| // SPDX-License-Identifier: GPL-2.0 | 
 | // Copyright (c) 2018-2019 MediaTek Inc. | 
 |  | 
 | /* | 
 |  * Driver for MediaTek Command-Queue DMA Controller | 
 |  * | 
 |  * Author: Shun-Chih Yu <[email protected]> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/err.h> | 
 | #include <linux/iopoll.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/list.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_dma.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "../virt-dma.h" | 
 |  | 
 | #define MTK_CQDMA_USEC_POLL		10 | 
 | #define MTK_CQDMA_TIMEOUT_POLL		1000 | 
 | #define MTK_CQDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 
 | #define MTK_CQDMA_ALIGN_SIZE		1 | 
 |  | 
 | /* The default number of virtual channel */ | 
 | #define MTK_CQDMA_NR_VCHANS		32 | 
 |  | 
 | /* The default number of physical channel */ | 
 | #define MTK_CQDMA_NR_PCHANS		3 | 
 |  | 
 | /* Registers for underlying dma manipulation */ | 
 | #define MTK_CQDMA_INT_FLAG		0x0 | 
 | #define MTK_CQDMA_INT_EN		0x4 | 
 | #define MTK_CQDMA_EN			0x8 | 
 | #define MTK_CQDMA_RESET			0xc | 
 | #define MTK_CQDMA_FLUSH			0x14 | 
 | #define MTK_CQDMA_SRC			0x1c | 
 | #define MTK_CQDMA_DST			0x20 | 
 | #define MTK_CQDMA_LEN1			0x24 | 
 | #define MTK_CQDMA_LEN2			0x28 | 
 | #define MTK_CQDMA_SRC2			0x60 | 
 | #define MTK_CQDMA_DST2			0x64 | 
 |  | 
 | /* Registers setting */ | 
 | #define MTK_CQDMA_EN_BIT		BIT(0) | 
 | #define MTK_CQDMA_INT_FLAG_BIT		BIT(0) | 
 | #define MTK_CQDMA_INT_EN_BIT		BIT(0) | 
 | #define MTK_CQDMA_FLUSH_BIT		BIT(0) | 
 |  | 
 | #define MTK_CQDMA_WARM_RST_BIT		BIT(0) | 
 | #define MTK_CQDMA_HARD_RST_BIT		BIT(1) | 
 |  | 
 | #define MTK_CQDMA_MAX_LEN		GENMASK(27, 0) | 
 | #define MTK_CQDMA_ADDR_LIMIT		GENMASK(31, 0) | 
 | #define MTK_CQDMA_ADDR2_SHFIT		(32) | 
 |  | 
 | /** | 
 |  * struct mtk_cqdma_vdesc - The struct holding info describing virtual | 
 |  *                         descriptor (CVD) | 
 |  * @vd:                    An instance for struct virt_dma_desc | 
 |  * @len:                   The total data size device wants to move | 
 |  * @residue:               The remaining data size device will move | 
 |  * @dest:                  The destination address device wants to move to | 
 |  * @src:                   The source address device wants to move from | 
 |  * @ch:                    The pointer to the corresponding dma channel | 
 |  * @node:                  The lise_head struct to build link-list for VDs | 
 |  * @parent:                The pointer to the parent CVD | 
 |  */ | 
 | struct mtk_cqdma_vdesc { | 
 | 	struct virt_dma_desc vd; | 
 | 	size_t len; | 
 | 	size_t residue; | 
 | 	dma_addr_t dest; | 
 | 	dma_addr_t src; | 
 | 	struct dma_chan *ch; | 
 |  | 
 | 	struct list_head node; | 
 | 	struct mtk_cqdma_vdesc *parent; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_cqdma_pchan - The struct holding info describing physical | 
 |  *                         channel (PC) | 
 |  * @queue:                 Queue for the PDs issued to this PC | 
 |  * @base:                  The mapped register I/O base of this PC | 
 |  * @irq:                   The IRQ that this PC are using | 
 |  * @refcnt:                Track how many VCs are using this PC | 
 |  * @tasklet:               Tasklet for this PC | 
 |  * @lock:                  Lock protect agaisting multiple VCs access PC | 
 |  */ | 
 | struct mtk_cqdma_pchan { | 
 | 	struct list_head queue; | 
 | 	void __iomem *base; | 
 | 	u32 irq; | 
 |  | 
 | 	refcount_t refcnt; | 
 |  | 
 | 	struct tasklet_struct tasklet; | 
 |  | 
 | 	/* lock to protect PC */ | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_cqdma_vchan - The struct holding info describing virtual | 
 |  *                         channel (VC) | 
 |  * @vc:                    An instance for struct virt_dma_chan | 
 |  * @pc:                    The pointer to the underlying PC | 
 |  * @issue_completion:	   The wait for all issued descriptors completited | 
 |  * @issue_synchronize:	   Bool indicating channel synchronization starts | 
 |  */ | 
 | struct mtk_cqdma_vchan { | 
 | 	struct virt_dma_chan vc; | 
 | 	struct mtk_cqdma_pchan *pc; | 
 | 	struct completion issue_completion; | 
 | 	bool issue_synchronize; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct mtk_cqdma_device - The struct holding info describing CQDMA | 
 |  *                          device | 
 |  * @ddev:                   An instance for struct dma_device | 
 |  * @clk:                    The clock that device internal is using | 
 |  * @dma_requests:           The number of VCs the device supports to | 
 |  * @dma_channels:           The number of PCs the device supports to | 
 |  * @vc:                     The pointer to all available VCs | 
 |  * @pc:                     The pointer to all the underlying PCs | 
 |  */ | 
 | struct mtk_cqdma_device { | 
 | 	struct dma_device ddev; | 
 | 	struct clk *clk; | 
 |  | 
 | 	u32 dma_requests; | 
 | 	u32 dma_channels; | 
 | 	struct mtk_cqdma_vchan *vc; | 
 | 	struct mtk_cqdma_pchan **pc; | 
 | }; | 
 |  | 
 | static struct mtk_cqdma_device *to_cqdma_dev(struct dma_chan *chan) | 
 | { | 
 | 	return container_of(chan->device, struct mtk_cqdma_device, ddev); | 
 | } | 
 |  | 
 | static struct mtk_cqdma_vchan *to_cqdma_vchan(struct dma_chan *chan) | 
 | { | 
 | 	return container_of(chan, struct mtk_cqdma_vchan, vc.chan); | 
 | } | 
 |  | 
 | static struct mtk_cqdma_vdesc *to_cqdma_vdesc(struct virt_dma_desc *vd) | 
 | { | 
 | 	return container_of(vd, struct mtk_cqdma_vdesc, vd); | 
 | } | 
 |  | 
 | static struct device *cqdma2dev(struct mtk_cqdma_device *cqdma) | 
 | { | 
 | 	return cqdma->ddev.dev; | 
 | } | 
 |  | 
 | static u32 mtk_dma_read(struct mtk_cqdma_pchan *pc, u32 reg) | 
 | { | 
 | 	return readl(pc->base + reg); | 
 | } | 
 |  | 
 | static void mtk_dma_write(struct mtk_cqdma_pchan *pc, u32 reg, u32 val) | 
 | { | 
 | 	writel_relaxed(val, pc->base + reg); | 
 | } | 
 |  | 
 | static void mtk_dma_rmw(struct mtk_cqdma_pchan *pc, u32 reg, | 
 | 			u32 mask, u32 set) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = mtk_dma_read(pc, reg); | 
 | 	val &= ~mask; | 
 | 	val |= set; | 
 | 	mtk_dma_write(pc, reg, val); | 
 | } | 
 |  | 
 | static void mtk_dma_set(struct mtk_cqdma_pchan *pc, u32 reg, u32 val) | 
 | { | 
 | 	mtk_dma_rmw(pc, reg, 0, val); | 
 | } | 
 |  | 
 | static void mtk_dma_clr(struct mtk_cqdma_pchan *pc, u32 reg, u32 val) | 
 | { | 
 | 	mtk_dma_rmw(pc, reg, val, 0); | 
 | } | 
 |  | 
 | static void mtk_cqdma_vdesc_free(struct virt_dma_desc *vd) | 
 | { | 
 | 	kfree(to_cqdma_vdesc(vd)); | 
 | } | 
 |  | 
 | static int mtk_cqdma_poll_engine_done(struct mtk_cqdma_pchan *pc, bool atomic) | 
 | { | 
 | 	u32 status = 0; | 
 |  | 
 | 	if (!atomic) | 
 | 		return readl_poll_timeout(pc->base + MTK_CQDMA_EN, | 
 | 					  status, | 
 | 					  !(status & MTK_CQDMA_EN_BIT), | 
 | 					  MTK_CQDMA_USEC_POLL, | 
 | 					  MTK_CQDMA_TIMEOUT_POLL); | 
 |  | 
 | 	return readl_poll_timeout_atomic(pc->base + MTK_CQDMA_EN, | 
 | 					 status, | 
 | 					 !(status & MTK_CQDMA_EN_BIT), | 
 | 					 MTK_CQDMA_USEC_POLL, | 
 | 					 MTK_CQDMA_TIMEOUT_POLL); | 
 | } | 
 |  | 
 | static int mtk_cqdma_hard_reset(struct mtk_cqdma_pchan *pc) | 
 | { | 
 | 	mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT); | 
 | 	mtk_dma_clr(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT); | 
 |  | 
 | 	return mtk_cqdma_poll_engine_done(pc, true); | 
 | } | 
 |  | 
 | static void mtk_cqdma_start(struct mtk_cqdma_pchan *pc, | 
 | 			    struct mtk_cqdma_vdesc *cvd) | 
 | { | 
 | 	/* wait for the previous transaction done */ | 
 | 	if (mtk_cqdma_poll_engine_done(pc, true) < 0) | 
 | 		dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma wait transaction timeout\n"); | 
 |  | 
 | 	/* warm reset the dma engine for the new transaction */ | 
 | 	mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_WARM_RST_BIT); | 
 | 	if (mtk_cqdma_poll_engine_done(pc, true) < 0) | 
 | 		dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma warm reset timeout\n"); | 
 |  | 
 | 	/* setup the source */ | 
 | 	mtk_dma_set(pc, MTK_CQDMA_SRC, cvd->src & MTK_CQDMA_ADDR_LIMIT); | 
 | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
 | 	mtk_dma_set(pc, MTK_CQDMA_SRC2, cvd->src >> MTK_CQDMA_ADDR2_SHFIT); | 
 | #else | 
 | 	mtk_dma_set(pc, MTK_CQDMA_SRC2, 0); | 
 | #endif | 
 |  | 
 | 	/* setup the destination */ | 
 | 	mtk_dma_set(pc, MTK_CQDMA_DST, cvd->dest & MTK_CQDMA_ADDR_LIMIT); | 
 | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
 | 	mtk_dma_set(pc, MTK_CQDMA_DST2, cvd->dest >> MTK_CQDMA_ADDR2_SHFIT); | 
 | #else | 
 | 	mtk_dma_set(pc, MTK_CQDMA_DST2, 0); | 
 | #endif | 
 |  | 
 | 	/* setup the length */ | 
 | 	mtk_dma_set(pc, MTK_CQDMA_LEN1, cvd->len); | 
 |  | 
 | 	/* start dma engine */ | 
 | 	mtk_dma_set(pc, MTK_CQDMA_EN, MTK_CQDMA_EN_BIT); | 
 | } | 
 |  | 
 | static void mtk_cqdma_issue_vchan_pending(struct mtk_cqdma_vchan *cvc) | 
 | { | 
 | 	struct virt_dma_desc *vd, *vd2; | 
 | 	struct mtk_cqdma_pchan *pc = cvc->pc; | 
 | 	struct mtk_cqdma_vdesc *cvd; | 
 | 	bool trigger_engine = false; | 
 |  | 
 | 	lockdep_assert_held(&cvc->vc.lock); | 
 | 	lockdep_assert_held(&pc->lock); | 
 |  | 
 | 	list_for_each_entry_safe(vd, vd2, &cvc->vc.desc_issued, node) { | 
 | 		/* need to trigger dma engine if PC's queue is empty */ | 
 | 		if (list_empty(&pc->queue)) | 
 | 			trigger_engine = true; | 
 |  | 
 | 		cvd = to_cqdma_vdesc(vd); | 
 |  | 
 | 		/* add VD into PC's queue */ | 
 | 		list_add_tail(&cvd->node, &pc->queue); | 
 |  | 
 | 		/* start the dma engine */ | 
 | 		if (trigger_engine) | 
 | 			mtk_cqdma_start(pc, cvd); | 
 |  | 
 | 		/* remove VD from list desc_issued */ | 
 | 		list_del(&vd->node); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * return true if this VC is active, | 
 |  * meaning that there are VDs under processing by the PC | 
 |  */ | 
 | static bool mtk_cqdma_is_vchan_active(struct mtk_cqdma_vchan *cvc) | 
 | { | 
 | 	struct mtk_cqdma_vdesc *cvd; | 
 |  | 
 | 	list_for_each_entry(cvd, &cvc->pc->queue, node) | 
 | 		if (cvc == to_cqdma_vchan(cvd->ch)) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * return the pointer of the CVD that is just consumed by the PC | 
 |  */ | 
 | static struct mtk_cqdma_vdesc | 
 | *mtk_cqdma_consume_work_queue(struct mtk_cqdma_pchan *pc) | 
 | { | 
 | 	struct mtk_cqdma_vchan *cvc; | 
 | 	struct mtk_cqdma_vdesc *cvd, *ret = NULL; | 
 |  | 
 | 	/* consume a CVD from PC's queue */ | 
 | 	cvd = list_first_entry_or_null(&pc->queue, | 
 | 				       struct mtk_cqdma_vdesc, node); | 
 | 	if (unlikely(!cvd || !cvd->parent)) | 
 | 		return NULL; | 
 |  | 
 | 	cvc = to_cqdma_vchan(cvd->ch); | 
 | 	ret = cvd; | 
 |  | 
 | 	/* update residue of the parent CVD */ | 
 | 	cvd->parent->residue -= cvd->len; | 
 |  | 
 | 	/* delete CVD from PC's queue */ | 
 | 	list_del(&cvd->node); | 
 |  | 
 | 	spin_lock(&cvc->vc.lock); | 
 |  | 
 | 	/* check whether all the child CVDs completed */ | 
 | 	if (!cvd->parent->residue) { | 
 | 		/* add the parent VD into list desc_completed */ | 
 | 		vchan_cookie_complete(&cvd->parent->vd); | 
 |  | 
 | 		/* setup completion if this VC is under synchronization */ | 
 | 		if (cvc->issue_synchronize && !mtk_cqdma_is_vchan_active(cvc)) { | 
 | 			complete(&cvc->issue_completion); | 
 | 			cvc->issue_synchronize = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&cvc->vc.lock); | 
 |  | 
 | 	/* start transaction for next CVD in the queue */ | 
 | 	cvd = list_first_entry_or_null(&pc->queue, | 
 | 				       struct mtk_cqdma_vdesc, node); | 
 | 	if (cvd) | 
 | 		mtk_cqdma_start(pc, cvd); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mtk_cqdma_tasklet_cb(unsigned long data) | 
 | { | 
 | 	struct mtk_cqdma_pchan *pc = (struct mtk_cqdma_pchan *)data; | 
 | 	struct mtk_cqdma_vdesc *cvd = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&pc->lock, flags); | 
 | 	/* consume the queue */ | 
 | 	cvd = mtk_cqdma_consume_work_queue(pc); | 
 | 	spin_unlock_irqrestore(&pc->lock, flags); | 
 |  | 
 | 	/* submit the next CVD */ | 
 | 	if (cvd) { | 
 | 		dma_run_dependencies(&cvd->vd.tx); | 
 |  | 
 | 		/* | 
 | 		 * free child CVD after completion. | 
 | 		 * the parent CVD would be freeed with desc_free by user. | 
 | 		 */ | 
 | 		if (cvd->parent != cvd) | 
 | 			kfree(cvd); | 
 | 	} | 
 |  | 
 | 	/* re-enable interrupt before leaving tasklet */ | 
 | 	enable_irq(pc->irq); | 
 | } | 
 |  | 
 | static irqreturn_t mtk_cqdma_irq(int irq, void *devid) | 
 | { | 
 | 	struct mtk_cqdma_device *cqdma = devid; | 
 | 	irqreturn_t ret = IRQ_NONE; | 
 | 	bool schedule_tasklet = false; | 
 | 	u32 i; | 
 |  | 
 | 	/* clear interrupt flags for each PC */ | 
 | 	for (i = 0; i < cqdma->dma_channels; ++i, schedule_tasklet = false) { | 
 | 		spin_lock(&cqdma->pc[i]->lock); | 
 | 		if (mtk_dma_read(cqdma->pc[i], | 
 | 				 MTK_CQDMA_INT_FLAG) & MTK_CQDMA_INT_FLAG_BIT) { | 
 | 			/* clear interrupt */ | 
 | 			mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_FLAG, | 
 | 				    MTK_CQDMA_INT_FLAG_BIT); | 
 |  | 
 | 			schedule_tasklet = true; | 
 | 			ret = IRQ_HANDLED; | 
 | 		} | 
 | 		spin_unlock(&cqdma->pc[i]->lock); | 
 |  | 
 | 		if (schedule_tasklet) { | 
 | 			/* disable interrupt */ | 
 | 			disable_irq_nosync(cqdma->pc[i]->irq); | 
 |  | 
 | 			/* schedule the tasklet to handle the transactions */ | 
 | 			tasklet_schedule(&cqdma->pc[i]->tasklet); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct virt_dma_desc *mtk_cqdma_find_active_desc(struct dma_chan *c, | 
 | 							dma_cookie_t cookie) | 
 | { | 
 | 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); | 
 | 	struct virt_dma_desc *vd; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cvc->pc->lock, flags); | 
 | 	list_for_each_entry(vd, &cvc->pc->queue, node) | 
 | 		if (vd->tx.cookie == cookie) { | 
 | 			spin_unlock_irqrestore(&cvc->pc->lock, flags); | 
 | 			return vd; | 
 | 		} | 
 | 	spin_unlock_irqrestore(&cvc->pc->lock, flags); | 
 |  | 
 | 	list_for_each_entry(vd, &cvc->vc.desc_issued, node) | 
 | 		if (vd->tx.cookie == cookie) | 
 | 			return vd; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static enum dma_status mtk_cqdma_tx_status(struct dma_chan *c, | 
 | 					   dma_cookie_t cookie, | 
 | 					   struct dma_tx_state *txstate) | 
 | { | 
 | 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); | 
 | 	struct mtk_cqdma_vdesc *cvd; | 
 | 	struct virt_dma_desc *vd; | 
 | 	enum dma_status ret; | 
 | 	unsigned long flags; | 
 | 	size_t bytes = 0; | 
 |  | 
 | 	ret = dma_cookie_status(c, cookie, txstate); | 
 | 	if (ret == DMA_COMPLETE || !txstate) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irqsave(&cvc->vc.lock, flags); | 
 | 	vd = mtk_cqdma_find_active_desc(c, cookie); | 
 | 	spin_unlock_irqrestore(&cvc->vc.lock, flags); | 
 |  | 
 | 	if (vd) { | 
 | 		cvd = to_cqdma_vdesc(vd); | 
 | 		bytes = cvd->residue; | 
 | 	} | 
 |  | 
 | 	dma_set_residue(txstate, bytes); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mtk_cqdma_issue_pending(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); | 
 | 	unsigned long pc_flags; | 
 | 	unsigned long vc_flags; | 
 |  | 
 | 	/* acquire PC's lock before VS's lock for lock dependency in tasklet */ | 
 | 	spin_lock_irqsave(&cvc->pc->lock, pc_flags); | 
 | 	spin_lock_irqsave(&cvc->vc.lock, vc_flags); | 
 |  | 
 | 	if (vchan_issue_pending(&cvc->vc)) | 
 | 		mtk_cqdma_issue_vchan_pending(cvc); | 
 |  | 
 | 	spin_unlock_irqrestore(&cvc->vc.lock, vc_flags); | 
 | 	spin_unlock_irqrestore(&cvc->pc->lock, pc_flags); | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor * | 
 | mtk_cqdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, | 
 | 			  dma_addr_t src, size_t len, unsigned long flags) | 
 | { | 
 | 	struct mtk_cqdma_vdesc **cvd; | 
 | 	struct dma_async_tx_descriptor *tx = NULL, *prev_tx = NULL; | 
 | 	size_t i, tlen, nr_vd; | 
 |  | 
 | 	/* | 
 | 	 * In the case that trsanction length is larger than the | 
 | 	 * DMA engine supports, a single memcpy transaction needs | 
 | 	 * to be separated into several DMA transactions. | 
 | 	 * Each DMA transaction would be described by a CVD, | 
 | 	 * and the first one is referred as the parent CVD, | 
 | 	 * while the others are child CVDs. | 
 | 	 * The parent CVD's tx descriptor is the only tx descriptor | 
 | 	 * returned to the DMA user, and it should not be completed | 
 | 	 * until all the child CVDs completed. | 
 | 	 */ | 
 | 	nr_vd = DIV_ROUND_UP(len, MTK_CQDMA_MAX_LEN); | 
 | 	cvd = kcalloc(nr_vd, sizeof(*cvd), GFP_NOWAIT); | 
 | 	if (!cvd) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < nr_vd; ++i) { | 
 | 		cvd[i] = kzalloc(sizeof(*cvd[i]), GFP_NOWAIT); | 
 | 		if (!cvd[i]) { | 
 | 			for (; i > 0; --i) | 
 | 				kfree(cvd[i - 1]); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		/* setup dma channel */ | 
 | 		cvd[i]->ch = c; | 
 |  | 
 | 		/* setup sourece, destination, and length */ | 
 | 		tlen = (len > MTK_CQDMA_MAX_LEN) ? MTK_CQDMA_MAX_LEN : len; | 
 | 		cvd[i]->len = tlen; | 
 | 		cvd[i]->src = src; | 
 | 		cvd[i]->dest = dest; | 
 |  | 
 | 		/* setup tx descriptor */ | 
 | 		tx = vchan_tx_prep(to_virt_chan(c), &cvd[i]->vd, flags); | 
 | 		tx->next = NULL; | 
 |  | 
 | 		if (!i) { | 
 | 			cvd[0]->residue = len; | 
 | 		} else { | 
 | 			prev_tx->next = tx; | 
 | 			cvd[i]->residue = tlen; | 
 | 		} | 
 |  | 
 | 		cvd[i]->parent = cvd[0]; | 
 |  | 
 | 		/* update the src, dest, len, prev_tx for the next CVD */ | 
 | 		src += tlen; | 
 | 		dest += tlen; | 
 | 		len -= tlen; | 
 | 		prev_tx = tx; | 
 | 	} | 
 |  | 
 | 	return &cvd[0]->vd.tx; | 
 | } | 
 |  | 
 | static void mtk_cqdma_free_inactive_desc(struct dma_chan *c) | 
 | { | 
 | 	struct virt_dma_chan *vc = to_virt_chan(c); | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(head); | 
 |  | 
 | 	/* | 
 | 	 * set desc_allocated, desc_submitted, | 
 | 	 * and desc_issued as the candicates to be freed | 
 | 	 */ | 
 | 	spin_lock_irqsave(&vc->lock, flags); | 
 | 	list_splice_tail_init(&vc->desc_allocated, &head); | 
 | 	list_splice_tail_init(&vc->desc_submitted, &head); | 
 | 	list_splice_tail_init(&vc->desc_issued, &head); | 
 | 	spin_unlock_irqrestore(&vc->lock, flags); | 
 |  | 
 | 	/* free descriptor lists */ | 
 | 	vchan_dma_desc_free_list(vc, &head); | 
 | } | 
 |  | 
 | static void mtk_cqdma_free_active_desc(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); | 
 | 	bool sync_needed = false; | 
 | 	unsigned long pc_flags; | 
 | 	unsigned long vc_flags; | 
 |  | 
 | 	/* acquire PC's lock first due to lock dependency in dma ISR */ | 
 | 	spin_lock_irqsave(&cvc->pc->lock, pc_flags); | 
 | 	spin_lock_irqsave(&cvc->vc.lock, vc_flags); | 
 |  | 
 | 	/* synchronization is required if this VC is active */ | 
 | 	if (mtk_cqdma_is_vchan_active(cvc)) { | 
 | 		cvc->issue_synchronize = true; | 
 | 		sync_needed = true; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&cvc->vc.lock, vc_flags); | 
 | 	spin_unlock_irqrestore(&cvc->pc->lock, pc_flags); | 
 |  | 
 | 	/* waiting for the completion of this VC */ | 
 | 	if (sync_needed) | 
 | 		wait_for_completion(&cvc->issue_completion); | 
 |  | 
 | 	/* free all descriptors in list desc_completed */ | 
 | 	vchan_synchronize(&cvc->vc); | 
 |  | 
 | 	WARN_ONCE(!list_empty(&cvc->vc.desc_completed), | 
 | 		  "Desc pending still in list desc_completed\n"); | 
 | } | 
 |  | 
 | static int mtk_cqdma_terminate_all(struct dma_chan *c) | 
 | { | 
 | 	/* free descriptors not processed yet by hardware */ | 
 | 	mtk_cqdma_free_inactive_desc(c); | 
 |  | 
 | 	/* free descriptors being processed by hardware */ | 
 | 	mtk_cqdma_free_active_desc(c); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mtk_cqdma_alloc_chan_resources(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_cqdma_device *cqdma = to_cqdma_dev(c); | 
 | 	struct mtk_cqdma_vchan *vc = to_cqdma_vchan(c); | 
 | 	struct mtk_cqdma_pchan *pc = NULL; | 
 | 	u32 i, min_refcnt = U32_MAX, refcnt; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* allocate PC with the minimun refcount */ | 
 | 	for (i = 0; i < cqdma->dma_channels; ++i) { | 
 | 		refcnt = refcount_read(&cqdma->pc[i]->refcnt); | 
 | 		if (refcnt < min_refcnt) { | 
 | 			pc = cqdma->pc[i]; | 
 | 			min_refcnt = refcnt; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pc) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	spin_lock_irqsave(&pc->lock, flags); | 
 |  | 
 | 	if (!refcount_read(&pc->refcnt)) { | 
 | 		/* allocate PC when the refcount is zero */ | 
 | 		mtk_cqdma_hard_reset(pc); | 
 |  | 
 | 		/* enable interrupt for this PC */ | 
 | 		mtk_dma_set(pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT); | 
 |  | 
 | 		/* | 
 | 		 * refcount_inc would complain increment on 0; use-after-free. | 
 | 		 * Thus, we need to explicitly set it as 1 initially. | 
 | 		 */ | 
 | 		refcount_set(&pc->refcnt, 1); | 
 | 	} else { | 
 | 		refcount_inc(&pc->refcnt); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&pc->lock, flags); | 
 |  | 
 | 	vc->pc = pc; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mtk_cqdma_free_chan_resources(struct dma_chan *c) | 
 | { | 
 | 	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* free all descriptors in all lists on the VC */ | 
 | 	mtk_cqdma_terminate_all(c); | 
 |  | 
 | 	spin_lock_irqsave(&cvc->pc->lock, flags); | 
 |  | 
 | 	/* PC is not freed until there is no VC mapped to it */ | 
 | 	if (refcount_dec_and_test(&cvc->pc->refcnt)) { | 
 | 		/* start the flush operation and stop the engine */ | 
 | 		mtk_dma_set(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT); | 
 |  | 
 | 		/* wait for the completion of flush operation */ | 
 | 		if (mtk_cqdma_poll_engine_done(cvc->pc, true) < 0) | 
 | 			dev_err(cqdma2dev(to_cqdma_dev(c)), "cqdma flush timeout\n"); | 
 |  | 
 | 		/* clear the flush bit and interrupt flag */ | 
 | 		mtk_dma_clr(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT); | 
 | 		mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_FLAG, | 
 | 			    MTK_CQDMA_INT_FLAG_BIT); | 
 |  | 
 | 		/* disable interrupt for this PC */ | 
 | 		mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&cvc->pc->lock, flags); | 
 | } | 
 |  | 
 | static int mtk_cqdma_hw_init(struct mtk_cqdma_device *cqdma) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int err; | 
 | 	u32 i; | 
 |  | 
 | 	pm_runtime_enable(cqdma2dev(cqdma)); | 
 | 	pm_runtime_get_sync(cqdma2dev(cqdma)); | 
 |  | 
 | 	err = clk_prepare_enable(cqdma->clk); | 
 |  | 
 | 	if (err) { | 
 | 		pm_runtime_put_sync(cqdma2dev(cqdma)); | 
 | 		pm_runtime_disable(cqdma2dev(cqdma)); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* reset all PCs */ | 
 | 	for (i = 0; i < cqdma->dma_channels; ++i) { | 
 | 		spin_lock_irqsave(&cqdma->pc[i]->lock, flags); | 
 | 		if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0) { | 
 | 			dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n"); | 
 | 			spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); | 
 |  | 
 | 			clk_disable_unprepare(cqdma->clk); | 
 | 			pm_runtime_put_sync(cqdma2dev(cqdma)); | 
 | 			pm_runtime_disable(cqdma2dev(cqdma)); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mtk_cqdma_hw_deinit(struct mtk_cqdma_device *cqdma) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u32 i; | 
 |  | 
 | 	/* reset all PCs */ | 
 | 	for (i = 0; i < cqdma->dma_channels; ++i) { | 
 | 		spin_lock_irqsave(&cqdma->pc[i]->lock, flags); | 
 | 		if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0) | 
 | 			dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n"); | 
 | 		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); | 
 | 	} | 
 |  | 
 | 	clk_disable_unprepare(cqdma->clk); | 
 |  | 
 | 	pm_runtime_put_sync(cqdma2dev(cqdma)); | 
 | 	pm_runtime_disable(cqdma2dev(cqdma)); | 
 | } | 
 |  | 
 | static const struct of_device_id mtk_cqdma_match[] = { | 
 | 	{ .compatible = "mediatek,mt6765-cqdma" }, | 
 | 	{ /* sentinel */ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, mtk_cqdma_match); | 
 |  | 
 | static int mtk_cqdma_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct mtk_cqdma_device *cqdma; | 
 | 	struct mtk_cqdma_vchan *vc; | 
 | 	struct dma_device *dd; | 
 | 	struct resource *res; | 
 | 	int err; | 
 | 	u32 i; | 
 |  | 
 | 	cqdma = devm_kzalloc(&pdev->dev, sizeof(*cqdma), GFP_KERNEL); | 
 | 	if (!cqdma) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dd = &cqdma->ddev; | 
 |  | 
 | 	cqdma->clk = devm_clk_get(&pdev->dev, "cqdma"); | 
 | 	if (IS_ERR(cqdma->clk)) { | 
 | 		dev_err(&pdev->dev, "No clock for %s\n", | 
 | 			dev_name(&pdev->dev)); | 
 | 		return PTR_ERR(cqdma->clk); | 
 | 	} | 
 |  | 
 | 	dma_cap_set(DMA_MEMCPY, dd->cap_mask); | 
 |  | 
 | 	dd->copy_align = MTK_CQDMA_ALIGN_SIZE; | 
 | 	dd->device_alloc_chan_resources = mtk_cqdma_alloc_chan_resources; | 
 | 	dd->device_free_chan_resources = mtk_cqdma_free_chan_resources; | 
 | 	dd->device_tx_status = mtk_cqdma_tx_status; | 
 | 	dd->device_issue_pending = mtk_cqdma_issue_pending; | 
 | 	dd->device_prep_dma_memcpy = mtk_cqdma_prep_dma_memcpy; | 
 | 	dd->device_terminate_all = mtk_cqdma_terminate_all; | 
 | 	dd->src_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS; | 
 | 	dd->dst_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS; | 
 | 	dd->directions = BIT(DMA_MEM_TO_MEM); | 
 | 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; | 
 | 	dd->dev = &pdev->dev; | 
 | 	INIT_LIST_HEAD(&dd->channels); | 
 |  | 
 | 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, | 
 | 						      "dma-requests", | 
 | 						      &cqdma->dma_requests)) { | 
 | 		dev_info(&pdev->dev, | 
 | 			 "Using %u as missing dma-requests property\n", | 
 | 			 MTK_CQDMA_NR_VCHANS); | 
 |  | 
 | 		cqdma->dma_requests = MTK_CQDMA_NR_VCHANS; | 
 | 	} | 
 |  | 
 | 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, | 
 | 						      "dma-channels", | 
 | 						      &cqdma->dma_channels)) { | 
 | 		dev_info(&pdev->dev, | 
 | 			 "Using %u as missing dma-channels property\n", | 
 | 			 MTK_CQDMA_NR_PCHANS); | 
 |  | 
 | 		cqdma->dma_channels = MTK_CQDMA_NR_PCHANS; | 
 | 	} | 
 |  | 
 | 	cqdma->pc = devm_kcalloc(&pdev->dev, cqdma->dma_channels, | 
 | 				 sizeof(*cqdma->pc), GFP_KERNEL); | 
 | 	if (!cqdma->pc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* initialization for PCs */ | 
 | 	for (i = 0; i < cqdma->dma_channels; ++i) { | 
 | 		cqdma->pc[i] = devm_kcalloc(&pdev->dev, 1, | 
 | 					    sizeof(**cqdma->pc), GFP_KERNEL); | 
 | 		if (!cqdma->pc[i]) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		INIT_LIST_HEAD(&cqdma->pc[i]->queue); | 
 | 		spin_lock_init(&cqdma->pc[i]->lock); | 
 | 		refcount_set(&cqdma->pc[i]->refcnt, 0); | 
 | 		cqdma->pc[i]->base = devm_platform_ioremap_resource(pdev, i); | 
 | 		if (IS_ERR(cqdma->pc[i]->base)) | 
 | 			return PTR_ERR(cqdma->pc[i]->base); | 
 |  | 
 | 		/* allocate IRQ resource */ | 
 | 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i); | 
 | 		if (!res) { | 
 | 			dev_err(&pdev->dev, "No irq resource for %s\n", | 
 | 				dev_name(&pdev->dev)); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		cqdma->pc[i]->irq = res->start; | 
 |  | 
 | 		err = devm_request_irq(&pdev->dev, cqdma->pc[i]->irq, | 
 | 				       mtk_cqdma_irq, 0, dev_name(&pdev->dev), | 
 | 				       cqdma); | 
 | 		if (err) { | 
 | 			dev_err(&pdev->dev, | 
 | 				"request_irq failed with err %d\n", err); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* allocate resource for VCs */ | 
 | 	cqdma->vc = devm_kcalloc(&pdev->dev, cqdma->dma_requests, | 
 | 				 sizeof(*cqdma->vc), GFP_KERNEL); | 
 | 	if (!cqdma->vc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < cqdma->dma_requests; i++) { | 
 | 		vc = &cqdma->vc[i]; | 
 | 		vc->vc.desc_free = mtk_cqdma_vdesc_free; | 
 | 		vchan_init(&vc->vc, dd); | 
 | 		init_completion(&vc->issue_completion); | 
 | 	} | 
 |  | 
 | 	err = dma_async_device_register(dd); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = of_dma_controller_register(pdev->dev.of_node, | 
 | 					 of_dma_xlate_by_chan_id, cqdma); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"MediaTek CQDMA OF registration failed %d\n", err); | 
 | 		goto err_unregister; | 
 | 	} | 
 |  | 
 | 	err = mtk_cqdma_hw_init(cqdma); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"MediaTek CQDMA HW initialization failed %d\n", err); | 
 | 		goto err_unregister; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, cqdma); | 
 |  | 
 | 	/* initialize tasklet for each PC */ | 
 | 	for (i = 0; i < cqdma->dma_channels; ++i) | 
 | 		tasklet_init(&cqdma->pc[i]->tasklet, mtk_cqdma_tasklet_cb, | 
 | 			     (unsigned long)cqdma->pc[i]); | 
 |  | 
 | 	dev_info(&pdev->dev, "MediaTek CQDMA driver registered\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_unregister: | 
 | 	dma_async_device_unregister(dd); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int mtk_cqdma_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct mtk_cqdma_device *cqdma = platform_get_drvdata(pdev); | 
 | 	struct mtk_cqdma_vchan *vc; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	/* kill VC task */ | 
 | 	for (i = 0; i < cqdma->dma_requests; i++) { | 
 | 		vc = &cqdma->vc[i]; | 
 |  | 
 | 		list_del(&vc->vc.chan.device_node); | 
 | 		tasklet_kill(&vc->vc.task); | 
 | 	} | 
 |  | 
 | 	/* disable interrupt */ | 
 | 	for (i = 0; i < cqdma->dma_channels; i++) { | 
 | 		spin_lock_irqsave(&cqdma->pc[i]->lock, flags); | 
 | 		mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_EN, | 
 | 			    MTK_CQDMA_INT_EN_BIT); | 
 | 		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags); | 
 |  | 
 | 		/* Waits for any pending IRQ handlers to complete */ | 
 | 		synchronize_irq(cqdma->pc[i]->irq); | 
 |  | 
 | 		tasklet_kill(&cqdma->pc[i]->tasklet); | 
 | 	} | 
 |  | 
 | 	/* disable hardware */ | 
 | 	mtk_cqdma_hw_deinit(cqdma); | 
 |  | 
 | 	dma_async_device_unregister(&cqdma->ddev); | 
 | 	of_dma_controller_free(pdev->dev.of_node); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver mtk_cqdma_driver = { | 
 | 	.probe = mtk_cqdma_probe, | 
 | 	.remove = mtk_cqdma_remove, | 
 | 	.driver = { | 
 | 		.name           = KBUILD_MODNAME, | 
 | 		.of_match_table = mtk_cqdma_match, | 
 | 	}, | 
 | }; | 
 | module_platform_driver(mtk_cqdma_driver); | 
 |  | 
 | MODULE_DESCRIPTION("MediaTek CQDMA Controller Driver"); | 
 | MODULE_AUTHOR("Shun-Chih Yu <[email protected]>"); | 
 | MODULE_LICENSE("GPL v2"); |