|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * This file provides the ACPI based P-state support. This | 
|  | * module works with generic cpufreq infrastructure. Most of | 
|  | * the code is based on i386 version | 
|  | * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) | 
|  | * | 
|  | * Copyright (C) 2005 Intel Corp | 
|  | *      Venkatesh Pallipadi <[email protected]> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <asm/io.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/pal.h> | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <acpi/processor.h> | 
|  |  | 
|  | MODULE_AUTHOR("Venkatesh Pallipadi"); | 
|  | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | struct cpufreq_acpi_io { | 
|  | struct acpi_processor_performance	acpi_data; | 
|  | unsigned int				resume; | 
|  | }; | 
|  |  | 
|  | struct cpufreq_acpi_req { | 
|  | unsigned int		cpu; | 
|  | unsigned int		state; | 
|  | }; | 
|  |  | 
|  | static struct cpufreq_acpi_io	*acpi_io_data[NR_CPUS]; | 
|  |  | 
|  | static struct cpufreq_driver acpi_cpufreq_driver; | 
|  |  | 
|  |  | 
|  | static int | 
|  | processor_set_pstate ( | 
|  | u32	value) | 
|  | { | 
|  | s64 retval; | 
|  |  | 
|  | pr_debug("processor_set_pstate\n"); | 
|  |  | 
|  | retval = ia64_pal_set_pstate((u64)value); | 
|  |  | 
|  | if (retval) { | 
|  | pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n", | 
|  | value, retval); | 
|  | return -ENODEV; | 
|  | } | 
|  | return (int)retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | processor_get_pstate ( | 
|  | u32	*value) | 
|  | { | 
|  | u64	pstate_index = 0; | 
|  | s64 	retval; | 
|  |  | 
|  | pr_debug("processor_get_pstate\n"); | 
|  |  | 
|  | retval = ia64_pal_get_pstate(&pstate_index, | 
|  | PAL_GET_PSTATE_TYPE_INSTANT); | 
|  | *value = (u32) pstate_index; | 
|  |  | 
|  | if (retval) | 
|  | pr_debug("Failed to get current freq with " | 
|  | "error 0x%lx, idx 0x%x\n", retval, *value); | 
|  |  | 
|  | return (int)retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* To be used only after data->acpi_data is initialized */ | 
|  | static unsigned | 
|  | extract_clock ( | 
|  | struct cpufreq_acpi_io *data, | 
|  | unsigned value) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | pr_debug("extract_clock\n"); | 
|  |  | 
|  | for (i = 0; i < data->acpi_data.state_count; i++) { | 
|  | if (value == data->acpi_data.states[i].status) | 
|  | return data->acpi_data.states[i].core_frequency; | 
|  | } | 
|  | return data->acpi_data.states[i-1].core_frequency; | 
|  | } | 
|  |  | 
|  |  | 
|  | static long | 
|  | processor_get_freq ( | 
|  | void *arg) | 
|  | { | 
|  | struct cpufreq_acpi_req *req = arg; | 
|  | unsigned int		cpu = req->cpu; | 
|  | struct cpufreq_acpi_io	*data = acpi_io_data[cpu]; | 
|  | u32			value; | 
|  | int			ret; | 
|  |  | 
|  | pr_debug("processor_get_freq\n"); | 
|  | if (smp_processor_id() != cpu) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* processor_get_pstate gets the instantaneous frequency */ | 
|  | ret = processor_get_pstate(&value); | 
|  | if (ret) { | 
|  | pr_warn("get performance failed with error %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | return 1000 * extract_clock(data, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | static long | 
|  | processor_set_freq ( | 
|  | void *arg) | 
|  | { | 
|  | struct cpufreq_acpi_req *req = arg; | 
|  | unsigned int		cpu = req->cpu; | 
|  | struct cpufreq_acpi_io	*data = acpi_io_data[cpu]; | 
|  | int			ret, state = req->state; | 
|  | u32			value; | 
|  |  | 
|  | pr_debug("processor_set_freq\n"); | 
|  | if (smp_processor_id() != cpu) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (state == data->acpi_data.state) { | 
|  | if (unlikely(data->resume)) { | 
|  | pr_debug("Called after resume, resetting to P%d\n", state); | 
|  | data->resume = 0; | 
|  | } else { | 
|  | pr_debug("Already at target state (P%d)\n", state); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("Transitioning from P%d to P%d\n", | 
|  | data->acpi_data.state, state); | 
|  |  | 
|  | /* | 
|  | * First we write the target state's 'control' value to the | 
|  | * control_register. | 
|  | */ | 
|  | value = (u32) data->acpi_data.states[state].control; | 
|  |  | 
|  | pr_debug("Transitioning to state: 0x%08x\n", value); | 
|  |  | 
|  | ret = processor_set_pstate(value); | 
|  | if (ret) { | 
|  | pr_warn("Transition failed with error %d\n", ret); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | data->acpi_data.state = state; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned int | 
|  | acpi_cpufreq_get ( | 
|  | unsigned int		cpu) | 
|  | { | 
|  | struct cpufreq_acpi_req req; | 
|  | long ret; | 
|  |  | 
|  | req.cpu = cpu; | 
|  | ret = work_on_cpu(cpu, processor_get_freq, &req); | 
|  |  | 
|  | return ret > 0 ? (unsigned int) ret : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | acpi_cpufreq_target ( | 
|  | struct cpufreq_policy   *policy, | 
|  | unsigned int index) | 
|  | { | 
|  | struct cpufreq_acpi_req req; | 
|  |  | 
|  | req.cpu = policy->cpu; | 
|  | req.state = index; | 
|  |  | 
|  | return work_on_cpu(req.cpu, processor_set_freq, &req); | 
|  | } | 
|  |  | 
|  | static int | 
|  | acpi_cpufreq_cpu_init ( | 
|  | struct cpufreq_policy   *policy) | 
|  | { | 
|  | unsigned int		i; | 
|  | unsigned int		cpu = policy->cpu; | 
|  | struct cpufreq_acpi_io	*data; | 
|  | unsigned int		result = 0; | 
|  | struct cpufreq_frequency_table *freq_table; | 
|  |  | 
|  | pr_debug("acpi_cpufreq_cpu_init\n"); | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return (-ENOMEM); | 
|  |  | 
|  | acpi_io_data[cpu] = data; | 
|  |  | 
|  | result = acpi_processor_register_performance(&data->acpi_data, cpu); | 
|  |  | 
|  | if (result) | 
|  | goto err_free; | 
|  |  | 
|  | /* capability check */ | 
|  | if (data->acpi_data.state_count <= 1) { | 
|  | pr_debug("No P-States\n"); | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | if ((data->acpi_data.control_register.space_id != | 
|  | ACPI_ADR_SPACE_FIXED_HARDWARE) || | 
|  | (data->acpi_data.status_register.space_id != | 
|  | ACPI_ADR_SPACE_FIXED_HARDWARE)) { | 
|  | pr_debug("Unsupported address space [%d, %d]\n", | 
|  | (u32) (data->acpi_data.control_register.space_id), | 
|  | (u32) (data->acpi_data.status_register.space_id)); | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | /* alloc freq_table */ | 
|  | freq_table = kcalloc(data->acpi_data.state_count + 1, | 
|  | sizeof(*freq_table), | 
|  | GFP_KERNEL); | 
|  | if (!freq_table) { | 
|  | result = -ENOMEM; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | /* detect transition latency */ | 
|  | policy->cpuinfo.transition_latency = 0; | 
|  | for (i=0; i<data->acpi_data.state_count; i++) { | 
|  | if ((data->acpi_data.states[i].transition_latency * 1000) > | 
|  | policy->cpuinfo.transition_latency) { | 
|  | policy->cpuinfo.transition_latency = | 
|  | data->acpi_data.states[i].transition_latency * 1000; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* table init */ | 
|  | for (i = 0; i <= data->acpi_data.state_count; i++) | 
|  | { | 
|  | if (i < data->acpi_data.state_count) { | 
|  | freq_table[i].frequency = | 
|  | data->acpi_data.states[i].core_frequency * 1000; | 
|  | } else { | 
|  | freq_table[i].frequency = CPUFREQ_TABLE_END; | 
|  | } | 
|  | } | 
|  |  | 
|  | policy->freq_table = freq_table; | 
|  |  | 
|  | /* notify BIOS that we exist */ | 
|  | acpi_processor_notify_smm(THIS_MODULE); | 
|  |  | 
|  | pr_info("CPU%u - ACPI performance management activated\n", cpu); | 
|  |  | 
|  | for (i = 0; i < data->acpi_data.state_count; i++) | 
|  | pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", | 
|  | (i == data->acpi_data.state?'*':' '), i, | 
|  | (u32) data->acpi_data.states[i].core_frequency, | 
|  | (u32) data->acpi_data.states[i].power, | 
|  | (u32) data->acpi_data.states[i].transition_latency, | 
|  | (u32) data->acpi_data.states[i].bus_master_latency, | 
|  | (u32) data->acpi_data.states[i].status, | 
|  | (u32) data->acpi_data.states[i].control); | 
|  |  | 
|  | /* the first call to ->target() should result in us actually | 
|  | * writing something to the appropriate registers. */ | 
|  | data->resume = 1; | 
|  |  | 
|  | return (result); | 
|  |  | 
|  | err_unreg: | 
|  | acpi_processor_unregister_performance(cpu); | 
|  | err_free: | 
|  | kfree(data); | 
|  | acpi_io_data[cpu] = NULL; | 
|  |  | 
|  | return (result); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | acpi_cpufreq_cpu_exit ( | 
|  | struct cpufreq_policy   *policy) | 
|  | { | 
|  | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | 
|  |  | 
|  | pr_debug("acpi_cpufreq_cpu_exit\n"); | 
|  |  | 
|  | if (data) { | 
|  | acpi_io_data[policy->cpu] = NULL; | 
|  | acpi_processor_unregister_performance(policy->cpu); | 
|  | kfree(policy->freq_table); | 
|  | kfree(data); | 
|  | } | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct cpufreq_driver acpi_cpufreq_driver = { | 
|  | .verify 	= cpufreq_generic_frequency_table_verify, | 
|  | .target_index	= acpi_cpufreq_target, | 
|  | .get 		= acpi_cpufreq_get, | 
|  | .init		= acpi_cpufreq_cpu_init, | 
|  | .exit		= acpi_cpufreq_cpu_exit, | 
|  | .name		= "acpi-cpufreq", | 
|  | .attr		= cpufreq_generic_attr, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int __init | 
|  | acpi_cpufreq_init (void) | 
|  | { | 
|  | pr_debug("acpi_cpufreq_init\n"); | 
|  |  | 
|  | return cpufreq_register_driver(&acpi_cpufreq_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void __exit | 
|  | acpi_cpufreq_exit (void) | 
|  | { | 
|  | pr_debug("acpi_cpufreq_exit\n"); | 
|  |  | 
|  | cpufreq_unregister_driver(&acpi_cpufreq_driver); | 
|  | } | 
|  |  | 
|  | late_initcall(acpi_cpufreq_init); | 
|  | module_exit(acpi_cpufreq_exit); |