The processor with the handle specified by | |
| ProcessorNumber does not exist. | |
| @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or | |
| a disabled AP. | |
| @retval EFI_NOT_READY The specified AP is busy. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesSwitchBSP ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| IN UINTN ProcessorNumber, | |
| IN BOOLEAN EnableOldBSP | |
| ) | |
| { | |
| UINTN Index; | |
| if (!IsBSP ()) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
| return EFI_NOT_FOUND; | |
| } | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { | |
| if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
| break; | |
| } | |
| } | |
| ASSERT (Index != gMPSystem.NumberOfProcessors); | |
| gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| return EFI_NOT_READY; | |
| } | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| // Skip for now as we need switch a bunch of stack stuff around and it's complex | |
| // May not be worth it? | |
| return EFI_NOT_READY; | |
| } | |
| /** | |
| This service lets the caller enable or disable an AP from this point onward. | |
| This service may only be called from the BSP. | |
| This service allows the caller enable or disable an AP from this point onward. | |
| The caller can optionally specify the health status of the AP by Health. If | |
| an AP is being disabled, then the state of the disabled AP is implementation | |
| dependent. If an AP is enabled, then the implementation must guarantee that a | |
| complete initialization sequence is performed on the AP, so the AP is in a state | |
| that is compatible with an MP operating system. This service may not be supported | |
| after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. | |
| If the enable or disable AP operation cannot be completed prior to the return | |
| from this service, then EFI_UNSUPPORTED must be returned. | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. | |
| @param[in] ProcessorNumber The handle number of AP that is to become the new | |
| BSP. The range is from 0 to the total number of | |
| logical processors minus 1. The total number of | |
| logical processors can be retrieved by | |
| EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
| @param[in] EnableAP Specifies the new state for the processor for | |
| enabled, FALSE for disabled. | |
| @param[in] HealthFlag If not NULL, a pointer to a value that specifies | |
| the new health status of the AP. This flag | |
| corresponds to StatusFlag defined in | |
| EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only | |
| the PROCESSOR_HEALTH_STATUS_BIT is used. All other | |
| bits are ignored. If it is NULL, this parameter | |
| is ignored. | |
| @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. | |
| @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed | |
| prior to this service returning. | |
| @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. | |
| @retval EFI_DEVICE_ERROR The calling processor is an AP. | |
| @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber | |
| does not exist. | |
| @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesEnableDisableAP ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| IN UINTN ProcessorNumber, | |
| IN BOOLEAN EnableAP, | |
| IN UINT32 *HealthFlag OPTIONAL | |
| ) | |
| { | |
| if (!IsBSP ()) { | |
| return EFI_DEVICE_ERROR; | |
| } | |
| if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { | |
| return EFI_NOT_FOUND; | |
| } | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| return EFI_UNSUPPORTED; | |
| } | |
| gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); | |
| if (EnableAP) { | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) { | |
| gMPSystem.NumberOfEnabledProcessors++; | |
| } | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT; | |
| } else { | |
| if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) { | |
| gMPSystem.NumberOfEnabledProcessors--; | |
| } | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT; | |
| } | |
| if (HealthFlag != NULL) { | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT; | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| This return the handle number for the calling processor. This service may be | |
| called from the BSP and APs. | |
| This service returns the processor handle number for the calling processor. | |
| The returned value is in the range from 0 to the total number of logical | |
| processors minus 1. The total number of logical processors can be retrieved | |
| with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be | |
| called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER | |
| is returned. Otherwise, the current processors handle number is returned in | |
| ProcessorNumber, and EFI_SUCCESS is returned. | |
| @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. | |
| @param[in] ProcessorNumber The handle number of AP that is to become the new | |
| BSP. The range is from 0 to the total number of | |
| logical processors minus 1. The total number of | |
| logical processors can be retrieved by | |
| EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). | |
| @retval EFI_SUCCESS The current processor handle number was returned | |
| in ProcessorNumber. | |
| @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. | |
| **/ | |
| EFI_STATUS | |
| EFIAPI | |
| CpuMpServicesWhoAmI ( | |
| IN EFI_MP_SERVICES_PROTOCOL *This, | |
| OUT UINTN *ProcessorNumber | |
| ) | |
| { | |
| UINTN Index; | |
| UINT64 ProcessorId; | |
| if (ProcessorNumber == NULL) { | |
| return EFI_INVALID_PARAMETER; | |
| } | |
| ProcessorId = gThread->Self (); | |
| for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { | |
| if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) { | |
| break; | |
| } | |
| } | |
| *ProcessorNumber = Index; | |
| return EFI_SUCCESS; | |
| } | |
| EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = { | |
| CpuMpServicesGetNumberOfProcessors, | |
| CpuMpServicesGetProcessorInfo, | |
| CpuMpServicesStartupAllAps, | |
| CpuMpServicesStartupThisAP, | |
| CpuMpServicesSwitchBSP, | |
| CpuMpServicesEnableDisableAP, | |
| CpuMpServicesWhoAmI | |
| }; | |
| /*++ | |
| If timeout occurs in StartupAllAps(), a timer is set, which invokes this | |
| procedure periodically to check whether all APs have finished. | |
| --*/ | |
| VOID | |
| EFIAPI | |
| CpuCheckAllAPsStatus ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ) | |
| { | |
| UINTN ProcessorNumber; | |
| UINTN NextNumber; | |
| PROCESSOR_DATA_BLOCK *ProcessorData; | |
| PROCESSOR_DATA_BLOCK *NextData; | |
| EFI_STATUS Status; | |
| PROCESSOR_STATE ProcessorState; | |
| UINTN Cpu; | |
| BOOLEAN Found; | |
| if (gMPSystem.TimeoutActive) { | |
| gMPSystem.Timeout -= CalculateAndStallInterval (gMPSystem.Timeout); | |
| } | |
| for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) { | |
| ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| // Skip Disabled processors | |
| continue; | |
| } | |
| // This is an Interrupt Service routine. | |
| // This can grab a lock that is held in a non-interrupt | |
| // context. Meaning deadlock. Which is a bad thing. | |
| // So, try lock it. If we can get it, cool, do our thing. | |
| // otherwise, just dump out & try again on the next iteration. | |
| Status = gThread->MutexTryLock (ProcessorData->StateLock); | |
| if (EFI_ERROR(Status)) { | |
| return; | |
| } | |
| ProcessorState = ProcessorData->State; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| switch (ProcessorState) { | |
| case CPU_STATE_FINISHED: | |
| if (gMPSystem.SingleThread) { | |
| Status = GetNextBlockedNumber (&NextNumber); | |
| if (!EFI_ERROR (Status)) { | |
| NextData = &gMPSystem.ProcessorData[NextNumber]; | |
| gThread->MutexLock (NextData->StateLock); | |
| NextData->State = CPU_STATE_READY; | |
| gThread->MutexUnlock (NextData->StateLock); | |
| SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument); | |
| } | |
| } | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorData->State = CPU_STATE_IDLE; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| gMPSystem.FinishCount++; | |
| break; | |
| default: | |
| break; | |
| } | |
| } | |
| if (gMPSystem.TimeoutActive && gMPSystem.Timeout == 0) { | |
| // | |
| // Timeout | |
| // | |
| if (gMPSystem.FailedList != NULL) { | |
| for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) { | |
| ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { | |
| // Skip Disabled processors | |
| continue; | |
| } | |
| // Mark the | |
| Status = gThread->MutexTryLock (ProcessorData->StateLock); | |
| if (EFI_ERROR(Status)) { | |
| return; | |
| } | |
| ProcessorState = ProcessorData->State; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| if (ProcessorState != CPU_STATE_IDLE) { | |
| // If we are retrying make sure we don't double count | |
| for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) { | |
| if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) { | |
| break; | |
| } | |
| if (gMPSystem.FailedList[ProcessorNumber] == Cpu) { | |
| Found = TRUE; | |
| break; | |
| } | |
| } | |
| if (!Found) { | |
| gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu; | |
| } | |
| } | |
| } | |
| } | |
| // Force terminal exit | |
| gMPSystem.FinishCount = gMPSystem.StartCount; | |
| } | |
| if (gMPSystem.FinishCount != gMPSystem.StartCount) { | |
| return; | |
| } | |
| gBS->SetTimer ( | |
| gMPSystem.CheckAllAPsEvent, | |
| TimerCancel, | |
| 0 | |
| ); | |
| if (gMPSystem.FailedListIndex == 0) { | |
| if (gMPSystem.FailedList != NULL) { | |
| FreePool (gMPSystem.FailedList); | |
| gMPSystem.FailedList = NULL; | |
| } | |
| } | |
| Status = gBS->SignalEvent (gMPSystem.WaitEvent); | |
| return ; | |
| } | |
| VOID | |
| EFIAPI | |
| CpuCheckThisAPStatus ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| PROCESSOR_DATA_BLOCK *ProcessorData; | |
| PROCESSOR_STATE ProcessorState; | |
| ProcessorData = (PROCESSOR_DATA_BLOCK *) Context; | |
| // | |
| // This is an Interrupt Service routine. | |
| // that can grab a lock that is held in a non-interrupt | |
| // context. Meaning deadlock. Which is a badddd thing. | |
| // So, try lock it. If we can get it, cool, do our thing. | |
| // otherwise, just dump out & try again on the next iteration. | |
| // | |
| Status = gThread->MutexTryLock (ProcessorData->StateLock); | |
| if (EFI_ERROR(Status)) { | |
| return; | |
| } | |
| ProcessorState = ProcessorData->State; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| if (ProcessorState == CPU_STATE_FINISHED) { | |
| Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0); | |
| ASSERT_EFI_ERROR (Status); | |
| Status = gBS->SignalEvent (gMPSystem.WaitEvent); | |
| ASSERT_EFI_ERROR (Status); | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorData->State = CPU_STATE_IDLE; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| } | |
| return ; | |
| } | |
| /*++ | |
| This function is called by all processors (both BSP and AP) once and collects MP related data | |
| MPSystemData - Pointer to the data structure containing MP related data | |
| BSP - TRUE if the CPU is BSP | |
| EFI_SUCCESS - Data for the processor collected and filled in | |
| --*/ | |
| EFI_STATUS | |
| FillInProcessorInformation ( | |
| IN BOOLEAN BSP, | |
| IN UINTN ProcessorNumber | |
| ) | |
| { | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self (); | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT; | |
| if (BSP) { | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT; | |
| } | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = (UINT32) ProcessorNumber; | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0; | |
| gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0; | |
| gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE; | |
| gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL; | |
| gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL; | |
| gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit (); | |
| gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit (); | |
| return EFI_SUCCESS; | |
| } | |
| VOID * | |
| EFIAPI | |
| CpuDriverApIdolLoop ( | |
| VOID *Context | |
| ) | |
| { | |
| EFI_AP_PROCEDURE Procedure; | |
| VOID *Parameter; | |
| UINTN ProcessorNumber; | |
| PROCESSOR_DATA_BLOCK *ProcessorData; | |
| ProcessorNumber = (UINTN)Context; | |
| ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; | |
| ProcessorData->Info.ProcessorId = gThread->Self (); | |
| while (TRUE) { | |
| // | |
| // Make a local copy on the stack to be extra safe | |
| // | |
| gThread->MutexLock (ProcessorData->ProcedureLock); | |
| Procedure = ProcessorData->Procedure; | |
| Parameter = ProcessorData->Parameter; | |
| gThread->MutexUnlock (ProcessorData->ProcedureLock); | |
| if (Procedure != NULL) { | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorData->State = CPU_STATE_BUSY; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| Procedure (Parameter); | |
| gThread->MutexLock (ProcessorData->ProcedureLock); | |
| ProcessorData->Procedure = NULL; | |
| gThread->MutexUnlock (ProcessorData->ProcedureLock); | |
| gThread->MutexLock (ProcessorData->StateLock); | |
| ProcessorData->State = CPU_STATE_FINISHED; | |
| gThread->MutexUnlock (ProcessorData->StateLock); | |
| } | |
| // Poll 5 times a seconds, 200ms | |
| // Don't want to burn too many system resources doing nothing. | |
| gEmuThunk->Sleep (200 * 1000); | |
| } | |
| return 0; | |
| } | |
| EFI_STATUS | |
| InitializeMpSystemData ( | |
| IN UINTN NumberOfProcessors | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| UINTN Index; | |
| // | |
| // Clear the data structure area first. | |
| // | |
| ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA)); | |
| // | |
| // First BSP fills and inits all known values, including it's own records. | |
| // | |
| gMPSystem.NumberOfProcessors = NumberOfProcessors; | |
| gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors; | |
| gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK)); | |
| ASSERT (gMPSystem.ProcessorData != NULL); | |
| FillInProcessorInformation (TRUE, 0); | |
| Status = gBS->CreateEvent ( | |
| EVT_TIMER | EVT_NOTIFY_SIGNAL, | |
| TPL_CALLBACK, | |
| CpuCheckAllAPsStatus, | |
| NULL, | |
| &gMPSystem.CheckAllAPsEvent | |
| ); | |
| ASSERT_EFI_ERROR (Status); | |
| for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { | |
| if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { | |
| // Skip BSP | |
| continue; | |
| } | |
| FillInProcessorInformation (FALSE, Index); | |
| Status = gThread->CreateThread ( | |
| (VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId, | |
| NULL, | |
| CpuDriverApIdolLoop, | |
| (VOID *)Index | |
| ); | |
| Status = gBS->CreateEvent ( | |
| EVT_TIMER | EVT_NOTIFY_SIGNAL, | |
| TPL_CALLBACK, | |
| CpuCheckThisAPStatus, | |
| (VOID *) &gMPSystem.ProcessorData[Index], | |
| &gMPSystem.ProcessorData[Index].CheckThisAPEvent | |
| ); | |
| } | |
| return EFI_SUCCESS; | |
| } | |
| /** | |
| Invoke a notification event | |
| @param Event Event whose notification function is being invoked. | |
| @param Context The pointer to the notification function's context, | |
| which is implementation-dependent. | |
| **/ | |
| VOID | |
| EFIAPI | |
| CpuReadToBootFunction ( | |
| IN EFI_EVENT Event, | |
| IN VOID *Context | |
| ) | |
| { | |
| gReadToBoot = TRUE; | |
| } | |
| EFI_STATUS | |
| CpuMpServicesInit ( | |
| OUT UINTN *MaxCpus | |
| ) | |
| { | |
| EFI_STATUS Status; | |
| EFI_HANDLE Handle; | |
| EMU_IO_THUNK_PROTOCOL *IoThunk; | |
| *MaxCpus = 1; // BSP | |
| IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0); | |
| if (IoThunk != NULL) { | |
| Status = IoThunk->Open (IoThunk); | |
| if (!EFI_ERROR (Status)) { | |
| if (IoThunk->ConfigString != NULL) { | |
| *MaxCpus += StrDecimalToUintn (IoThunk->ConfigString); | |
| gThread = IoThunk->Interface; | |
| } | |
| } | |
| } | |
| if (*MaxCpus == 1) { | |
| // We are not MP so nothing to do | |
| return EFI_SUCCESS; | |
| } | |
| gPollInterval = (UINTN) PcdGet64 (PcdEmuMpServicesPollingInterval); | |
| Status = InitializeMpSystemData (*MaxCpus); | |
| if (EFI_ERROR (Status)) { | |
| return Status; | |
| } | |
| Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent); | |
| ASSERT_EFI_ERROR (Status); | |
| // | |
| // Now install the MP services protocol. | |
| // | |
| Handle = NULL; | |
| Status = gBS->InstallMultipleProtocolInterfaces ( | |
| &Handle, | |
| &gEfiMpServiceProtocolGuid, &mMpServicesTemplate, | |
| NULL | |
| ); | |
| return Status; | |
| } | |